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Abstract—We consider a machine learning approach to per-
form best beam prediction in Non-Standalone Millimeter Wave
(mmWave) Systems utilizing Channel Charting (CC). The ap-
proach reduces communication overheads and delays associated
with initial access and beam tracking in 5G New Radio (NR)
systems. The network has a mmWave and a sub-6 GHz compo-
nent. We devise a Base Station (BS) centric approach for best
mmWave beam prediction, based on Channel State Information
(CSI) measured at the sub-6 GHz BS, with no need to exchange
information with UEs. In a training phase, we collect CSI at the
sub-6 GHz BS from sample UEs, and construct a dimensional
reduction of the sample CSI, called a CC. We annotate the CC
with best beam information measured at a mmWave BS for
the sample UEs, assuming autonomous beamformer at the UE
side. A beam predictor is trained based on this information,
connecting any sub-6 GHz CSI with a predicted best mmWave
beam. To evaluate the efficiency of the proposed framework, we
perform simulations for a street segment with synthetic spatially
consistent CSI. With a neural network predictor, we obtain
91% accuracy for predicting best beam and 99% accuracy for
predicting one of two best beams. The accuracy of CC based
beam prediction is indistinguishable from true location based
beam prediction.

Index Terms—Non-Standalone systems, beam prediction,
channel charting, network centric approach, radio resource
management

I. INTRODUCTION

Millimeter Wave (mmWave) communication, offering wide

bands, is a key enabling technology of Fifth Generation (5G)

and Beyond 5G (B5G) communication systems to handle

the explosive demand for high data rates. Beamforming and

Massive Multiple-Input-Multiple-Output (mMIMO) antenna

arrays at the Base Stations (BSs) are expected to provide

directionality and beamforming gain to combat the high

propagation loss that characterizes mmWave communications.

Because of the susceptibility of mmWave communications to

blockage, precise beams alignment is necessary for maintain-

ing quality of service [1].

To improve the robustness of mmWave communications,

multi-connectivity approaches are adopted. In Non-Standalone

systems (NSA), mmWave communication is used in com-

bination with sub-6 GHz communication (e.g., based on

Long Term Evolution (LTE)), which improves robustness of

mmWave communications and boosts performance [2]. Sub-

6 GHz communication can be used for control channels for

the mmWave system, or to provide coverage with limited

data rate, if the mmWave channel is blocked. Such dual

connectivity not only helps in improving performance, but

it also aids in smooth transition and interconnectivity of

upcoming B5G networks with legacy LTE networks.

Beam management procedures are designated by 3GPP to

continually determine the optimal beams for communication

in 5G New Radio (5GNR). Beam management includes

learning the optimal beam for transmission in case of an idle

User Equipment (UE) which has to establish a connection

with the BS for the first time. This is called ’Initial Ac-

cess’ [3]. For connected UEs, mmWave channel quality may

rapidly change. Accordingly, beam adaptation and handover

procedures to maintain accurate beam alignment, known as

’Beam Tracking’, are needed. In cellular mmWave systems,

it is important to have efficient procedures for Initial Access

and Beam Tracking to facilitate reliable communications. In

5GNR, the UE autonomously selects a beam direction to

transmit to in uplink, and to receive from in downlink, so that

UE beamforming is not under the control of the mmWave BS.

This makes the problem of determining the best BS beam a

non-trivial problem for mmWave 5GNR systems. Even with

a fully digital antenna array, a BS cannot determine the best

combination of BS and UE beams.

In 5GNR, the large number of beams makes conventional

beam sweeping approaches for beam management challeng-

ing. Exploiting location side information has been shown to be

beneficial in speeding up beam training [4]. Location assisted

beam management combined with Machine Learning (ML)

techniques is discussed in [5] for multi-cell and in [6] for

single-cell scenario. Neighbor assisted beam search has been

proposed in [7] for fast beam sweeping. First, the closest

user’s beam is explored and then gradually the search moves to

other beams. Alternatively the line-of-sight-angles of a user

and its nearest neighbor can be used. In these approaches,

the geolocation of UEs is assumed to be known. In [8],

deep learning models are used to predict optimal beams

and blockage status of mmWave communications using the

instantaneous sub-6 GHz raytraced channels in a dual band

system.

