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BEST APPROXIMATION PROPERTY IN THE W 1
∞ NORM

FOR FINITE ELEMENT METHODS ON GRADED MESHES

A. DEMLOW, D. LEYKEKHMAN, A. H. SCHATZ, AND L. B. WAHLBIN

Abstract. We consider finite element methods for a model second-order el-
liptic equation on a general bounded convex polygonal or polyhedral domain.
Our first main goal is to extend the best approximation property of the er-
ror in the W 1

∞ norm, which is known to hold on quasi-uniform meshes, to
more general graded meshes. We accomplish it by a novel proof technique.
This result holds under a condition on the grid which is mildly more restric-
tive than the shape regularity condition typically enforced in adaptive codes.
The second main contribution of this work is a discussion of the properties of
and relationships between similar mesh restrictions that have appeared in the
literature.

1. Introduction

In this paper we consider the model second-order elliptic boundary value problem

−Δu = f in Ω,(1.1)

u = 0 on ∂Ω.

Here Ω is a bounded convex polygonal or polyhedral domain in R
n, n = 2, 3,

and f ∈ L∞(Ω). Let Sh be a finite dimensional subspace of H1
0 (Ω) composed of

piecewise polynomials of arbitrary but fixed degree k on a simplicial mesh that can
be highly graded (see below for precise assumptions on the mesh). Let uh ∈ Sh be
the finite element approximation to u given by

(1.2) (∇uh,∇χ)Ω = (∇u,∇χ)Ω, ∀χ ∈ Sh,

where (∇u,∇v)Ω =
∫
Ω
∇u · ∇v.

Our goal is to establish the best approximation property

(1.3) ‖∇(u− uh)‖L∞(Ω) ≤ C min
χ∈Sh

‖∇(u− χ)‖L∞(Ω),

with constant C independent of the mesh size. Such a result has many applications.
For example, (1.3) is needed in order to establish the numerically observed L2 error
estimate for bi-harmonic problems (cf. [36]) and to analyze convergence of finite
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element methods for state-constrained optimal control problems (cf. [11]). By
taking χ = 0 in (1.3), we obtain the stability result

(1.4) ‖∇uh‖L∞(Ω) ≤ C‖∇u‖L∞(Ω),

which is essential, for example, in analyzing the finite element solution of nonlinear
problems (cf. [12, 16, 29]). It is also important to note that ∇u is Hölder continuous
with modulus of continuity depending on the geometry of Ω for convex polyhedral
domains in two and three space dimensions; cf. the remarks in the introductory
paragraphs of [23]. Thus the estimates (1.3) and (1.4) are meaningful under the
assumptions made here.

In the case of quasi-uniform grids, this estimate was proved for n = 2 in [28]
and for n = 3 without unnatural restrictions on dihedral angles of the domain
Ω in the recent work [23]. The quasi-uniformity assumption in these works rules
out finite element grids which possess substantial mesh grading. Mesh grading is
needed in order to optimally approximate u in many situations and arises naturally
in adaptive codes, however. The main contribution of this work is to extend (1.3)
to a class of grids which is sufficiently large to resolve solutions u to (1.1) in quasi-
optimal fashion.

Let T be a decomposition of Ω into simplices. For any τ ∈ T , also let hτ =
(meas(τ ))1/n and h = minτ∈T hτ and h = maxτ∈T hτ . We make the standard
assumption that T is shape regular, that is, each element τ ∈ T contains and is
contained in balls having diameter uniformly equivalent to hτ . Further restrictions
on T will be described below.

Céa’s Lemma trivially yields stability and almost-best-approximation properties
for the finite element method in the energy norm independent of the properties
of the mesh T , but proofs of other important properties of finite element spaces
and solutions typically require some further restriction on the mesh geometry. The
shape regularity property described above is viewed as acceptable in most contexts
because it is enforced in typical adaptive codes and allows for meshes which are
sufficiently graded to optimally resolve many types of singularities, especially in
two space dimensions. (Anisotropic meshes possessing “thin” or “flat” elements
not satisfying shape regularity properties are also important in many contexts,
especially in three space dimensions, but we do not consider such meshes here.)
Proofs of some properties of the finite element method have proven elusive assuming
only shape regularity, however. The most important examples of such properties
are optimal or quasi-optimal error bounds in nonenergy norms such as L2, L∞, and
W 1

∞ and stability of L2 projections onto finite element spaces in norms other than
L2. Proofs of these properties appearing in the literature assume technical mesh
restrictions that typically have unclear theoretical and practical consequences, so a
secondary goal of this paper is to clarify the impact of and relationships between
several mesh conditions that have appeared in the literature in connection with
proofs of error estimates in nonenergy norms.

As noted above, obtaining optimal error bounds in W 1
∞, L2, and L∞ has proven

to be difficult when only shape-regularity of the mesh is assumed. In [2], mesh-
dependent norms were used to obtain optimal-order error bounds in L∞ and L2

for two-point boundary value problems in one space dimension with no restrictions
on mesh grading. Optimal local H1 estimates assuming only shape-regularity of
the grid were also recently obtained in [14]. Other than these two papers, proofs
of optimal a priori error estimates for norms other than global energy norms have
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generally required mesh restrictions. In two space dimensions, Eriksson in [18]
obtained quasi-optimal L∞ bounds under the assumption that a regularized mesh
function h(x) possessing sufficiently small gradient exists. L2 estimates in one
dimension are proved under a similar restriction in Chapter 0 of [6], and a modified
version of these results for arbitrary space dimension is contained in [15]. The latter
work also uses a similar mesh restriction to construct an adaptive finite element
method for controlling the error in L2 for which optimal-order complexity can be
proved. In [31], L∞ results assuming local quasi-uniformity of the grid on large
element patches were announced. Finally, in [27], local H1 and L∞ estimates were

obtained under the restriction h ≥ h
γ
for some γ ≥ 1. Local H1 estimates were

obtained under a similar restriction in [39]. In what follows, we define these three
main mesh conditions more precisely and discuss the relationships between them.
We also briefly discuss several mesh conditions under which stability of the L2

projection in various norms has been proved (cf. [5, 7, 9]).
The paper is laid out as follows. In Section 2 we define and discuss mesh re-

strictions. In Section 3 we give preliminaries, while in Section 4 we prove our
main result. Finally, in Section 5 we give a concluding discussion about possible
extensions and alternate proof techniques.

2. Mesh conditions

In this section we provide a discussion of several mesh conditions which have
appeared in the literature.

2.1. Statements of the conditions. When proving our results we will assume
the following condition, which previously appeared in [31].

Mesh Condition 1 (Local quasi-uniformity). For x ∈ τ ∈ T , let h(x) = hτ .
There exists a constant q > 1 and a sufficiently large constant p, such that for each
point x ∈ Ω,

h(x)

q
≤ h(y) ≤ qh(x),

for all y ∈ Ω satisfying

|y − x| ≤ ph(x)�h,

where �h = ln
(
1 + h/h

)
.

Any shape-regular mesh is locally quasi-uniform, but only on small element
patches. “Large-patch” local quasi-uniformity is thus a natural assumption, but
it also places a nontrivial restriction on the class of allowed meshes beyond shape
regularity.

The next mesh condition which we consider appeared in slightly different form
in [18]. As we outline below, it is essentially equivalent to Mesh Condition 1.

Mesh Condition 2 (Eriksson). There exists a mesh function h̃(x) ∈ W 1
∞(Ω) which

is uniformly equivalent to h(x) and which satisfies

|∇h̃| ≤ μ

�h
,

for μ sufficiently small.
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746 A. DEMLOW, D. LEYKEKHMAN, A. H. SCHATZ, AND L. B. WAHLBIN

This condition is a natural but nontrivial extension of the restriction imposed
by shape-regularity, since for merely shape-regular meshes h̃(x) can be constructed

so that ‖∇h̃‖L∞(Ω) ≤ C (cf. [27] for a proof when n = 2).

