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Best approximation problems relating
to Monge–Kantorovich duality

V.L. Levin

Abstract. Problems of the best approximation of bounded continuous func-
tions on a topological space X ×X by functions of the form u(x)− u(y) are
considered. Formulae for the values of the best approximations are obtained
and the equivalence between the existence of precise solutions and the non-
emptiness of the constraint set of the auxiliary dual Monge–Kantorovich prob-
lem with a special cost function is established. The form of precise solutions
is described in terms relating to the Monge–Kantorovich duality, and for sev-
eral classes of approximated functions the existence of precise solutions with
additional properties, such as smoothness and periodicity, is proved.

Bibliography: 20 titles.

§ 1. Introduction

1.1. Statement of problems and results. Let X be a topological space1 and
Cb(X) the Banach space of continuous bounded real functions on X with uniform
norm

‖u‖ = sup
x∈X

|u(x)|, u ∈ Cb(X).

In what follows we consider the following extremal problem.

Problem 1. Find the value of the best approximation

m(f ;H0) := inf
hu∈H0

‖f − hu‖ = inf
u∈Cb(X)

sup
x,y∈X

|f(x, y)− u(x) + u(y)| (1)

of a fixed function f ∈ Cb(X ×X) by functions hu in the subspace

H0 =
{
hu : hu(x, y) = u(x)− u(y), u ∈ Cb(X)

}
⊂ Cb(X ×X).

We can state an abstract version of this problem.

Problem 2. Let X be an arbitrary set, l∞(X) the Banach space of bounded real
functions on X with uniform norm, and H0 the subspace of l∞(X ×X) consisting
of functions of the form u(x)− u(y),

H0 = {hu : hu(x, y) = u(x)− u(y), u ∈ l∞(X)}.
1Throughout, the spaces are assumed to be Hausdorff and completely regular.
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Find the value of the best approximation

m(f ;H0) := inf
hu∈H0

‖f − hu‖ = inf
u∈l∞(X)

sup
x,y∈X

|f(x, y)− u(x) + u(y)| (2)

of a fixed function f ∈ l∞(X ×X) by functions hu ∈ H0.

We associate with each function f on X ×X the cost function c on X ×X:

c(x, y) = min(f(x, y),−f(y, x)). (3)

Theorem 1 (cf. [1], Theorem 5.1). (1) For each f ∈ l∞(X ×X),

m(f ;H0) = − inf
{

1
n

n∑
i=1

c(xi−1, xi) : xi ∈ X, xn = x0, n = 1, 2, . . .
}
. (4)

(2) If X is a compact space, then for each f ∈ C(X ×X),

m(f ;H0) = − inf
{

1
n

n∑
i=1

c(xi−1, xi) : xi ∈ X, xn = x0, n = 1, 2, . . .
}
. (5)

In other words, in both cases the value of the best approximation is equal to
the infimum with minus sign of the mean values of the corresponding cost function
over the various cycles (x0 → x1 → · · · → xn−1 → x0) in X.

Corollary 1. If X is a compact space and f∈C(X×X), then m(f ;H0)=m(f ;H0).

Now letX be a non-compact topological space. Let Cb(X)⊗Cb(X) be the closure
in Cb(X×X) of the vector subspaces of finite sums of the form

∑n
1 aj(x)bj(y), where

aj , bj ∈ Cb(X), j = 1, . . . , n. It follows easily from the Stone–Weierstrass theorem
that Cb(X) ⊗ Cb(X) is precisely the subspace of functions on X × X extending
continuously to βX × βX, where βX is the Stone–Čech compactification of X;
see [2]. (One has C(X ×X) = Cb(X ×X) = Cb(X)⊗ Cb(X) = C(X)⊗ C(X) for
compact X.)

Corollary 2. If X is an arbitrary (Hausdorff completely regular) topological space
and f ∈ Cb(X)⊗ Cb(X), then part (2) of Theorem 1 and Corollary 1 still hold.

If the infimum on the right-hand side of (1) or (2) is attained at a function
u ∈ Cb(X) or u ∈ l∞(X), then this function is called a precise solution of the
corresponding best approximation problem.

