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Best-effort networks: modeling and performance
analysis via large networks asymptotics

Guy Fayolle, Arnaud de La Fortelle, Jean-Marc Lasgouttes, Laurent Massadaihes Roberts

Abstract—In this paper we introduce a class of Markov models, termed document transfer time. This time is clearly highly dependent
best-effort networks, designed to capture performance indices such as meangn the number of ongoing transfers on the links shared by the
transfer times in data networks with best-effort service. We introduce the . . . .
so-called min bandwidth sharing policy as a conservative approximation considered connectlon. This n'ﬁ'mber varies .as_a random propess
to the classical max-min policy. We establish necessary and sufficient er- 85 N€W connections are established and existing ones terminate
godicity conditions for best-effort networks under the min policy. We then  in a way which depends on how bandwidth is allocated, as well
resort to the mean field technique of statistical physics to analyze network as on the underlying traffic parameters
performance deriving fixed point equations for the stationary distribution . )
of large symmetrical best-effort networks. A specific instance of such net- 1N the case of a single bottleneck resource shared perfectly
works is the star-shaped network which constitutes a plausible model of fairly, simple traffic assumptions of Poisson arrivals and iden-

a network with an overprovisioned backbone. Numerical and analytical tically and independently distributed document size lead to a

study of the equations allows us to state a number of qualitative conclusions hari . del I51. This fluid fl del
on the impact of traffic parameters (link loads) and topology parameters processor sharing queueing model [5]. IS Tluid Tlow mode

(route lengths) on mean document transfer time. provides useful results on expected response times as a function
Keywords— best-effort service, max-min fairness, min policy, mean field, Of the load of an access link or a Web server, for instance. It
star-shaped network. also shows how a form of congestion collapse can occur when
demand (arrival ratex mean document size) exceeds capacity.
I. INTRODUCTION The processor sharing queue is then no longer ergodic leading

Consid work handling data f ¢ | to unbounded response times. To understand the impact of mul-
onsider a network handiing data flows rom several US€fgy s hottienecks and to investigate the effect of different sharing

gnd asbsun;e .g?th:?“tytpf ser;]/lce csmmnmzntsb (S;JhCh ast m rategies, one would like to dispose of similar analytical results
imum bandwidth allocations) have been made by the netw: multiple resource systems.

to :.Te users.ds_uﬂl all stltuauon_has tf)een prtivaI?nt in the INteM&f, the best of our knowledge, the only analytical results avail-
untirnow, and 1S fikely to remain so 1or ahotneriew years. 50 5o far are in Massoéland Roberts [5], where the so-called
The preferred service model in that situation, known as bggloar network topology is investigated. Simulation results for
effort service, consists in allocating a fair proportion of ban h(]e linear network can be found both in [5] and in de Veciana et
width to contending users; see, e.g., Bertsekas and Gallager li]ig) The main motivation for the present paper is to study the
Therg are actu.ally severall possible notions of fairness ava'laBL?rformance of best-effort networks with alternative topologies,
for this bandwidth allocation problem (see, e.g., Mo and Wake ;itimate objective being the derivation of heuristics enabling

rand [2] for a parametric family of fairness criteria covering aphe performance evaluation of bandwidth sharing in a general
other notions proposed so far), although the classical notion PE&twork.

posed in [1] is the so-called max-min faimess. , In the present paper we report the results of our preliminary
Recent work has led to a relatively good understanding pfestigations. These include an analysis of the stability con-

