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Abstract

Background

The use of short reads from High Throughput Sequencing (HT &hptgues is now commonplace
de novoassembly. Yet, obtaining contiguous assemblies from short reads is ¢fiadjethus making
scaffolding an important step in the assembly pipeline. Different algorithwes lxeen proposed b
many of them use the number of read pairs supporting a linking of two corgigs andicator of
reliability. This reasoning is intuitive, but fails to account for variation in lirdunt due to contig
features.

We have also noted that published scaffolders are only evaluated ondatzedets using output fro
only one assembler. Two issues arise from this. Firstly, some of the avaiatdeare not well suite
for complex genomes. Secondly, these evaluations provide little suppadrtféoring a software’s
general performance.
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Results

We propose a new algorithm, implemented in a tool called BESST, which caoldogénomes o
all sizes and complexities and was used to scaffold the genofeatties(20 Gbp). We performe
a comprehensive comparison of BESST against the most popular steredsaaffolders on a larde
variety of datasets. Our results confirm that some of the popular scafodale not practical to run
on complex datasets. Furthermore, no single stand-alone scaffolderfouatps the others on all
datasets. However, BESST fares favorably to the other tested seaffadd GAGE datasets and,
moreover, outperforms the other methods when library insert size distriatiwide.

Conclusion

We conclude from our results that information sources other than theityziinks, as is commonly
used, can provide useful information about genome structure whéoldozg.
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Background

Recent high-throughput sequencing (HTS) technologies are atadotivle novoassembly projects
since they produce millions of short DNA-sequences (referred teady at low cost. However, these
reads are only a couple of hundred base pairs long making it difficulifaassemblere(g, [1,2]) to
reconstruct the genome. As a result, the output of an assembly ofteistsarfgontigs i.e., subsets of
reads assembled into longer fragments of genomic sequence.

However, HTS-technologies provide protocols for creating read iadtscan be used to increase the
contiguity of an assembly. We defingead pair as two reads that are sequenced at a known distance
and orientation where the distance between the reads, is referremhseesize If the two reads within

a read pair belong to different contigsandc, alink is created betweety, andc, see Figure 1a. From
this link, we can infer a relative order, orientation and distance betwgeandc;.

Figure 1 Notation. a)A read pair with insert size (unknown distance) aligns to two contigsand
¢y, thus creates a link betweep andc,. The read pair gives rise to observatianso, and they are
used to infer the unknown distanéeDistances fob,, oy, d andr are illustratedb) Graph structure and
notations of the scaffold gragh Two contigsc, andc, connected by an edgecreated from alignments
of read pairs.

The process of linking and ordering contigs is caliedffolding In addition to paired reads, information
such as reference sequences of related organisms [3], restrictiar4hapd RNA-seq data [5], can be
used for contig linking. However, reference based assembly is niitaple to mostle novessequencing
projects, restriction maps are often not available, and RNA-seq data avdydoverage over genes and
contains no information about distance between reads which makes cowrtignglat ambiguous. This
makes read pair information the most commonly used (and often also the otiyabpg) source of
information for scaffolding.

Unfortunately, scaffolding with read pairs poses challenges: readsraate spurious links because of
read errors, heterozygosity and the repeated nature of the genothéheme spurious links make
ordering and orientations among the contigs ambiguous. Hence, theldicaffproblem can be



summarized as detecting and utilizing the correct links in order to find a camsistdering and
orientation of the contigs. The existing formalizations of scaffolding havenbgroven to be
NP-complete, but it is still unclear if these formulations, even when findinghienal solution with
respect to the objective, solves the raad.(biological) problem. These approaches have focused on
structural properties of the graph induced by contig links, with little emphas&ssessing correctness
of individual links. Our approach focuses on removing incorrect liakd employing sophisticated
statistics to evaluate whether linking reads come from the underlying libratygbdison, or from
misalignments. Only in a second step are structural properties used.

The following section discusses the formalization of scaffolding and relateld, as well as gives an
outline and motivation for our work. Our algorithm, realized in an implementatidaccBESST (Bias
Estimating Stepwise Scaffolding Tool), is presented in detail in the Method®secrhe algorithm
scales well and is practical on very large and complex genomes, aglfgvis use in thé’icea abies
genome project (20 Gbp) [6]. Furthermore, it excels at scaffolding witler insert size distributions.

We present an evaluation of BESST against other popular stand-ataffelders on a large variety
of datasets from GAGE [7]. Compared to previous assessments of suafblding methodologies,
the results obtained from our evaluation allows us to draw conclusiong Himgeneral performance
of stand-alone scaffolders to a much higher extent. Another recemtsdxtesvaluation of scaffolding
tools is given in [8]. In our study we primarily compare stand-alone sldfe because they have access
to the same amount of information and are applicable in the same corgextsgaffolding with mate
pair libraries that was not use in the original assembly). Nonethelesdswealude GAGE results on
integrated scaffolders.

