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1. Introduction. In the study of fourth order elliptic equations in bounded
domains [16], it is important to know the constant of the continuous, noncompact
embedding of the space H? N H into LN/ (V—4),

H? N HYQ) — L7 (Q).

This specific embedding plays a role when fourth order problems with boundary
conditions u = Au = 0 on 052 are considered. Here 2 is a smooth, bounded domain
in RY. The main objective of this paper is to solve the following problem.

Problem (I). Find the largest constant Ky for which the inequality
lellowjav—g < K lullag, Vo€ B> N H(9), (LD)

18 valid.

The norms used here are defined by

llullenv/(v—1) = </QIUI7‘2FI~Vwa>NTEi, lullz,2 = (/Q]Au[2 dm)

The analog of Problem (I) for the case 2 = R¥ can be answered and the largest
constant possible is Ko which is given by

1/2

Ko=min{/ |Au? dz : ue DA(RY), / W= dw=1}, (1.2)
RN R™ .

where the space D%2(RY) is the completion of D(RY) in the norm || - [|3,2. This was
studied by Lions [8]. He also proved that there exists a minimizer for (1.2) which
is uniquely determined up to translations and dilations. The explicit form of this
minimizer can be found in [5], [7] and is given by

N—4

€ 2

— 1.3
o 2o £ )P (1.3)

Uezo(z) =CnN (
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where
On = (N — 4)(N — 2)N (N + 2))F*.

With this expression, the constant Kj can be evaluated explicitly;

NyY
Ko = P N(N — 4)(N? — 4) { ?E Jffi } . (1.4)

It is now interesting to ask whether K1 = K.
About the corresponding question for the embedding

H(Q) - L#3(), |

we know that the constants Sy and Sy, which play the role of Ky and K; here,
indeed satisfy
S1 = So.

This result was proved in [2], [4], [12]. The argument they used to prove that
S1 = Sp is based on the fact that one can extend H}-functions with zero in RN
outside 2. A consequence which follows from the work of [4] is that on a bounded
domain there is never a function u such that the constant Sy is achieved.
For the embedding
H3(Q) — L¥(0),

a similar result was proved in [5] using an analogous method.
Returning to Problem (I), we shall show that

Ky = K,. (1.5)

Specifically, we shall prove the following theorem.

Theorem 1. Let @ CRY, N > 4, be a bounded domain with a smooth boundary
0%, Consider the space H* N HE(Q). Then

H?NHLY(Q) — L¥(Q)
is a continuous embedding (not compact) with
lellon/v—ay < Ko Pllulla,  Vu € H2 N HE(Q), (1.1)
where
Ko =min{/ |Au|?dz : u € D22(RY), / u| V57 dg = 1}. (1.2)
RN RN
We note that Problem (I) is equivalent to the minimization problem
(1) K1=inf{/ |Au|?dz . u € H?> N H(Q), / u| 753 dwzl}.
Q Q

For this minimization problem, we proved the following result.
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Theorem 2. The infimum K is never achieved by a function w € H? N H ()
when Q is bounded.

The arguments based on extending functions by zero employed in [4], [5] fail for
Problem (I) because, in general, functions in H? N H(Q) can not be extended by
zero in RY outside Q. We shall, however, use more involved techniques. The most
important methods which will be used are arguments involving a concentration com-
pactness principle [8], a symmetrization comparison principle [13] and nonexistence
results employing variational identities [9], [11], and [14].

The organization of the paper is as follows. In Section 2, we shall prove Theorem
1. The proof of Theorem 2 will follow directly from the proof of Theorem 1. In this
section we shall use some technical lemmas which will be proved in the appendix.