how bandwidth is shared between network users when a givgfions under which the expected response time remains finite
congestion control algorithm is used; see, e.g., Mass@nid i, 5 general network. We also apply mean field techniques to
Roberts [3] and references therein. The question of what tygey|yate the performance of large symmetrical networks. Nu-
of faimess is achieved in the current Internet, where JacobsqRrical results derived from the model illustrate how response
congestion avoidance algorithm—as implemented in TCP—jg,a5 depend on the number of bottleneck links and their uti-
responsible for congestion control, has been studied in depthi9¥ion. These results are of some practical interest and aide
Hurley et al. [4]. These studies all assume the number of floy§, ynderstanding of the behavior of best effort networks. A
remains fixed. o . further significant contribution is the insight provided into the
In comparison, there is little work accounting for the randomherent difficulty of deriving performance estimates when more
nature of traffic and its impact on user perceived quality of S&fan one bottleneck limits throughput.
vice. Consider for instance the transfer of digital documentsgection 11 introduces a general class of Markov models for
(Web pages, files, emails,. ) using a transport protocol like pest.effort networks which is intended to capture the impact
TCP. This constitutes the bulk of Internet traﬁlc_today. Thgf network topology, traffic parameters and bandwidth sharing
performance criterion relevant to such transfers is the overgllimess) criteria on document transfer times. A brief account

This work has been partly supported by a grant from Frarédecbm R&D. of the results obtgme_d ,m [5] IS given, and the so_-called m,m
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de Voluceau BP 105, Rocquencourt 78153 Le Chesnay CEDEX, France.  tion to max-min fairness. Section Il then establishes the nec-
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outeo K1 link 2 link L router receives a bandwidth shaf@™, where

N — —— SR <C, te 2, @
ro¢

and for every route, there is at least one linke r such that
Z x, (" =C,, and{{"™ = max{,". (2)
=V ’ r's¢

route 1 route 2 route L

Fig. 1. The linear network

These two conditions uniquely determine the bandwidth shares

"&m. Having specified the Markov proceXs one can then at-

and a mean field heuristic is proposed. This heuristic is expec& ) T o .
to be accurate in the asymptotic regime where the number ofst arppt to study its steady state properties, identifying the condi

branches is large. The derived fixed point equations are inves.'> ON the load parameters
tigated numerically in Section V. Simulation is used to verify o, def 1

— 3 A0
the accuracy of the heuristics. Extensions to the star-shaped net- G r; T

work are also considered in Sections IV and V, which notably, e which it is ergodic and, when it is, determining the sta-
allow an evaluation of the impact of the number of bottleneclﬁ%nary distribution. Mean transfer timd along each route
on the mean transfer time. can then be computed using Little’s laly:= E x; /A;.
It turns out that explicit formulas for steady state distributions
) ] _ ~aretypically beyond reach. A notable exception is the linear net-
_Consider the following network model: a sét of links is  work, with bandwidth shares being allocated to realize propor-
given, where each link < .2 has an associated capacity Ofional rather than max-min fairness; see [5]. In order to obtain
bandwidthC, > 0. A setZ of routes is given, each route beingormulas in other cases, one therefore has to resort to asymp-
identified with a subset of links. Fig. 1 illustrates the so-callgdtics on various parameters. For instance, for the linear network
linear network: it consists df links with equal capacity, route yith max-min fair rate sharing, the regime where the arrival rate
0 which crosses each link, and routes 1,... L which cross a A along route 0 goes to zero (essentially, a form of light traffic
single link. analysis) is considered in [5]; this leads to approximate formu-
To each route are associated two parametexsis the arrival |55 for T,- It can be shown, in particular, thay increases as
rate of new transfer requests along rout@ndo; is the aver- the |ogarithm of the number of links whenL increases. This
age document size. We make the following standard simplifyiRgin contrast to the case of proportionally fair sharing where it
assumptions: requests for document transfers along roate j,creases linearly it.
rive at the instants of a Poisson process with intengitywhile The main purpose of this paper is to investigate an alterna-
the corresponding document sizes are mutually independent 4j3s asymptotic regime where it is the network topology which
dependent of the arrival times, and drawn from an exponentigl|ves. The precise description of this limiting regime will be
distribution of mearo;. iven in Section IV.
These traffic assumptions make the process specifying thgn the following sections, we consider bandwidth allocations
number of transfers in progress on different routes Markovi@@mrdmg to the following “min” policy: given the network state