Our results indicate that no single scaffolder outperforms the others alatalets although in total,
BESST shows the most favorable results among stand-alone scaffollathermore, our algorithm
outperforms other stand-alone scaffolders when the library inserd&u#ution has a high standard
deviation. Although there is wide performance variation around integratdtbiders, overall, GAGE

results demonstrate that Allpaths-LG’s assemblies scaffolded with its intdgsa&dfolder have the
highest quality.

The problem
Formalizing Scaffolding

As input for scaffolding we assume a set of contiys= {c1, co,...} produced by an assembler and

a number of read pair® = {(ri,r?),(r,r2),...} from a read pair library that have been aligned
to the contigs. These read pairs have an insert size distribution with mean standard deviation

o. By aligning all reads iR on C we can define the grapfi as follows: Each contig gives rise to
precisely two vertices; 1, andc; r in G wherec; 1, denotes it's 5’ end and; r denotes it's 3’ end (see
Figure 1b). In a read pair, if! aligns to precisely one contig. andr? aligns to precisely one contig
cm, With & £ m, this read pair induces a relative orientation and an approximate distatvoeee;,
andc,,. This relationship is represented as an edgeee Figure 1b. We I& andE denote the set of
vertices and edges respectivelydgn Given g, several formulations and methods have been proposed
for scaffolding. We will discuss some of them below.

Problem formulationsin related works

The scaffolding problem (SP) defined bluson et.al[9] is a formulation that is commonly referred
to. Using their notation, lef be defined as above and tetinks between two contigs induce a weight
n on the edge: between these two contigs. Furthermorediet V' — N be an ordering, orientation



and distance map @f, that is, an assignment of non negative integer coordinates to the vértioeS

that preserves the contig lengths. Given such a mapping instari®g states that an edgebetween

¢; andc; is consistent ifc; andc; have the correct relative orientation (induced by aligned read pairs),
and the distance betweenandc; is approximately correct. Here, approximately correct meanscthat
suggests a distance betwagrandc; that is less thap + 30, a heuristically chosen bound. If an edge
does not satisfy these constraints, it is called inconsistent. Huson et.déf[8¢ SP to be the problem

of finding a maximum weight consistent edge subset. SP has been usrahdation for a number of
other works discussing scaffolding and proposed heuristics for gpivtan generally be categorized
as either “greedy” or “graph-structure” optimization algorithms.

Greedy algorithms proposed to solve SP include SSPACE and Bambus][1GSPACE extends
scaffolds in a greedy fashion applying a heuristic stopping criterion. Barhbilds scaffolds greedily
with heuristics to remove inconsistent link constraints.

Graph-structure optimization algorithms that have been proposed to soh@Pttae for instance:
SOPRA [12] formulates a global optimization problem for solving relativetigaorientation (exact for
simple regions while a simulated annealing approach is employed in more comglersr®f the
graph). In a second step, read-pair distribution is used to determinel#tigegositions of contigs
within a scaffold. If an inconsistency is found in the positioning step, the linlsing the inconsistency

is removed and the algorithm restarts at the orientation step. OPERA [13% lmgigdfolds using the
number of inconsistent edgesn a subgraph as a design criterion (the subgraph represents a potential
scaffold). By treating as fixed, they can obtain a polynomial time algorithm to find an optimal (with
respect to a givemp) solution to their slightly modified version of SP. The algorithm then triegall
starting fromp = 0 and stops when a scaffold can be constructed. SLIQ [14] formulateisad knear
inequalities together with majority voting to predict placements of contigs. MIFf@&dar [15] and
GRASS [16] formulate SP as a mixed integer programming problem, but useedtftechniques to

find a solution. MIP Scaffolder resolves conflicting regions in the obtaikiéd solution using
heuristics such as removing edges that are stretched or contracted armoeegiven threshold. GRASS
uses an Expectation-Maximization algorithm. The maximization step obtains dagfreenalties on
contig links given fixed contig orientations. The penalties are set aceptdinvhat magnitude the
constraints for a link is violated. If a penalty is higher than a given thresiioddpenalty of the link is
“de-activated”,i.e., its constraints are not considered. The expectation step is used to obtain the
expected contig orientation of links given (the “activated”) penalties sehénmaximization step.
Links that are activated in the final solution are used for scaffolding.

There are advantages and disadvantages with these two classes ofanAtgodthms that are solving
a local problem using a greedy approach often have better runtime aledrssll on larger genomes but
use oversimplified methods to find a solution which may only work for some gesid@raph-structure
optimization methods are instead hindered by their time complexity for finding a sulliee runtime
scales poorly and it is difficult to predict if such an algorithm will ever finisha larger dataset (see
section Results).

Additionally, current methods that use insert sizes of paired readsfiggplacement are built on false
assumptions as we have previously shown [17]. This can complicat®lsiadf when libraries with
large insert-size variation are used.

Link inconsistency detection

The methods previously described define SP similar to [9] with modificationsoantb define a
consistent edge. Different heuristics are used between the method&aio alsolution to SP. Yet, a
common denominator is that the number of links supporting an edge is used iaglieator of



reliability; edges with many links are preferred and those with few links av&lad. This reasoning is
intuitive, but fails to account for variation in link count due to contig feasurgirstly, the number of
links between two contigs depends on the real, (biologically) distance between the two contigs and
on their size [17]. Secondly, in SP we face structural features supaated regions, heterozygosity,
and chimeric contigs. These features create clusters with reads being na@dalich cannot be seen

as individual random events. It is our assumption that the number ofomanehon-structural,
misalignments caused bg.g, sequencing errors are almost negligible compared to the structural
misalignments. Link count is therefore a poor indicator of edge reliability.

