
HAL Id: hal-00365017
https://hal.archives-ouvertes.fr/hal-00365017v3

Submitted on 10 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Best Basis Compressed Sensing
Gabriel Peyré

To cite this version:
Gabriel Peyré. Best Basis Compressed Sensing. IEEE Transactions on Signal Processing, Institute of
Electrical and Electronics Engineers, 2010, 58 (5), pp.2613-2622. ฀10.1109/TSP.2010.2042490฀. ฀hal-
00365017v3฀

https://hal.archives-ouvertes.fr/hal-00365017v3
https://hal.archives-ouvertes.fr


1

Best Basis Compressed Sensing
Gabriel Peyré, Member, IEEE

Abstract—This paper proposes a best basis extension of com-
pressed sensing recovery. Instead of regularizing the compressed
sensing inverse problem with a sparsity prior in a fixed basis,
our framework makes use of sparsity in a tree-structured
dictionary of orthogonal bases. A new iterative thresholding
algorithm performs both the recovery of the signal and the
estimation of the best basis. The resulting reconstruction from
compressive measurements optimizes the basis to the structure of
the sensed signal. Adaptivity is crucial to capture the regularity
of complex natural signals. Numerical experiments on sounds
and geometrical images indeed show that this best basis search
improves the recovery with respect to fixed sparsity priors.

Index Terms—Compressed sensing, best basis, sparsity, wavelet
packets, cosine packets, bandlets.

I. INTRODUCTION

C
OMPRESSED sensing is a new sampling strategy that

uses a fixed set of linear measurements together with

a non-linear recovery process. In order for this scheme to

work with a low number of measurements, compressed sensing

theory requires the sensed signal to be sparse in a given

orthogonal basis and the sensing vectors to be incoherent with

this basis. This theory of compressive acquisition of data has

been proposed jointly by Candès, Tao and Romberg [1], [2]

and Donoho [3], [4].

This paper extends the compressed sensing recovery by

switching from a fixed orthogonal basis to a tree structured

dictionary of orthogonal bases. The adaptivity of a best basis

representation increases the sparsity of sounds and geometrical

images, which in turns makes the compressed sensing recovery

more efficient. The tree structure of the dictionary is used in

a fast iterative thresholding algorithm that estimates both the

signal or the image to recover and the best basis that optimizes

the sparsity of the representation.

A. Compressed Sensing

In a series of papers, Candès, Tao and Romberg [1], [2] and

Donoho [3], [4] have proposed the idea of directly acquiring

signal in a compressive form. Instead of performing the

acquisition with a high sampling rate and then compressing

the data in an orthogonal basis, the signal is rather projected

on a reduced set of linear vectors. The compressibility of the

signal is only exploited during the reconstruction phase, where

one uses the sparsity of the signal in an orthogonal basis.

Compressed sensing acquisition of data might have an

important impact for the design of imaging devices where

data acquisition is expensive. Duarte et al. [5] detail a single

pixel camera that acquires random projections from the visual

scene through a digital micromirror array. A similar acquisition
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strategy can be used in MRI imaging [6] to reduce the

acquisition time and increase the spatial resolution.

B. Best Basis Representations

Sparse approximation in orthogonal bases is at the heart of

many efficient compression and denoising algorithms. Fixed

orthogonal bases are however not flexible enough to capture

the complex regularity of sounds or natural images. For

instance the orthogonal wavelet transform does not compress

efficiently regular edges [7], [8] and a fixed local cosine basis

fails to capture transient parts of musical sounds [9].

To improve the sparsity of complicated sounds or images,

one can consider several orthogonal bases that compose a large

dictionary of atoms. In this framework, one has to choose

a best basis adapted to the signal to process. To enable fast

computation, this dictionary is required to have a tree structure,

so that the best basis can be optimized using a fast dynamic

programming algorithm.

Local cosine bases [9] divide the time axis in segments that

are adapted to the local frequency content of the sound. Other

kinds of dictionaries of 1D bases have been proposed, such as

the wavelet packets dictionary [10] and non stationary wavelet

packets [11], [12].

The set of cartoon images is a simple model that captures

the sketch content of natural images [13]. The curvelet frame

of Candès and Donoho [7] can deal with such a regularity and

enjoys a better approximation rate than traditional isotropic

wavelets. This result can be enhanced using a dictionary of

locally elongated functions that follow the image geometry.

Bandlets bases of Le Pennec and Mallat [8], [14], later refined

by Mallat and Peyré [15], [16], provide such a geometric

dictionary together with a fast optimization procedure to

compute a basis adapted to a given image.

C. Previous Works

Compressed sensing recovery reconstructs a high resolution

signal or image from low dimensional measurements. The res-

olution of this ill-posed linear inverse problem is regularized

by introducing non-linear priors. Initial papers [1], [2], [3], [4]

give theoritical results about the performance of compressed

sensing using sparsity in an orthogonal basis. Increasing the

efficiency of the priors to fit the features of sounds and natural

images might improve the quality of the recovered signal.

Sparsity priors over redundant dictionaries. Increasing the

redundancy of the frame used to sparsify the data might be

useful to remove reconstruction artifacts. One can for instance

use a frame of translation invariant wavelets which has proven

useful for image denoising [9]. Increasing the redundancy can

also improve the sparsity of the representation. The curvelet



2

frame [7] better represents edges in images than wavelets. The

resulting lack of orthogonality might however deteriorate the

coherence of the basis with the sensing vectors, see [17].