2. The Proof of Theorem 1. In order to prove Theorem 1, we shall introduce
some notation and cite the basic lemmata which are required in the proof. These
lemmata will be proved in the appendix. As mentioned in Section 1, Problem (I) is
equivalent to the evaluation of

() K1=in.f{/ |Auf? da : uemmﬂg(m,/mﬁ%dm:l}. (2.1)
(9} Q

We formulate some results from the concentration-compactness principle using the
Hilbert space H? N H} (). Two related minimization problems are crucial during
the entire proof. They are

Ky = min{ / |Au? dz . u e D2?(RY), / [u[ﬁf_‘i dz = 1}. (2.2)
RN RN

K, = inf {/ |Au?dz : we D*2(RN),u|__ = o,/ |u| "7 dg = 1}.
1 >0 = ©1>0
(2.3)

Lemma 2.1. Let Q C RY be a bounded domain with a smooth boundary 6Q and
N > 4. Then if
Ki < min{Ko, Kz}, (24)

every minimizing sequence (un) of Problem (II) is relatively compact in H2NHE(Q)
and there ezists a minimizer for Problem (II).

For a more complete version of Lemma 2.1, we refer to Lemma Al in the appen-
dix. The proof of Lemma Al is essentially due to Lions [8]. If condition (2.4) of
Lemma 2.1 is satisfied, a minimizer u(z) of Problem (II) satisfies the biharmonic
equation '

Ay = puiE in DI(Q), (2.5)

with 4 = Ky > 0, in the distributional sense because K; = 0 implies v = 0 a.e.
in Q, which is a contradiction. From Lemma B3 of the appendix, we recall that a
solution of (2.5) is indeed a C*(Q2) N C3(Q)-function which satisfies the boundary
conditions

=0, Au=0 on OJQ.
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Another observation we can make about the minimization Problem (II) is that,
if condition (2.4) is satisfied, there is a positive minimizer of K. To see this, we
argue as follows. The minimization Problem (II) can also be written as
Jo |1Aul? do

(Jo [uf 55 da) 57"

(I11) K1=inf{ : ueﬂznﬂg(m}.

Now solve the following problem in H? N H3(Q):
—Av = |Aul. (2.6)

By the maximum principle, one observes that v > 0 in . If we add Au to both
sides of (2.6), we obtain

—A(v —u) = |Au| + Au > 0.

Of course we have zero data on the boundary. Applying the maximum principle,
we find that v > u pointwise in Q. Similarly, if we add —Au to both sides of (2.6),
we obtain v > —u, which together with the previous estimate gives that v > |ul.
For the numerator and the denominator in the quotient in Problem (III) this yields

/|Av|2dx=/[Au|2dw and /[U|W2§z dmZ/ IulNﬂ_"—; de.
Q o) Q Q

Consequently, the quotient in (IIT) is minimized by the positive functions, and so
there are positive minimizers. The previous list of observations makes it possible
to write down a partial differential equation which a minimizer of K7 has to satisfy
if condition (2.4) of Lemma 2.1 is fulfilled:
A%y =KuVs, u>0 inQ, (2.7)
Iv)
u=0, Au=0 on 0Q. (2.8)
In the next lemma, we prove a crucial observation about the right hand side of
condition (2.4).
Lemma 2.2. We have
K2 = Ko. (29)

Proof. First we shall formulate an equivalent expression for Kj. Let
X = {u e DX2RY): u |m1=0= O}.

Then we have .
_ fm1>0 |Au|? dz

Ky =i { N N-4
(f:n1>0 ['u,|"N'—'-_4 d{E)T

: ueX}. (2.10)

The proof is based on the symmetrization principle due to Talenti [13]. The next
step then shall be to apply a symmetrization comparison principle of Talenti. In
order to apply the Talenti comparison principle, we first modify (2.10) and then
pass to the limit.
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Let u € X and set —Au = f; then f € L?(z1 > 0). By a straightforward density
argument, it is possible to construct a sequence of functions (f,) € C§°(z1 > 0)
which is an approximating sequence for f in the L?-norm. These functions f, have
compact support for every n. We have f, — f as n — oo in the sense that

[fo—fllz—0 as n—co.
This construction also implies pointwise convergence in (z1 > 0); i.e.,
fa(z) = f(z) as n — oo, a.e. on (z1 > 0).