We point out that Problem 2 always has a precise solution since l∞(X) is the
dual Banach space [3] (and therefore closed balls in it are weak-∗ compact) and
the functional u 7→ supx,y∈X |f(x, y)−u(x)+u(y)| on l∞(X) is weak-∗ lower semi-
continuous. On the other hand, the question on the existence of precise solutions
of Problem 1 is non-trivial.
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Theorem 2. If f ∈ Cb(X)⊗ Cb(X), then Problem 1 has a precise solution.

Theorem 3. Let X = Rn and let f(x, y) = g(x − y) for g ∈ Cb(Rn). Then there
exists a bounded infinitely smooth function u in Rn that is a precise solution of
Problem 1:

m(f ;H0) = ‖f − hu‖ = sup
x,y∈Rn

|f(x, y)− u(x) + u(y)|. (6)

If, in addition, g(x) = g(x1, . . . , xn) is periodic in the variables x1, . . . , xm, m 6 n,
with periods τ1, . . . , τm, then there exists a bounded infinitely smooth function u
on Rn with the same periodicity properties that is a precise solution of Problem 1.

Theorem 4. Let X = Rn or X = Rn
+, and let f(x, y) = g(x, y, x − y), where

g ∈ Cb(X ×X × Rn) satisfies one of the two conditions :
(a) g(x, y, z) = g(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) is non-negative on X×X×Rn

and non-decreasing in all the xi, yi, i = 1, . . . , n;
(b) g(x, y, z) is non-positive on X × X × Rn and non-increasing with respect to

all the xi, yi, i = 1, . . . , n.
Then for each positive integer r there exists a bounded Cr-smooth function on X
solving precisely Problem 1.

1.2. Discussion. The above-stated problem fits into the following general scheme
of best-approximation problems (see, for instance, [4]–[7]): for a fixed Banach
space E, an element f ∈ E, and a closed linear subspace H of E find the quantity
m(f ;H) = infh∈H ‖f − h‖.

The following duality theorem is well known:

m(f ;H) = sup{〈µ, f〉 : µ ∈ H⊥, ‖µ‖ 6 1},

where H⊥ = {µ ∈ E∗ : 〈µ, h〉 = 0 for all h ∈ H} is the annihilator of H in E∗.
Applying it to Problem 1 on a compact space we obtain the formula

m(f ;H0) = sup
{∫

X×X

f(x, y)µ(d(x, y)) : π1µ = π2µ, ‖µ‖ 6 1
}
, (7)

where µ is a Radon measure on X × X, π1µ and π2µ are the projections of the
measure onto the first and the second factor, that is, the marginal measures on X
defined by the equalities π1µ(B) = µ(B ×X), π2µ(B) = µ(X × B) for each Borel
subset B of X. Assume for simplicity that f(x, y) 6 0 for all (x, y) ∈ X×X. Then
f coincides with the function c defined by formula (3), and we can compare (7)
and (5). We consider now the cycle ζ = (x0 → x1 → · · · → xn−1 → xn = x0)
in X and associate with it a measure µζ on X ×X:

µζ = − 1
n

n∑
1

δ(xi−1,xi),

where δ(x,y) is the Dirac measure (the delta function) at (x, y), δ(x,y)(M) = 1 for
(x, y) ∈M , δ(x,y)(M) = 0 for (x, y) /∈M , M ⊂ X ×X. Obviously, ‖µζ‖ = 1 and

π1µζ = π2µζ = − 1
n

n∑
1

δxi
.



1356 V. L. Levin

Taking account of the equality f = c, from (7) we obtain

m(f ;H0) = sup
{∫

X×X

c(x, y)µ(d(x, y)) : π1µ = π2µ, ‖µ‖ 6 1
}

> sup
ζ

∫
X×X

c(x, y)µζ(d(x, y)) = − inf
ζ

1
n

n∑
i=1

c(xi−1, xi).

Comparing this with equality (5) we see that for f 6 0 the duality theorem is a
consequence of Theorem 1.