Advanced fixed priors. Other approaches to enhance com-

pressed sensing reconstruction impose further constraints be-

yond sparsity. For instance, wavelets coefficients can be opti-

mized in a scale-by-scale fashion [18] and positivity or a total

variation constraint can be enforced [19].

One can use more advanced signals models not based on

sparsity but rather on low dimensional smooth manifolds [20],

[21], union of sub-spaces [22], or block-sparsity [23], [24].

Adaptive priors. A fixed prior does not take into account the

time-frequency structures of natural sound or the geometry of

edges that is different in each image. Adaptive reconstruction

can be obtained using an iterative non-local regularization [25],

[26]. It is possible to learn an adaptive sparsity prior together

with the sensing matrix [27], which extends the initial idea of

learning the sensing vectors alone [28].

In these adaptive methods, an iterative algorithm computes

both the recovered signal and parameters that control the

regularization prior to match the patterns of the signal. In

this paper, we also propose to use an adaptive reconstruction

method, but within the setting of sparsity in orthogonal bases.

The sparsity is increased by selecting an optimized orthogonal

basis in a tree structured dictionary.

D. Contributions and Outline of the Paper

Section II recalls the basics of compressed sensing and ℓ1

reconstruction. Section III details the main contribution of this

paper, which the best basis extension of compressed sensing,

together with a fast algorithm to perform an approximate

minimization. This new framework minimizes an energy on

both the signal to recover and on the basis that sparsifies this

signal. The exploration of both the set of signals and the set

of bases is however not tractable numerically. A fast iterative

algorithm is thus derived from a series of surrogate functionals

that progressively estimates the best basis. Section IV recalls

best basis selection in a tagged tree structured dictionary, that

is required to make our best basis compressed sensing fast.

Sections V, VI and VII show numerical applications using

1D and 2D dictionaries which show the performance of our

scheme on synthetic and natural data.

II. COMPRESSED SENSING

Compressed sensing acquisition and recovery. Compressed

sensing acquisition computes a fixed set of n linear measure-

ments of an unknown high resolution signal f ∈ R
N with

N ≫ n

y = Φf = {〈f, ϕi〉}ni=1 ∈ R
n with ϕi ∈ R

N .

The price to pay for this compressed sensing strategy is a

non-linear reconstruction procedure to recover f from the

compressed representation y = Φf .

The sparsity of f in a given orthogonal basis B = {ψm}N−1
m=0

of R
N is measured by using the ℓ0 pseudo norm ||Ψf ||0, where

Ψf = {〈f, ψm〉}m and ||x||0 = # {m \ xm 6= 0} .

This sparsity can be used to recover a signal that is a solution

of the following minimization

min
g∈RN

||Ψg||0 subject to Φg = y. (1)

The minimization (1) is however combinatorial and thus

intractable. It is relaxed by using the ℓ1 norm ||Ψf ||1of the

coefficients of f in B

||x||1 =
∑

m

|xm|.

The recovered signal f⋆ is a solution of the following convex

problem

f⋆ ∈ argmin
g∈RN

||Ψg||1 subject to Φg = y. (2)

Sparsity and incoherence. Compressed sensing theory re-

quires two constraints for this ℓ1 recovery to be efficient:

Sparsity: the signal f should be sparse in the basis B. It

means that f can be represented using only a small number

s≪ N of atoms from B
||Ψf ||0 6 s. (3)

The theory extends to signals that are well approximated

with a signal that is s-sparse in B.

Incoherence: the sensing vectors {ϕi}i should be as differ-

ent as possible from the sparsity vectors {ψm}m. This is

ensured by monitoring the s-restricted isometry constant δs,

which is the smallest δ > 0 such that

(1− δ)||x||2 6 ||ΦΨx||2 6 (1 + δ)||x||2. (4)

for any s-sparse signal ||x||0 6 s.

One should note that although the sparity assumption (3)

constrains the ℓ0 pseudo-norm of Ψf , the actual recovery

process (2) optimizes the ℓ1 norm. This is important since

the ℓ1 norm is convex, which leads to a tractable optimization

problem with fast algorithms, see [29].

The following recovery theorem ensures the perfect recov-

ery using the ℓ1 minimization.

Theorem 1. ([1], [2], [30]) If f is s-sparse in Ψ as defined

in (3) and if the sensing matrix Φ satisfies δ2s <
√

2− 1, the

solution of (2) satisfies f⋆ = f .

This theorem ensures that there is an unique solution to (1)

and that it coincides with the solution of (2). It extends to

the recovery of an approximately sparse signal, in which case

||f − f⋆|| is comparable with the best s-terms approximation

of f in the basis B.

Random sensing matrices. The allowable sparsity s for which

δ2s <
√

2 − 1 needs to be large enough for Theorem 1

to be useful. For several random matrix ensembles, this is

actually the case with high probability on the random matrix.

For instance if the entries of Φ are drawn independently from

a Gaussian distribution of variance 1/N , s 6 Cn/ log(N/n)
ensures δ2s <

√
2−1 with high probability. This result extends

to other kinds of random distributions, see for instance [1], [2],

[31], [3], [4], [32].
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In this paper, following for instance [33], we consider a fast

sampling operator

Φf = (P1HP2f) ↓n,
where P1 and P2 are realizations of a random permutation of

the N entries of a vector in R
N , H is a 1D or 2D orthogonal

Hadamard transform, and ↓n selects the n first entries of a

vector, see [34] for a definition of the Hadamard transform

and its fast implementation. Such a random sensing operator

is computed in O(N log(N)) operations, which is important

to process high dimensional data.