We take a different approach to SP and, instead of link count, evaluges dédised on link statistics.
When read pairs are mapped to contigs, are they placed on and conmectiigg in a reasonable way?
In other words, we want to answer the question: given an edgethe cluster of read-pairs forming
e coming from the read-pair library, or are they a consequence of awtalifeature? If these reads
together show similar properties as the read pair library we are scaffolithge.g, mean, standard
deviation), the edge is more likely to be correct.

We propose an algorithm, BESST (Bias-Estimating Stepwise Scaffolding, Tibal) puts focus on
analyzing the scaffold graph in local regions using statistics to filter ouiamiedges created by
structural errors. BESST starts scaffolding with contigs that meet a lemgérion for the library
(definition given in section Methods). It then continues with smaller contigfiomional step. If
several different paired-read libraries are used, BESST scaffolth one library at a time in an
increasing order of insert size of the library. Separating contigs withertdo size is mainly due to
two reasons(i) Links between large contigs make gap size estimation more stable (see {4d) @i
more robust statistical analysigii) The gain in speed is significant since correct regions are simple
path components ig which are found by visiting each edge once, thus, the time complexity|E|).

Results and discussion

De novoassembly validation is a task as difficult @s novoassembly itself. Recent evaluation efforts
like GAGE [7] and Assemblathon [18] encountered several problems imifdimg the best assembler.
GAGE clearly demonstrated how the same assembler canchaveletelydifferent performances(g,
guality) even on similar datasetse., bacterial genomes). This predicament was also supported in
recent evaluation efforts [19,20]. Despite this, as noted by [21], all peblished assemblers and
scaffolders have been compared to the then-existing tools highlighting petfermances on a specific
dataset using some specific metrics. We argue that evaluation of tools slegpduiformed on multiple
datasets and/or scenarios to avoid over-generalization and confirmitsor-br standalone scaffolders
without stated dependencies, it is advisable to test on output from tassemblers to investigate
overall performance.

We have tried to address the above issues in our evaluation of BESSJ ausiltle range of different
datasets and assemblers. BESST has been compared with three othef-thiatart scaffolders:
OPERA, SOPRA, and SSPACE.

Datasets

Evaluation has been performed using the three GAGE datasets [7] whiehugathe possibility to
evaluate scaffolders on three highly different genons¢aphylococcus aurepRhodobacter spaeroides
and Human chromosome 14 (hereafter referred to as Hs14). All thtasedgahave been sequenced with
high coverage lllumina paired-endd, PE-reads) and mate-paitise(, MP-reads) libraries. Moreover
each organism has been assembled with updifferent assemblers.



GAGE provides high quality MP-libraries with narrow insert size distributiaith standard deviation
lower than 10% of the mean. However, narrow insert size libraries ¢édmobtained in assembly
projects where only small amounts of DNA are available. The MP librariesregatan these cases are
wide and the standard deviation can be up to 50% of the mean. BESST usdmigue that works
well for larger uncertainties in insert size as this was one of the desigmagiens. Therefore we have
included the MP library provided in [22] which is characterised by a laggétion in insert size. We
used picard [23] to estimate the mean and standard deviation of insert s@@d@ad 1250 base pairs
respectively. This library will from now on be referred to as the “wide"MiBrary. An insert size
histogram of this distribution is available in Additional file 1: Figure S2.

Evaluation

We scaffolded all 23 available (contig level) GAGE-assemblies with BESSD.42, and the
standalone scaffolders OPERA v1.2, SOPRA v1.4.6, and SSPACE\gSiaising both PE and MP
libraries provided by GAGE. Results for assembler-integrated scaffglde computed by GAGE, are
also presented, but we primarily compare with the standalone scaffoldeaside they have access to
the same amount of information as BESST and are applicable in similar situatiotesthdt in GAGE
evaluation, Bambus2 was used both for contig and scaffold assembly (wiitsuprovided by Celera
Assembler).

All scaffolders were run with default parameters (see Additional filerldetails) on a 1 TB RAM

machine equipped with 24 CPUs. Read pairs were mapped to contigs using/8¥/A for BESST,

OPERA, and SOPRA. SSPACE-basic is distributed with Bowtie, thus we usdddluded version of
Bowtie (v0.12.5) for alignments with SSPACE. SSPACE also have a commeecgbwn that supports
alignments with BWA. The difference in read alignment method may have an irapabe scaffolding

result but we did not investigate this. Out of the 124 scaffolding expetsnell7 successfully
terminated within our runtime limit of 48 hours (OPERA and SOPRA were not abseaffold the

Hs14 dataset within this time limit in 3 and 4 cases respectively). MoreovethéoRhodobacter

genome, we also scaffolded the 8 available contig-level assemblies emplbgingde MP library. To

summarize, a total of 156 scaffolding experiments have been run, ands#,th49 terminated within
the runtime limit and were evaluated.