Starting from Chebyshev’s classical studies, precise solutions of best-
approximation problems have been considered in the literature mainly for finite-
dimensional subspaces H. For infinite-dimensional H little is known. Problems 1
and 2 were considered for the first time in [1], where Theorem 1 was stated (with-
out proof). Before that Khavinson [8] had studied a close problem of the best
approximation of a continuous function of two variables f(x, y) by sums of the
form φ(x) + ψ(y).

Our approach to best-approximation problems of the kind of Problem 1 is based
on the relation between these problems and the Monge–Kantorovich duality. We
shall show that a function u is a precise solution of a best-approximation problem if
and only if it belongs to the constraint set of a certain auxiliary infinite-dimensional
linear programming problem dual to the Monge–Kantorovich problem with a special
cost function determined by the approximated function f and the value of the
best approximation m(f ;H0). This relation enables one to prove the above-stated
results and, with the use of the concept of reduced cost function [9], to obtain
explicitly some precise solutions.

§ 2. Auxiliary information about Monge–Kantorovich duality

LetX be a topological space, ϕ ∈ Cb(X×X), σ1 and σ2 positive Radon measures
in X, and let σ1(X)=σ2(X). The Monge–Kantorovich problem (MKP) consists in
finding the optimal value

A (ϕ;σ1 − σ2) = inf
{∫

X×X

ϕ(x, y)µ(d(x, y)) : µ > 0, π1µ− π2µ = σ1 − σ2

}
.

This is the Monge–Kantorovich problem with fixed difference of marginal measures.
Better known is another version of the MKP, with fixed marginal measures, in which
one seeks the optimal value

C (ϕ;σ1, σ2) = inf
{∫

X×X

ϕ(x, y)µ(d(x, y)) : µ > 0, π1µ = σ1, π2µ = σ2

}
.

Both problems were posed by Kantorovich [10]–[12], who studied the case of a met-
ric compact space X with the metric taken for the cost function ϕ. In this case
the two versions of the MKP are equivalent, but this is no longer so in the case of
an arbitrary cost function.2 Both problems relate to infinite-dimensional linear pro-
gramming: the problem with fixed marginal measures is a continual analogue of the

2For a more detailed description of the relation between the two types of MKP in the general
case see [13], [2], [14].
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classical transportation problem, and the problem with fixed difference of marginal
measures can be regarded as a generalization of the transportation problem in the
network setting, with transit transportation allowed. The optimal value of the dual
MKP with fixed difference of marginal measures is defined by the formula

B(ϕ;σ1 − σ2) = sup
{∫

X

u(x) (σ1 − σ2)(dx) : u ∈ Q(ϕ)
}
,

where
Q(ϕ) =

{
u ∈ Cb(X) : u(x)− u(y) 6 ϕ(x, y) for all x, y ∈ X

}
.

By analogy with Q(ϕ) we shall consider the sets Q0(ϕ) and Q(ϕ; l∞(X)) defined
by the equalities

Q0(ϕ) =
{
u ∈ RX : u(x)− u(y) 6 ϕ(x, y) for all x, y ∈ X

}
,

Q(ϕ; l∞(X)) =
{
u ∈ l∞(X) : u(x)− u(y) 6 ϕ(x, y) for all x, y ∈ X

}
;

they are the constraint sets of the dual problems for certain non-topological general-
izations of the MKP (with fixed difference of projections), see [1], [3]. In [13], [2], for
a broad class of spaces X including compact and Polish spaces we developed the
duality theory in the mass setting, which gives one a complete description of all
the cost functions ϕ for which the duality relation A (ϕ;σ1 − σ2) = B(ϕ;σ1 − σ2)
holds for arbitrary σ1 > 0 and σ2 > 0, σ1(X) = σ2(X). One can construct a similar
theory also for the MKP with fixed marginal measures [2], and for non-topological
versions of both problems [1], [3]. We shall require tests for the non-emptiness of
Q(ϕ) (as well as Q0(ϕ) and Q(ϕ; l∞(X))) and the related concept of reduced cost
function.