Robust Compressed Sensing. To deal with noisy measure-

ments y = Φf + w, where w is a bounded noise ||w|| 6 σ,

one can turn the constrained formulation (2) into a penalized

variational problem

f⋆ = argmin
g∈RN

E(g,B, t) where (5)

E(g,B, t) =
1

2
||Φg − y||2 + t||Ψg||1. (6)

where the Lagrange multiplier t should be set so that ||Φf⋆−
y|| ≈ σ. Compressed sensing theory extends to this noisy

setting, since the recovery error ||f−f⋆|| is of the order of the

noise level σ, see [35], [4].

III. BEST BASIS COMPRESSED SENSING

Fixed bases are not efficient enough to sparsify sounds and

natural images, and more redundancy is required. This section

extends the recovery process (5) to a dictionary of orthogonal

bases, the union of which contains a large collection of atoms.

A. Dictionaries and Lagrangian

Dictionaries of Orthogonal bases. A dictionary is a set

DΛ = {Bλ}λ∈Λ of orthogonal bases Bλ = {ψλ
m}m of R

N .

Instead of using an a priori fixed basis such as the wavelet or

Fourier basis, one chooses a parameter λ⋆ ∈ Λ adapted to the

structures of the signal to process and use the optimized basis

Bλ⋆

.

This dictionary DΛ defines a highly redundant set of atoms

DΛ =
{

ψλ
m \ λ ∈ Λ,m

}

.

One could use directly DΛ to reconstruct a signal from com-

pressive measurements, but this is numerically intractable for

large signals or images. Restricting the sparsity to orthogonal

bases leads to fast algorithms for structured dictionaries such

as those considered in Section IV.

Tree structure. To enable the fast optimization of a parameter

λ⋆ adapted to a given signal or image f to process, we impose

that each λ ∈ Λ is a tree, that is a subset of the larger tree

Λ. Typical examples use the tree λ to index a segmentation

of either space (local cosine bases detailed in Section V) or

scale (wavelet packets detailed in Section VI). Each node in

a tree λ corresponds to a refinement in the segmentation.

Lagrangian and adapted basis. A best basis Bλ⋆

adapted

to a signal or an image f ∈ R
N is optimized to obtain

the best possible approximation of f for a given sparsity,

as measured by the ℓ1 norm. This constrained formulation is

turned into an Lagrangian unconstrained optimization problem

by minimizing a Lagrangian E
λ⋆ = argmin

λ∈Λ
E(f,Bλ, t) (7)

E(f,Bλ, t) = min
g∈RN

1

2
||f − g||2 + t||Ψλg||1

and where Ψλg = {〈g, ψλ
m〉}N−1

m=0. The variable t is a La-

grange multiplier that weights the quality of approximation in

the chosen basis with the sparsity of the expansion.

The following lemma characterizes the best basis together

with the best ℓ1-penalized approximation in this basis. Its proof

can be found for instance in [9].

Lemma 1. The minimizer

(f⋆, λ⋆) = argmin
(g,λ)∈∈RN×Λ

1

2
||f − g||2 + t||Ψλg||1

is given by

{

λ⋆ = argmin
λ∈Λ

E(f,Bλ, t),

f⋆ = St(f,Bλ⋆

),
(8)

where the soft thresholding operator is defined as

St(f,B) =
∑

m

st(〈f, ψm〉)ψm (9)

where st(x) = max(0, 1− t/|x|)x
The soft thresholding St defined in (9) computes the best

ℓ1 approximation of a signal f . The Lagrangian E(f,Bλ, t)
can thus be written as a sum over the atoms {ψλ

m}m of Bλ

E(f,Bλ, t) =
∑

m

γt(|〈f, ψλ
m〉|) (10)

where γt(x) =

{

x2/2 if |x| 6 t,
t|x| − t2/2 otherwise.

B. Best Basis Compressed Sensing Reconstruction

Best basis regularization. Compressed sensing is extended to

a dictionary of bases DΛ by imposing that the recovered signal

is sparse in at least one basis of DΛ. The original recovery

procedure (5) is extended to this new setting by performing

the minimization both on the signal to recover and on the basis

(f⋆, λ⋆) = argmin
(g,λ)∈RN×Λ

E(g,Bλ, t), (11)

where the energy E is defined in equation (5).

Informal discussion about best basis regularization. For

several models of sounds and natural images, best basis meth-

ods have been shown either experimentally or theoretically to

outperform fixed representations to sparsify the data. Although

for the moment no theory is able to assess the performance

of an adaptive minimization such as (11), Sections V, VI and

VII show numerically that the increase of sparsity obtained

with best basis computations translates to an increase of

performances for the regularization of compressed sensing

reconstruction.
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We believe that the effectiveness of best basis regulariza-

tion for compressed sensing comes in large part from the

randomness of the measurements, which translates, as already

noticed by Donoho et al. [33], on reconstruction artifacts being

close to Gaussian white noise during an iterative thresholding

reconstruction method. This key feature is very different from

the kind of artifacts obtained for non-random sensing schemes,

such as Radon transform in tomography or low pass filtering

in optical imaging system. This results in a high incoherence

between the residual noise with the sparsity vectors of DΛ dur-

ing our reconstruction scheme. This incoherence allows us to

efficiently estimate an adapted basis with an iterative scheme

without prior knowledge about the signal to reconstruct.