It is easy to see that Mesh Condition 2 implies Mesh Condition 1 with p ∼ 1
μ . The

converse is harder to prove, but is also true. That is, given a mesh which is quasi-
uniform on patches of size Bph(x0)(x0), it is possible to construct the mesh function

h̃ so that ‖∇h̃‖L∞(Ω) ∼ 1
p (cf. [15]). The construction of h̃(x) involves a careful

average of the actual mesh sizes hτ over sufficiently many element rings about x0.
Note that the construction and proofs in [15] assume certain modifications of a
standard adaptive bisection routine (newest-node bisection or its generalization to
higher space dimensions; cf. [37]) rather than assuming local quasi-uniformity on
large patches. Local quasi-uniformity of the mesh is in fact the essential property
enforced by this modified bisection routine, however.

A further characterization of meshes satisfying Mesh Conditions 1 and 2 is that
for each x, y ∈ Ω, h(y) ≤ max{qh(x), μ

�h
|x − y|}. This condition essentially places

a restriction on the growth of the mesh size as one moves away from each fixed
point in the domain. It is equivalent to Conditions 1 and 2 with appropriate small
adjustments to μ and q; we do not discuss it further here.

The last main condition, which we consider, first appeared in [27] in connection
with proofs of a priori estimates in local energy and L∞ norms. A priori and
a posteriori error estimates in various norms have since been proved under this
assumption (cf. [10, 24, 26, 39]).

Mesh Condition 3 (Global mesh restriction). There exists γ ≥ 1 such that

(2.1) h ≥ h
γ
.

Mesh Condition 3 is fundamentally different from Mesh Conditions 1 and 2.
Conditions 1 and 2 place strong local or semi-local restrictions on the mesh struc-
ture, prohibiting, in particular, very fast mesh change over large element patches.
However, they place only a very weak restriction on the global relationship between
h and h. From the Fundamental Theorem of Calculus we have under Mesh Condi-
tion 2 that h ≤ μ

�h
. Thus h may decrease very slowly as h → 0, and if logarithmic

factors are ignored, then in fact h may remain bounded away from 0 as h → 0.
In contrast, Mesh Condition 3 seems to place no restriction on local mesh change
outside of that enforced by shape regularity, but it does enforce a much stronger
relationship between h and h than do Mesh Conditions 1 and 2.

We finally remark briefly on mesh restrictions imposed in order to prove stability
of L2 projections onto finite element spaces in various norms. Finite element L2

projections are of interest in various contexts, especially in the construction and
analysis of finite element methods for parabolic problems [3, 4]. Proving stability
of L2 projections in norms such as L∞ and H1 has thus far required restrictions
on the mesh beyond shape regularity. Such mesh restrictions appear in [5, 7, 9].
We refer to the latter paper for an overview of the restrictions. The conditions
appearing in these papers, which we do not discuss in detail, concern properties of
mass and related matrices naturally related to the construction of L2 projections.
These matrix conditions are closely related to element geometry and can be seen to
hold if the volumes of adjacent elements are not too different (cf. (6.6) in [5] and
the following discussion). Thus these restrictions are in a sense similar in spirit to
Mesh Condition 2 above. We do not further consider these conditions here.
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2.2. Practicality of the mesh conditions. On a practical level, Mesh Condition
1 or 2 can be enforced in adaptive codes if the parameter p or μ, respectively, is
known (cf. [15]). In particular, a standard newest-node bisection algorithm such as
that described in [37] can be modified in order to enforce quasi-uniformity of the
grid on large patches, or put in other terms, a sufficiently mild grading of the grid.
However, p and μ arise in a rather complicated fashion in our proofs, and must,
respectively, be large or small enough to reabsorb terms multiplied by constants
depending on various approximation and regularity constants. If one chooses to
check rather than enforce Mesh Condition 1, one must then also know the required
values of p. Checking Condition 2 would additionally require construction of a
smoothed mesh function h̃ which yields a small gradient, which is a nontrivial
task. Mesh Conditions 1 and 2 thus are not very practical either to check or
to enforce. We finally note that in numerical experiments involving some typical
adaptive examples in which a standard adaptive code is run without attempting to
enforce any additional mesh smoothness, we have been able to construct a smoothed
mesh function h̃ with ‖∇h̃‖L∞(Ω) ≈ 0.05. This value is moderately small but seems
unlikely to be small enough to reabsorb the necessary constants in the current
context.

Mesh Condition 3 requires only that some value of γ (independent of u) exists
so that (2.1) holds. This condition is likely to be met in many generic situations
without any additional enforcement, since standard gradings that are necessary to
resolve typical (corner) singularities indeed satisfy (2.1). The condition is also easily
enforceable once a value of γ has been chosen. One potential pitfall associated with
enforcing this condition is that choosing γ too small will result in a pessimistically
mild grading of the mesh. That is, if a graded mesh satisfying (2.1) for some
γ0 > 1 is sufficent to optimally resolve u, but (2.1) is instead enforced for a given
1 ≤ γ < γ0, then elements will unnecessarily be added to the mesh and optimal
complexity potentially compromised. Finally, checking (2.1) over several meshes
arising, for example, from an adaptive computation is also not difficult. Thus Mesh
Condition 3 appears to be easier to check or enforce and also more likely to hold in
practical situations without being enforced than are Mesh Conditions 1 and 2.

2.3. Optimality properties of the mesh conditions. We finally investigate
optimality properties of the mesh conditions. As the discussion below indicates,
Mesh Conditions 1 and 2 are natural restrictions of shape regularity and fami-
lies of meshes satisfying them essentially preserve the approximation properties of
shape-regular meshes, at least up to logarithmic factors. Families of meshes satis-
fying Mesh Condition 3, on the other hand, possess strictly worse approximation
properties than corresponding families of merely shape-regular meshes.

We first investigate all three mesh conditions in the context of standard mesh
gradings for optimally resolving corner singularities.

Example 1 (Corner singularity in 2D). Let Ω be a convex polygon in R
2, and

assume that the origin O is a vertex of Ω with opening angle ω. Letting θ = π
ω and

r(x) = dist(x,O), we then have that u(x) ∼ rθ, ∇u(x) ∼ rθ−1, and D2u(x) ∼ rθ−2.
Since for ω ≤ π/2 no grading is needed (cf. [1]), we assume that ω > π/2 and as a
result 1 < θ < 2, 0 < θ− 1 < 1, and −1 < θ− 2 < 0. Next we fix a small parameter
δ > 0 such that 0 < θ − 1 − δ < 1. Given a maximum mesh size h̄ and a mesh
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grading parameter μ, define r̃ = [�hh̄(2− θ + δ)μ−1]1/(θ−1−δ), and let h(x) satisfy

(2.2) h(x) =

⎧⎨⎩ h̄r2−θ+δ, r ≥ r̃,[
�h(2−θ+δ)

μ

] 2−θ+δ
θ−1−δ

h̄
1

θ−1−δ , r < r̃.

It is easy to check that h(x) ∈ W 1
∞(Ω). We may then construct T so that h(x) ∼ hτ

uniformly in Ω; (cf. [34], Example 0.1). It is also not difficult to check that
|∇h(x)| ≤ μ

�h
. Similar mesh gradings may be carried out at the other vertices of Ω.

Now, let Sh ⊂ H1
0 (Ω) be the continuous piecewise linear functions on T , and

let Ih : C(Ω) → Sh be the standard Lagrange interpolant. For τ ∈ T with r ∼
dist(τ, O) ≥ r̃, we have by standard approximation theory that ‖∇(u−Ihu)‖L∞(τ) ≤
Ch(τ )rθ−2 ≤ Ch̄rδ ≤ Ch̄diam(Ω)δ ≤ Ch̄. If r ≤ r̃, then by stability of the
Lagrange interpolant we have

‖∇(u− Ihu)‖L∞(τ) ≤C‖∇u‖L∞(τ) ≤ C‖rθ−1‖L∞(τ) ≤ Cr̃θ−1

≤Ch̄h̄
δ

θ−1−δ

[
�h(2− θ + δ)

μ

] θ−1
θ−1−δ

≤Cμh̄.