‘We shall start by considering the problem
—Aup = f, in (z1 >0), (2.11)
(%)
0. (2.12)
Write supp fn, = A,. Then, by construction, meas (A,) < co and

Un ,$1=0:

[l Fnllonvy(v2) < meas (An) M| foll2 < oo,

where the integrals are taken with respect to A,. This implies that for any n,
frn € LPN/(N+2) (31 > 0) and hence that Problem () has a weak solution u,, € D12
(:1}1 > 0).

Because we want to apply the Talenti comparison principle, we recall that the
Schwarz symmetrization of a function ¢, which we denote by ¢*, is defined as

¢*(z) = inf{y > 0: u(y) < wy|z/N}, (2.13)

where p(y) = meas{z € Q: |¢(z)| > y} and wy is the measure of the N-dimensional
unit ball. Consequently, the Schwarz symmetrization is defined on the ball Q*
with the additional property that meas (2) = meas (Q*). The Talenti comparison
principle states the following.

Proposition 1. (Talenti [13]). Suppose Q is a reqular domain in RY and let u be
a weak solution of the problem

—Au=jf inQ,
u=0 on 0%,

in which f € L*N/(N+2)(Q). Then
w<ov aeinF

and v is the weak solution of

—Av = f* in Q¥
v=20 on 00*.

Consider the family of problems
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~Avp, = f¥ in RY, (2.14)
(%)

v, =0 as |z| — oo, (2.15)

where the v, are weak DH2(R¥)-solutions because f* € L2 N LN/ (N+2)(RY) for all
n, a property of the Schwarz symmetrization. We can apply Proposition 1 in the
domain (z; > 0) and obtain the pointwise estimate

uf <wv, ae onRV. (2.16)

The final step consists of establishing an estimate for v and u* by passing to
the limit. We proceed as follows. From the appendix, we recall the contraction
property of the map f — f*. In particular, we have that the map S: ¢ — ¢* is a
contraction map; i.e.,

l6n = ¢*llp < l$n — llp, 1<p<oo. (2.17)

Now we use (2.17) with f and p = 2;

5 = f*ll2 < I fn = Fll2- (2.18)

Since the right hand side of (2.18) tends to zero as n tends to infinity, we conclude
that
lfe—f*lla—0 as n— oo.

This implies that there exists a subsequence f,, with the property
fr (z) = f*(z) ae onRYN. (2.19)

Because {f}} is a Cauchy sequence in L?(RY), it follows that {v,} is a Cauchy
sequence in D%2(R¥). This can be seen by using —Avy, + Av,, = f* — f* 1 and the
relation /

[vn = Vmll22 = [fa = fmllz = 0 as n,m— co.

Consequently, because D*2(RY) is a Hilbert space, there exists a function v €
D?2(RM) such that '
v, — v in DPZ(RY) as n — oco.

By the Sobolev inequality for D%2(RY), we obtain
vp — v in LY/ V=D(RN) as n — oo, (2.20)
Uy, — U a.e. on RY as nmg — 00. (2.21)
As a direct consequence, it follows that
~Av=f* ae onRY. (2.22)

1Using the Green function of —A on RN , one obtains v, = G * fn, which is well defined by
the Hardy-Littlewood-Sobolev inequality. Clearly, —Av, € L?(RN). Similarly, u, exists and
—Aup € L?(z1 > 0).
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Next, we turn to the sequence {u,}. We do this by considering —A(u, —u) =
fn — f. We have

/ At — )2 d = | f — FIIZ (2.23)
x1>0 :

Observe that u, — u in X as n tends to infinity. Extending u, and v oddly in
z1 to RY, we can apply the Sobolev inequality for the Hilbert space D22(RY) to
deduce from (2.23) that

. SN ‘
(/ (i — | P d,m> < C||fn— fllz = 0. (2.24)
23>0
From this we conclude that
up — win LN/ (g, > 0) as n — oo, (2.25)

Up, — U a.e. on (z1 > 0) as ng — oo. (2.26)

Since the IP-norm is invariant under Schwarz symmetrization, it follows from (2.16)
that

lunllon/v—ay = lunllony(v—4) < llvnllany(v—a)-
Combining (2.20), (2.21), (2.25) and (2.26), we arrive at the inequality
lullon/@v—ay < lvllanvy (2v-a), (2.27)
where we used
|lullonyv—ay — lunllan/v—ay| < llu— tnllany@v—a4 — 0

and similarly for v and v,.