LetX be an arbitrary set. We can associate with each cost function ϕ : X×X→R
the reduced cost function ϕ∗ : X ×X → R ∪ {−∞},

ϕ∗(x, y) = inf{ϕn(x, y) : n ∈ {0, 1, 2, . . . }},

where ϕ0(x, y) = ϕ(x, y), and for n 6= 0,

ϕn(x, y) = inf
{
ϕ(x, z1) + ϕ(z1, z2) + · · ·+ ϕ(zn, y) : z1, . . . , zn ∈ X

}
.

Obviously, ϕ∗ satisfies the triangle inequality

ϕ∗(x, y) + ϕ∗(y, z) > ϕ∗(x, z)

for arbitrary x, y, z ∈ X. Hence if the function ϕ∗ is equal to −∞ at some point
(x, y) ∈ X × X, then it is identically equal to −∞. We thus have an alternative:
either ϕ∗(x, y) > −∞ for all (x, y) ∈ X × X, or ϕ∗ ≡ −∞. In the first case it
follows from the triangle inequality that for each fixed x0 ∈ X the functions u(x) =
ϕ∗(x, x0) and v(x) = −ϕ∗(x0, x) belong to Q0(ϕ∗); in the second case Q0(ϕ∗) = ∅.
Moreover, by the triangle inequality ϕ∗ > −∞ if and only if ϕ∗(x, x) > 0 for all
x ∈ X or equivalently, if

∑n
1 ϕ(xi−1, xi) > 0 for each cycle (x0 → x1 → · · · →

xn−1 → xn = x0) in X.
Now, if u ∈ Q0(ϕ), then fixing a point (x, y) ∈ X ×X, a positive integer n, and

a transit transfer (x = z0 → z1 → · · · → zn → zn+1 = y) and adding together the



1358 V. L. Levin

equalities u(zi−1)−u(zi) 6 ϕ(zi−1, zi), i = 1, . . . , n+1, we obtain that u(x)−u(y) 6
ϕ(x, z1) +ϕ(z1, z2) + · · ·+ϕ(zn, y). Since this holds for arbitrary x, y ∈ X, each n,
and each transit transfer of length n + 1 from x to y, it follows that u ∈ Q0(ϕ∗).
Hence Q0(ϕ) ⊆ Q0(ϕ∗) and since ϕ∗ 6 ϕ, it follows that Q0(ϕ) = Q0(ϕ∗). In a sim-
ilar way one demonstrates that Q(ϕ; l∞(X)) = Q(ϕ∗; l∞(X)) and (for a topological
space X) Q(ϕ) = Q(ϕ∗).

Now, if ϕ∗ is bounded above, then Q0(ϕ∗) = Q(ϕ∗; l∞(X)), and therefore
Q0(ϕ) = Q(ϕ; l∞(X)). We finally point out that if X is a topological space and
ϕ ∈ Cb(X) ⊗ Cb(X), then ϕ∗ ≡ −∞ or ϕ∗ ∈ Cb(X) ⊗ Cb(X),3 and in the latter
case for each x0 ∈ X the functions u(x) = ϕ∗(x, x0) and v(x) = −ϕ∗(x0, x) belong
to Q(ϕ∗) = Q(ϕ).

We summarize the above arguments as follows.

Proposition 1 (cf. [15], Lemma 2, [16], Theorem 2.1, [1], Theorem 4.1). Let X
be an arbitrary set and let ϕ : X ×X → R be a function. Then Q0(ϕ) = Q0(ϕ∗),
Q(ϕ; l∞(X)) = Q(ϕ∗; l∞(X)) and (for a topological space X) Q(ϕ) = Q(ϕ∗). More-
over, the following properties are equivalent :

(a) Q0(ϕ) 6= ∅;
(b) ϕ∗(x, y) > −∞ for all x, y ∈ X ;
(c) ϕ∗(x, x) > 0 for all x ∈ X ;
(d)

∑n
1 ϕ(xi−1, xi) > 0 for each cycle (x0 → x1 → · · · → xn−1 → xn = x0) in X .

If the function ϕ∗ is bounded above, then these properties are equivalent to either
of the following two:

(e) Q(ϕ; l∞(X)) 6= ∅;
(f) ϕ∗ ∈ l∞(X ×X).
Finally, if X is a topological space and ϕ ∈ Cb(X) ⊗ Cb(X), then one can

complete the list of equivalent properties by two further ones :
(g) Q(ϕ) 6= ∅;
(h) ϕ∗ ∈ Cb(X)⊗ Cb(X).