The last inequality follows because here �h = ln(1 + h̄/h) ≤ C ln 1
h̄
, so that h̄δ�βh is

uniformly bounded for 0 < h̄ ≤ 1 and any fixed β. We thus have shown that

(2.3) min
χ∈Sh

‖∇(u− χ)‖L∞(Ω) ≤ Ch̄

for a mesh satisfying Eriksson’s mesh smoothness condition, and also Mesh Con-
dition 1 with p ≥ c

μ . Note that the mesh grading given by (2.2) appears slightly

pessimistic because an extra factor of rδ is included. If this extra factor is excluded,
a similar construction yields (2.3), but with extra logarithmic factors in the upper
bound. Observe also that if the grading parameter μ is sufficiently small to en-
sure that (1.3) holds, then we may combine (1.3) with (2.3) to yield the estimate
‖∇(u − uh)‖L∞(Ω) ≤ Ch̄ for the finite element error u − uh. We do not, however,
trace the correct value of μ in our proof below and anticipate that it would be very
difficult to do so.

We now show that the meshes produced by (2.2) contain O(h
−2

) degrees of
freedom, which is optimal for the finite element spaces under consideration since
u is resolved to a tolerance O(h) by these meshes. First, by shape regularity the
asymptotic number of elements contained in Br̃(O) is

r̃2([
�h(2−θ+δ)

μ

] 2−θ+δ
θ−1−δ

h̄
1

θ−1−δ

)2 ≤ [�hh̄(2− θ + δ)μ−1]2/(θ−1−δ)([
�h(2−θ+δ)

μ

] 2−θ+δ
θ−1−δ

h̄
1

θ−1−δ

)2 ≤ C(θ, μ)�2h.

Let dj = 2j r̃ for j = 0, 1, ..., let Ωj = {x ∈ Ω : dj−1 < dist(x,O) < dj} for
j = 1, 2, ..., and let J be the largest value for which Ωj �= ∅. Noting that h|Ωj

is
uniformly equivalent to h(dj), we calculate that the number of elements in Ω\Br̃(O)
is equivalent to

J∑
j=1

|Ωj |
h(dj)2

≤ C
J∑

j=1

d2j

h
2
d4−2θ+2δ
j

≤ Ch
−2

J∑
j=1

d2θ−2−2δ
j .
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Since 2θ − 2− δ > 0, the latter sum is a geometric sum with the largest summand
bounded by Cdiam(Ω)2θ−2−2δ, so this sum is bounded by a constant that is inde-

pendent of h. This completes the proof that the mesh contains O(h
−2

) elements.
Finally, we remark that the grading given in (2.2) satisfies Condition 3 with

γ = 1
θ−1−δ .

We now adopt a viewpoint which is more consistent with the mathematical
framework that has been used to assess optimality of adaptive methods. Let T0 be
a shape-regular and quasi-uniform mesh. Then let T be the family of all conforming
meshes that can be derived from T0 by a standard newest-node bisection algorithm
or its generalization to R

3. All meshes in T are automatically uniformly shape-
regular because of the properties of newest-node bisection. Given fixed γ, μ > 0,
let Tγ and Tμ be the (strict) subsets of T consisting of daughter meshes of T0
which additionally satisfy Mesh Condition 3 and Mesh Condition 2 (here with �h
taken to be 1 for the time being), respectively. Given T lying in T, Tγ , or Tμ, we
denote by ST ⊂ H1

0 (Ω) the corresponding conforming piecewise linear finite element
space. Whereas typical a priori error estimates for the finite element method seek
to show that approximation to u is optimized over a single finite element space
corresponding to a single mesh, an adaptive finite element method is considered
to be optimal if it optimizes approximation of u over all finite element spaces ST
(T ∈ T) having a given number of degrees of freedom; cf. [8].

It is shown in Corollary A.6 of [15] that for every mesh T ∈ T, there exists a
mesh Tμ ∈ Tμ which is a daughter mesh of T such that #Tμ−#T0 ≤ C(#T −#T0).
Here #T is the cardinality of T and C depends only on μ and other nonessential
quantities. Put in different terms, when viewed from the standpoint of its ability
to approximate functions, so long as logarithmic factors are ignored the class of
meshes Tμ is essentially as “rich” as T since ST ⊂ STμ

when T and Tμ are as
above. In the present context, this means that if minχ∈ST ‖∇(u − χ)‖L∞(Ω) ≤ ε,
then there exists Tμ ∈ Tμ such that minχ∈STμ

‖∇(u−χ)‖L∞(Ω) ≤ ε and #Tμ−#T0
is not more than a fixed constant multiple of #T −#T0.

We now give two brief examples which allow us to compare the degree to which
enforcing Mesh Condition 1 (with logarithmic factors included) or Mesh Condition
3 might inflate the number of degrees in a given mesh.

Example 2 (Corner singularity in 2D, part 2). The mesh grading (2.2) in Example
1 above was hand-constructed in order to both optimally resolve a typical corner
singularity and to satisfy Mesh Condition 1. We now consider a simpler and more
natural mesh grading which likewise optimally resolves the corner singularity in
Example 1, but which does not satisfy Mesh Condition 1. Given a maximum mesh

size h, let h = h
1

θ−1 and define

h(x) =

{
h̄r2−θ, r ≥ h,
h, r < h.

The mesh T thus generated optimally resolves the corner singularity in Example 1

in the sense that it contains O(h
−2

) degrees of freedom and that (2.3) is satisfied
for the piecewise linear Lagrange finite element space Sh generated by this mesh.
We omit the calculations as they are similar to but simpler than those given in
Example 1.
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A crude calculation using Corollary A.6 of [15] shows that refining additional
elements in T in order to enforce Mesh Condition 1 inflates the number of degrees

of freedom to no more than O(�4−2θ
h h

−2
) (though by Example 1 this bound may

be pessimistic). For the mesh T , Mesh Condition 3 is satisfied with γ0 = 1
θ−1 .

Suppose, however, that we wish to enforce Condition 3, but do not know a priori
the correct value of γ and thus choose some 1 < γ < γ0. Without making any
assumption about precisely how Mesh Condition 3 is enforced, the outcome will
be a new mesh T̃ with maximum mesh size h̃ and minimum mesh size h˜, where
h˜ = h̃γ . Note that there must be at least O(h̃−2) elements in T̃ . Now, let TO ∈ T̃
be an element touching the origin O. Recalling that ∇u ∼ rθ−1 near O, we find
that there is a constant c such that ‖∇(u−χ)‖L∞(TO) ≥ c‖rθ−1‖L∞(TO) ≥ ch˜θ−1 for

any χ ∈ Sh. But h˜θ−1 = h̃γ(θ−1) = h̃
γ
γ0 . Because γ

γ0
< 1 and #T̃ ≥ Ch̃−2, using

O(h̃−2) elements produce a convergence rate that is suboptimal by 1 − γ
γ0
, or in

other terms, producing an error O(ε) in W 1
∞ requires O(ε−

2γ0
γ ) degrees of freedoms

instead of the optimal number O(ε−2). Because no assumption at all concerning

the nature of the mesh T̃ has been made here beyond requiring that it satisfy Mesh
Condition 3 with γ < 1

θ−1 , any sequence of meshes in Tγ with γ < γ0 will thus
produce suboptimal convergence.