Channel Charting is based on applying unsupervised ML

techniques to learn the logical map of the radio environment.

The Channel State Information (CSI) of sample UEs is dimen-

sionally reduced to a low-dimensional radio-map of a cell [9],

called a Channel Chart (CC), which can play a significant role

in performing Radio Resource Management (RRM) functions.

In this paper, we explore the possibility of using CCs for

best beam prediction of NSA mmWave systems. We consider



a CC-based network-centric framework for best mmWave

beam prediction for a UE, based on long term CSI measured

by a possibly different BS at a sub-6 GHz carrier. The

considered framework can be utilized both for Initial Access

and for Beam-Tracking for mobile UEs without the use of

their true physical locations. The UEs best mmWave beam

will be predicted at a network level, thus avoiding the delay

and communication overhead for determining the best BS

beam at the UE’s side and then updating the BS with the best

beam information. We predict the best BS beam for a new UE

location using a CC annotated with best beam information in

a training phase, and a supervised ML prediction algorithm.

The rest of this paper is organized as follows. In Section II,

the system model is presented. In Section II-B, CC basic

concepts are introduced. In Section III-B, best beam prediction

techniques are proposed. Simulation settings and numerical

results are presented and discussed in Section IV. Lastly,

conclusions are presented in Section V.

II. SYSTEM MODEL

We consider a NSA mmWave communication system,

where in the coverage area of a sub-6 GHz BS there may

be many mmWave BSs. Without loss of generality, we con-

centrate on the problem of predicting the best beams of one

mmWave BS.

A. Channel Model

For the sub-6 GHz communication, the BS has an array

of P antenna elements and the UEs have a single omni-

directional antenna. A set of U UEs are present in the network.

In the sub-6 GHz frequency, the mobile UEs perform pilot

transmissions and the BS measures the channel hu ∈ C
P×1.

The CSI covariance of UE u at the sub-6 GHz BS is computed

as:

Ru = E
{

huh
H
u

}

, (1)

where the expectation E{.} is over a number of temporal

samples of the fast fading process of the mobile user, within

a short time window, and over frequency domain subcarriers,

and (.)H denotes the Hermitian conjugate.

MmWave communication is based on Time-Division-

Duplexing (TDD), assuming channel reciprocity. The

mmWave BS has an antenna array with M elements while

the UEs have N antennas. Both the BS and UE are capa-

ble of beamforming and communicate through discrete sets

of beams. We assume B = M beams for the BS and

Bu = N beams for the UE. For simplicity, we assume that

the BS has M Radio Frequency (RF) chains, such that it

can simultaneously transmit/receive from multiple beams. We

consider wideband BS beams, i.e., the same beam is used for

all subcarriers. To get an upper bound on performance, we

assume that UEs are capable of digital beamforming, and can

change the beam for each subcarrier. Both the BS and the UEs

beamformers are based on Discrete Fourier Transform (DFT)

codebooks with beams

cq =
1√
Q
[1, ej2π

q

Q , . . . , ej2π
(Q−1)q

Q ]T , q = 0, . . . , Q− 1 .

(2)

Here Q = M for the BS codebook and Q = N for the UE

codebook.

The MIMO channel between the mmWave BS and UE u on

a subcarrier is Gu ∈ C
M×N . The received signal at mmWave

BS beam wm from UE u transmitting on beam vn then is:

yum,n = wH
mGuvnx+ zu = gum,nx+ zu, (3)

where gum,n = wH
mGuvn is the effective channel of UE u

using beam n received at BS beam m, x is the transmitted

symbol with E{|x|2} = 1 and zu is noise.

Given a downlink transmission of the BS on beam m, the

UE can determine its corresponding best beam as:

n̂(m) = argmax
n

|gum,n|2. (4)

The BS cannot determine the UE beam from the uplink re-

ceived signal at the BS. Due to autonomous UE beamforming,

a set of downlink transmissions on all BS beams wm is needed

to find the best beam combination. For each m, the UE finds

the best beam n̂(m) and the corresponding effective signal

power. The best BS beam for the UE can then be found from

m∗
u = argmax

m
E

{

∣

∣

∣
gum,n̂(m)

∣

∣

∣

2
}

(5)

where the expectation is over subcarriers and temporal fast

fading samples. This beam index is then fed back by the UE

to the BS in a beam management procedure. Note that the

best BS beam is averaged over temporal samples within a

short time window, while the UE selects its beam based on

instantaneous channels.