Each of the 149 results have been evaluated with GAGE validation scripts latye/épcb.umd.edu/
results/gage-validation.tar.gz for scaffolds, using the available refersgquence. For each assembly,
we used GAGE evaluation scripts to compute:

e Scaffold errors: number of indels, inversions, relocations, andlteaisons (as defined by [7]).

e Scaffold NG50: size of the longest scaffold such that the sum of théflemd all scaffolds longer
than it is at least half of the (known) reference genome size.

e Scaffold E-size: The expected scaffold size at a randomly chosetioposn the genome
(introduced and defined by [7]). The E-size is calculatedras G~ L? whereL, is the
length of scaffoldc and G is the genome length estimated by the sum of all scaffold lengths.
E-size is computed similarly for contigs.

e Scaffold corrNG50: NG50 after scaffolds have been broken aygwesition a scaffold error is
found.

e Scaffold corrE-size: E-size after scaffolds have been brokewmeay @osition a scaffold error is
found.



Moreover, for each entry, we also compute:

e Number of initial contigs and number of produced scaffolds.

e Time used by the scaffolder (without considering time required to align yeads

NG50 is a common metric to evaluate an assembly, often offering a good indic&tio& connectivity

as it gives the weighted median contig length. However, the size of onfelsceén be misleading

as a measure of the general connectivity of an assembly (as discugg@ddonsider, for example, a
simple case of two error free assemblieandb of a 1000 bp genome. If assemhlyhas one contig of

499 bp and 5 contigs of 100 bp while assemblyas 10 contigs of 100 bp, both will have an NG50 of
100 bp. The measure will therefore not expose the difference in qualitydena andb. However, the
respective E-sizes for assemblandb are 299 and 100, and thus better capturing the average assembly
fragmentation.

Results

Tables 1, 2 and 3 presents the scaffolding performances for high glilatdyies provided by GAGE.

With the evaluation metrics provided here, no stand-alone scaffolder isawiener (as expected [7,
20)). In general, BESST produces favorable results on all of thenisgns. Contrary to the results in [8],
SOPRA does not perform well on the metrics provided by GAGE. Thdtsefaur assembler-integrated
scaffolders, as computed by GAGE, are presented alongside theadten@dscaffolders results. There

is a large variation in performance of integrated scaffolders but in ger®ESST fares well also here.

We note that only Allpaths-LG has better scaffolded assembly on all threeEcdatasets. Scaffolds
from Bambus2 ors. aureusand SGA on Hs14 are two other instances where the integrated scaffolder
outperforms the stand-alone ones.



Table 1 Staphylococcus aureus GAGE data

BESST OPERA SOPRA SSPACE Integrated scaffolder Unscaffolded
CorrEsize err CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp)
ABySS 263,4 1 316,7 12 103,4 2 126,3 5 35,3 1 31,4
Allpaths-LG 436,4 0 607,4 12 2955 0 1030,0 1 1136,2 0 90,0
Bambus?2 827,3 1 560,0 4 125,2 2 665,7 2 1119,5 0 19,6
MSR-CA 7447 3 302,4 11 117,4 0 781,6 2 999,9 3 50,3
SGA 75,1 0 920,1 3 239,9 6 32,6 2 162,9 1 4,7
SOAPdenovo  346,9 0 333,1 7 227,2 0 286,7 5 229,3 0 68,0
Velvet 204,2 4 236,8 5 154,4 1 162,2 12 194,6 17 48,5
SUM 2898,1 9 3276,6 54 1263,0 11 3085,1 29

The numbers in bold face style indicate the best corrected E-size and nah#seors among the stand-alone scaffolders for each assembly.



Table 2 Rhodobacter sphaeroides, GAGE data

BESST OPERA SOPRA SSPACE Integrated scaffolder Unscaffolded
CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err Cor rEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp)
ABYSS 70,2 13 65,8 20 44,9 17 34,7 4 73,4 3 6,9
Allpaths-LG 2005,7 0 852,1 4 425,4 2 1271,9 1 2401,7 0 35,9
Bambus2 1426,0 4 1446,0 8 1469,0 3 789,9 1 1348,4 2 16,2
CABOG 4740 2 362,6 7 2934 2 419,1 4 211,3 5 21,5
MSR-CA 1757,5 3 573,5 8 138,2 1 1579,8 2 2001,1 5 21,6
SGA 100,5 6 148,3 5 105,7 41 44,9 9 48,0 1 3,2
SOAPdenovo 1551,2 0 841,5 7 1477,1 3 1500,6 3 687,6 0 18,6
Velvet 332,9 2 336,1 10 175,6 11 329,6 6 348,1 19 16,7
SUM 7718,1 30 4626,0 69 4129,2 80 5970,5 30

The numbers in bold face style indicate the best corrected E-size and nah@seors among the stand-alone scaffolders for each assembly.