Remark. Again using the contraction property of the Schwarz symmetrization, we
can even obtain the inequality

v <v ae onRY. (2.28)

To see this, we use (2.17) with p = 2N/(IN — 4). Then, using (2.24), we obtain

[t — w* o/ (v—ay < ltn — ullan/@v—g) < Cllfn — fll2 = 0, (2.29)
from which we conclude that

wh — u* in LN/ O-D(RNY as n — oo, (2.30)

Uy, — u* a.e. on RY as ng — co. (2.31)

Hence, again using (2.16), we obtain (2.28).
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At this point in the proof, we remark that we have now constructed for each
function u € X, a positive radially symmetric decreasing function v' € D>2?(RY)
which, according to (2.27) or (2.28), has the additional property

fm1>0 |Au|? dz _ fm1>0 |Aul|? dz - S [(Aw)*|2 dz

N—4 — N—4

N—4
N N
(fm1>0 |u|W21j—4da:> <fRN IU*|T%§—“d$> <f]RN lvl“?—f“dw>

Employing (2.22), we see that (—Au)* = f* = —Auv; so, for the infimum K5, given
in (2.10), we obtain

Aul? dz Av|?d
Ky = inf f:z:1>0 ! I ﬂﬁi > inf fRN l Ul as—l%é — K. (2.32)
(fm1>0 ]u]ﬁf_‘ld:v> (fRN ]vl%dm>

By (2.32) we have min{Kj, Ko} = Ky, and so we have proved the first part of the
lemma.
To establish the reverse inequality, we use a test function of the type

uy =U(z + Xe1) — U(z — Ney), (2.33)

where U is the minimizer of Kj, given in (1.3), and e; = (1,0,...,0) € RY. For
convenience, we write

ur =U(z+Xer), up=U(z—Ne1), uy=us+us.

Calculating the integrals over RY in (2.32), we obtain for A — oo,
/ |Auy|? dz =/ |Auy |2 da;—i—/ |Auy|? dz + o(1),
RN RN RN

/ IUAI?‘?‘—M‘Tdm=/ |u1|w"‘-’%dx+/ s | ¥ das + o(1).
RN RN RN

This gives, simply by the translation invariance of the integrals,

/ |Aup [ do = 2 / IAUP do + o(1), (2.34)

RN RN

/ | 25 d = 2 / U125 dg + o(1). (2.35)
RN RN

Now recall from (2.3), after odd extension in z;, that

Ky = linf {/ |Au|?dz : u € D22(RY), u I —= O,/ [u[ﬁf_‘idm = 2}.
2 RN = RN
Furthermore, if we write

Aul? d
K(’U,) — 2—4/N f]RN l ’U,I &z ﬂﬁi , (236)

(o e
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then
Ky = {inf K(u) : uw€D»RY), uoddin z}.

Combing (2.34) and (2.35) in (2.36), we obtain
Jew |AU? dz
<f]RN lUIﬁZN—‘ d:z;)

For the infimum, this implies that

K(uy) =

—1 +o(l) as AX— oo
v

K> < Kp. (2.37)
This proves the reverse inequality and consequently the equality K5 = K.