The objective of this work is to eliminate the need for

multiple transmissions and feedback for finding the best BS

beam, directly predicting the best mmWave BS beam from

sub-6 GHz CSI.

B. Basics of Channel Charting

Channel charting is the process of learning the radio maps

which embody the network layout and UE neighborhood

relations in terms of their physical location neighborhood

relations [9]. The basic idea of Channel charting is to create a

2D/3D representation of the radio environment from the CSI

at MIMO BSs so that the chart distances conform to the true

physical distances between the UEs, i.e., UEs which are near

in the physical domain are near in the chart and similarly

for far UEs. In channel charting, CSI features fu are first

extracted for each UE u. Then, the set of features {fu}Uu=1

is transformed to a lower dimension using Dimensionality

Reduction (DR), typically based on pairwise feature distances

between the UEs.

In this paper, we shall use the sub-6 GHz covariance matri-

ces {Ru}Uu=1 of the UEs as features. To measure the feature

dissimilarity, we use the Log-Euclidean distance. It provides a

geodesic distance for positive semi-definite matrices [10], and

has low computational complexity. The dissimilarity between

the covariance features of UEs u and u′ is then:

du,u′ = ‖logRu − logRu′‖F , (6)



Fig. 1: Beam prediction based on channel charting in Non-Standalone systems. (Left); a street segment served by a multi antenna sub-6 GHz
and mmWave BSs. (Middle); Training phase with CC construction and annotation. (Right); Online phase showing the best beam prediction
for a new UE.

where the matrix logarithm is used. The dissimilarity matrix

is fed to a DR algorithm to obtain a 2D representation of the

CSI of the set of UEs, the CC.

For DR, we shall use ISOMAP, and t-Distributed Stochastic

Neighbor Embedding (t-SNE) [11]. The obtained charts are

expected to preserve neighborhood relations of the physical

locations of the UEs. To check the quality of the CCs, we

employ three quality metrics; Trustworthiness (TW), Continu-

ity (CT) and Kruskal Stress (KS), see [9], [12]. CT indicates

how well the physical domain neighbors are preserved in the

representation domain, while TW measures if the represen-

tation introduces neighbors that did not exist in the physical

domain. KS measures the global similarity of the physical and

charting locations of the UEs. The range of all three metrics

is [0 1]. For an ideal representation, fully reproducing the

physical distances, CT and TW are 1, while KS is 0.

III. CC BASED BEST BEAM PREDICTION

We consider mmWave system best beam prediction by

exploiting the sub-6 GHz links in a network-centric manner. In

the considered NSA mmWave system, each UE can establish

connection to the network both over a mmWave and a sub-6

GHz BS. In 5GNR, up to 64 beams are allowed to be utilized

in mmWave frequencies. Thus, considerable overhead is in-

curred by the network for finding the best beam. Moreover,

as sub-6 GHz channels are less vulnerable to blocking than

mmWave channels, the long-term CSI of sub-6 GHz links is

more reliable than of mmWave links.

A. Beam Prediction Framework

For each sub-6 GHz BS, a CC can be constructed and

information of the mmWave system best beam can be added

to the CC in an offline training phase. All information is

gathered at a central control unit. Thus in the offline phase,

the CC locations are annotated with best mmWave BS beam

IDs. A prediction algorithm then predicts the best beam ID

of mmWave system for the CC location of a new UE.

The considered network-centric best beam prediction model

is illustrated in Fig. 1. The offline (training) phase is divided

into three parts: CC construction, BS best beam ID annotation,

and training of beam ID predictor. In the online phase, the

UE is first mapped to a CC location, and based on the CC

location, the best BS beam ID is predicted using the prediction

algorithm,

The CC of sub-6 GHz BS C is constructed from the

covariance matrices {Ru}Uu=1 of the UEs, in the offline phase.

For each UE u, the best BS beam ID m∗
u is attached to CC

location zu. Then the prediction algorithm is trained based

on the acquired data set. A supervised learning method learns

the best beam ID mapping function F (zu) which classifies

the CC locations based on the best beam ID.