Example 3 (Extreme mesh grading). Let Ω be the unit square, and let T0 be
a uniform coarse mesh consisting of four triangles with vertices given by the four
corners and center of Ω. Finally, let Ti, i > 0, be derived by iteratively bisecting
at each refinement step only those elements touching the origin, plus additional
elements to maintain mesh conformity. The number of elements #Ti in Ti is easily
seen to be bounded by Ci for some fixed constant C, and h = 2−i. The result-
ing meshes are strongly graded toward the origin; here the natural mesh function

h(x, y) ≈
√

x2 + y2 so that |∇h(x, y)| ≈ 1 for all (x, y). Shape regular meshes
cannot in general be more strongly graded, since as noted above the gradients of
their mesh functions are uniformly bounded.

Ti always contains an element of diameter (and area) 1, so enforcing Mesh
Condition 3 will inflate the number of degrees of freedom from Ci to at least

h
−2

= h− 2
γ ≈ (2i)

2
γ = 2

2i
γ . Enforcing Condition 1, on the other hand, will inflate

the number of degrees of freedom from roughly i to roughly i�h ≈ i ln 2i ≈ i2.
Thus, in this extreme example, enforcing Mesh Condition 1 with the logarithmic
factor taken into account greatly inflates the number of elements in Ti (from i to
i2). Enforcing Condition 3 will, however, have a much more extreme effect, creating
meshes with numbers of degrees of freedom that grow exponentially in the number
of refinement steps.

We summarize as follows. If we fix γ, then producing a mesh in Tγ from an
adaptively produced mesh lying in T and thereby enforcing Mesh Condition 3 will
in many cases have no effect at all, but in extreme cases it will wildly inflate
the number of elements in the mesh even if γ is chosen to be relatively large.
Enforcing Condition 1, on the other hand, is likely to lead to some inflation of
the number of elements in the mesh in many situations, but the added number of
elements is in all cases relatively moderate even if logarithmic factors are taken
into account. Thus while Mesh Condition 3 may be expected to hold naturally
in many practical situations and can be checked or enforced with relative ease, it
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has the large disadvantage of producing suboptimal classes of meshes and finite
element spaces if enforced. On the other hand, it is difficult to judge whether Mesh
Conditions 1 and 2 hold in any given practical situation because the parameters
p and μ are difficult to determine. However, these conditions represent a natural
“tightening” of restrictions already imposed by shape regularity and at least up to
logarithmic factors preserve optimality properties of finite element spaces generated
from shape-regular meshes. We shall prove our results under Mesh Condition 1.

3. Preliminaries

In this section we list a number of properties and assumptions that we will
need in our proofs. The assumptions we make below concerning properties of finite
element spaces are fulfilled, for example, by standard Lagrange finite element spaces
of arbitrary polynomial degree k.

3.1. Local approximation. There exists a linear operator Ih : H1
0 (Ω)∩H2(Ω) →

Sh(Ω) such that for any element τ ∈ T ,

‖Ihv − v‖Hs(τ) ≤ Ch2−s
τ |v|H2(τ) for 0 ≤ s ≤ 1.

Since our presentation is restricted to two and three space dimensions we may
simply take Ih to be the Lagrange interpolant.

3.2. Inverse properties. For any χ ∈ Sh and τ ∈ T ,

‖χ‖W s
p (τ)

≤ Cht−s−n(1/q−1/p)
τ ‖χ‖W t

q (τ)
, 0 ≤ t ≤ s ≤ 2, 1 ≤ q ≤ p ≤ ∞.

3.3. Superapproximation. Given D ⊂ Ω with T quasi-uniform on D of size h,
d ≥ κh > 0 for sufficiently large κ, and D1 ⊂ D with dist(D1, ∂D \ ∂Ω) ≥ d, let
ω be a smooth function which is 0 on Ω \D1 and satisfying ‖Dsω‖L∞(Ω) ≤ Cd−s,

s ≥ 0. For D ⊂ Ω, let S0
h(D) = Sh ∩H1

0 (D). Then for each χ ∈ Sh(D) there exists
η ∈ S0

h(D) satisfying

‖∇(ωχ− η)‖D ≤ Ch(d−1‖∇χ‖D + d−2‖χ‖D).

Furthermore, let D4 ⊂ D3 ⊂ D2 ⊂ D1 with dist(D4, ∂D3 \ ∂Ω) ≥ d ≥ κh and
dist(D3, ∂D2 \ ∂Ω) ≥ d ≥ κh. Then if ω ≡ 1 on D2, we have η ≡ χ on D3 and

(3.1) ‖∇(ωχ− η)‖D ≤ Ch(d−1‖∇χ‖D\D4
+ d−2‖χ‖D\D4

).

Superapproximation properties are standard in the finite element literature and are
valid for many finite element spaces. For more detailed discussions see [14, 25, 32].

We also need the following result which is very similar to Proposition 2.2 in [32].

Proposition 3.1. Let the superapproximation property 3.3 hold and let D4 ⊂ D3 ⊂
D2 ⊂ D1 ⊂ D ⊂ Ω with dist(Di, ∂Di−1 \ ∂Ω) ≥ d as above, and similarly for D1

and D and D and Ω. There is a constant C such that for each χ ∈ Sh(D) there
exists an η ∈ S0

h(D1) with η ≡ χ on D2 and

‖∇(χ− η)‖D ≤ C(‖∇χ‖D\D4
+ d−1‖χ‖D\D4

).

Proof. Let ω ∈ C∞
0 (D1) be as in Superapproximation assumption 3.3. By the

triangle inequality,

‖∇(χ− η)‖D ≤ ‖∇(ωχ− η)‖D + ‖∇(χ− ωχ)‖D.

By (3.1)
‖∇(ωχ− η)‖D ≤ Ch(d−1‖∇χ‖D\D4

+ d−2‖χ‖D\D4
).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



752 A. DEMLOW, D. LEYKEKHMAN, A. H. SCHATZ, AND L. B. WAHLBIN

If we take ω ≡ 1 on D2, then since |∇ω| ≤ Cd−1,

‖∇(χ− ωχ)‖D ≤‖χ∇(1− ω)‖D\D4
+ ‖(1− ω)∇χ‖D\D4

≤C(‖∇χ‖D\D4
+ d−1‖χ‖D\D4

).

Since h ≤ d the above two estimates conclude the proof of the proposition. �

3.4. Scaling. Let x0 ∈ Ω and R ≥ kh. The linear transformation y = (x− x0)/R

takes ΩR(x0) = BR(x0) ∩ Ω into a new domain Ω̂1 and Sh(ΩR(x0)) into a new

function space Ŝh/R(Ω̂1). Then Ŝh/R(Ω̂1) satisfies assumptions 3.1 through 3.3
with h replaced by h/R. The constants occurring remain unchanged.

3.5. H2 regularity. The following H2 regularity result is known to hold for convex
domains (cf. [21]).

Lemma 3.1. For any convex domain Ω there exists a constant C depending only
on Ω such that

‖u‖H2(Ω) ≤ C‖f‖L2(Ω).

3.6. Pointwise estimates for the Green’s function. In our proof we will make
heavy use of pointwise estimates for the Green’s function and its derivatives. The
proof for general second order elliptic equation for n ≥ 3 can be found in [22]. In
two dimensions for the Laplace equation a simplified proof can be found in [19].

Lemma 3.2. Let G(x, y) denote the Green’s function for (1.1) and let Ω be a
bounded convex subset of Rn. Then the following estimates hold:

|G(x, y)| ≤
{

C(1 + ln |x− y|), n = 2,
C|x− y|2−n, n ≥ 3,

(3.2a)

|∇xG(x, y)| ≤ C|x− y|1−n, n ≥ 2,(3.2b)

|∇x∇yG(x, y)| ≤ C|x− y|−n, n ≥ 2.(3.2c)

Sharper Green’s function estimates are derived for two- and three-dimensional
convex polygonal and polyhedral domains in [23].

3.7. Inverse type inequalities for harmonic and discrete harmonic func-
tions. In our argument we will constantly deal with functions which are harmonic
on some parts of the domain. The following inverse type inequalities significantly
simplify many arguments. The result is essentially the same as Lemma 8.3 of [33],
so we do not provide a proof.