Table 3 Hs14, GAGE data
BESST OPERA SOPRA SSPACE Integrated scaffolder Unscaffolded
CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err  Cor rEsize (kbp) err CorrEsize (kbp) err  CorrEsize (kbp)
ABySS 21,6 13 15,8 200 - - 15,3 47 2,8 9 3,1
Allpaths-LG 513,6 32 311,0 104 1949 17 559,0 22 4652,3 45 27,1
Bambus2 88,2 75 61,7 331 - - 99,0 109 157,6 143 6,3
CABOG 421,9 31 349,1 77 234,0 19 411,0 23 347,7 597 30,7
MSR-CA 51,3 95 - - - - 51,9 146 111,9 1068 59
SGA 57,2 58 3,5 39 22,2 2253 24,8 42 89,9 19 3,7
SOAPdenovo 94,1 211 - - - - 75,3 205 99,2 268 9,8
Velvet 35,7 52 - - 75,4 734 22,6 140 26,6 9156 3,0
SUM 1283,6 567 741,0 751 526,5 3023 1259,0 734
The numbers in bold face style indicate the best corrected E-size and noh@eors among the stand-alone scaffolders for each assembly.




High quality datasets where insert size variation does not deviate muchtisomean are not always
available (see Additional file 1 for a discussion of this). The wide MP libkeay higher variation, and
thus, increases the difficulty in scaffolding by introducing more uncertdimtycontig placement.

Table 4 shows scaffolding results for the wide MP library. Considering shenario, BESST is

outperforming the other stand-alone scaffolders having the highesttotakctivity whilst giving the

fewest errors. OPERA shows a slightly higher connectivity in some gastgwroduces 17 times more
errors in total. Withstanding the SGA assembly, SOPRA shows few errois gases. Yet in most

cases, SOPRA also shows extremely low connectivity close to the originag@ssembly. Similarly,

SSPACE is shown to produce few errors but also struggle with conitgctiks mentioned, larger

variation in library insert-size introduces more uncertainty of distance essnzaté placement of
contigs. Thus, scaffolding becomes more error prone. We believe thigbesformance here is a
consequence of BESST's ability to infer correct link-statistics despite lidery distribution.



Table 4 Rhodobacter sphaeroides on GAGE contig assemblies using the wide MP library

BESST OPERA SOPRA SSPACE Unscaffolded
CorrEsize (kbp) err CorrEsize (kbp) err CorrEsize (kbp) err Cor rEsize (kbp) err CorrEsize (kbp)
ABYSS 17,6 5 19,7 51 6,7 4 9,9 1 6,9
Allpaths-LG 318,1 0 3145 1 44,4 0 70,3 2 35,9
Bambus2 460,6 0 267,1 0 93,9 0 137,9 0 16,2
CABOG 199,8 3 97,3 4 22,3 0 33,5 0 21,5
MSR-CA 192,1 1 203,7 6 24,0 0 38,1 1 21,6
SGA 4,3 0 13,3 111 3,3 12 6,5 3 3,2
SOAPdenovo 756,7 0 720,5 10 156,2 0 206,4 2 18,6
Velvet 350,2 2 62,3 4 17,8 3 30,9 3 16,7
SUM 2299,3 11 1698,4 187 368,7 19 533,6 12

The numbers in bold face style indicate the best corrected E-size and nofméreors among the stand-alone scaffolders for each assembly. tiNdtéhe
corrected E-size for SOPRA is slightly less than the corrected contig size &BRSS assembly. This can happen for low contiguity scaffolded assentitdie
contains more bases than the contig assemblies (5,0Mbp and 4,5Mbp redpextithis instance). The difference in number of bases is due to thetliatts
GAGE evaluation script only compute statistics on contigs and scaffoldsrinédrager than 200bp. GAGE evaluation script returned an error whiempgting
statistics for seven, two and one scaffolds on SSPACE results of ABYABOG and MSR-CA assemblies respectively. On SOPRA and OPERASge%uU
respectively 3 scaffolds of the SGA assembly returned this error. Yewed these scaffolds from the evaluation in order to compute the resulifi.chses,
the scaffolds removed summed up to a total length of less than 110 kbp.thisusas a negligible (either positive or negative) effect on E-size coriguitznd
an eventual positive effect on the number of errors. Results for BEEBStained no scaffolds giving this error.



Tables 5, 6, 7 and 8 illustrates the types of errors that the stand-aldf@dea make on the different
data sets and Tables 9, 10, 11 and 12 shows runtime of the scaffoldtrdieg alignment time. An
upper bound on runtime was set to 48 hours. BESST and SSPACE pgesehtime scalability in
contrast to SOPRA and OPERA which did not finish after 48 hours on 34ahts14 instances
respectively.