§ 3. Proof of Theorems 1 and 2

We associate with Problems 1 and 2 the cost functions

ϕ1(x, y) = c(x, y) +m(f ;H0), (8)
ϕ2(x, y) = c(x, y) +m(f ;H0), (9)

where c(x, y) = min(f(x, y),−f(y, x)).

Lemma 1. (1) The following formula holds for the value of the best approximation
in Problem 1:

m(f ;H0) = inf{α ∈ R+ : Q(c+ α) 6= ∅}. (10)

Moreover, u ∈ Cb(X) is a precise solution of Problem 1 if and only if it belongs to
the set Q(ϕ1).

3For compact X this is a consequence of [13], Lemma 2.4; the general case reduces easily to
the compact one by the transition from X to βX.
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(2) The following formula holds for the value of the best approximation in
Problem 2:

m(f ;H0) = inf{α ∈ R+ : Q(c+ α; l∞(X)) 6= ∅} (11)

and a function u ∈ l∞(X) is a precise solution of Problem 2 if and only if it belongs
to the set Q(ϕ2; l∞(X)).

Proof. For each u ∈ Cb(X),

sup
x,y∈X

|f(x, y)− u(x) + u(y)|

= inf{α ∈ R+ : f(x, y)− α 6 u(x)− u(y) 6 f(x, y) + α for all x, y ∈ X}
= inf{α ∈ R+ : u ∈ Q(c+ α)}.

This yields (10). This also demonstrates that u ∈ Cb(X) is a precise solution of
Problem 1 if and only if u ∈ Q(c+m(f ;H0)) = Q(ϕ1). The proof of the first result
of the lemma is complete, and the verification of the second is similar.

Remark 1. We have actually proved part (1) of Lemma 1 for Problem 1 with arbi-
trary f ∈ Cb(X ×X).

The next result is a consequence of Lemma 1 and Proposition 1.

Corollary 3. If f ∈ Cb(X) ⊗ Cb(X), then the existence of a precise solution of
Problem 1 is equivalent to the condition ϕ1∗ 6≡ −∞. (If this condition holds, then
either of the functions u(x) = ϕ1∗(x, x0), v(x) = −ϕ1∗(x0, x), x0 ∈ X , is a precise
solution of Problem 1.)

Proof of Theorem 1. As follows from Lemma 1 (see (11)), for each α > m(f ;H0)
there exists a function u ∈ Q(c + α; l∞). Then by Proposition 1 ((e) ⇔ (d)), for
each cycle ζ = (x0 → x1 → · · · → xn−1 → xn = x0) in X we have the inequality∑n

1 ϕ(xi−1, xi) > 0 with ϕ(x, y) = c(x, y)+α. This yields
∑n

1 c(xi−1, xi)+nα > 0.
Consequently,

α > − inf
ζ

1
n

n∑
1

c(xi−1, xi),

and since this holds for each α > m(f ;H0), it follows that

m(f ;H0) > − inf
ζ

1
n

n∑
1

c(xi−1, xi). (12)

Assume now that α < m(f ;H0). Then Q(c+α; l∞) = ∅. Hence (c+α)∗ ≡ −∞
and

∑n
1 c(xi−1, xi) + nα < 0 for some cycle (x0 → x1 → · · · → xn−1 → xn = x0).

Hence

α < − 1
n

n∑
i=1

c(xi−1, xi) 6 − inf
ζ

1
n

n∑
i=1

c(xi−1, xi),

and since the same holds for all α < m(f ;H0), it follows that

m(f ;H0) 6 − inf
ζ

1
n

n∑
i=1

c(xi−1, xi) (13)
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and (4) is a consequence of (12), (13). The proof of (5) (and of Corollary 2) is
similar, with the obvious replacement of Q(c+ α; l∞) by Q(c+ α).