(see below) and thus greatly simplify analysis. The Poisson & - each transfer along routereceives a bandwidth shagg"n

rivals assumption is not unreasonable in a large network. dyen py

view of the insensitivity of performance results for an isolated A c

link to the exact document size distribution, we do not expect min gef min—t, (3)

divergence of the real distribution from the exponential size as- ter X,

sumption to invalidate the derived conclusions. However, thehere we have introduced the notatigp= 3 ,_, X, to repre-

main reason for assuming an exponential distribution is cleadgnt the total number of transfers making use of link

one of analytical tractability. It is easy to check that this policy satisfies the capacity con-
The network state is summarized by the variablés {x.,r ¢ straints (1). Moreover, it is sub-optimal with respect to the max-

Z%}, wherex; denotes the number of transfers in progress alongn fairness policy, as shown in the next theorem.

router. It remains to specify at what speed documents are transTheorem 1:Under the same initial conditions, the vector

mitted in any given stat¥ in order to turnX into a Markov pro- X™"(t) for the system under thé™" allocation policy is

cess with well defined dynamics. Indeed, given the ZafX) stochastically smaller thak™"(t), corresponding to thg™"

at which documents along routeare transferred when the net-allocation.

work state isX, X is a Markov process with non-zero transition ~ Proof: Assume that, for somig X™™(t) < X™"(t). Then,

Il. BESTFEFFORT NETWORKS

rates given by with the notation of (2),
mm mm
X —X+1: rateA, r - rpggxzf’
X —X%—1: ratex{(X)/or. 1 I C,
_ _ > Xmm(t) Z XM = D)
A natural assumption would be to consider that each document 14 r'se 4
receives its fair share of bandwidth. For instance, if as in [1] > C, > gmin
- f - Sr

fairness is understood as max-min fairness, each transfer along Xmin(t)



FAYOLLE ET AL BEST-EFFORT NETWORKS: MODELING AND PERFORMANCE ANALYSIS VIA LARGE NETWORKS ASYMPTOTICS 3

Thus, using a coupling argument, one can define the processda order to express the transition rates in terms.oérid o,
X™M and X™MN(t) in such a way thaX™™(t) < X™n(t) for all remark that

t>0. | . -

The previous theorem motivates the study of the min policy, )A(é =SV %=SANo-— % < p,C, max-— %
as it implies for instance that mean transfer tirfiesinder the =7 S ArOr 150 A0y
min policy provide upper bounds on the corresponding transfer
times under the max-min policy. Then, using the notation

ll. ERGODICITY CONDITIONS geid Ko = maxg;,

In the following we demonstrate that min and max-min band- ArGr e
width sharing policies have a stationary regime under the usua@ havevr € %,
conditions, i.e. when the load on each lifils less than 1:

Theorem 2:Under the allocation policied™™ and{™", the Plag(n) = —1|X(n) =X] > A X
network is ~ Dpy X5,
(i) ergodic if max. ., p, < 1;

(ii) transientif max_, p, > 1. Thus,

This result has already been proven for the max-min policy N . N .
in [6]; we note that, by Theorem 1, ergodicity under the min  E[f(X(n+1)) — f(X(n)) | X(n) = X]
policy implies ergodicity under the max-min policy, thus the