During the online phase, UE i is communicating with the

sub-6 GHz BS, which predicts its best beam ID using the

trained beam ID predictor. First, the covariance matrix Ri

of UE i at sub-6 GHz BS is estimated. An out-of-sample

CC extension algorithm is applied to map the new UE on to

the CC with coordinates zi. The best BS beam ID is then

predicted based on the CC location of the UE, and then the

BS can establish connection via the predicted BS beam in the

mmWave band.

B. Best Beam Classifiers

To create the classifier F (zu), classifying CC locations

based on best beam IDs, standard ML techniques can be used.

Here, we shall use a Support Vector Machine (SVM) as well

as Neural Networks (NN). The K-Nearest Neighbor (KNN)

best beam prediction is also considered, as a low-complexity

alternative which needs no training.

KNN is a simple ML algorithm, where the classification is

based on finding the K nearest neighbors of a new sample

in the training data set, based on a distance function. The

data point is classified by a plurality vote of its neighbors,

and assigned to the class most common among its K nearest

neighbors. If K = 1, the data point is simply assigned to the

class of the nearest neighbor.



SVM is a ML technique that classifies linearly separable

data in a high dimensional space into two classes. SVM

transforms input data into a higher dimensional space through

a kernel function in order to maximize the margin between

two classes. Here, classes in 2D CC are sought for. SVM is

designed for binary classification, but it can be extended to

multiclass classification by breaking down the problem into

several binary classification problems.

For multiclass SVM we use the One-vs-One method where

every pair of two classes is classified by a binary classi-

fier [13]. In this method M(M − 1)/2 classifiers are trained

to classify M classes. SVM solves a quadratic optimization

problem to classify a point between two classes. After all

pairs of classes are classified by a distinct classifier, a voting

strategy is used to determine the class. The class with the

majority of votes is assigned to that input location. Given a

dataset of I samples with features zi, i.e. the CC location used

as features, and classes yi ∈ {−1, 1}, the SVM classification

rule is:

φ(z) =
I

∑

i=1

αi yi κ(z, zi) + α0, (7)

where κ(z, zi) is the kernel function. Different kernel func-

tions, depending on the training data, can be used in SVM. We

used the Gaussian kernel κ(z, zi) = exp
(

||z−zi||
2

σ2

)

, where σ

is an adjustable hyper parameter for controlling overfitting.

The equivalent optimization problem is:

min
α0, α

I
∑

i=1

[

1− yi φ(zi)
]

+
+αT Kα, (8)

where K is a square matrix obtained by applying the kernel

function to all pairs of training data samples, the parameter

vector is α = [α1, . . . , αI ]
T , and the softmax function [x]+ =

max(0, x) is used.

A NN consists of an input layer, hidden layers, and an

output layer. In the problem at hand, the input layer gets a

2D input feature–the CC locations—and passes it through a

series of fully connected hidden layers. The links between

nodes have their own weights and a nonlinear activation

function, which enables the NN to capture the non-linearity

between input-output pairs. The best beam ID is a Multiclass

classification problem, thus the last layer is equipped with

a softmax function. The softmax layer outputs a vector of

probabilities f(z) ∈ R
M which represents the probability that

m for m = 1, . . . ,M becomes the best beam ID for CC

location z; each beam is considered a class. The labels are

“one-hot” encoded vectors, there is one dimension for each

class. Thus the dimension of the output layer is M , the total

number of mmWave BS beams, and beam m is represented

by the unit vector ym in dimension m.

In the training phase, the output is fed to a Cross Entropy

(CE) loss function L =
∑U

u=1 y
T
u log2 f(zu) to minimize the

difference between the desired output and the model output.

The weights and biases of the NN are selected aiming to

minimize the total loss. The scaled conjugate gradient method

is used in the back propagation to update model parameters.

TABLE I: Simulation Parameters

Parameter sub-6 GHz mmWave

Center Freq. 2 GHz 28 GHz

Subcarrier BW. 15 KHz 240 KHz

No. of Subcarriers 600 256

BS antenna 8 ULA 32 ULA

BS antenna element pattern Omnidirectional 3GPP TR 36.873

UE antenna Omnidirectional 8 ULA

Scenario 3GPP 38.901 UMa-NLOS

Validation based early stopping is used to avoid overfitting. If

after six consecutive epochs no improvement in validation loss

is observed, we return to the best recorded model parameters.