Proof of Theorem 2. In view of Lemma 1, it is sufficient to verify that Q(ϕ1)
is non-empty. Assume the contrary; then by Proposition 1 there exists a cycle
ζ = (x0 → x1 → · · · → xn−1 → xn = x0) in X such that

n∑
1

ϕ1(xi−1, xi) =
n∑
1

(c(xi−1, xi) +m(f ;H0)) < 0.

In that case
∑n

1 (c(xi−1, xi) +m(f ;H0) +α) < 0 for sufficiently small α > 0. Then
it follows by Proposition 1 ((d) ⇔ (g)) that Q(c + m(f ;H0) + α) = ∅; but this
contradicts Lemma 1 and is therefore impossible; see (10).

§ 4. Proof of Theorems 3 and 4

We shall require several concepts and facts of lifting theory [17].4 Let X be
a locally compact metrizable space and σ0 a positive σ-finite Borel measure in
it supported by the entire space; let L∞ = L∞(X,σ0) be the Banach space
of bounded σ0-measurable real functions on X (we do not identify σ0-equivalent
functions) equipped with the uniform norm ‖u‖ = supx∈X |u(x)|. The space L∞

is a real Banach algebra with respect to natural (pointwise) multiplication. (It is
also a Banach lattice with respect to taking the pointwise supremum and infi-
mum.) A Banach algebra homomorphism, that is, a multiplicative linear operator
ρ : L∞ → L∞ is called a strong lifting on L∞ = L∞(X,σ0) if the following four
conditions hold:

(1) ρ is a projection, that is, ρ2 = ρ;
(2) for each u ∈ L∞ the set {x ∈ X : ρ(u)(x) 6= u(x)} is σ0-negligible, that is,

ρ(u) = u σ0-a.s.;
(3) for each u ∈ L∞, u = 0 a.s. ⇒ ρ(u) ≡ 0;
(4) ρ(u) = u for all u ∈ Cb(X).
In combination with the linearity and the multiplicativity of ρ these conditions

mean that ρ is also a homomorphism of Banach lattices, so that ρ(u∨v) = ρ(u)∨ρ(v)
and ρ(u ∧ v) = ρ(u) ∧ ρ(v) for arbitrary u, v ∈ L∞. Moreover, if u > v σ0-a.s.,
then ρ(u)(x) > ρ(v)(x) for all x ∈ X. (Indeed, since w = u− v > 0 σ0-a.s., there
exists a function w1 ∈ L∞ such that w = w2

1 σ0-a.s., and by the multiplicativity
of ρ we obtain that ρ(u)(x)− ρ(v)(x) = ρ(w)(x) = (ρ(w1)(x))2 > 0 for all x ∈ X.)

The main result that we require is the existence of a strong lifting on the space
L∞ = L∞(X,σ0) [17] (see also [5], Corollary 1 to Theorem 3.8).

We point out that the standard Lebesgue space L∞ = L∞(X,σ0) is a Banach
algebra and a Banach lattice, and the linear operator π : L∞ → L∞ taking each
function u ∈ L∞ to the class of functions σ0-equivalent to u is a homomorphism of
Banach algebras and Banach lattices. Thus, π is the canonical map of L∞ onto the
quotient space L∞ = L∞/N0, where N0 is the subspace of σ0-negligible functions
in L∞. The standard norm in L∞ is precisely the quotient norm with respect to π.
Since ρ(u) = ρ(v) for u − v ∈ N0, ρ induces a homomorphism of Banach algebras

4See also [5], Chapter 3.
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(and Banach lattices) ρ′ : L∞ → L∞ (a strong lifting on L∞) such that ρ′ ◦ π = ρ
and π ◦ ρ′ = idL∞ .

Lemma 2. Let X be a locally compact metrizable space, σ0 a positive σ-finite Borel
measure on it supported by the entire space, and let f ∈ Cb(X ×X). Then the set
Q(ϕ1;L∞) = Q(ϕ1;L∞(X,σ0)), where

Q(ϕ1;L∞(X,σ0)) :=
{
u ∈ L∞(X,σ0) : u(x)− u(y) 6 ϕ1(x, y) for all x, y ∈ X

}
,

is non-empty.