C. Surrogate Functionals

Searching in the whole dictionary DΛ for the best basis

parameter λ⋆ ∈ Λ that minimizes (11) is not feasible for large

dictionaries, which typically contain of the order of 2N bases.

Furthermore, the under-determinancy of Φ creates coupling in

the non-linear set of equations involved in the minimization

of E.

To solve this issue, we relax the energy minimization (11)

and define an approximate energy that is simpler to minimize.

If one has some estimate h of the solution f⋆, the energy

E can be replaced by the following surrogate functional that

depends on h

Eh(g,Bλ, t) = E(g,Bλ, t) +
µ

2
||g − h||2 − 1

2
||Φg − Φh||2.

Such a surrogate functional is introduced by Daubechies et al.

[36] to derive an iterative thresholding algorithm that solves

the ℓ1 regularization of inverse problems.

As long as µ > ||Φ∗Φ||, the surrogate energy Eh is a

smooth, strictly convex, modification of the original energy

E. Furthermore,

Eh > E and Eh(h,Bλ, t) = E(h,Bλ, t).

It is thus reasonable to use Eh as a proxy for the original

minimization (11), which leads us to consider, for a fixed h,

(f⋆(h), λ⋆(h)) = argmin
(g,λ)∈RN×Λ

Eh(g,Bλ, t). (12)

The following proposition shows that this surrogate minimiza-

tion diminishes the energy E.

Proposition 1. If µ > ||Φ∗Φ||, one has for all λ

E(f⋆(h),Bλ⋆(h), t) 6 E(h,Bλ, t).

Proof: Condition µ > ||Φ∗Φ|| ensures that

µ

2
||g − h||2 − 1

2
||Φg − Φh||2 > 0

so that

Eh(g,Bλ, t) > E(g,Bλ, t).

One thus has

E(f⋆(h),Bλ⋆(h), t) 6 Eh(f⋆(h),Bλ⋆(h), t)

6 Eh(h,Bλ, t) = E(h,Bλ, t).

The following theorem ensures that the minimization (12) is

easily solved using a best basis search and a soft thresholding.

Theorem 2. The minimization (12) has a global minimum

which is given by
{

λ⋆(h) = argmin
λ∈Λ

E(h̃,Bλ, t),

f⋆(h) = St/µ(h̃,Bλ⋆(h)),
(13)

where h̃ = h+
1

µ
ΦT(y − Φh),

where the Lagrangian E is defined in equation (7) and the soft

thresholding operator St/µ is defined in equation (9).

Proof: The energy Eh is expanded as follow

Eh(g,Bλ, t) =
µ

2
||g||2 − 〈Φg, y〉+ 〈Φg, Φh〉 − µ〈g, h〉

+ t||Ψλg||1 + Ch,y

=
µ

2
||g||2 − 〈g, µh+ ΦT(y − Φh)〉

+ t||Ψλg||1 + Ch,y

where Ch,y is independent of λ and g. Up to multiplicative

and additive constants, one has

Eh(g,Bλ, t) ∝ 1

2
||h+

1

µ
ΦT(y − Φh)− g||2 + t||Ψλg||1.

The result of the theorem follows from lemma 1.

Equation (13) shows that the parameter λ⋆(h) is the best

basis parameter of the modified guess h̃. It also shows that

f⋆(h) is obtained by thresholding h̃ in that basis. The best

parameter λ⋆(h) is thus found by optimizing a Lagrangian E ,

which can be achieved with a fast algorithm, as explained in

Section IV.

D. Best Basis Compressed Sensing Algorithm

The minimization of E(g,Bλ, t) over (g, λ) is replaced by

the minimization of a set of surrogate functionals Efk
(g,Bλ, t)

where fk is the current estimate of the solution at iteration k.

Starting from an initial pair (f0, λ0), this defines

(fk+1, λk+1) = argmin
(g,λ)∈RN×Λ

Efk
(g,Bλ, t). (14)

Algorithm 1 details the step by step implementation of (14),

that is derived from (14) using Theorem 2. The steps of the

algorithm are repeated until a user defined tolerance η is

reached. In the noiseless setting y = Φf , one can still use

this algorithm and decay the value of t = tk toward zero

during the iterations, in a fashion similar to the Morphological

Components Algorithm (MCA) algorithm [37].

This algorithm extends to a best basis setting the iterative

thresholding algorithm that has been proposed by several

authors to solve inverse problems such as (5), see for instance

[36], [38] and the references therein.

Convergence of the the algorithm. For a single basis B,

condition µ > ||Φ∗Φ|| ensures that this iterative thresholding

converges to a solution of (5), see [36]. This condition can in

fact be relaxed to µ > ||Φ∗Φ||/2, see [38]. In contrast to the
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Algorithm 1: Best-basis compressed sensing algorithm.

Initialization.: Set k = 0, f0 = 0.

repeat
Update the estimate: Set

f̃k = fk +
1

µ
ΦT(y − Φ fk). (15)

Update best basis: Compute the best basis parameter

λk+1 = argmin
λ∈Λ

E(f̃k,Bλ, t). (16)

This minimization is carried out with a fast

procedure, as detailed in section IV.

Denoise the estimate: Compute

fk+1 = St/µ(f̃k,Bλk+1),

where St is the threshold operator defined in (9).
until ||fk+1 − fk|| < η ;

fixed basis setting, the iterations of (14) that require a best

basis search are difficult to analyze. Proposition 1 shows that

the energy E(fk,Bλk , t) is decaying through the iterations and

thus converges to some limit value. Since this energy is non-

convex in (f, λ), nothing more can however be said about the

convergence of the iterates fk.

