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Abstract

Background

The use of short reads from High Throughput Sequencing (HTS) techniques is now commonplace in
de novoassembly. Yet, obtaining contiguous assemblies from short reads is challenging, thus making
scaffolding an important step in the assembly pipeline. Different algorithms have been proposed but
many of them use the number of read pairs supporting a linking of two contigs as an indicator of
reliability. This reasoning is intuitive, but fails to account for variation in link count due to contig
features.

We have also noted that published scaffolders are only evaluated on smalldatasets using output from
only one assembler. Two issues arise from this. Firstly, some of the availabletools are not well suited
for complex genomes. Secondly, these evaluations provide little support for inferring a software’s
general performance.



Results

We propose a new algorithm, implemented in a tool called BESST, which can scaffold genomes of
all sizes and complexities and was used to scaffold the genome ofP. abies(20 Gbp). We performed
a comprehensive comparison of BESST against the most popular stand-alone scaffolders on a large
variety of datasets. Our results confirm that some of the popular scaffolders are not practical to run
on complex datasets. Furthermore, no single stand-alone scaffolder outperforms the others on all
datasets. However, BESST fares favorably to the other tested scaffolders on GAGE datasets and,
moreover, outperforms the other methods when library insert size distribution is wide.

Conclusion

We conclude from our results that information sources other than the quantity of links, as is commonly
used, can provide useful information about genome structure when scaffolding.
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Background

Recent high-throughput sequencing (HTS) technologies are attractive for de novoassembly projects
since they produce millions of short DNA-sequences (referred to asreads) at low cost. However, these
reads are only a couple of hundred base pairs long making it difficult foran assembler (e.g., [1,2]) to
reconstruct the genome. As a result, the output of an assembly often consists ofcontigs, i.e., subsets of
reads assembled into longer fragments of genomic sequence.

However, HTS-technologies provide protocols for creating read pairsthat can be used to increase the
contiguity of an assembly. We define aread pair as two reads that are sequenced at a known distance
and orientation where the distance between the reads, is referred to asinsert size. If the two reads within
a read pair belong to different contigsca andcb, a link is created betweenca andcb, see Figure 1a. From
this link, we can infer a relative order, orientation and distance betweenca andcb.

Figure 1 Notation. a)A read pair with insert sizex (unknown distance) aligns to two contigsca and
cb, thus creates a link betweenca andcb. The read pair gives rise to observationsoa, ob and they are
used to infer the unknown distanced. Distances foroa, ob, d andr are illustrated.b) Graph structure and
notations of the scaffold graphG. Two contigsca andcb connected by an edgee created from alignments
of read pairs.

The process of linking and ordering contigs is calledscaffolding. In addition to paired reads, information
such as reference sequences of related organisms [3], restriction maps [4] and RNA-seq data [5], can be
used for contig linking. However, reference based assembly is not applicable to mostde novosequencing
projects, restriction maps are often not available, and RNA-seq data only have coverage over genes and
contains no information about distance between reads which makes contig placement ambiguous. This
makes read pair information the most commonly used (and often also the only applicable) source of
information for scaffolding.

Unfortunately, scaffolding with read pairs poses challenges: reads maycreate spurious links because of
read errors, heterozygosity and the repeated nature of the genome, and these spurious links make
ordering and orientations among the contigs ambiguous. Hence, the scaffolding problem can be



summarized as detecting and utilizing the correct links in order to find a consistent ordering and
orientation of the contigs. The existing formalizations of scaffolding have been proven to be
NP-complete, but it is still unclear if these formulations, even when finding theoptimal solution with
respect to the objective, solves the real (i.e. biological) problem. These approaches have focused on
structural properties of the graph induced by contig links, with little emphasis on assessing correctness
of individual links. Our approach focuses on removing incorrect linksand employing sophisticated
statistics to evaluate whether linking reads come from the underlying library distribution, or from
misalignments. Only in a second step are structural properties used.

The following section discusses the formalization of scaffolding and relatedwork, as well as gives an
outline and motivation for our work. Our algorithm, realized in an implementation called BESST (Bias
Estimating Stepwise Scaffolding Tool), is presented in detail in the Methods section. The algorithm
scales well and is practical on very large and complex genomes, as proved by its use in thePicea abies
genome project (20 Gbp) [6]. Furthermore, it excels at scaffolding withwider insert size distributions.

We present an evaluation of BESST against other popular stand-alone scaffolders on a large variety
of datasets from GAGE [7]. Compared to previous assessments of novelscaffolding methodologies,
the results obtained from our evaluation allows us to draw conclusions about the general performance
of stand-alone scaffolders to a much higher extent. Another recent extensive evaluation of scaffolding
tools is given in [8]. In our study we primarily compare stand-alone scaffolders because they have access
to the same amount of information and are applicable in the same contexts (e.g. scaffolding with mate
pair libraries that was not use in the original assembly). Nonetheless, we also include GAGE results on
integrated scaffolders.

Our results indicate that no single scaffolder outperforms the others on alldatasets although in total,
BESST shows the most favorable results among stand-alone scaffolders. Furthermore, our algorithm
outperforms other stand-alone scaffolders when the library insert-sizedistribution has a high standard
deviation. Although there is wide performance variation around integrated scaffolders, overall, GAGE
results demonstrate that Allpaths-LG’s assemblies scaffolded with its integrated scaffolder have the
highest quality.