Remark. The question whether or not the infimum K is achieved does not seem to
be straightforward. However, we believe that the infimum K is not achieved. From
the first part of this section, we know that if the infimum K is achieved, then there
must be positive minimizers. These minimizers also satisfy the equations of Problem
(IV) in the case Q = (z1 > 0). A formal calculation with variational identities [9],
[11], [14] leads to an integral identity which proves that Problem (IV) cannot have
any positive solutions on (z1 > 0). In order to use integral identities, one needs
additional integrability of the minimizers; for example, v € H?(z; > 0). These
considerations are similar to those used in [6]. The precise evaluation of the terms
in the integral identity involved needs a further careful study of the asymptotic
behaviour of these minimizers.

Our next step in the proof of Theorem 1 is to recall a nonexistence result for
Problem (IV) from [9], [14] in the case §2 = Bg.

Lemma 2.3. Consider Problem (IV) with Q strictly star shaped. Then Problem
(IV) has no (positive) solution u € C*(Q) N C3(Q).

Employing Lemmas 2.1, 2.2 and 2.3 now enables us to complete the proof of
Theorem 1. Once more we shall use the Talenti comparison principle in order to
transform Problem (II) to the ball *. We should remark that from this point
onward the proof is straightforward if  is star shaped, as will follow from [9], [14].
However, in the general case, a more involved line of argument has to be followed.
The constant K7 given by (2.1) can equivalently be calculated as

Auf?d
Ki= iof JolAuda (2.38)

H2NH} oN ~

Exactly as before we write
~Au=f inQ, ueH’N H&(Q). (2.39)

Because f € L?(Q), it follows that f* € L2(Q*) and that f € L*M/(N+2)(Q), using
the inequality
|| 1|2z (v-42) < meas ()Y £]l2 < oo.
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Next we construct a radially symmetric function v as before, using Talenti’s
principle. Let v be the Hi-solution of the problem

—Av=f* in Q, (2.14)

v=0 on OQ. (2.15)

Because f* € L?*(2*), standard regularity yields v € H? N H}(*). The Talenti
comparison principle now immediately gives

u* <v ae in Q* (2.40)

For the integrals, we obtain using (2.40)

/ fo| 72 dmz/ [ #2 da;=/ | #25 da, (2.41)
Q Qx Q
/ ]Av]zdm=/ (f*)zdac:/ fzdcc=/ |Aul? de. (2.42)
‘ Q= o Q Q
Using (2.38), the expressions (2.41) and (2.42) yield for the infimum K,
Auf?d . |Av|? d
Ko@) = inf —JalBulde o Jp 1A ® =K (QY). (2.43)
B

(folpeas) ™ (o pirea)

We proceed using a concentration-compactness argument. Assume
K1(Q*) < Kp. (2.44)

By Lemmas 2.1 and 2.2 and symmetrization, we can conclude in this case that
K7 (£2*) has a minimizer U € H?N H}(Q*) which is positive and radially symmetric
decreasing in |z|. As before, by regularity (see the appendix), this solution has to
satisfy equation (2.7) and boundary conditions (2.8). We obtain Problem (IV) with
the domain 2*. We recall

AU = KyUNS | U > 0in OF, (2.7a)
(IVa)
U=0, AU =0 on 0Q*. , (2.8a)

From Lemma 2.3, we know that Problem (IVa) has no positive solutions; so, we
have a contradiction. We conclude that the opposite of (2.44) holds; i.e.,

K1(Q%) > Ko.
Together with (2.43), this leads to the chain of inequalities
K1(Q2) > K1(Q%) > Ko. (2.45)
A simple scaling argument shows that the reverse inequality holds (see [16]),

K1(Q) < Ko. (2.46)
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Combining (2.45) and (2.46), we conclude that

From (2.47) it is automatically clear that K;(f2) is domain independent. Because
the infimum K (92) is now known, we have that for all u € H? N H(Q),

Jo |Au)? dz

( Jo lu| 52 dm)

N—4 > KO:
N

which yields
lullanyv—a) < Ko 2 llull2,2, (1.1)

and the theorem is proved.
Finally, to prove Theorem 2, we assume that K7 () has a minimizer v € H? N
H}(Q). Using symmetrization techniques as before, we construct the map

T:u—w,

where v is positive, radially symmetric and decreasing in Q*. We observe that v is
a minimizer of K7(Q*). As before, we show that K7(Q*) has no minimizer, which
contradicts the assertion. Consequently, the infimum K7 (£2) is not achieved.