In theory, nothing prevents the best basis parameter λk to

cycle through a series of limit bases, but this was never the

case in the numerical experiments performed in Sections V-B,

VI-B and VII-B. We always observed that λk converged to

its final value λ⋆ after a small number of iterations, that is

of the order of 10 to 20 for natural sounds and images. Once

this final regime is attained, one can use classical results about

the convergence of iterative thresholding algorithms, that show

for instance that the energy E(fk,Bλ⋆

, t) is decaying at speed

O(1/k) through the iterations, see [38].

We note that since the objective to minimize is non-convex

and there is no convergence guarantee, a different initialization

f0 might lead to a different sequence of bases Bλk , and hence

a different final result. Although this is indeed the case, we did

not observed in our numerical tests significant improvement of

using alternate initialization strategies with respect to setting

f0 = 0.

IV. BEST BASIS COMPUTATION

This section reviews a best basis framework common to the

dictionaries used in the numerical experiments of this paper.

These dictionaries enjoy a hierarchical tree structure, which

makes the computation of the best basis in (16) fast. This

framework does not cover the special case of non-stationary

wavelet packets, detailed in Section VI that requires a more

advanced procedure, see [12].

A. Tree structured dictionaries

Structure of the atoms. This paper focusses on dictionaries

DΛ having a multiscale tree structure. The atoms of DΛ span

sub-spaces Vj,i of R
N for scales 0 6 j 6 J = log2(N)/d

and position 0 6 i < 2dj , that obey a refinement relationship

∀ j < J, Vj,i =

2d
−1

⊕

ε=0

Vj+1,2di+ε,

the sum being orthogonal.

Each sub-space Vj,i has dimension N/2dj and is equipped

with one or several orthogonal bases indexed by a token ℓ ∈ Ω

Bℓ
j,i =

{

ψℓ
j,i,s \ ∀ 0 6 s < N/2dj

}

. (17)

Structure of an orthogonal basis. The parameter λ that

indexes a basis Bλ ∈ DΛ is a binary tree (for 1D signals,

where d = 1) or a quad-tree (for 2D, where d = 2). The set

of nodes of λ is denoted as N (λ) and each node (j, i) ∈ N (λ)
is located at some level 0 6 j 6 J and position 0 6 i < 2dj .

A node (j, i) is thus located in the jth row and the ith column

of the tree. Each interior node (j, i) ∈ I(λ) ⊂ N (λ) has 2d

children {(j + 1, 2di), . . . , (j + 1, 2d(i+ 1)− 1)}. The leaves

nodes (j, i) ∈ L(λ) have no child.

A basis Bλ is obtained by aggregating bases Bℓ
j,i defined in

(17) for (j, i) that are leaves of λ, and for a specific choice

ℓ = ℓj,i ∈ Ω of token at each node of the tree

Bλ =
{

ψ
ℓj,i

j,i,s \ ∀ (j, i) ∈ L(λ) and 0 6 s < N/2dj
}

.

Figure 1 shows an example of such a tagged quad-tree λ.

Fig. 1. Examples of quad-tree λ.

When one does not care about the location of the basis

elements in the tree, the basis is written as Bλ = {ψλ
m}m

where the index is m = (j, i, s, ℓj,i) with (j, i) ∈ L(λ) and

0 6 s < N/2dj .

Examples of dictionaries for sounds and geometrical im-

ages. Sections V, VI and VII detail three kinds of dictionaries

adapted to various signals and images structures.

The local cosine dictionary [10], [9] is used to process

highly oscillating signals (d = 1) such as music and speech

audio data. The binary tree λ segments the time axis in order

to match the variations of the local frequencies in the sound.

In this case |Ω| = 1 since there is no need for additional

information beside the spatial segmentation.

The non-stationary wavelet packets dictionary [11], [12]

is used to process signals (d = 1) that require an arbitrary
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tiling of the scale axis. The non-stationary cascade of

filterings also allows to adapt the basis functions through

the scales. In this case, ℓj,i ∈ Ω = {0, . . . , κ− 1} indicates

the index of a wavelet filter that is used to subdivide the

frequency axis. The particular case of wavelet packets [10]

is obtained for κ = 1.

The bandlet dictionary [8], [15] is used to process images

(d = 2) with geometric features such as edges or directional

textures. The quad-tree λ segments the square [0, 1]2 into

sub-squares Sj,i ⊂ [0, 1]2 of size 2−j × 2−j . A leaf node

(j, i) ∈ L(λ) defines the local bandlet transform and caries a

geometrical information token ℓj,i ∈ Ω = {0, . . . , κ−1}∪∅.
A token ℓj,i 6= ∅ is defined over a geometrical square Sj,i

in which the bandlet vectors are elongated and follow the

angle πℓj,i/κ that approximates the orientation of the closest

edge. A token ℓj,i = ∅ is defined in isotropic square Sj,i that

corresponds to regions where no edge is present.

Other classes of dictionaries include bases composed of atoms

with rapidly varying oscillations such as the modulated bases

of Coifman et al. [39] and the chirplets dictionary of Candès

[40].

B. Dynamic programming for Best-basis Computation

A fast best basis search algorithm makes use of the tree

structure of DΛ and the fact that the Lagrangian E(f,Bλ, t)
to minimize is split as a sum over the coefficients of the

decomposition (10). It was originally presented by Coifman

et al. [10] and is a particular instance of the Classification and

Regression Tree (CART) algorithm of Breidman et al. [41] as

explained by Donoho [42].