The problem

Formalizing Scaffolding

As input for scaffolding we assume a set of contigsC = {c1, c2, . . .} produced by an assembler and
a number of read pairsR = {(r1

1
, r2

1
), (r1

2
, r2

2
), . . .} from a read pair library that have been aligned

to the contigs. These read pairs have an insert size distribution with meanµ and standard deviation
σ. By aligning all reads inR on C we can define the graphG as follows: Each contig gives rise to
precisely two verticesci,L andci,R in G whereci,L denotes it’s 5’ end andci,R denotes it’s 3’ end (see
Figure 1b). In a read pair, ifr1i aligns to precisely one contigck andr2i aligns to precisely one contig
cm, with k 6= m, this read pair induces a relative orientation and an approximate distance betweenck
andcm. This relationship is represented as an edgee, see Figure 1b. We letV andE denote the set of
vertices and edges respectively inG. GivenG, several formulations and methods have been proposed
for scaffolding. We will discuss some of them below.

Problem formulations in related works

The scaffolding problem (SP) defined byHuson et.al.[9] is a formulation that is commonly referred
to. Using their notation, letG be defined as above and letn links between two contigs induce a weight
n on the edgee between these two contigs. Furthermore, letΦ : V → N be an ordering, orientation



and distance map ofG, that is, an assignment of non negative integer coordinates to the verticesV in G
that preserves the contig lengths. Given such a mapping instanceφ, [9] states that an edgee between
ci andcj is consistent ifci andcj have the correct relative orientation (induced by aligned read pairs),
and the distance betweenci andcj is approximately correct. Here, approximately correct means thate
suggests a distance betweenci andcj that is less thanµ + 3σ, a heuristically chosen bound. If an edge
does not satisfy these constraints, it is called inconsistent. Huson et.al. [9]define SP to be the problem
of finding a maximum weight consistent edge subset. SP has been used as foundation for a number of
other works discussing scaffolding and proposed heuristics for solving it can generally be categorized
as either “greedy” or “graph-structure” optimization algorithms.

Greedy algorithms proposed to solve SP include SSPACE and Bambus [10,11]. SSPACE extends
scaffolds in a greedy fashion applying a heuristic stopping criterion. Bambus builds scaffolds greedily
with heuristics to remove inconsistent link constraints.

Graph-structure optimization algorithms that have been proposed to solve theSP are for instance:
SOPRA [12] formulates a global optimization problem for solving relative contig orientation (exact for
simple regions while a simulated annealing approach is employed in more complex regions of the
graph). In a second step, read-pair distribution is used to determine the relative positions of contigs
within a scaffold. If an inconsistency is found in the positioning step, the link causing the inconsistency
is removed and the algorithm restarts at the orientation step. OPERA [13] builds scaffolds using the
number of inconsistent edgesp in a subgraph as a design criterion (the subgraph represents a potential
scaffold). By treatingp as fixed, they can obtain a polynomial time algorithm to find an optimal (with
respect to a givenp) solution to their slightly modified version of SP. The algorithm then tries allp
starting fromp = 0 and stops when a scaffold can be constructed. SLIQ [14] formulates a set of linear
inequalities together with majority voting to predict placements of contigs. MIP Scaffolder [15] and
GRASS [16] formulate SP as a mixed integer programming problem, but uses different techniques to
find a solution. MIP Scaffolder resolves conflicting regions in the obtainedMIP solution using
heuristics such as removing edges that are stretched or contracted more than a given threshold. GRASS
uses an Expectation-Maximization algorithm. The maximization step obtains degrees of penalties on
contig links given fixed contig orientations. The penalties are set according to what magnitude the
constraints for a link is violated. If a penalty is higher than a given threshold, the penalty of the link is
“de-activated”, i.e., its constraints are not considered. The expectation step is used to obtain the
expected contig orientation of links given (the “activated”) penalties set inthe maximization step.
Links that are activated in the final solution are used for scaffolding.

There are advantages and disadvantages with these two classes of methods. Algorithms that are solving
a local problem using a greedy approach often have better runtime and scale well on larger genomes but
use oversimplified methods to find a solution which may only work for some genomes. Graph-structure
optimization methods are instead hindered by their time complexity for finding a solution. The runtime
scales poorly and it is difficult to predict if such an algorithm will ever finishon a larger dataset (see
section Results).

Additionally, current methods that use insert sizes of paired reads for contig placement are built on false
assumptions as we have previously shown [17]. This can complicate scaffolding when libraries with
large insert-size variation are used.

Link inconsistency detection

The methods previously described define SP similar to [9] with modifications on how to define a
consistent edge. Different heuristics are used between the methods to obtain a solution to SP. Yet, a
common denominator is that the number of links supporting an edge is used as anindicator of



reliability; edges with many links are preferred and those with few links are avoided. This reasoning is
intuitive, but fails to account for variation in link count due to contig features. Firstly, the number of
links between two contigs depends on the real (i.e., biologically) distance between the two contigs and
on their size [17]. Secondly, in SP we face structural features such asrepeated regions, heterozygosity,
and chimeric contigs. These features create clusters with reads being misaligned which cannot be seen
as individual random events. It is our assumption that the number of random, non-structural,
misalignments caused by,e.g., sequencing errors are almost negligible compared to the structural
misalignments. Link count is therefore a poor indicator of edge reliability.