Lemma 3.3. Let D ⊂ Dd ⊂ Ω, and for d > 0 let Dd = {x ∈ Ω : dist(x,D) ≤ d}.
Assume v vanishes on ∂Dd ∩ ∂Ω and that v is harmonic on Dd, i.e.,

(∇v,∇w) = 0, ∀w ∈ H1
0 (Dd).

Then,

|v|H2(D) ≤ Cd−1‖v‖H1(Dd),(3.3a)

‖v‖H1(D) ≤ Cd−1‖v‖L2(Dd).(3.3b)

We will also require similar estimates for discrete harmonic functions. We say
that a function vh ∈ Sh is discrete harmonic over D ⊂ Ω if (∇vh,∇χ) = 0 for all
χ ∈ Sh having support in D.
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Lemma 3.4. Let D ⊂ Ω have diameter d, and let Dd = {x ∈ Ω : dist(x,D) < d}.
Assume also that Th is quasi-uniform with mesh diameter h on Dd for d ≥ kh with
k sufficiently large. If vh ∈ Sh is discrete harmonic on Dd, then

(3.4) ‖∇vh‖L2(D) ≤ Cd−1‖vh‖L2(Dd) ≤ Cd−2‖vh‖H−1
< (Dd)

.

Here,

‖vh‖H−1
< (Dd)

= sup
z∈H1(Ω),

z=0 on Ω\Dd

(vh, z)

‖z‖H1(Dd)
.

Proof. See [38], Lemma 9.1 for a proof of the first inequality in (3.4); the appropriate
power of d is easy to trace. The second estimate is essentially contained in Lemma
9.2 of [38], where again the appropriate powers of d may be traced with slightly
more effort. Following the proof of Lemma 9.2 in [38], we see that the only detail
missing in the proof of the second inequality is a uniform bound for an H2 regularity
constant. In particular, we must show that Dd is contained in a subdomain D̃ of
Ω having diameter equivalent to d and for which |v|H2(D̃) ≤ C2‖Δv‖L2(D̃) for all

v ∈ H2(Dd), where the constant C2 is independent of d and D̃. Independence of C2

from d follows by a simple scaling argument. Because Ω is convex and polyhedral,
we may always take D̃ to be a copy of Ω which is scaled by some factor uniformly
equivalent to d and properly translated. In the more general case where Ω is a
nonconvex polyhedral domain (which we do not consider here), a similar result
can be proved under the additional assumption that D lies a distance d from any
re-entrant vertices or edges of ∂Ω. In this case it is possible to define a finite set
of convex reference domains D̃1, ..., D̃N such that at least one of the D̃i’s will have
the desired properties; cf. Section 2.2 of [13]. Thus C2 is also independent of the
shape of Dd, as desired. �

4. Proof of the main result

4.1. Idea of the proof. The proof technique is rather novel and roughly can be
broken into three parts. Let e = u − uh. In the following we fix a point x0 such
that ‖∇e‖L∞(Ω) = |∇e(x0)| and let Ω0 = Bd(x0)∩Ω, where d ≥ kh(x0) for some k
sufficiently large.

Part 1: We establish local error estimates. For example in [35], Theorem 1.2,
it has been shown for Ω0 ⊂⊂ Ω, that

|∇e(x0)| ≤C min
χ∈Sh

(
‖∇(u− χ)‖L∞(Ω0) + d−1‖u− χ‖L∞(Ω0)

)
+ Cd−

n
2 −1‖e‖L2(Ω0).

(4.1)

Here the term d−1‖u−χ‖L∞(Ω0) can be removed by choosing χ = χ∗+
1

|Ω0|
∫
Ω0

(u−
χ∗) with χ∗ = argminχ∈Sh

‖∇(u−χ)‖L∞(Ω0) and applying the Poincaré inequality.
The goal of Theorem 1 is to extend the above result all the way to the boundary.

Part 2: Once (4.1) is established the next step is to transform the “slush” term
‖e‖L2(Ω0) into a more convenient form. For example, if Ω0 ⊂⊂ Ω, we can replace
e by e − c in (4.1), where c is a constant. Only the slush term is affected by this
change. Then by choosing c = (e, 1)Ω0

, we can establish (cf. Lemma 4.1 below),

(4.2) ‖e‖L2(Ω0) ≤ C‖∇e‖H−1(Ω0).
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In the case Ω0 ∩ ∂Ω �= ∅ this argument does not work, but nevertheless we are able
to establish a somewhat similar result, where we bound the “slush” term by some
combination of derivatives of e in a weaker norm (cf. Lemma 4.2).

Part 3: The final step is to kick back ‖∇e‖H−1(Ω0) to ‖∇e‖L∞(Ω). Once we

transform this slush term, the next step in essence is to show that d−
n
2 −1‖e‖L2(Ω0)

is smaller than ‖∇e‖L∞(Ω). In order to establish this fact we use a decomposition
of Ω on special annuli that give us a limit on the mesh growth on each of them (cf.
Proposition 4.1). After that applying approximation theory together with careful
bookkeeping finishes the proof.

These steps work almost trivially in the case of Ω0 ⊂⊂ Ω. Therefore, the main
challenge is to extend all of these steps up to the boundary, i.e., for the case Ω0 ∩
∂Ω �= ∅.

4.2. Part 1. Local error estimates. The goal of this part is to establish local
error estimates.

Theorem 1. Let u and uh satisfy (1.1) and (1.2), and let the assumptions of
Section 3 hold. Let x0 ∈ Ω be such that ‖∇e‖L∞(Ω) = |∇e(x0)|. Define D =
Ω∩Bd(x0) for d ≥ kh(x0), where k > 0 is a sufficiently large number. Assume that
the mesh is quasi-uniform on D and can be extended quasi-uniformly to the whole
domain Ω with all elements having diameter uniformly equivalent to h = h(x0).
Then there exists a constant C independent of h and u such that for any χ ∈ Sh,

|∇e(x0)| ≤ C
(
‖∇(u− χ)‖L∞(D) + d−1‖u− χ‖L∞(D) + d−

n
2 −1‖e‖L2(D)

)
, n = 2, 3.

Remark 1. The assumption that the mesh may be extended quasi-uniformly to the
whole domain Ω is not essential, but simplifies the proof a lot. This assumption is
in any case not very restrictive. It holds, in particular, if the original mesh came
from some coarse mesh by successive refinement and coarsening, which holds for
many adaptive codes.

Proof. In what follows we will use the abbreviation mD = Bmd(x0)∩Ω. Let ω be a
cut-off function with the properties ω ≡ 1 on D, supp(ω) ⊂ 2D, and |∇ω| ≤ Cd−1.
Let ũ = ωu. By the assumption of the theorem, we can extend the quasi-uniform
mesh on D to the whole domain Ω quasi-uniformly. Call the corresponding finite
element space S̃h. Define ũh to be the Ritz projection of ũ onto S̃h:

(∇ũh,∇χ̃)Ω = (∇ũ,∇χ̃)Ω, ∀χ̃ ∈ S̃h.

Then,

(4.3) |∇e(x0)| ≤ |∇(ũ− ũh)(x0)|+ |∇(ũh − uh)(x0)|.
By Theorem 2 in [23], which gives global best approximation property on quasi-
uniform meshes, the first term on the right-hand side of (4.3) can be estimated
as

‖∇(ũ− ũh)‖L∞(Ω) ≤ C‖∇ũ‖L∞(Ω) ≤ C
(
‖∇u‖L∞(2D) + d−1‖u‖L∞(2D\D)

)
.

The term ũh−uh in (4.3) is discrete harmonic on D; we do not consider the prop-
erties of this function outside of D. The rest of the proof is devoted to establishing
that

|∇(ũh − uh)(x0)| ≤ Cd−
n
2 −1‖uh‖L2(D).
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Let ψh = ũh−uh. By Proposition 3.1, there exists ηh ∈ S̃0
h(

3
4D) such that ηh ≡ ψh

on 1
2D and

(4.4) ‖∇ηh‖L2(
3
4D) ≤ C(‖∇ψh‖L2(

7
8D) + d−1‖ψh‖L2(

7
8D)).