Proof. As follows from Lemma 1, for each n there exists a function un in
Q(ϕ1 + 1/n). We fix a point x0 ∈ X and assume without loss of generality that
un(x0) = 0, n = 1, 2, . . . . For each x ∈ X we have −ϕ1(x0, x) − 1 6 un(x) 6
ϕ1(x, x0) + 1, therefore {un} is a bounded (in norm) subset of Cb(X). Since σ0 is
supported by the entire space X, Cb(X) is naturally linearly isometric to a
closed subspace of L∞ =L∞(X,σ0). Hence the sequence {un} is weak-∗ bounded
and therefore weak-∗ precompact in L∞ = L1∗ and one can select a weak-∗
convergent subsequence {unk

}.5 To avoid complicated notation we shall assume
that the sequence {un} itself weak-∗ converges to an element of L∞. Then there
exists a function v ∈ L∞ such that {un} weak-∗ converges to π(v), and therefore
the sequence {un(x) − un(y)} of elements of Cb(X × X) ⊂ L∞(X × X,σ0 × σ0)
weak-∗ converges to an element of L∞(X × X,σ0 × σ0), which is the equivalence
class of a function v(x)− v(y). Now, since un(x)− un(y) 6 ϕ1(x, y) + 1/n and the
positive cone L∞+ (X ×X,σ0 × σ0) is weak-∗ closed (and therefore one can pass to
the limit in the inequalities), it follows that

v(x)− v(y) 6 ϕ1(x, y) for (σ0 × σ0)-a.s. (x, y) ∈ X ×X. (14)

We now set

N(y) := {x ∈ X : v(x)− v(y) > ϕ1(x, y)}, y ∈ X.

It follows from (14) that the set

N := {y ∈ X : N(y) is not σ0-negligible}

is σ0-negligible. We regard y as a parameter and observe that for each y /∈ N the
inequality

v(x)− v(y) 6 ϕ1(x, y)

holds for σ0-a.e. x ∈ X. Applying the strong lifting ρ to both sides of this inequality
we obtain

ρ(v)(x)− v(y) 6 ϕ1(x, y) (15)

5The space L1(X,σ0) is separable (as follows, for instance, from [18], Chapter VII, § 1, The-
orem 3). Hence, by [19], Theorem V.5.1, the weak-∗ topology is metrizable on bounded subsets
of L∞ and therefore we can select a weak-∗ convergent subsequence convergent in the ordinary,
rather than in the generalized sense.
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for all x ∈ X and all y /∈ N . Now, treating x as a parameter and applying ρ to
both sides of (15) regarded as functions of y we obtain

ρ(v)(x)− ρ(v)(y) 6 ϕ1(x, y) for all x, y ∈ X, (16)

that is, ρ(v) ∈ Q(ϕ1;L∞).
We now proceed directly to the proof of Theorems 3 and 4.

Proof of Theorem 3. By Lemma 2 there exists a function u1 ∈ Q(ϕ1;L∞), where
L∞ = L∞(Rn;σ0) and σ0 is Lebesgue measure on Rn. Let η be a non-negative

smooth function on Rn such that
∫

Rn

η(x)σ0(dx)=1 and
∂i1+···+inη(x)
∂xi1

1 · · · ∂x
in
n

∈L1(Rn, σ0)

for arbitrary i1, . . . , in. (For instance, we can take η(x) = π−n/2e−(x2
1+···+x2

n),
x = (x1, . . . , xn) ∈ Rn, or an arbitrary non-negative infinitely smooth function
with compact support such that the integral of it is 1.) Let u be the convolution
of u1 and η:

u(x) = (u1 ∗ η)(x) =
∫

Rn

u1(z)η(x− z)σ0(dz) =
∫

Rn

u1(x− z)η(z)σ0(dz).

Obviously, u is a bounded infinitely smooth function in Rn.
Since f(x, y) = g(x−y), it follows that c(x, y) = min(g(x−y),−g(y−x)). Hence

c(x− z, y − z) = c(x, y) and ϕ1(x− z, y − z) = ϕ1(x, y), so that

u1(x− z)− u1(y − z) 6 ϕ1(x, y) for all x, y, z ∈ Rn. (17)

Multiplying both sides of this inequality by η(z) and integrating with respect to

σ0(dz) while taking account of the equality
∫

Rn

η(z)σ0(dz) = 1 we obtain that

u(x) − u(y) 6 ϕ1(x, y) for all x, y ∈ Rn. Hence u ∈ Q(ϕ1), and the application of
Lemma 1 completes the proof of the first assertion of the Theorem.