Table 5 Types of errors onS. aureus summed over all assemblies

Assembly BESST OPERA SOPRA SSPACE
Indels 2 17 2 6
Inversions 6 30 6 16
Translocations 0 0 0 1
Relocations 1 7 3 6

Table 6 Types of errors onRhodobacter sphaeroides summed over all assemblies

Assembly BESST OPERA SOPRA SSPACE
Indels 16 28 13 7
Inversions 4 9 7 3
Translocations 2 26 21 14
Relocations 8 6 39 6

Table 7 Types of errors on Hs14 summed over all assemblies

Assembly BESST OPERA SOPRA SSPACE
Indels 398 149 1062 442
Inversions 163 383 154 289
Translocations 0 0 0 0
Relocations 6 219 1807 3

Table 8 Types of errors on Rhodobacter sphaeroides with wide MP library summed over all
assemblies

Assembly BESST OPERA SOPRA SSPACE

Indels 5 87 4 3

Inversions 3 5 1 0
Translocations 1 9 1 7
Relocations 2 86 13 2




Table 9 Runtime for scaffolders onStaphylococcus aureus

Runtime (hh:mm:ss)

Assembly BESST OPERA SOPRA SSPACE

ABySS 00:00:40 00:28:47 01:18:24 00:00:26
Allpaths 00:00:25 00:00:47 00:11:56 00:00:20
Bambus?2 00:00:26 00:00:49 00:22:11 00:00:21
MSR-CA 00:00:26 00:01:05 00:19:21 00:00:21
SGA 00:01:.03 00:05:58 04:30:08 00:00:51

SOAPdenovo 00:00:25

Velvet

00:00:27

00:00:50 00:26:51 00:00:19
00:00:53 00:39:25 00:00:21

Table 10 Runtime for scaffolders onRhodobacter sphaeroides with GAGE data

Runtime (hh:mm:ss)

Assembly BESST OPERA SSPACE
ABySS 00:01:22 00:12:38 00:00:40
Allpaths-LG 00:00:32 00:01:13 00:00:27
Bambus2 00:00:33 00:01:38 00:00:25
CABOG 00:00:35 00:00:59 00:00:27
MSR-CA 00:00:38 00:01:12 00:00:29
SGA 00:01:45 00:01:35 00:00:45
SOAPdenovo 00:00:33 00:03:48 00:00:27
Velvet 00:00:49 00:01:16 00:00:27

Table 11 Runtime for scaffolders on Hs14 with GAGE data (upper bound ime requirement was

set to 48 hours)

Runtime (hh:mm:ss)

Assembly BESST OPERA SOPRA SSPACE
ABySS 00:19:37 00:58:22 - 00:32:55
Allpaths-LG 00:05:06 00:53:24 22:02:09 00:12:55
Bambus2 00:07:43 01:18:06 - 00:14:26
CABOG 00:04:16 00:16:16 11:50:23 00:08:33
MSR-CA 00:11:22 - - 00:15:38
SGA 00:53:42 00:23:18 16:15:22 00:38:42
SOAPdenovo 00:07:50 - - 00:10:46
Velvet 00:10:07 - 01:27:16 00:15:35




Table 12 Runtime for scaffolders onRhodobacter sphaeroides with wide mate pair library

Runtime (hh:mm:ss)

Assembly BESST OPERA SOPRA SSPACE
ABYySS 00:00:52 00:04:33 00:14:49 00:00:50
Allpaths-LG 00:00:31 00:04:03 00:08:48 00:00:36
Bambus?2 00:00:25 00:03:50 00:09:08 00:00:33
CABOG 00:00:31 00:03:10 00:07:17 00:00:37
MSR-CA 00:00:30 00:03:46 00:08:29 00:00:39
SGA 00:00:36 00:04:06 00:16:29 00:00:49
SOAPdenovo 00:00:27 00:04:35 00:09:54 00:00:35
Velvet 00:00:33 00:03:58 00:09:38 00:00:40
Conclusion

We proposed a new algorithm, BESST, for the scaffolding problem. Thiwritigh works well on
both small and large datasets. Moreover, we performed a large evalo&ban software against other
popular stand-alone scaffolders. BESST places favorably compaibd other scaffolders on GAGE
datasets and outperforms the other methods on libraries with a wide insedlistigaition.

Methods
Scaffolding of larger contigs

BESST works on a graph structuée (as defined undeFormalizing scaffoldingn the Background
section). We apply statistics to assess similarity of observed link distribution texjected link
distribution between contigs larger than+ 40: a value chosen so that it is very unlikely that a
properly mapped read pair will span over a contig of such size. This ntkaha correctly assembled
contig that is not a perfect repeat will have at most one true edge to hlbhweigg contig of this size.
However, the graph structure created for contigs of this size is in prauftiee far from linear due to
e.g.small repeated regions and chimeric regions and that is why we want a \@agdes edge quality.

The assessment of edges are realized in a score designed to refleetaus from a read pair library
should be placed on contigs if they were in fact correctly assembled clesetoother on the genome.
It consists of two parts, a link variation scorg and a link dispersity score:, which we present in
following subsections.

Link variation score (7,):

Let ¢;, c; be two correctly assembled contigs at distad@vay from each other on the genome (with
d small enough for the read-pair library to span). Reads linkirendc; follow different distributions
depending on the size af, and a good estimate af can be calculated using ML-estimatio{ )

with the tool GapEst introduced in [17]. Here, we go one step furthemasdier the question: Given

[y O andd,;;, obtained from links observed oveyandc;, what should the standard deviation of these
links be? We denote this quantity with; (standard deviation of observations given a gap size) to be
consistent with the notation used for GapEst. Theorem 1 gives the thebetiected value of 4
which is dependent on the read lengtand the length of the longer and shorter contig giving rise to the
gap (denoted,in, Cinaz)-



Theorem 1. Giveny, o andd, o,|q is given by

L ddrt g
"O'd‘%’“ g g

whereg(d) andg(d) are defined in Additional file 1.