Next we define an approximate derivative Green’s function g by

−Δg = ∂δ, in Ω,(4.5)

g = 0, on ∂Ω.

Here δ is a smooth, discrete δ-function supported in an element containing x0 and

satisfying ‖δ‖Lq
≤ Ch(x0)

−n(1− 1
q ) (cf. [35], Appendix A, for details). Also, ∂ is a

directional derivative. Let g̃h be the finite element projection of g onto S̃h. Then,

−∂ψh(x0) = −∂ηh(x0) = (∇g,∇ηh) = (∇g̃h,∇ηh).

Also, by Proposition 3.1, there exists ζh ∈ S̃0
h(

1
2D) such that ζh ≡ g̃h on 1

4D and

‖∇(g̃h − ζh)‖L2(
3
4D) ≤ C(‖∇g̃h‖L2(

7
8D\ 1

4D) + d−1‖g̃h‖L2(
7
8D\ 1

4D)).

Recalling that ηh is supported on 3
4D and discrete harmonic in 1

2D and using (4.4),
we have

(4.6)

−∂ψh(x0) = (∇(g̃h − ζh),∇ηh) + (∇ζh,∇ηh)

= (∇(g̃h − ζh),∇ηh)

≤ ‖∇(g̃h − ζh)‖L2(
3
4D)‖∇ηh‖L2(

3
4D)

≤ C(‖∇g̃h‖L2(
7
8D\ 1

4D) + d−1‖g̃h‖L2(
7
8D\ 1

4D))

× (‖∇ψh‖L2(
7
8D) + d−1‖ψh‖L2(

7
8D)).

Using that ψh is discrete harmonic, the triangle inequality, the fact that u = ũ on
D, and global a priori estimates in the L2 norm, we have

(4.7)

‖∇ψh‖L2(
7
8D) + d−1‖ψh‖L2(

7
8D) ≤ Cd−1‖ψh‖L2(D)

≤ Cd−1
(
‖u− uh‖L2(D) + ‖ũ− ũh‖L2(D)

)
≤ Cd−1

(
‖e‖L2(D) + h‖∇ũ‖L2(2D)

)
≤ Cd−1

(
‖e‖L2(D) + hd

n
2 −1‖u‖L∞(2D) + hd

n
2 ‖∇u‖L∞(2D)

)
.

Now we turn to ‖∇g̃h‖L2(
7
8D\ 1

4D)+d−1‖g̃h‖L2(
7
8D\ 1

4D). Using that g̃h is discrete

harmonic we have

(4.8) ‖∇g̃h‖L2(
7
8D\ 1

4D) + d−1‖g̃h‖L2(
7
8D\ 1

4D) ≤ Cd−1−s‖g̃h‖H−s(D\ 1
8D), s = 0, 1.

For n = 2 we apply (4.8) with s = 0. By the Sobolev embedding theorem
(W 1

1 ↪→ L2),

‖g̃h‖L2(D\ 1
8D) ≤ C‖g̃h‖W 1

1 (D\ 1
8D).

Note that the Sobolev embedding constant appearing in the inequality above is
domain independent. To check that, we can scale the domain D to a unit size
domain D̃ by introducing a new variable y = x/d. Then it is easy to show that for
any general function V (y) = v(yd) we have

(4.9) ‖DsV ‖Lq(D̃) = ds−n/q‖Dsv‖Lq(D), s = 0, 1.
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Thus, if D\ 1
8D is scaled to a subset of a fixed unit-sized annulus, g̃h is extended to

zero in this annulus if D abuts ∂Ω, and by using (4.9), we can see that this constant
is indeed independent of d.

For n = 3 we use (4.8) with s = 1. We then use Hölder’s inequality and the
Sobolev embeddings W 1

1 ↪→ L3/2 and H1 ↪→ L6 to find

‖g̃h‖H−1(D\ 1
8D) ≤ C sup

‖v‖
H1

<(D\ 1
8
D)

=1

(g̃h, v)

≤C‖g̃h‖L3/2(D\ 1
8D) sup

‖v‖
H1

<(D\ 1
8
D)

=1

‖v‖L3(D\ 1
8D)

≤Cd1/2‖g̃h‖L3/2(D\ 1
8D) sup

‖v‖
H1

<(D\ 1
8
D)

=1

‖v‖L6(D\ 1
8D)

≤Cd1/2‖g̃h‖W 1
1 (D\ 1

8D) sup
‖v‖

H1
<(D\ 1

8
D)

=1

‖v‖H1(D\ 1
8D)

≤Cd1/2‖g̃h‖W 1
1 (D\ 1

8D).

Again the constant C in the above inequality is independent of d.
By the triangle inequality and Theorem 2 in [23],

‖g̃h‖W 1
1 (D\ 1

8D) ≤ ‖g̃h − g‖W 1
1 (Ω) + ‖g‖W 1

1 (D\ 1
8D) ≤ C + ‖g‖W 1

1 (D\ 1
8D).

Since for some fixed c > 0 dist(x, supp(δ)) ≥ cd for all x ∈ D\ 1
8D, we have from

Lemma 3.2 that for any such x,

∇g(x) =

∫
τ0

∇xG(x, y)∂δ(y)dy = −
∫
τ0

∇x∂yG(x, y)δ(y)dy ≤ Cd−n.

As a result,

‖g‖W 1
1 (D\ 1

8D) ≤ C.

Collecting the above estimates, we thus have that

(4.10) ‖∇g̃h‖L2(
7
8D\ 1

4D) + d−1‖g̃h‖L2(
7
8D\ 1

4D) ≤ Cd−
n
2 .

Collecting (4.10) and (4.7) into (4.6) yields

‖∇e‖L∞(Ω) = |∇e(x0)| ≤ C
(
d−1‖u‖L∞(2D) + ‖∇u‖L∞(2D) + d−

n
2 −1‖e‖L2(2D)

)
.

We complete the proof of Theorem 1 by inserting u − χ and uh − χ for u and uh

and writing D instead of 2D. �

Corollary 1. Assume in addition to the assumptions of Theorem 1 that either
D ⊂⊂ Ω or measn−1(D ∩ ∂Ω) is sufficiently large. Then, for any χ ∈ Sh

|∇e(x0)| ≤ C
(
‖∇(u− χ)‖L∞(D) + d−

n
2 −1‖e‖L2(D)

)
, n = 2, 3.

Proof. If D ⊂⊂ Ω, then by taking χ∗ = χ + 1
|D|

∫
D
(u − χ) in Theorem 1 and

applying the Poincaré inequality we have

‖u− χ∗‖L∞(D) ≤ Cd‖∇(u− χ∗)‖L∞(D) = Cd‖∇(u− χ)‖L∞(D).

Similarly, in the second case we can apply the Poincaré-Friedrichs inequality
since u− χ vanishes on ∂Ω. �
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Remark 2. If Ω is a nonconvex polyhedral domain, our proof technique can also
be modified in order to prove similar local estimates near convex portions of ∂Ω
under reasonable assumptions. Let Bd(x0) ∩ Ω be convex with ∂Bd(x0) ∩ ∂Ω �= ∅.
Let Ω̃ be a convex polyhedral subset of Ω with Bd(x0) ∩ Ω ⊂ Ω̃. Assume then
that the quasi-uniform mesh on Bd(x0) ∩ Ω can be extended to a quasi-uniform

mesh covering Ω̃. In this case essentially the same proof as before works. The only
place where modifications are needed is in the definition of g in (4.5), where we

need to use Ω̃ instead of Ω. So long as a finite number of extended subdomains Ω̃
are used to cover convex portions of Ω, which is always possible, the corresponding
Green’s functions estimates of Lemma 3.2 will hold with uniform constants over
the extended domains Ω̃.