From the explicit form of the only minimizers of Ky, we can easily calculate the
explicit form of K. The minimizers (1.3) can be found in [5], [7] and [15]. In [5]
and [15], a uniqueness proof is also given. For a straight forward computation of:
Ky, we refer to these papers. In [15], higher order embedding constants are also
computed.

Appendices. In these appendices, a number of lemmas will be given which were
crucially used in the proof of this paper. The concentration compactness lemma
is a virtual transcription of the principle due to Lions [8]. Though in [8] it is not
explicitly used for fourth order equations, it was mentioned that it also applies to
higher order equations. For completeness, we shall give the details for the case of
fourth order equations. ‘

A. A concentration compactness principle. Following [8] we define
£(u) = / AuPds, J(u)= / | # da
Q Q

and consider the minimization problems (compare with [8], page 172)

Ky =inf{&(u): we€ H?’NHYN), JT(u)=1}, (A1)
Kiy=inf{(u): weH*NH}Q), T(u) =} (A2)

Plainly -
Kl’)\ = /\TKl
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The idea now is to introduce the quantities £7°(u) and J;£°(u) which arise from the
transformations

u(z) — e‘N_ﬂ’_iu((m +y)/e), yeQ, e—0T. (A3)
Let us define
_ |Au|?dz ify € Q
£°(a) = i &P u((w +y)/e) = | B 1
=0 Jos0 [Au? dZ if y € 69,
Jrw ]u[m dz ify € Q

Ty (u) = hm T(e” et U((ﬂ:+y)/e) N
Joyso lul¥=7 di if y € 89

The reason why the quantities £;°(u) and J,7°(u) are introduced is to take into
account the loss of compactness caused by to the transformations (A3). Following
(8], page 92-94, we introduce

' K =mf{€°w): J;°(u) =1} (A4)
and (compare with (8], page 80)

K™ = inf K (A5)

In determining the information in (AS5), it makes a difference whether y € Q or
y € 09 Thus, it is convenient to write

K> -Imn{mf K, 1EnéfQK°°. (A6)
v :

Write Ko = infycq K§° and K3 = infyesn Ky . Then
Ko = inf {/ |Au|?dz : u € D2, / [ulﬁ'f—‘1 dr = 1},
RN ° RN

K, :inf{/ |Aufdz: we D>, u| _ =0, / [ulrzr’—v?dx=1}.
x1=0
©1>0 z1>0
Consequently,
K = min{Kg, Kz}
In the following lemma, we give a compactness criterion using the quantities intro-
duced above.
Lemma Al. Consider the minimization problem (Al). Suppose
Ky < K. (A7)
Then every minimizing sequence (un) of (A1) is relatively compact in H? N HE ().
Moreover, K1 is attained by a function u € H? N HF(Y). If (A7) is not satisfied,
i.e.,
Ky = K, (A8)
then there exists a noncompact minimizing sequence (upn) of (Al) such that
(i) un — 0 weakly in H? N H(Q) and |Auny|? — K®64, asn — oo,
(i) Jun|¥"7 — 64, for some zo € O,
(iii) dop € R, op — » 00, Jyn €RY, £ — 1, 0p o Un((- + Yn)/on) — 4, the
minimum of K,
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Proof. The proof of Lemma A1l consists mainly of obtaining a concentration lemma
as in (8] (Lemmas 1.1 and 1.4). As in the proof of Lemma 1.4 of (8], one uses £2°,
Ty° and K° to establish the following concentration principle.

Let u, — u weakly in H2 N H(Q) and |un| Nea converge weakly in the sense of
2N
measures to [u|N=2 + 3 Uk6q, . Then we may assume that

|Aug, [* — p
for some positive bounded measure p and

N—4
w > |Aul? + Z v ¥ K6,
keJ

If we now follow the proof in [8] on pages 175-177 and use the above concentration
principle, the proof of the lemma follows.