Algorithm 2 details the implementation of this fast best

basis search. This algorithm does not work for non-stationary

wavelet packets, which require a more complex optimization

procedure described in [12].

This algorithm requires the decomposition of f onto each

atom ψℓ
j,i,s for all values of (i, j, s, ℓ), and the computation

of Lagrangians Ej,i that depends on these inner products. For

several multiscale dictionaries, such as those considered in

this paper, fast algorithms perform this computation O(P )
operations, where P is the total number of atoms in DΛ. The

resulting complexity is thus O(|Ω|N log2(N)), where |Ω| = 1
for the local cosine and stationary wavelet packets, and |Ω| is

the number of orientations in the bandlet dictionary.

C. Settings for the Numerical Results

The following sections detail several dictionaries of orthog-

onal bases. The performance of these dictionaries is illustrated

for compressed sensing recovery using the same numerical

experiments. The recovery success is measured using

PSNR(f, f⋆) = −20 log10(||f − f⋆||),
where the signal f is assumed to take values in [0, 1]. This

recovery error is measured for various values of the sensing

rate n/N ∈ [0, 1]. Three kinds of recoveries are compared:

Recovery using a fixed basis (for instance fixed local DCT

or fixed orthogonal basis) using the original optimization (2).

Algorithm 2: Best-basis selection algorithm.

for 0 6 j 6 J , 0 6 i < 2jd − 1, ℓ ∈ Ω do

Compute 〈f, ψℓ
j,i,s〉.

for 0 6 j 6 J , 0 6 i < 2jd − 1 do

Compute ℓj,i = argmin
ℓ∈Ω

∑

s

γt(|〈f, ψℓ
j,i,s〉|).

for j = J, . . . , 0 do

for i = 0, . . . , 2jd − 1 do
Compute

Ej,i =
∑

s

γt(|〈f, ψℓj,i

j,i,s〉|),

Ẽj,i =

2d
−1

∑

ε=0

Ẽj+1,2di+ε,

with the convention that Ẽj,i = +∞ if j = J .

if Ẽj,i 6 Ej,i then
Declare (j, i) as interior (j, i) ∈ I(λ).

if Ẽj,i > Ej,i then
Declare (j, i) as leaf (j, i) ∈ L(λ).

Update the cumulative Lagrangian

Ẽj,i ← min(Ẽj,i, Ej,i).

Recovery using the oracle best-basis Bλ⋆(f) estimated from

the original signal f⋆. This is an upper-bound for the

performance of our method since the knowledge of this basis

is not available in practice.

Recovery using the algorithm of section III-D, that estimates

iteratively the best basis.

Experiments are performed on noisy measurements y = Φf0+
w where w is a Gaussian white noise of variance σ2. The

noise level σ is supposed to be known, and the regularization

parameter t is adjusted so that the residual final error satisfies

||y − Φf⋆|| = √nσ. For noiseless experiments where σ = 0,

we still use our iterative thresholding algorithms, but decay

linearly the threshold t = tk to 0 during the iterations, which is

similar to the approach used in the Morphological Component

Algorithm of Starck et al. [37]. We used a relaxation parameter

µ = 1 for the iteration (15).

V. BEST LOCAL COSINE BASIS COMPRESSED SENSING

A. Adapted Local Cosine Transform

A local cosine basis Bλ is parameterized with a binary tree

λ that segments the time axis in dyadic intervals, see [10], [9].

Each leaf node (j, i) ∈ L(λ) corresponds to a selected interval

[xj,i, xj,i+1], where xj,i = 2−jNi − 1/2. For each of these

leave node, the local cosine basis vectors are defined as

∀ (j, i) ∈ L(λ), ∀ k, ψj,i,s[k] =

b
(

2j(k − xj,i)
)

√

2

2−jN
cos

[

π
(

s+
1

2

)k − xj,i

2−jN

]

,

where b is a smooth windowing function that satisfies some

compatibility conditions [9].
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The decomposition of a signal f on the vectors of some

basis Bλ is computed in O(N log(N)) using fast Fourier

transforms. A best basis Bλ⋆

that minimizes (7) is computed in

O(N log(N)2) operations using Algorithm 2. Figure 2 shows

some examples of basis vectors.

j =0

j =1

j =2

i =0

i =0 1

0 1
2 3

Fig. 2. A dyadic tree λ defining a spatial segmentation (left) ; some local

cosine basis functions ψj,i,s of the basis Bλ (right).

B. Numerical Results

A synthetic sparse signal f = (Ψλ)−1h is generated using a

random local cosine basis Bλ and a random signal of spikes h
with ||h||0 = # {k \ h(k) 6= 0} = 30, see figure 3, (a). We use

here noiseless measurements y = Φf . The signal recovered by

the non-adaptative algorithm of section III-D in an uniform

cosine basis Bλ0 is significantly different from the original,

figure 3, (b). This is due to the fact that f is less sparse

in Bλ0 , since ||Ψλ0f ||0 = 512 and ||Ψλ0f ||1 ≈ 2.8||Ψλf ||1.

During the iterations of the algorithm presented in subsection

III-C, the estimated best basis Bλk evolves in order to match

the best basis Bλ, see figure 3, (c1–c3). The recovered signal

f⋆ in (c3) is nearly identical to f . We note however that the

segmentation λ⋆ optimized by our algorithm differs slightly

from the original segmentation λ0. In particular one can

notice an over-segmentation of the leftmost interval, where the

recovered signal f⋆ is small but not vanishing, on the contrary

to the original signal f .