4.3. Part 2. Transforming the “slush” term. The next step toward establish-
ing (1.3) is to treat ‖e‖L2(Ω0), where Ω0 is a subdomain containing x0. We will
employ the following lemma.

Lemma 4.1. Let D be a bounded domain with Lipschitz boundary and having
diameter d, and assume that v has mean value zero over D. Then

‖v‖L2(D) ≤ C‖∇v‖H−1(D),

where C depends only on the space dimension n and the ratio of d and the largest
ball that can be inscribed in D.

Proof. We will prove this result by a duality argument. Let �w ∈ H1
0 (D)n be a

solution to the following problem:

∇ · �w = v in D,

�w = 0 on ∂D.

By Lemma 3.1 of Chapter III.3 in [20], there is a constant C independent of v and
depending only on the ratio of d and the radius of the largest ball that can be
inscribed into D such that

(4.11) ‖�w‖H1
0 (D) ≤ C‖v‖L2(D).

Thus, integrating by parts and using the estimate above we have,

‖v‖2L2(D) = (v, v)D = (∇ · �w, v)D = −(�w,∇v)D

≤ ‖�w‖H1
0 (D)‖∇v‖H−1(D) ≤ C‖v‖L2(D)‖∇v‖H−1(D).

Canceling ‖v‖L2(D) on both sides we obtain the lemma. �

Remark 3. Let ρ denote the radius of the largest ball B that can be inscribed in
D. Duran in [17] constructed a simple example on a rectangular domain showing
that the dependence of the constant C on (d/ρ)s in (4.11) is necessary. However,
the power s given in [20] is not optimal. The best constant so far is obtained in
[17] and has the form

C = Cn
d

ρ

(
|D|
|B|

) n−2
2(n−1)

(
log

|D|
|B|

) n
2(n−1)

,

where the constant Cn depends on n only.
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When Ω0 ⊂⊂ Ω we may simply replace e by e−e, where e = (e, 1)Ω0
, in Corollary

1 and apply the above lemma. In the case where ∂Ω0 ∩ ∂Ω �= ∅ we can prove a
slightly different result, which again expresses ‖e‖L2(Ω0) in terms of derivatives in
a weaker norm.

If Ω0 ∩ ∂Ω �= ∅, we first select a straight (n − 1)-dimensional hyperplane H
containing the portion of ∂Ω lying closest to x0. Without loss of generality, we can
assume that H is given by xn = 0. Then using odd reflection of the function u
across H with respect to Ω0 we can show the following.

Lemma 4.2. Assume that e(x1, . . . , xn−1, 0) = 0. Then, there exists a constant C
independent of u and x0 such that

‖e‖L2(Ω0) ≤ C sup
�φ∈H1

>(Ω0)
n

‖�φ‖H1(Ω0)=1

(
e,∇ · �φ

)
,

where H1
>(Ω0) denotes the functions that vanish on all parts of ∂Ω0 except xn = 0.

Proof. Define

B− = {(x1, . . . , xn−1, xn) ∈ Ω0}, B+ = {(x1, . . . , xn−1,−xn) ∈ Ω0}.
Put x̂ = (x1, . . . , xn−1). Extend the function e(x1, . . . , xn) from B− to B = B− ∪
B+ by the odd reflection

ẽ(x̂, xn) =

{
e(x̂, xn), x ∈ B−

−e(x̂,−xn), x ∈ B+.

Since e has mean zero over B, by Lemma 4.1,

‖e‖L2(B−) ≤ ‖ẽ‖L2(B) ≤ C‖∇ẽ‖H−1(B).

Here C does not depend on x0 ∈ Ω since Ω0 = Bd(x0) ∩ Ω has uniformly bounded
ratio of diameter to radius of largest inscribable ball. Now our goal is to express
the last term in terms of e over the original domain B−. Since

‖∇ẽ‖H−1(B) = sup
�φ∈H1

0 (B)n

‖�φ‖H1(B)=1

(∇ẽ, �φ)B,

we consider separately(
∂ẽ

∂xi
, φi

)
B

, i = 1, . . . , n− 1 and

(
∂ẽ

∂xn
, φn

)
B

,

where �φ = (φ1, . . . , φn)
T . Put

φodd
i (x̂, xn) =

φi(x̂, xn)− φi(x̂,−xn)

2

and

φeven
i (x̂, xn) =

φi(x̂, xn) + φi(x̂,−xn)

2
.

Using that φi = φodd
i + φeven

i and noting that ∂ẽ
∂xi

is an odd function with respect
to the last variable xn, for each 1 ≤ i ≤ n− 1 we have,(

∂ẽ

∂xi
, φi

)
B

=

(
∂ẽ

∂xi
, φodd

i

)
B

= 2

(
∂e

∂xi
, φodd

i

)
B−

= −2

(
e,

∂φodd
i

∂xi

)
B−

.

There are no boundary terms since φodd
i = 0 on ∂B−.
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Similarly, since ∂ẽ
∂xn

is now an even function with respect to the last variable xn,
we have(

∂ẽ

∂xn
, φn

)
B

=

(
∂ẽ

∂xn
, φeven

n

)
B

= 2

(
∂e

∂xn
, φeven

n

)
B−

= −2

(
e,

∂φeven
n

∂xn

)
B−

.

Again, there are no boundary terms since eφeven
n = 0 on ∂B−. Thus we have shown

that

‖e‖L2(B−) ≤ sup
�φ∈H1

0 (B)n

‖�φ‖H1(B)=1

−2

(
e,

n−1∑
i=1

∂φodd
i

∂xi
+

∂φeven
n

∂xn

)
B−

That concludes the proof of Lemma 4.2. �

4.4. Part 3. Partition of the domain and kickback argument. We use the
following decomposition of Ω. Let d0 = ph0�h and dj = qj−1d0, where p and q are
as in Mesh Condition 1. Then we have

Ω = Ω0 ∪
J−1⋃
j=0

Ωj ∪
K−1⋃
k=0

Ak,

where

Ω0 = {x ∈ Ω : |x− x0| ≤ d0},
Ωj = {x ∈ Ω : dj ≤ |x− x0| ≤ dj+1}, j = 1, 2, . . . , J,

Ak = {x ∈ Ω : 2kdJ ≤ |x− x0| ≤ 2k+1dJ}, k = 0, 1, . . . ,K,

where J is the smallest integer such that qJh0 ≥ h and K is the smallest integer
such that 2KdJ ≥ diam(Ω). Notice that if we have a quasi-uniform mesh or h0 = h,
then we can take J = 0 and start the dyadic decomposition right away. The next
proposition establishes a bound for the mesh function on Ωj .

Proposition 4.1. In each Ωj the mesh size cannot be larger than qjh0.

Proof. We will prove this result by induction. Obviously, the statement holds on
Ω0. Assume it holds for Ωi, i = 1, 2, . . . , j but not for Ωj+1. Then there exists a
point x ∈ Ωj+1 such that h(x) > qj+1h0. Take a ball of radius dj+1 centered at x.
Call it B(x, dj+1). This ball will intersect Ωj . Choose a point x ∈ B(x, dj+1)∩Ωj .
By the induction assumption h(x) ≤ qjh0. On the other hand, by Mesh Condition 1
we have that for all y satisfying |x− y| ≤ qj+1d0 < p�hh(x), h(y) ≥ h(x)/q > qjh0.
For y = x we get a contradiction. �

We are finally ready to establish our main result.

Theorem 2. Let u and uh satisfy (1.1) and (1.2) with uh lying in a finite element
space satisfying the assumptions of Section 3 and defined on a mesh satisfying Mesh
Condition 1, and assume that Ω is a convex polygonal or polyhedral domain in R

n,
n = 2, 3. Then there exists a constant C independent of h and u such that

‖∇e‖L∞(Ω) ≤ C min
χ∈Sh

‖∇(u− χ)‖L∞(Ω).