We take a different approach to SP and, instead of link count, evaluate edges based on link statistics.
When read pairs are mapped to contigs, are they placed on and connectingcontigs in a reasonable way?
In other words, we want to answer the question: given an edgee, is the cluster of read-pairs forming
e coming from the read-pair library, or are they a consequence of a structural feature? If these reads
together show similar properties as the read pair library we are scaffoldingwith (e.g., mean, standard
deviation), the edge is more likely to be correct.

We propose an algorithm, BESST (Bias-Estimating Stepwise Scaffolding Tool), that puts focus on
analyzing the scaffold graph in local regions using statistics to filter out spurious edges created by
structural errors. BESST starts scaffolding with contigs that meet a lengthcriterion for the library
(definition given in section Methods). It then continues with smaller contigs in an optional step. If
several different paired-read libraries are used, BESST scaffolds with one library at a time in an
increasing order of insert size of the library. Separating contigs with respect to size is mainly due to
two reasons:(i) Links between large contigs make gap size estimation more stable (see [17]) giving a
more robust statistical analysis.(ii) The gain in speed is significant since correct regions are simple
path components inG which are found by visiting each edge once, thus, the time complexity isO(|E|).

Results and discussion

De novoassembly validation is a task as difficult asde novoassembly itself. Recent evaluation efforts
like GAGE [7] and Assemblathon [18] encountered several problems in identifying the best assembler.
GAGE clearly demonstrated how the same assembler can havecompletelydifferent performances (e.g.,
quality) even on similar datasets (e.g., bacterial genomes). This predicament was also supported in
recent evaluation efforts [19,20]. Despite this, as noted by [21], all new published assemblers and
scaffolders have been compared to the then-existing tools highlighting betterperformances on a specific
dataset using some specific metrics. We argue that evaluation of tools shouldbe performed on multiple
datasets and/or scenarios to avoid over-generalization and confirmation bias. For standalone scaffolders
without stated dependencies, it is advisable to test on output from several assemblers to investigate
overall performance.

We have tried to address the above issues in our evaluation of BESST, using a wide range of different
datasets and assemblers. BESST has been compared with three other state-of-the-art scaffolders:
OPERA, SOPRA, and SSPACE.

Datasets

Evaluation has been performed using the three GAGE datasets [7] which gave us the possibility to
evaluate scaffolders on three highly different genomes:Staphylococcus aureus, Rhodobacter spaeroides,
and Human chromosome 14 (hereafter referred to as Hs14). All three datasets have been sequenced with
high coverage Illumina paired-end (i.e., PE-reads) and mate-pairs (i.e., MP-reads) libraries. Moreover
each organism has been assembled with up to8 different assemblers.



GAGE provides high quality MP-libraries with narrow insert size distributionswith standard deviation
lower than 10% of the mean. However, narrow insert size libraries cannot be obtained in assembly
projects where only small amounts of DNA are available. The MP libraries obtained in these cases are
wide and the standard deviation can be up to 50% of the mean. BESST uses a technique that works
well for larger uncertainties in insert size as this was one of the design assumptions. Therefore we have
included the MP library provided in [22] which is characterised by a large variation in insert size. We
used picard [23] to estimate the mean and standard deviation of insert size to 2600 and 1250 base pairs
respectively. This library will from now on be referred to as the “wide MP” library. An insert size
histogram of this distribution is available in Additional file 1: Figure S2.

Evaluation

We scaffolded all 23 available (contig level) GAGE-assemblies with BESST v1.0.4.2, and the
standalone scaffolders OPERA v1.2, SOPRA v1.4.6, and SSPACE-basicv2.0 using both PE and MP
libraries provided by GAGE. Results for assembler-integrated scaffolders, as computed by GAGE, are
also presented, but we primarily compare with the standalone scaffolders because they have access to
the same amount of information as BESST and are applicable in similar situations. Note that in GAGE
evaluation, Bambus2 was used both for contig and scaffold assembly (with unitigs provided by Celera
Assembler).

All scaffolders were run with default parameters (see Additional file 1 for details) on a 1 TB RAM
machine equipped with 24 CPUs. Read pairs were mapped to contigs using BWAv0.6.1 for BESST,
OPERA, and SOPRA. SSPACE-basic is distributed with Bowtie, thus we used the included version of
Bowtie (v0.12.5) for alignments with SSPACE. SSPACE also have a commercial version that supports
alignments with BWA. The difference in read alignment method may have an impacton the scaffolding
result but we did not investigate this. Out of the 124 scaffolding experiments, 117 successfully
terminated within our runtime limit of 48 hours (OPERA and SOPRA were not able toscaffold the
Hs14 dataset within this time limit in 3 and 4 cases respectively). Moreover, for the Rhodobacter
genome, we also scaffolded the 8 available contig-level assemblies employingthe wide MP library. To
summarize, a total of 156 scaffolding experiments have been run, and of these, 149 terminated within
the runtime limit and were evaluated.