On figure 4 one can see a sound of a tiger howling, together

with the signals recovered using a fixed fully subdivided local

DCT basis and the best basis recovery algorithm of section

III-C. We use here noisy measurements y = Φf + w, with

||w|| = 0.03||Φf ||. Although the final adapted basis is not the

same as the best basis of the original signal, it still provides an

improvement of 2dB with respect to a fixed spatial subdivision.

Figure 5 shows for various rates of sensing the recovery error,

confirming that the iterative algorithm does not perform as

good as the oracle best best basis computed from f .

VI. BEST NON-STATIONARY WAVELET PACKET

COMPRESSED SENSING

A. Adapted Non-stationary Wavelet Packet Transform

The non stationary (NS) wavelet transform and its extension

to wavelet packets was introduced by Cohen et al. [11].

We give the definition of a non-stationary wavelet transform

which corresponds to the decomposition in an orthogonal

basis parameterized by a tagged binary tree λ. This tree

structured dictionary is more general than the trees considered

in Section IV-A because a token ℓj,i is associated to each node

(j, i) ∈ I(λ)∪L(λ) and not only to leaves (j, i) ∈ L(λ). The

(a)

(c1)

(c2)

(c3)

(b)

Fig. 3. (a) synthetic sound signal with 30 random cosine atoms N = 4096 ;

(b) recovery using a fixed cosine basis ; (c1) first iteration of the best basis

recovery algorithm, n = N/3 ; (c2) iteration s = 5 ; (c3) iteration s = 20.

(a)

(b)

(c)

Fig. 4. (a) sound signal of a tiger howling, together with the best spatial

segmentation, N = 32768 ; (b) recovery using fixed local cosine basis,

n = N/3 (PSNR=19.24dB) ; (c) recovery using best cosine basis, n = N/3
(PSNR=21.32dB)

22

18

14

10

0. 2 0. 4 0. 5 0. 60. 3

  

/ Nn

P
S

N
R

Oracle local-DCT

Fix ed-DCT Lo cal-DCT

Fig. 5. Recovery results for the signal of figure 4 for various rate of sensing

n/N , in the noiseless setting y = Φf .

corresponding best basis algorithm is thus a generalization of

Algorithm 2that is detailed in [12].

The NS wavelet packet dictionary depends on the choice

of a set H = {h0, . . . , hκ−1} of low pass quadrature mirror

filters, to which is associated the high pass filters gℓ[k] =
(−1)khℓ[1− k].

NS Wavelet Packet Transform. The decomposition of f =
f0,0 ∈ R

N in a NS wavelet packet basis Bλ iteratively

computes fj,i ∈ R
N/2j

by traversing the nodes (j, i) of the
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tree λ from top to bottom and computing
{

fj+1,2i = (fj,i ∗ hℓj,i
) ↓ 2,

fj+1,2i+1 = (fj,i ∗ gℓj,i
) ↓ 2,

(18)

where ↓ 2 is the sub-sampling by two operator. The coeffi-

cients computed on the leaves correspond to the projection of

f on the vectors of Bλ

∀ (j, i) ∈ L(λ), fj,i[s] = 〈f, ψλ
j,i,s〉.

This forward NS wavelet packet transform is computed in at

most O(N log2(N)) operations for a signal f ∈ R
N . A best

basis Bλ⋆

defined by (7) adapted to some signal f is computed

using a fast best-basis search introduced by Peyré and Ouarti

[12]. The complexity algorithm is O(N log2(N)) for κ = 1
(which corresponds to the traditional wavelet packets) and

O(N1+log2(κ)) for κ > 1.

B. Numerical Results

In our tests, the non-stationary wavelet packet dictionary is

built using a family HD = {hℓ}κ−1
ℓ=0 where κ = 5 and where

hℓ is the Daubechies orthogonal filter with ℓ + 1 vanishing

moments.

Figure 6 (c,d,e) shows a comparison of the recovery using

the Daubechies wavelets corresponding to h3, the wavelet

packets dictionary which corresponds to H = {h3} and the

non-stationary wavelet packets dictionary which corresponds

to H = HD. The signal f(x) = f0(x) + ε sin(ωx) is the

superposition of a piecewise-regular signal and a sinusoid

with high frequency ω. We use here noiseless measurements

y = Φf . Figure 6 (a) shows the index ℓj,i of the best NS

wavelet packets basis, which is able to capture both the high

frequency content of sin(ωx) while minimizing the number of

large coefficients created by the singularities of f0.

(c)

(d)

(e)

(f)

(a) (b) = 2
2

4

5 5

4

3

4 4

3 3

Fig. 6. (c) original signal, N = 4096 ; (d) recovery using orthogonal

wavelets, n = N/3 (PSNR=23.77dB) ; (e) recovery using best wavelet

packets basis, n = N/3 (PSNR=26.50dB), the corresponding dictionary tree

is shown in (a) ; (f) recovery using best non-stationary wavelet packets basis,

n = N/3 (PSNR=29.42dB), the corresponding dictionary tree is shown in

(b).

Figure 7 shows another example of recovery using wavelets,

the wavelet packets and the NS wavelet packets dictionaries.