Proof. Derivation shown in Additional file 1. O

We now definer, as

Gold Uo|d}

Ty = min{ Gol? G
This quantity is a measure of how far observed distances are from theeticabdistance. Note that

0<m, <1.
Link dispersity score (m¢)

The other part of the scoring function is an indicator of how well dispklsds are over the contigs
they are connecting, given an estimated gabpetween them. This dispersity is scored by the two
sample Kolmogorov-Smirnov statistic [24] that gives a measure of differendistribution between
two independent samples. Letting observations on a contig be a sample, ¢peridénce between
samples comes from the fact that the aligner has no information about wintigglie close together,
thus links between contigs can be seen as two independent alignment events

By observing if link distribution is similar for two linked contigs, we can deteat@mal edges that
might come from one or several smaller repeats residing within a contig {geeeR2b). We call this
score the dispersity score and it is calculated as follows. Before testing)dtion and reflection of the
observations are necessary (see Figure 2a).

Figure 2 Dispersity score. lllustration of dispersity measurement. Read pairs linking contigasdc,

of lengths n and m respectively are transformed to data tested with the K$ae®bservations from
contig ¢; are translated and reflected on the x-axis while observations from cenéce translated.
The two sample KS statistic will indicate high similarity in read distributigh) Strange placement

of linked reads occur. Several explanations are possible. One [gosegjilanation is that contig, is
misassembled (chimeric) and another explanation is¢het a correctly assembled contig with small
repeated regions solved on assembly level. The repeat might not mpire®ther contigs from the
assembly and therefore, the alignments to these regions are reportedus Wontige, is however

not close to the to contig, on the genome and linked reads fail to place at the non-repeated regions o
co. The KS test will indicate low similarity.

Let n read pairs link two contigg; andcz wherec; is of lengthn. Recall thato!, o}, are theith
observations om; andc; respectively. Let! = (n — 0%) — 01, y4 = 05 — 62 whereg, is the mean
observation ore; and similar foré,. Samples,’ are therefore the transformed observations as seen in
Figure 2. The empirical distribution of samples is given by

1
Fo(y) = n ZIYiSZI
i=1

wherely, <, is the indicator function. Lef;!(y) and F2(y) be the two empirical distributions for the
samples om; respectivelys, the two-sample KS statistic of the observations is then obtained by

Dy, = sup |Fy (y) — F(y)].
Yy



It follows that D,, € [0, 1] since this quantity measures the largest distance between the two empirical
cumulative distributions. The similarity score is definedras= 1 — D,,.

Scoring edges.

To sum up the two previous subsections, we first derived a scoredaatto of the expected to the
observed standard deviation of distance for links spanning a gapn@gcwoe gave a similarity score
of expected to observed dispersity of links spanning a gap using theatmpks KS statistic. The total
score of a gap-edge is defined as

I + 7 if 7o, mc > 0.5,
10 otherwise.

By definition, we havé) < 7 < 2. We have used the heuristic cutoff 0.5 which means that if any of the
two quantities deviates more than twice from the assumed value, the scoreédsee., the edge is
discarded from the graph. is only calculated on edges whetgc; > 1 + 40. Thatis, any vertex that
has more than 2 neighbors in this subgraph is considered to be involveegma with linking errors
since by the constraints of the contig lengths, the library should not be alihk tmore than one such
contig. The score is used to choose the edge with links that best resemlitbeahe If the two highest
scores in such a region are close to each other (their ratio higher thagt @€usistically), we chose to
not make a decision. This can for instance occur from larger repeatgiys. This approach finds a
mappings on g, representing a scaffolding, &(|E|) time.

Note about scoring edges

It might be inviting to start using-values that can be estimated from the distributions we have defined.
This would lead to a statistical test for keeping or discarding edges in tffeldagraph. However, this

is not suitable for the problem in hand. Fewer links between contigs gives umeertainty (leading

to volatile p-values) and can lead to inability to discard many edges with low link suppoge£dith
many links would also be sensitive to smaller aberrations by increased @gnsitistatistical testing
with larger sample sizes. In the case of multiple edges from a contig, we weairtpare edges to see
which observations have matching distributions. Comparing significands [&yevalues to make this
decision is bad practice singevalues are nonlinear transforms of data that should only be interpreted
under the null hypothesis. That is, thevalue is a measure of evidence; it is not an estimate of effect
size. Looking at the similarity ratio for, and the KS statistic for; provides a measure that is robust
to the number of links and can be used to measure the fit of data when a désiseeded.

Including smaller contigs

Small contigs are defined as having a length less thanio, i.e., all contigs not treated in the previous
section. This limit varies with respect to the current library and is used toiesffly create linear
scaffolds (as explained in previous section). There are limitations wlafokting with contigs of size
over a particular threshold. Firstly, one will have gaps in these scafididse shorter contigs could be
placed. Secondly, several small contigs can occur between two lafjelds making read pairs unable
to link them together. We address this issue as follows.