Each of the 149 results have been evaluated with GAGE validation scripts http://gage.cbcb.umd.edu/
results/gage-validation.tar.gz for scaffolds, using the available reference sequence. For each assembly,
we used GAGE evaluation scripts to compute:

• Scaffold errors: number of indels, inversions, relocations, and translocations (as defined by [7]).

• Scaffold NG50: size of the longest scaffold such that the sum of the lengths of all scaffolds longer
than it is at least half of the (known) reference genome size.

• Scaffold E-size: The expected scaffold size at a randomly chosen position on the genome
(introduced and defined by [7]). The E-size is calculated asE = G−1

∑

c L
2
c whereLc is the

length of scaffoldc andG is the genome length estimated by the sum of all scaffold lengths.
E-size is computed similarly for contigs.

• Scaffold corrNG50: NG50 after scaffolds have been broken at every position a scaffold error is
found.

• Scaffold corrE-size: E-size after scaffolds have been broken at every position a scaffold error is
found.



Moreover, for each entry, we also compute:

• Number of initial contigs and number of produced scaffolds.

• Time used by the scaffolder (without considering time required to align reads).

NG50 is a common metric to evaluate an assembly, often offering a good indicationof the connectivity
as it gives the weighted median contig length. However, the size of one scaffold can be misleading
as a measure of the general connectivity of an assembly (as discussed in[7]) Consider, for example, a
simple case of two error free assembliesa andb of a 1000 bp genome. If assemblya has one contig of
499 bp and 5 contigs of 100 bp while assemblyb has 10 contigs of 100 bp, both will have an NG50 of
100 bp. The measure will therefore not expose the difference in quality betweena andb. However, the
respective E-sizes for assemblya andb are 299 and 100, and thus better capturing the average assembly
fragmentation.

Results

Tables 1, 2 and 3 presents the scaffolding performances for high qualitylibraries provided by GAGE.
With the evaluation metrics provided here, no stand-alone scaffolder is a clear winner (as expected [7,
20]). In general, BESST produces favorable results on all of the organisms. Contrary to the results in [8],
SOPRA does not perform well on the metrics provided by GAGE. The results for assembler-integrated
scaffolders, as computed by GAGE, are presented alongside the stand-alone scaffolders results. There
is a large variation in performance of integrated scaffolders but in general, BESST fares well also here.
We note that only Allpaths-LG has better scaffolded assembly on all three GAGE datasets. Scaffolds
from Bambus2 onS. aureusand SGA on Hs14 are two other instances where the integrated scaffolder
outperforms the stand-alone ones.



Table 1 Staphylococcus aureus GAGE data

BESST OPERA SOPRA SSPACE Integrated scaffolder Unscaffolded

CorrEsize err CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp)
ABySS 263,4 1 316,7 12 103,4 2 126,3 5 35,3 1 31,4

Allpaths-LG 436,4 0 607,4 12 295,5 0 1030,0 1 1136,2 0 90,0
Bambus2 827,3 1 560,0 4 125,2 2 665,7 2 1119,5 0 19,6
MSR-CA 744,7 3 302,4 11 117,4 0 781,6 2 999,9 3 50,3

SGA 75,1 0 920,1 3 239,9 6 32,6 2 162,9 1 4,7
SOAPdenovo 346,9 0 333,1 7 227,2 0 286,7 5 229,3 0 68,0

Velvet 204,2 4 236,8 5 154,4 1 162,2 12 194,6 17 48,5
SUM 2898,1 9 3276,6 54 1263,0 11 3085,1 29

The numbers in bold face style indicate the best corrected E-size and number of errors among the stand-alone scaffolders for each assembly.



Table 2 Rhodobacter sphaeroides, GAGE data

BESST OPERA SOPRA SSPACE Integrated scaffolder Unscaffolded
CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err Cor rEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp)

ABySS 70,2 13 65,8 20 44,9 17 34,7 4 73,4 3 6,9
Allpaths-LG 2005,7 0 852,1 4 425,4 2 1271,9 1 2401,7 0 35,9

Bambus2 1426,0 4 1446,0 8 1469,0 3 789,9 1 1348,4 2 16,2
CABOG 474,0 2 362,6 7 293,4 2 419,1 4 211,3 5 21,5
MSR-CA 1757,5 3 573,5 8 138,2 1 1579,8 2 2001,1 5 21,6

SGA 100,5 6 148,3 5 105,7 41 44,9 9 48,0 1 3,2
SOAPdenovo 1551,2 0 841,5 7 1477,1 3 1500,6 3 687,6 0 18,6

Velvet 332,9 2 336,1 10 175,6 11 329,6 6 348,1 19 16,7
SUM 7718,1 30 4626,0 69 4129,2 80 5970,5 30

The numbers in bold face style indicate the best corrected E-size and number of errors among the stand-alone scaffolders for each assembly.