The performance of a prediction scheme is evaluated in

terms of average prediction accuracy. In addition, we shall

measure top-k prediction accuracy, i.e., whether the predicted

beam is among the k best ground truth beams.

IV. SIMULATIONS

A. Simulation Settings

We model best beam prediction in a cellular system with a

2 GHz and a 28 GHz carrier. CSI for the communication links

are generated using Quasi Deterministic Radio Channel Gen-

erator (QuaDRiGa) simulator [14]. The simulation settings are

summarized in Table I.

The BS in the umbrella 2 GHz network is located at

[−100,−100] m, the mmWave BS of interest is located at

[5, 30] m and UEs are sampled uniformly in a street segment

between [0 10] m on both the x-axis and the y-axis. In

the training phase, information is gathered from 3000 UE

locations scattered uniformly in the street segment. For each

UE location we collect 100 small-scale fading samples for the

channel covariance estimation at the 2 GHz BS.

For each sample UE location, the best mmWave beam

is found by a beam management protocol run between the

UE and the mmWave BS. The BS transmits with different

beams, the UE selects the instantaneously best beam for each

BS beam, averages the received power across frequency and

temporal samples, and feeds back best beam information to

the BS. We collect 100 temporal samples of the mmWave

channel for each location for annotating CC locations with the

corresponding best mmWave BS beam. The temporal samples

are collected over a 100 ms period, assuming that UEs move

on a straight line with a 50 km/h speed. In Fig. 2, the 10×10
m street segment is depicted, with 3000 ground truth sample

locations of the UEs, and a color coding according to the best

mmWave beam.

B. Annotated CC

The computed covariances of the 2 GHz channels are used

to calculate dissimilarities, and a CC is constructed from the

dissimilarity matrix using the ISOMAP (with 12 neighbors)

and t-SNE (with perplexity value of 100) DR techniques.

Fig. 3 shows the resulting annotated CCs obtained with

ISOMAP and t-SNE dimensionality reduction.
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Fig. 2: The true physical locations marked with their best BS beams
with different colors. For example, beam 32 is the best beam for the
locations marked with red.
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Fig. 3: CC annotated with best beam information using: (Top);
ISOMAP DR. (Bottom); t-SNE DR.

The CCs show good approximation of the physical locations

of the UEs with the general global structure and spatial

distribution pattern maintained by the t-SNE CC in particular.

The quality metrics CT, TW and KS are tabulated in Table II.

They show that the CCs have good quality. The values of

CT and TW of over 0.99 indicate that the CCs preserve

the neighborhood relations between the UEs in the physical

locations well. The KS values confirm the visual perception

that t-SNE preserves the global geometry better than ISOMAP.

TABLE II: CC Performance Measures for 50 Nearest Neighbors

DR CT TW KS

ISOMAP 0.999 0.999 0.184

t-SNE 0.998 0.998 0.148

C. Best Beam ID Prediction

The best beam prediction accuracy is evaluated for KNN,

SVM and NN predictors. For KNN, we consider two cases:

the nearest neighbor predictor KNN(1), and KNN(10) based

on voting by the 10 nearest neighbors. The Euclidean distance

in the chart is used to determine the neighbors. When creating

an SVM based beam prediction function, a Gaussian kernel

is used. For NN based prediction, the hyperbolic tangent

activation function is used for the hidden layers. Three hidden

layers was found to provide best performance.

We consider two benchmarks for CC-based prediction; best

beam ID prediction based on the true physical location, and

based on Covariance Fingerprinting (Cov-FP). The Cov-FP

feature is obtained by stacking the elements of the sub-6

GHz covariance matrix as a vector of real values. Regression

learners are constructed based on both of these cases. Note

that in the literature on NSA beam prediction [5], it is assumed

that the user, using GPS or other techniques, determines its

location, and transmits it using the sub-6 GHz control channel.

The best BS beam and UE beam are then determined at the

UE side and transmitted using sub-6 GHz control channel in

the training phase. This operation needs UE involvement in

the process. In our approach, there is no need for location

information to predict the best beam ID.