In graph theory, aimplepath inG is a path without repeated vertices. Let@nectionbetween two
large contigs:, and¢, in G be defined as a simple path starting.atind ending at; with the rest of
its vertices as small contigs. For a connectjoconsisting of a sequence ofcontigs{cy, ..., c,}, we
defineg(c;) to be the number of links that goes framto any other contig; € ~. Similarly, letd(c;)
be the number of links that go from to any other contig; ¢ ~. The notation ofy andb are chosen to



indicate “good” links and “bad” links respectively, for a given contiet~. The score ofy is defined
as

m =3 glei) — b(e)
=1

i.e., the sum of differences of good and bad links for all contigs belonging iin example region of
connections is shown in Figure 3. To find connections between two lardigso,, ¢;, we use breadth-
first search irG. If more than one connection is found, the highest scoring one is clifatbenscore is
positive.

Figure 3 Small contigs. An example of a region i containing smaller contigs. There are 5 possible
paths to connect; andcg. The highest scoring one g1, ¢4, ¢s5, cg], With (3°, g(c;i), >, b(ci)) =
(44,10), giving m, = 34 and it is the selected path betwegnandcg. In this path the good edges are
represented as solid lines and bad edges are represented as dotted lioger-score alternative is
[c1, ¢2, ¢4, C5, c6] With (g(c;), b(c;)) = (47,18), giving m, = 29. ¢ is a problematic contig that can be
chimeric or consists of repeated sequence(s). The three remainingglbdfithem with negative score,
are[cy, ca, 3, ¢, cg), [c1, ¢4, C6], [C1, C2, €4, C6)-

If ¢, andg, is within an already created scaffold, the algorithm will look for paths with tlethgss than
d+20, where2o allows for uncertainty of the estimate &f If ¢, andc;, are not within an already created
scaffold, there is no distance constraint on the length of the connectmrdefse regions ig, there
can be an exponential blow-up in the number of possible connectionsaVéeskt a threshold limiting
the breadth-first search to 1000 iterations. This restricting threshold igatemtiby two reasons. Firstly,
dense regions are likely to be caused by spurious edges. Thus, psdheddn these regions will often
have a negative score. Secondly, we have seen from large datagetsrtiect connections tend to be
short. This makes higher ordered layers in the breadth first searthirt@onnections with negative
score or paths that does not lead to a valid end vertex (to form a cormectio

All connections with a positive score are used to improve the contiguity ofdaffodds. First, gaps
within existing scaffolds are filled if a connection with a positive score hag figund. In a second step,
connections between scaffolds are considered. The extension dtartkevhighest scoring connection
first and proceeds in a descending order of the score. If a contigiglfim multiple connections with
positive scores, it is only used in the one with the highest score.

Using multiple libraries

If given multiple libraries, BESST uses these libraries in an increasing afdibrary insert size.
Scaffolds created in earlier steps are seen as contigs for the nexy.librar

Implementation

BESST source code is available under the GNU GPL v3 license. It is implechentython using
Networkx [25] graph library to represent the scaffolding graph ayshm [26] for parsing BAM files.
As input BESST takes contigs in a FASTA file and the alignments of the paieet$ te the contigs as
sorted BAM files. BESST can use several paired-read libraries witardiit insert sizes. The main
output consists of scaffolds in a FASTA file. If several libraries aredus scaffold FASTA file is
given as output in each scaffolding step. The output also consists Bf AGd GFF-files that contain
information about the scaffolds, such as position of each contig in theoktahd length of the gaps.
The contigs that were classified as repeats are output in a separatd R&ST



Preprocessing of G

When initializingG, BESST computes different statistics of the read library such as meanaatthed
deviation of insert sizey(, o) and of the coverageu(, o.). Links with inconsistent insert size defined as
01 + o2 > p + lo are not considered in the scaffolding since they are likely to be placedioredc
contigs or misaligned. Hereéjs a user defined constant which default$ to

BESST removes the contigs that, based on coverage, behave as.répeatgig ¢; is classified as a
repeat if coverage af; is larger thammax{2pu., . + to.}, wheret is calculated with the same principle
as computing: for ..

Data and optional parameters asinput to BESST

BESST uses alignments of paired reads to contigs in format of sorted BA8 Meead aligner such
as BWA or Bowtie [27,28] can be used to map the paired reads in forwaetlsee mode. We use those
read pairs whose both ends map to a unique position in the collection of contigs.

Several parameters for BESST can optionally be set on the command line:

1 ando can be specified instead of being computed internally. This can be gooda$seenbly
is very fragmented.

e Minimum number of links needed to create an edge (with 5 as default value).

Coverage cutoff for repeat identification.

Duplicate read remover (based on identical map positions of both fragmeatsained read).

The inclusion of small contigs can be inactivated.

Availability

Implementation of BESST is provided at https://pypi.python.org/pypi/BESST #pd:Hgithub.com/
ksahlin/BESST.
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