Table 3 Hs14, GAGE data

BESST OPERA SOPRA SSPACE Integrated scaffolder Unscaffolded
CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err Cor rEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp)

ABySS 21,6 13 15,8 200 - - 15,3 47 2,8 9 3,1
Allpaths-LG 513,6 32 311,0 104 194,9 17 559,0 22 4652,3 45 27,1

Bambus2 88,2 75 61,7 331 - - 99,0 109 157,6 143 6,3
CABOG 421,9 31 349,1 77 234,0 19 411,0 23 347,7 597 30,7
MSR-CA 51,3 95 - - - - 51,9 146 111,9 1068 5,9

SGA 57,2 58 3,5 39 22,2 2253 24,8 42 89,9 19 3,7
SOAPdenovo 94,1 211 - - - - 75,3 205 99,2 268 9,8

Velvet 35,7 52 - - 75,4 734 22,6 140 26,6 9156 3,0
SUM 1283,6 567 741,0 751 526,5 3023 1259,0 734
The numbers in bold face style indicate the best corrected E-size and number of errors among the stand-alone scaffolders for each assembly.



High quality datasets where insert size variation does not deviate much fromthe mean are not always
available (see Additional file 1 for a discussion of this). The wide MP libraryhas higher variation, and
thus, increases the difficulty in scaffolding by introducing more uncertaintyfor contig placement.
Table 4 shows scaffolding results for the wide MP library. Considering thisscenario, BESST is
outperforming the other stand-alone scaffolders having the highest totalconnectivity whilst giving the
fewest errors. OPERA shows a slightly higher connectivity in some casesyet produces 17 times more
errors in total. Withstanding the SGA assembly, SOPRA shows few errors in all cases. Yet in most
cases, SOPRA also shows extremely low connectivity close to the original contig assembly. Similarly,
SSPACE is shown to produce few errors but also struggle with connectivity. As mentioned, larger
variation in library insert-size introduces more uncertainty of distance estimates and placement of
contigs. Thus, scaffolding becomes more error prone. We believe that our performance here is a
consequence of BESST’s ability to infer correct link-statistics despite widelibrary distribution.



Table 4 Rhodobacter sphaeroides on GAGE contig assemblies using the wide MP library

BESST OPERA SOPRA SSPACE Unscaffolded
CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err Cor rEsize (kbp) err CorrEsize (kbp)

ABySS 17,6 5 19,7 51 6,7 4 9,9 1 6,9
Allpaths-LG 318,1 0 314,5 1 44,4 0 70,3 2 35,9

Bambus2 460,6 0 267,1 0 93,9 0 137,9 0 16,2
CABOG 199,8 3 97,3 4 22,3 0 33,5 0 21,5
MSR-CA 192,1 1 203,7 6 24,0 0 38,1 1 21,6

SGA 4,3 0 13,3 111 3,3 12 6,5 3 3,2
SOAPdenovo 756,7 0 720,5 10 156,2 0 206,4 2 18,6

Velvet 350,2 2 62,3 4 17,8 3 30,9 3 16,7
SUM 2299,3 11 1698,4 187 368,7 19 533,6 12

The numbers in bold face style indicate the best corrected E-size and number of errors among the stand-alone scaffolders for each assembly. Notethat the
corrected E-size for SOPRA is slightly less than the corrected contig size in the ABySS assembly. This can happen for low contiguity scaffolded assemblies that
contains more bases than the contig assemblies (5,0Mbp and 4,5Mbp respectively on this instance). The difference in number of bases is due to the factsthat
GAGE evaluation script only compute statistics on contigs and scaffolds that are longer than 200bp. GAGE evaluation script returned an error when computing
statistics for seven, two and one scaffolds on SSPACE results of ABySS,CABOG and MSR-CA assemblies respectively. On SOPRA and OPERA results, 1
respectively 3 scaffolds of the SGA assembly returned this error. We removed these scaffolds from the evaluation in order to compute the results. Inall cases,
the scaffolds removed summed up to a total length of less than 110 kbp. Thus,this has a negligible (either positive or negative) effect on E-size computation and
an eventual positive effect on the number of errors. Results for BESST contained no scaffolds giving this error.



Tables 5, 6, 7 and 8 illustrates the types of errors that the stand-alone scaffolders make on the different
data sets and Tables 9, 10, 11 and 12 shows runtime of the scaffolders excluding alignment time. An
upper bound on runtime was set to 48 hours. BESST and SSPACE present good time scalability in
contrast to SOPRA and OPERA which did not finish after 48 hours on 3 and4 Hs14 instances
respectively.

Table 5 Types of errors onS. aureus summed over all assemblies

Assembly BESST OPERA SOPRA SSPACE

Indels 2 17 2 6
Inversions 6 30 6 16
Translocations 0 0 0 1
Relocations 1 7 3 6

Table 6 Types of errors onRhodobacter sphaeroides summed over all assemblies

Assembly BESST OPERA SOPRA SSPACE

Indels 16 28 13 7
Inversions 4 9 7 3
Translocations 2 26 21 14
Relocations 8 6 39 6

Table 7 Types of errors on Hs14 summed over all assemblies

Assembly BESST OPERA SOPRA SSPACE

Indels 398 149 1062 442
Inversions 163 383 154 289
Translocations 0 0 0 0
Relocations 6 219 1807 3

Table 8 Types of errors on Rhodobacter sphaeroides with wide MP library summed over all
assemblies