Proof. Step 1: Initial decomposition of the error Let ‖∇e‖L∞(Ω) = |e(x0)|.
We assume that measn−1(Ω0 ∩ ∂Ω) is sufficiently large. The case where Ω0 ⊂⊂ Ω
is slightly easier, and we omit the details. The intermediate case where x0 is close
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to ∂Ω but measn−1(Ω0 ∩ ∂Ω) is small can be avoided by doubling d0 and reverting
to the boundary case; this can always be done with appropriate adjustment of
constants.

From Lemma 4.2, we have

‖e‖L2(Ω0) ≤ C sup
�φ∈H1

>(Ω0)
n

‖�φ‖H1(Ω0)=1

(
e,∇ · �φ

)
.

For each such fixed φi, 1 ≤ i ≤ n, we define v by

−Δv =
∂φi

∂xi
, in Ω,

v = 0, on ∂Ω.(4.12)

Using the above decomposition of Ω, (4.12), and the Galerkin orthogonality we
have

−(e,Δv) = (∇e,∇v) = (∇e,∇(v − vI))

≤ ‖∇e‖L∞(Ω)

(
‖∇(v − vI)‖L1(Ω0∪Ω1) +

J∑
j=2

‖∇(v − vI)‖L1(Ωj)

+

K∑
k=0

‖∇(v − vI)‖L1(Ak)

)
= I1 + I2 + I3.

Step 2: Estimate for I1. Using approximation theory, the Cauchy-Schwarz
inequality, and Lemma 3.1, we have

I1 ≤ ‖∇e‖L∞(Ω)‖∇(v − vI)‖L1(Ω0∪Ω1)

≤ C‖∇e‖L∞(Ω)h0(1 + q)d
n
2
0 (1 + q)‖D2v‖L2(Ω)

≤ C‖∇e‖L∞(Ω)h0(1 + q)2d
n
2
0 ‖∂φi

∂xi
‖L2(Ω)

≤ C‖∇e‖L∞(Ω)h0(1 + q)2d
n
2
0 .

Step 3: Estimate for I2. To estimate I2 we will use the following result.

Proposition 4.2. Let v be the solution of (4.12), then

‖∇v‖L2(Ωj) +
1

dj
‖v‖L2(Ωj) ≤ Cd

−n
2

j d
n
2 +1
0 , j ≥ 2.

Proof. Using the Green’s function representation, we have

v(x) =

∫
Ω0

G(x, y)
∂φi

∂yi
dy = −

∫
Ω0

∂G(x, y)

∂yi
φidy.

There are no boundary terms since either φi or G(x, y) vanish on ∂Ω0.
By the Green’s function estimates from Lemma 3.2 and using that dist(Ω0,Ωj) ≈

dj for j ≥ 2, we obtain

|∇v(x)| ≤ Cd−n
j ‖φi‖L1(Ω0).

Using the Poincaré inequality and ‖φi‖H1 ≤ C, we have

‖φi‖L1(Ω0) ≤ Cd0‖∇φi‖L1(Ω0) ≤ Cd
n
2 +1
0 ‖∇φi‖L2(Ω) ≤ Cd

n
2 +1
0 .
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Thus,

|∇v(x)| ≤ Cd−n
j d

n
2 +1
0

and
‖∇v‖L2(Ωj) ≤ Cd

−n
2

j d
n
2 +1
0 .

Very similarly we can obtain

‖v‖L2(Ωj) ≤ Cd
−n

2 +1
j d

n
2 +1
0 . �

Approximation theory then yields

‖∇(v − vI)‖L1(Ωj) ≤ Chjq‖D2v‖L1(Ωj) ≤ Ch0q
j+1d

n
2
j ‖D2v‖L2(Ωj).

Using that v is harmonic on Ω′
j , by Lemma 3.3, we obtain

‖D2v‖L2(Ωj) ≤ Cd−2
j ‖v‖L2(Ω′

j)
.

Using Proposition 4.2 we have

‖∇(v − vI)‖L1(Ωj) ≤ Ch0q
j+1d−1

j d
n
2 +1
0 .

Thus, we can estimate I2 as

I2 ≤ Ch0d
n
2 +1
0 ‖∇e‖L∞(Ω)

J∑
j=1

qj

dj
≤ Ch0d

n
2
0 �h‖∇e‖L∞(Ω),

where in the last step we used that dj = qj−1d0 and J ≤ C�h.
Step 4: Estimate for I3. Using that the maximum mesh size on Ak is at

most h by the approximation theory, Cauchy-Schwarz inequality, and Lemma 3.3
we have

‖∇(v − vI)‖L1(Ak) ≤ Ch‖D2v‖L1(Ak) ≤ Ch(2kdJ )
n
2 −2‖v‖L2(Ak).

By Proposition 4.2, with Ak in place of Ωj we have

‖v‖L2(Ak) ≤ Cd
n
2 +1
0 (2kdJ )

1−n
2 .

Hence using that qJ ≥ h/h0,

I3 ≤ Chd
n
2 +1
0 d−1

J ‖∇e‖L∞(Ω)

K∑
k=0

2−k ≤ Ch0d
n
2
0 ‖∇e‖L∞(Ω).

Step 5: Finish of the proof. Kickback. Using Corollary 1 with D = Ω0, we
have

(4.13) ‖∇e‖L∞(Ω) ≤ C‖∇(u− χ)‖L∞(Ω0) + Cd
−n

2 −1
0 ‖e‖L2(Ω0).

Combining estimates for I1, I2, and I3 we have

(4.14) ‖e‖L2(Ω0) ≤ Ch0d
n
2
0 �h‖∇e‖L∞(Ω).

Thus combining (4.13) and (4.14)

‖∇e‖L∞(Ω) ≤ C‖∇(u− χ)‖L∞(Ω0) + C
h0

d0
�h‖∇e‖L∞(Ω).

Recalling that
h0/d0 ≤ C/p�h

and observing that if p is large enough we can kick back C h0

d0
�h‖∇e‖L∞(Ω), we

obtain the desired best approximation result. �
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5. Possible extensions

Here, we comment briefly on possible extensions of our results to include “local-
ized” pointwise error estimates and alternative proof techniques.

In [30], pointwise error estimates having a sharply local character were proved.
Assume that T is quasi-uniform of size h. Given a fixed x0 ∈ Ω, define σx0

(y) =
h

h+|x0−y| . The main result in [30] essentially says that when ∂Ω is smooth and

certain further assumptions are satisfied,

(5.1) |∇(u− uh)(x0)| ≤ C�h,s min
χ∈Sh

‖σs
x0
∇(u− χ)‖L∞(Ω).

Here, 0 ≤ s ≤ k and �h,s is a logarithmic factor which disappears except when
s = k; recall that k is the polynomial degree. In [23] it was remarked that similar
localized estimates hold for convex polyhedral domains as well, except that the
allowed range of s above is restricted by the maximum interior angle of ∂Ω as
well as by the polynomial degree k. It is possible to prove a similar result here.

In particular, let σx0
(y) = h

h+|y−x0|
. Then if the grid is locally quasi-uniform on

balls of size Bp(lnh)αh(x0)(x0) with α > 0 sufficiently large (depending on domain
geometry), we have (5.1) with s restricted by k and the domain geometry as before.

The proof of (5.1) may be accomplished by mimicking the proof technique of [30],
in particular, by employing local energy estimates over a dyadic decomposition of Ω
about x0 and then using a double kickback argument. The necessary local energy
estimates which hold on merely shape regular grids are found in [14]. The proof thus
obtained closely follows that of [30] in outline, but is significantly more technical
because it must account for changes in mesh size. The proof we use here does not
yield such sharply local estimates. It is, however, significantly shorter and also
places nominally less restriction on the mesh grading than does the proof outlined
above in many cases.
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