B. Regularity of solutions. Consider the distributional equation
A’u=qa(z)u in D'(Q), where a(z)e LNV4(Q). (*)
The technique of obtaining LP-estimates for all p < 0o, as employed by Brezis and

Kato [3] using Moser iteration, does not seem to be straightforward for this equation.
Using a completely different method, we establish the following LP-regularity result.

Lemma B1. Let u € H2 N H}(Q) be a solution of (x) in the distributional sense.
Then A
w € LP(Q) forallp, 1<p<oo.

Proof. Step 1. In order to prove the lemma, we shall first establish an auxiliary

result in which we show that it is possible to write the product a(z)u(z) as a sum
a(z)u(z) = . (z)u(z)+ fe(z), in which g, is arbitrary small in LV/4 and f, € L=(Q).

Lemma B2. For every € > 0, there are functions ¢ € LNV/4(Q), fe € L°(Q) and
a constant K. > 0 such that

a(z)u = ge(z)u + fe

and
“(JE”N/AI <g, ”fe”oo <K..

Proof. Define the sets
Q={ze€Q:|a|<k} and ={zeQ:|u <}

where k and | are chosen such that

1 1
lallznraag) < 78 lallowrap) < 7€ (B1)



272 R.C.AM. VAN DER VORST

and QxNQY # 0, a(z) # 0 on QxNQy. Clearly these conditions can be met provided
k, 1 are large enough, because a(z) and u(z) are L'-functions. We now define

(@) = { La(z) on QrNy
* a(z) onQfUOS
and
fe(z) = {a(z) — g=(z) }u(z). (B2)

Then clearly )
fe(x) =0 forall z e (QpNQ°.

For the LY¥/4-norm of ¢, we find

laeli = [ lac¥4do = |

QN

< [ gl / G/ ds + / gel /4 d
Qe Qg Qf

_ (}_)N/4/ Ia[N/4dm+/ lalN/4dm+/ |74 dg
QN Qg fofs

n

ge /4 das + /(Q N
k 1)

A

(E)NM/ IaIN/‘Ldac-{-—l-s—i-ls.
n anQl 4: 4.
So,
1 1
lgellv/a < EHG”NM +3e. ’ (B3)

Hence, for n = n. > 2||a n/4/€, we have

llgelln/a < e (B4)

As for f., since it is only nonzero in Qi N, it follows from the construction
that

1
I fzlloo = ‘l—n— kl < 0. (B5)

Step 2. By Step 1, Problem (x) can be written as
Ay =gqu+ f., where llgelln/a <& and fo € L™(Q), (B6)

or, equivalently, as
u—AEuzh’EJ (B7)

where Afu = (—A)~? (q.u)} and he = (—A)~2f.. We shall show using Lemma B2
that A® acts from LP to L? and that g.(z) can be chosen such that the operator

}The operator (—A)~? is defined by using the Green function for the operator (—A)2, with
the boundary conditions u = Au =0 on 8. Thus, (—A)"2u = G * u.
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norm ||A%||zr—r» < 1/2. We proceed as follows. Let v € LP. Then by using the
Hardy-Littlewood-Sobolev inequality

[ 4%0]lp = [I(=A)*(gev)lp < C(P)lIgevllr, (B8)
where
1 1 4
o 5 + A (B9)

Employing Hélder’s inequality and the fact that g. € L /4(Q), we derive

[ 4%v]lp < C(D)llgellnyallvllp, (B10)

which shows that K§ acts from LP to LP for some p > 2N/(N — 4). According to
Lemma B2, we can choose € = €* = ialﬂ‘ This results in

* 1
14 0l < Sl
which gives for all p > 2N/(N — 4),

* 1
”AE ”Lp._,]_',p < 5‘ (Bll)

Step 3. To conclude the proof, we consider the operator
(I—A45)™1. P — IP. (B12)

Note that by (B11),
(I — A7) pomsre < 2. (B13)

From equation (B7), we deduce that
U = (I — AE*)_lhs*,
and from (B13) that

12— A7) heslp < 2llhes [lp = 20l(=2) 7 fer llp < 20(0) | fer llp < C@) Fer llco-

This yields the estimate
lully < C(@)l|ferlleo for every p > 2N/(N —4). (B14)
Because u € LN/ V=4 (Q), we finally derive
we LP(Q) forallp, 1<p<oo, (B15)
which completes the proof.