For the proof of the second assertion, let X1 be the topological product of
m circles of lengths τ1, . . . , τm and the space Rn−m. It is convenient to view these
circles as the intervals [0, τi] with identified end-points; then the position of a point
on the ith circle is defined by a quantity xi, 0 6 xi < τi. The space X1 is a smooth
manifold 6 and, at the same time, a locally compact Abelian group with respect
to addition defined by the following agreement: x + y := z = (z1, . . . , zn), where
zi = xi + yi (mod τi) for i = 1, . . . ,m and zi = xi + yi for i = m+ 1, . . . , n. Obvi-
ously, one can regard each (smooth) function on X1 as a (smooth) function on Rn

periodic in the first m variables in accordance with the above description.
By Lemma 2 there exists a function u1 ∈ Q(ϕ1;L∞), where L∞ = L∞(X1;σ0)

and σ0 is Haar measure 7 inX1, that is, in our case, the product ofm linear Lebesgue
measures on the corresponding circles and (n−m)-dimensional Lebesgue measure
on Rn−m. (If X1 is a compact group, then Theorem 2 demonstrates the existence of
a function u1 ∈ Q(ϕ1).) The rest of the proof is similar to the proof of the first result
of the theorem. Using the special form of the function f we obtain inequality (17)

6For n = 2 X1 is either a torus (if m = 2) or a cylinder (if m = 1).
7For more information about Haar measure, see, for instance, [20].
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for all x, y, z ∈ X1. Multiplying it by a non-negative infinitely smooth function
with compact support

η : X1 → R,
∫

X1

η(z)σ0(dz) = 1,

and integrating after that with respect to Haar measure σ0(dz) we see that the
convolution of u1 with η is infinitely smooth and belongs to Q(ϕ1). The application
of Lemma 1 completes the proof.

Proof of Theorem 4. By Lemma 2 there exists a function u1 ∈ Q(ϕ1;L∞), where
L∞ = L∞(X;σ0) and σ0 is Lebesgue measure on X. Using the special form
of f we obtain c(x, y) = −g(y, x, y − x), provided that condition (a) holds, and
c(x, y) = g(x, y, x−y), provided that condition (b) holds. In either case the function
ϕ1(x, y) = c(x, y)+m(f ;H0) has the form ϕ1(x, y) = h(x, y, x−y) with h satisfying
(b). Now, for each z ∈ Rn

+ we obtain

u1(x+ z)− u1(y + z) 6 h(x+ z, y + z, x− y) 6 h(x, y, x− y), x, y ∈ X.

Multiplying both sides of this inequality by η(z) = e−(z1+···+zn) and integrating
after that with respect to Lebesgue measure on Rn

+ while taking account of the
equality ∫

Rn
+

η(z)σ0(dz) = 1

we obtain

u2(x)− u2(y) 6 h(x, y, x− y) = ϕ1(x, y), x, y ∈ X,

where
u2(x) :=

∫
Rn

+

u1(x+ z)η(z)σ0(dz), x ∈ X.

Setting x+ z = t we obtain

u2(x) = u2(x1, . . . , xn) = ex1+···+xn

∫ ∞

x1

· · ·
∫ ∞

xn

u1(t1, . . . , tn)e−(t1+···+tn) dt1 · · · dtn,

which yields the differentiability of u2. In addition, u2 is bounded because u1 is
bounded. Applying the above argument to u2 in place of u1 we obtain the function

u3(x) :=
∫

Rn
+

u2(x+ z)η(z)σ0(dz), x ∈ X,

which belongs to Q(ϕ1) and has second derivatives. Repeating the same procedure
r+1 times we obtain a function ur+2 ∈ Q(ϕ1) possessing all the partial derivatives
of orders up to r+ 1 and therefore Cr-smooth. The use of Lemma 1 completes the
proof.
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