The signal f has dimension N = 4096 and is the superposition

of chirps and spikes

f(x) =

3
∑

k=1

cos(ωk(x/N)k)+

10
∑

k=0

µk(1+ |(x/N)−xk|/ρk)−4

for 0 6 x < N , where ω1 = π/2N,ω2 = πN and ω3 =
0.7πN , where the xk ∈ [0, 1] are random position, µk ∈ [2, 5]
are random weights and ρk ∈ [0, 0.03] are random widths.

We use here noisy measurements y = Φf + w with ||w|| =
0.03||Φf ||. The best NS wavelet packets basis is able to better

recover both the high frequency oscillations of the chirps and

the localized spikes than fixed representations.

(a)

(b)

(c)

(d)

Fig. 7. (a) original signal, N = 4096 ; (b) recovery using orthogonal

wavelets, n = N/3 (PSNR=17.59dB) ; (c) recovery using best wavelet

packets basis, n = N/3 (PSNR=20.46dB) ; (d) recovery using best non-

stationary wavelet packets basis, n = N/3 (PSNR=21.66dB).

VII. BEST BANDLET BASIS COMPRESSED SENSING

A. Adapted Bandlet Transform

The bandelet bases dictionary was introduced by Le Pennec

and Mallat [8], [14]. Bandlets perform an efficient adaptive

approximation of images with geometric singularities, such

as the cartoon image in Figure 10. This transform has been

refined by Mallat and Peyré [15], [16] to obtain a dictionary of

regular and orthogonal basis functions. We present a simplified

bandlet transform inspired from [16]. This implementation

results in a decomposition similar to the wedgelets of Donoho

[13] but within the framework of a dictionary of orthogonal

bases.

The quadtree λ that parametrizes the bandelet basis Bλ

defines a segmentation

[0, 1]2 =
⋃

(j,i)∈L(λ)

Sj,i

where each Sj,i is a square of size 2−j×2−j . Figure 8 shows

an example of such a dyadic subdivision.

The sub-image f̃j,i = {f(x)}x∈Sj,i
∈ R

N/22j

extracted

from the square Sj,i is retransformed according to the value

of the token ℓj,i. If ℓj,i = ∅, it means that no edge is present

in Sj,i and an orthogonal 2D wavelet transform is applied to

f̃j,i to obtain fj,i. If ℓj,i 6= ∅, an edge passes through Sj,i

with a direction close to the angle θj,i = πℓj,i/κ ∈ [0, π).
Then a 1D directional wavelet transform is applied to f̃j,i

to obtain fj,i. This transform is computed by ordering the
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Fig. 8. Left: example of dyadic subdivision of [0, 1]2 in squares Sj,i ;

right: corresponding quad-tree λ.

pixels of f̃j,i along the direction θj,i and then applying a 1D

Haar transform, as described in [16]. Figure 9 (c,d) shows

this directional wavelet transform. The resulting coefficients

fj,i correspond to projections of f on the bandlet vectors of

the basis Bλ

∀ (j, i) ∈ L(λ), fj,i[s] = 〈f, ψℓj,i

j,i,s〉.
Keeping only a few bandelet coefficients and setting the others

to zero performs an approximation of the original image that

follows the local direction θj,i, see figure 9 (f).

A best basis Bλ⋆

defined by (7) adapted to some function

f is computed using a fast best-basis search introduced by

Mallat and Peyré [15]. Figure 10 shows an example of such

a segmentation adapted to a geometric image.

Fig. 10. Example of subdivision λ⋆ adapted to a geometrically regular

function f . The basis Bλ⋆
minimizes E(f,Bλ, t).

B. Numerical Results

The geometric image f depicted in figure 12 (a), (a) is

used to compare the performance of the original compressive

sensing algorithm in a wavelet basis to the adaptative algo-

rithm in a best bandlet basis. We use here noisy measurements

y = Φf + w with ||w|| = 0.03||Φf ||. We use a translation

invariant 7/9 wavelet tight frame, which is more efficient

for inverse problems than orthogonal wavelets. Since the

wavelet basis is not adapted to the geometric singularities

of such an image, reconstruction (b) has ringing artifacts.

The adapted reconstruction (c) exhibits fewer such artifacts

since the bandlet basis functions are elongated and follow the

geometry. The segmentation is depicted after the last iteration,

together with the chosen directions θj,i that closely match

the direction of the edges of f . Figure 12, (a’,b’,c’) shows

the recovery results for a natural image containing complex

geometric structures such as edges, junctions and sharp line

features. The best bandlet recovery is able to resolve these

features efficiently.

44

34

24

14
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Fig. 11. Recovery results for various rate of sensing n/N , in the noiseless

setting y = Φf .

Figure 11 shows the recovery error for various sensing rates,

in the noiseless setting y = Φf . For low rate (n/N close to 0),

the basis estimated by the iterative algorithm is not as good

as the oracle basis estimated from f . For higher rates, the

algorithm is able to find the underlying geometry efficiently

and the algorithm performs as good as the oracle basis.

VIII. CONCLUSION

This paper tackles the problem of improving the reconstruc-

tion from compressed sensing measurements. The proposed

method extends compressed sensing recovery to the setting

where the sparsity is imposed in a tree structured dictionary

of orthogonal bases. This best basis adaptive prior enhances

the sparsity of the signal to recover with respect to fixed

priors in an orthogonal basis. An iterative algorithm mini-

mizes a variational energy over both the signal to reconstruct

and the best basis parameter. Numerical results show that

this approach is successful for natural sounds and geometric

images that contain a broad range of sharp transitions. Best

basis regularization extends to more general linear inverse

problems, and could potentially improves the reconstruction

beyond randomized measurements.
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