From this essential Lemma B1, it is possible to obtain a straightforward regularity
result for weak solutions of the problem

/A'U,Agz&dm:/g(u)ud)dm for all ¢ € H? N H (). (*x)
Q Q
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Lemma B3. Letu € H*NH}(Q) be a weak solution of (xx), 8Q of class C** and
g9(s) € CO*(R) with 0 < ¢ < 725

lg(s)| < Cils|?+ Ca, for positive constants Cy, Cs.

Then
u € CHR)NC3(Q)

and u satisfies the equation

A%y =g(u)u inQ,
u=Au=0 ondQ.

If g(s) € C*(R), k € N and 89 of class C*T%2, then u € C*TR(Q) N G3 ().
Remark. If for example g(s) = [sf/ (N—=4) the conditions of Lemma B3 are satisfied
and consequently u € C*(Q)NC3(Q). If positive solutions are considered then, since
g(s) € C*°(R"), Lemma B3 implies that

u € C®(Q).

Proof. Let u € H*NH}(Q) be a weak solution of Problem (##) and thus g(u(z)) €
LN/4(Q). Then, if we set a(z) = g(u(z)), u satisfies

A’y =a(z)u in D'(Q).
According to Lemma B1, we have u € LP(Q) for every p > 1. Consequently,
a(z)ue LP(), 1<p<oo. (B16)

Now we set a(z)u(z) = f(z). Let @ € H? N H () be the unique solution of

/AﬂAqﬁdm:/f(a;)gbda;, Vé € H? N HE(Q),
Q Q

with the additional LP-estimates due to Agmon, Douglis and Nirenberg [1] (smooth-
ness 0Q2); namely, |44, < Cp|| fllp. Furthermore,

A% = f(z) ae. inQ.
Notice that for « and 4 we have

/ A(d —u)Apdz =0, Ve H?NHIQ),
Q

which implies @ = v a.e. on 2. We thus have

llullap < Cullfllpy »>1,

. . (B17)
A%y = f(z), ae inQ.
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‘We recall from standard embeddings theorems, taking p large enough,

W4P(Q) —» C®XQ), p>N, A<1-N/p,
C*A () — C3(Q).

Using (B17) proves _ .
u € C3(Q). (B18)

Finally, because W4P(Q) — C%*(Q), when p > N/4 we have g(u(z))u(z) €
C%*(Q). By Schauder estimates [1] (using the smoothness of 99), we conclude
that

u € CHQ). (B19)

Combining (B18) and (B19) proves u € C4(Q) N C*(Q). Because u is a H> N Hj-
solution, partial integration yields the boundary conditions. The last remark on the
Ckt4_golutions can be achieved again by Schauder estimates because the left hand
side is smoother in this case.

C. A contraction property of the symmetrization map. Let’s denote the
Schwarz symmetrization of a function ¢ as ¢*. The Schwarz symmetrization of ¢ is
defined as

¢*(z) = inf{y > 0: u(y) <wnlelM},

where u(y) = meas{z € Q: |¢(z)| > y} and wy is the measure of the N-dimensional
unit ball. Consequently, the Schwarz symmetrization is defined on the ball Q*, with
the additional property meas (Q) = meas (£2*). Denote the symmetrization map by

S¢ = ¢*.

Lemma C1. Suppose ¢, ¥ € LP(Q) for a certain p € [1,00]. Then

{s; I7(Q) — IP(),

I8¢ — Stllp < I —llp-
Proof. See [10].
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