For prediction performance evaluation, we divide the entire

data set for all algorithms into training and test sets. The train-

ing set has 70% (2100) of the UEs from the dataset selected

randomly. The test set is comprised of the remaining 30%

(900) of the UEs. The prediction accuracy of all algorithms is

averaged over 100 random divisions to training and test sets.

The best beam prediction accuracy of different NNs for

various inputs is shown in Fig. 4. Both the accuracy in

predicting the best beam (Top-1) and in finding one of the two

best beams (Top-2) is depicted. For true location, the best NN

structure has 20 nodes per layer, while 30 nodes is best for

ISOMAP as well as covariance FP, and 50 nodes for t-SNE.

By adding more hidden layers and neurons no improvement

is gained, and the structure gets more complicated.

The average prediction accuracies for CC-based and bench-

mark predictors using KNN, SVM and NNs are compared

in Table III. For all inputs, NN outperforms SVM, which
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Fig. 4: NN with different number of hidden layer neurons, top-1 and
top-2 accuracy.



TABLE III: Prediction Accuracy of Different Predictors

Predictor Best NN SVM KNN(10) KNN(1)

ISOMAP 90.8 88.4 88.0 88.2

t-SNE 90.2 88.2 86.6 86.8

True location 90.8 89.3 88.4 87.1

Cov-FP 89.1 87.7 85.5 86.0

again outperforms KNN. The accuracy of the best predictor

(i.e., NN) based on ISOMAP CC achieves the accuracy of

prediction based on true location. The CC-based algorithms

outperform direct long-term CSI-fingerprinting, and the mar-

gin increases when predictor complexity decreases. The per-

formance benefit from using CC for beam prediction is due

to the dimensionality reduction extracting information of the

whole CSI sample set, merging it to a proximity encoded in

the CC, while fingerprinting is based only on pairwise CSI

dissimilarities.

In Table IV, the prediction accuracy of top-1, top-2 and

top-3 best mmWave beams for best NN based predictors are

summarized. The top-2 or top-3 information can be used

to reduce the best beam search time, if this information is

shared with the UEs. Accordingly, instead of searching over

32 beams, the search is carried over 2-3 beams.

To assess the complexity of CC-based prediction, the online

phase is of particular interest as it can increase the overhead.

For CC-based algorithms, the dominant computational com-

plexity lies in finding the out-of-sample CC-location, while for

Cov-FP, the complexity arises from the high dimensionality

of predictor input. If out-of-sample extension is done in

straight forward manner, its complexity is comparable to using

Cov-FP complexity arising from using covariance directly as

input to the predictors. It is possible to reduce out-of-sample

complexity for CC, as well as the KNN complexity for Cov-

FP, using a hierarchical approach. Accordingly Cov-FP based

on NN and SVM remain the most complex solutions.

V. CONCLUSION

In this paper, we have considered a best BS beam prediction

scheme for NSA mmWave systems based on channel charting.

The prediction is based on channel chart which is a radio

map of a sub-6 GHz cell based on the received signals

at a BS, which is annotated with information of the best

mmWave beams. Beam prediction is based on a network-

centric approach where all the processing is performed in the

network. The prediction framework involves an offline training

phase and an online prediction phase. During the training

phase, the CC is constructed at sub-6 GHz BS. The best BS

beam for UEs in the CC at the mmWave BS is determined

based on the UE transmissions towards BS beams. A support

TABLE IV: Top-1, Top-2 and Top-3 Prediction Accuracy of Best
NN Prediction Schemes

Input Top-1 Top-2 Top-3

True location 90.8 98.8 99.7

t-SNE 90.2 98.8 99.7

ISOMAP 90.8 99.3 99.5

Cov-FP 89.1 98.8 99.7

vector machine and neural networks are used for creating

the beam prediction function. In addition, K-nearest neighbor

prediction is considered as a benchmark for its simplicity.

We performed simulations with spatially consistent channels

generated by the QuaDRiGa simulator, and evaluated the

prediction accuracies of the proposed framework based on

KNN, SVM and NN. The performance of NN based prediction

outperforms KNN and SVM. The best BS beam prediction

based on CC using NN matches the performance of a predictor

based on true location, with 90.8% accuracy. The presented

results show that CC can be used as a replacement for true

location based RRM.
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