Assembly BESST OPERA SOPRA SSPACE

Indels 5 87 4 3
Inversions 3 5 1 0
Translocations 1 9 1 7
Relocations 2 86 13 2



Table 9 Runtime for scaffolders onStaphylococcus aureus

Runtime (hh:mm:ss)
Assembly BESST OPERA SOPRA SSPACE

ABySS 00:00:40 00:28:47 01:18:24 00:00:26
Allpaths 00:00:25 00:00:47 00:11:56 00:00:20
Bambus2 00:00:26 00:00:49 00:22:11 00:00:21
MSR-CA 00:00:26 00:01:05 00:19:21 00:00:21
SGA 00:01:03 00:05:58 04:30:08 00:00:51
SOAPdenovo 00:00:25 00:00:50 00:26:51 00:00:19
Velvet 00:00:27 00:00:53 00:39:25 00:00:21

Table 10 Runtime for scaffolders onRhodobacter sphaeroides with GAGE data

Runtime (hh:mm:ss)
Assembly BESST OPERA SOPRA SSPACE

ABySS 00:01:22 00:12:38 01:17:49 00:00:40
Allpaths-LG 00:00:32 00:01:13 00:10:35 00:00:27
Bambus2 00:00:33 00:01:38 00:10:42 00:00:25
CABOG 00:00:35 00:00:59 00:11:13 00:00:27
MSR-CA 00:00:38 00:01:12 00:18:10 00:00:29
SGA 00:01:45 00:01:35 01:30:44 00:00:45
SOAPdenovo 00:00:33 00:03:48 00:18:08 00:00:27
Velvet 00:00:49 00:01:16 00:36:54 00:00:27

Table 11 Runtime for scaffolders on Hs14 with GAGE data (upper bound time requirement was
set to 48 hours)

Runtime (hh:mm:ss)
Assembly BESST OPERA SOPRA SSPACE

ABySS 00:19:37 00:58:22 - 00:32:55
Allpaths-LG 00:05:06 00:53:24 22:02:09 00:12:55
Bambus2 00:07:43 01:18:06 - 00:14:26
CABOG 00:04:16 00:16:16 11:50:23 00:08:33
MSR-CA 00:11:22 - - 00:15:38
SGA 00:53:42 00:23:18 16:15:22 00:38:42
SOAPdenovo 00:07:50 - - 00:10:46
Velvet 00:10:07 - 01:27:16 00:15:35



Table 12 Runtime for scaffolders onRhodobacter sphaeroides with wide mate pair library

Runtime (hh:mm:ss)
Assembly BESST OPERA SOPRA SSPACE

ABySS 00:00:52 00:04:33 00:14:49 00:00:50
Allpaths-LG 00:00:31 00:04:03 00:08:48 00:00:36
Bambus2 00:00:25 00:03:50 00:09:08 00:00:33
CABOG 00:00:31 00:03:10 00:07:17 00:00:37
MSR-CA 00:00:30 00:03:46 00:08:29 00:00:39
SGA 00:00:36 00:04:06 00:16:29 00:00:49
SOAPdenovo 00:00:27 00:04:35 00:09:54 00:00:35
Velvet 00:00:33 00:03:58 00:09:38 00:00:40

Conclusion

We proposed a new algorithm, BESST, for the scaffolding problem. This algorithm works well on
both small and large datasets. Moreover, we performed a large evaluationof our software against other
popular stand-alone scaffolders. BESST places favorably comparedto the other scaffolders on GAGE
datasets and outperforms the other methods on libraries with a wide insert-sizedistribution.

Methods

Scaffolding of larger contigs

BESST works on a graph structureG (as defined underFormalizing scaffoldingin the Background
section). We apply statistics to assess similarity of observed link distribution to theexpected link
distribution between contigs larger thanµ + 4σ: a value chosen so that it is very unlikely that a
properly mapped read pair will span over a contig of such size. This meansthat a correctly assembled
contig that is not a perfect repeat will have at most one true edge to a neighboring contig of this size.
However, the graph structure created for contigs of this size is in practiceoften far from linear due to
e.g.small repeated regions and chimeric regions and that is why we want a way toassess edge quality.

The assessment of edges are realized in a score designed to reflect how reads from a read pair library
should be placed on contigs if they were in fact correctly assembled close toeach other on the genome.
It consists of two parts, a link variation scoreπσ and a link dispersity scoreπζ , which we present in
following subsections.

Link variation score (πσ):

Let ci, cj be two correctly assembled contigs at distanced away from each other on the genome (with
d small enough for the read-pair library to span). Reads linkingci andcj follow different distributions
depending on the size ofd, and a good estimate ofd can be calculated using ML-estimation (d̂ML)
with the tool GapEst introduced in [17]. Here, we go one step further andanswer the question: Given
µ, σ andd̂ML obtained from links observed overci andcj , what should the standard deviation of these
links be? We denote this quantity withσo|d (standard deviation of observations given a gap size) to be
consistent with the notation used for GapEst. Theorem 1 gives the theoretical expected value ofσo|d
which is dependent on the read lengthr and the length of the longer and shorter contig giving rise to the
gap (denotedcmin, cmax).



Theorem 1. Givenµ, σ andd, σo|d is given by

σo|d =

√

σ2 +
q(d)σ4

g(d)
−

g′(d)2σ4

g(d)2

whereg(d) andq(d) are defined in Additional file 1.

Proof. Derivation shown in Additional file 1.

We now defineπσ as
πσ = min{

σ̂o|d

σo|d
,
σo|d

σ̂o|d
}.

This quantity is a measure of how far observed distances are from the theoretical distance. Note that
0 ≤ πσ ≤ 1.

Link dispersity score (πζ)

The other part of the scoring function is an indicator of how well dispersed links are over the contigs
they are connecting, given an estimated gapd between them. This dispersity is scored by the two
sample Kolmogorov-Smirnov statistic [24] that gives a measure of difference in distribution between
two independent samples. Letting observations on a contig be a sample, the independence between
samples comes from the fact that the aligner has no information about which contigs lie close together,
thus links between contigs can be seen as two independent alignment events.

By observing if link distribution is similar for two linked contigs, we can detect abnormal edges that
might come from one or several smaller repeats residing within a contig (see Figure 2b). We call this
score the dispersity score and it is calculated as follows. Before testing, translation and reflection of the
observations are necessary (see Figure 2a).

Figure 2 Dispersity score. Illustration of dispersity measurement. Read pairs linking contigsc1 andc2
of lengths n and m respectively are transformed to data tested with the KS-test. (a) Observations from
contig c1 are translated and reflected on the x-axis while observations from contigc2 are translated.
The two sample KS statistic will indicate high similarity in read distribution.(b) Strange placement
of linked reads occur. Several explanations are possible. One possible explanation is that contigc2 is
misassembled (chimeric) and another explanation is thatc2 is a correctly assembled contig with small
repeated regions solved on assembly level. The repeat might not be present in other contigs from the
assembly and therefore, the alignments to these regions are reported as unique. Contigc2 is however
not close to the to contigc1 on the genome and linked reads fail to place at the non-repeated regions on
c2. The KS test will indicate low similarity.

Let n read pairs link two contigsc1 and c2 wherec1 is of lengthn. Recall thatoi
1
, oi

2
are theith

observations onc1 andc2 respectively. Letyi
1
= (n − oi

1
) − ô1, yi2 = oi

2
− ô2 whereô1 is the mean

observation onc1 and similar forô2. Samplesyi are therefore the transformed observations as seen in
Figure 2. The empirical distribution of samples is given by

Fn(y) =
1

n

n
∑

i=1

IYi≤y

whereIYi≤y is the indicator function. LetF 1
n(y) andF 2

n(y) be the two empirical distributions for the
samples onc1 respectivelyc2, the two-sample KS statistic of the observations is then obtained by

Dn = sup
y

|F 1

n(y)− F 2

n(y)|.



It follows thatDn ∈ [0, 1] since this quantity measures the largest distance between the two empirical
cumulative distributions. The similarity score is defined asπζ = 1−Dn.

Scoring edges:

To sum up the two previous subsections, we first derived a score for the ratio of the expected to the
observed standard deviation of distance for links spanning a gap. Secondly, we gave a similarity score
of expected to observed dispersity of links spanning a gap using the two-sample KS statistic. The total
score of a gap-edge is defined as

π =

{

πσ + πζ if πσ, πζ > 0.5,
0 otherwise.

By definition, we have0 ≤ π ≤ 2. We have used the heuristic cutoff 0.5 which means that if any of the
two quantities deviates more than twice from the assumed value, the score is setto 0, i.e., the edge is
discarded from the graph.π is only calculated on edges whereci, cj > µ+ 4σ. That is, any vertex that
has more than 2 neighbors in this subgraph is considered to be involved in a region with linking errors
since by the constraints of the contig lengths, the library should not be able tolink more than one such
contig. The score is used to choose the edge with links that best resemble thelibrary. If the two highest
scores in such a region are close to each other (their ratio higher than 0.9 set heuristically), we chose to
not make a decision. This can for instance occur from larger repeated contigs. This approach finds a
mappingφ onG, representing a scaffolding, inO(|E|) time.

Note about scoring edges

It might be inviting to start usingp-values that can be estimated from the distributions we have defined.
This would lead to a statistical test for keeping or discarding edges in the scaffold graph. However, this
is not suitable for the problem in hand. Fewer links between contigs gives more uncertainty (leading
to volatilep-values) and can lead to inability to discard many edges with low link support. Edges with
many links would also be sensitive to smaller aberrations by increased sensitivity of statistical testing
with larger sample sizes. In the case of multiple edges from a contig, we want tocompare edges to see
which observations have matching distributions. Comparing significance levels of p-values to make this
decision is bad practice sincep-values are nonlinear transforms of data that should only be interpreted
under the null hypothesis. That is, thep-value is a measure of evidence; it is not an estimate of effect
size. Looking at the similarity ratio forπσ and the KS statistic forπs provides a measure that is robust
to the number of links and can be used to measure the fit of data when a decision is needed.

Including smaller contigs

Small contigs are defined as having a length less thanµ+4σ, i.e., all contigs not treated in the previous
section. This limit varies with respect to the current library and is used to efficiently create linear
scaffolds (as explained in previous section). There are limitations when scaffolding with contigs of size
over a particular threshold. Firstly, one will have gaps in these scaffoldswhere shorter contigs could be
placed. Secondly, several small contigs can occur between two large scaffolds making read pairs unable
to link them together. We address this issue as follows.

In graph theory, asimplepath inG is a path without repeated vertices. Let aconnectionbetween two
large contigsca andcb in G be defined as a simple path starting atca and ending atcb with the rest of
its vertices as small contigs. For a connectionγ consisting of a sequence ofn contigs{c1, . . . , cn}, we
defineg(ci) to be the number of links that goes fromci to any other contigcj ∈ γ. Similarly, letb(ci)
be the number of links that go fromci to any other contigcj /∈ γ. The notation ofg andb are chosen to



indicate “good” links and “bad” links respectively, for a given connection γ. The score ofγ is defined
as

πγ =
n
∑

i=1

g(ci)− b(ci)

i.e., the sum of differences of good and bad links for all contigs belonging inγ. An example region of
connections is shown in Figure 3. To find connections between two large contigsca, cb, we use breadth-
first search inG. If more than one connection is found, the highest scoring one is chosenif the score is
positive.

Figure 3 Small contigs. An example of a region inG containing smaller contigs. There are 5 possible
paths to connectc1 and c6. The highest scoring one is[c1, c4, c5, c6], with (

∑

i g(ci),
∑

i b(ci)) =
(44, 10), giving πp = 34 and it is the selected path betweenc1 andc6. In this path the good edges are
represented as solid lines and bad edges are represented as dotted lines. A lower-score alternative is
[c1, c2, c4, c5, c6] with (g(ci), b(ci)) = (47, 18), giving πp = 29. c2 is a problematic contig that can be
chimeric or consists of repeated sequence(s). The three remaining paths, all of them with negative score,
are[c1, c2, c3, c8, c6], [c1, c4, c6], [c1, c2, c4, c6].

If ca andcb is within an already created scaffold, the algorithm will look for paths with length less than
d+2σ, where2σ allows for uncertainty of the estimate ofd. If ca andcb are not within an already created
scaffold, there is no distance constraint on the length of the connection. For dense regions inG, there
can be an exponential blow-up in the number of possible connections. We have set a threshold limiting
the breadth-first search to 1000 iterations. This restricting threshold is motivated by two reasons. Firstly,
dense regions are likely to be caused by spurious edges. Thus, paths created in these regions will often
have a negative score. Secondly, we have seen from large datasets that correct connections tend to be
short. This makes higher ordered layers in the breadth first search contain connections with negative
score or paths that does not lead to a valid end vertex (to form a connection).

All connections with a positive score are used to improve the contiguity of the scaffolds. First, gaps
within existing scaffolds are filled if a connection with a positive score has been found. In a second step,
connections between scaffolds are considered. The extension starts with the highest scoring connection
first and proceeds in a descending order of the score. If a contig is found in multiple connections with
positive scores, it is only used in the one with the highest score.

Using multiple libraries

If given multiple libraries, BESST uses these libraries in an increasing order of library insert size.
Scaffolds created in earlier steps are seen as contigs for the next library.

Implementation

BESST source code is available under the GNU GPL v3 license. It is implemented in Python using
Networkx [25] graph library to represent the scaffolding graph and pysam [26] for parsing BAM files.
As input BESST takes contigs in a FASTA file and the alignments of the paired reads to the contigs as
sorted BAM files. BESST can use several paired-read libraries with different insert sizes. The main
output consists of scaffolds in a FASTA file. If several libraries are used, a scaffold FASTA file is
given as output in each scaffolding step. The output also consists of AGP- and GFF-files that contain
information about the scaffolds, such as position of each contig in the scaffold and length of the gaps.
The contigs that were classified as repeats are output in a separate FASTA file.



Preprocessing of G

When initializingG, BESST computes different statistics of the read library such as mean and standard
deviation of insert size (µ, σ) and of the coverage (µc, σc). Links with inconsistent insert size defined as
o1 + o2 > µ + lσ are not considered in the scaffolding since they are likely to be placed on chimeric
contigs or misaligned. Here,l is a user defined constant which defaults to6.

BESST removes the contigs that, based on coverage, behave as repeats. A contig ci is classified as a
repeat if coverage ofci is larger thanmax{2µc, µc + tσc}, wheret is calculated with the same principle
as computingk for πζ .

Data and optional parameters as input to BESST

BESST uses alignments of paired reads to contigs in format of sorted BAM files. A read aligner such
as BWA or Bowtie [27,28] can be used to map the paired reads in forward reverse mode. We use those
read pairs whose both ends map to a unique position in the collection of contigs.

Several parameters for BESST can optionally be set on the command line:

• µ andσ can be specified instead of being computed internally. This can be good if theassembly
is very fragmented.

• Minimum number of links needed to create an edge (with 5 as default value).

• Coverage cutoff for repeat identification.

• Duplicate read remover (based on identical map positions of both fragments ina paired read).

• The inclusion of small contigs can be inactivated.

Availability

Implementation of BESST is provided at https://pypi.python.org/pypi/BESST and https://github.com/
ksahlin/BESST.
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