treatment of the min policy given below provides an alterna- — Z (Vr”wl IP[A)‘(r(n) =1 | )?(n) - )“(]
tive proof to that of [6]. However we feel that, since the proof =]
below is simpler and uses only elementary Lyapunov functions A PIAR — 11 %(n =X
results, it should be easier to adapt to a more complicated sit- v [Axr(n) N | ()= ])
uation. Transience under conditioin) (s in fact valid for any o
allocation policy which meets the capacity constraints (1). < r VrA(r {pMVr i‘r }
Proof: Consider the discrete time chafX(n),n € IN) & PmD XM
describing the sequence of states visited by the continuous time
jump procesX. Transitions from a given stade= (%,r € %) Lety & y/\rar wherey is such that
satisfy
1
. A P =PyYro <8 <1 re,
Plag(m =1 X(m =X = 2, M
A A 1% c for some real numbef satisfyingp,, < 6 < 1. The following
P[A%(n)=-1|X(n)=X] = == min—¢, inequality sums up what we have so far:
D oy ter X/
E[f(X(n+1))— f(X(n)) | X(n) =X
whereA % (n ) % (n+1) —%X:(n) and [ X )= fX( ))| ( ))\yxr} o
< d _x
e C < —
D ¥ Z(/\ﬁﬁmmA) rez%pMD[ XM]
e Or ler X
1 Let o be a real number such thét< a < 1. The following
< |2 (maX)\r +max— - maXCg) quantities will be evaluated separately
re# Oy (e
def D/. s def z )\ V( |: "*:|
1 = T |
Ergodicity of the continuous time proceXswill follow from rX>a%y pwD m
that of X and from the fact that the mean sojourn times in each def Ar V"f X
. ; ! 5 2y ole-o
stateX are bounded from above uniformly ¥ (or equivalently, e Sak;, puD X
that the jump rates out of each stateare bounded away from B
zero), a property which is easily verified. Since %, is a sum of negative terms, the following bound

Sufficient conditionAssumep,, & max,_, p, < 1, and define Nolds, for anyrg is such thaky, =Xy,

the Lyapunov function .
Ar Y™ yu
A\ e <2 _f-—a)< L1 —(0- i .
F(R) & Z VK, 7, < puD (6—0a) < pMD(G a)[glg/\, <0
rez 1<k<x%

wherey > 1 will be chosen later. The structure of the func- Boundingz, is straightforward:

tion, which may seem unnatural, has been chosen for the sake A *KA
of computation; it is in fact of the general forf)_, Br i+ +K, 3, < z v VX y<0' DR |.%|9max)\r.
for appropriate constanfs andK. r<ax, PMD
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branches, each consisting of one inbound and one outbound link
(thus implicitly N is an even number), and all links have unit
capacity. Each route connects the endpoints of two branches
via the center node. It has an associated arrival ragN2and
mean message length The factor 2N is introduced to make

the total load on each linlg = A g, independent of the number

of links N. As discussed below, wheN goes to infinity the

o number of ongoing transfers on any link becomes independent
of the number of ongoing transfers on any finite collection of the
other links (this was termed the “chaos propagation” property
in [9]). This allows us to derive fixed point equations for the
probability distribution of the number of transfers in progress
on any link.

A

. - .,
connection -~ R
~link

A. Symmetrical star-shaped networks

Fig. 2. A star-shaped network Although amenability to a mean field analysis is a significant
motivation for considering the star-shaped topology, it should
be noted that it is also relevant to the study of real networks.
Any overprovisioned links in a real network are largely trans-
(6 —a)minA + Y Y€ z|0maxA, < —e, parent to the throughput of elastic best effort flows. Only bot-
rez rez tleneck resources, typically located in the access network and
within Web servers, need to be included in the network model.
The star-shaped network may thus be considered to represent

Now, if C > 0 ande > 0 are chosen to satisfy the inequality

we haveyX € {%;, >C},

IE[f(X(n+ 1)) — f(X(n)) ] X(n) = X] any network with a well provisioned backbone where through-
Vo ye put is limited by bottlenecks at the source and destination edges.
= Z;+3, < —s—D < —€ o < 0. For example, inbound links might represent Web server CPU,
Pu Pm while outbound links correspond to the last hop of an ISP’s in-
Since {%}, < C} is a compact set, Foster's theorem applidgrconnection network. This discussion not only motivates the
(see e.g. [7]) and the Markov chain is ergodic. consideration of such a topology, but also suggests that lé\ting

. . go to infinity might indeed be realistic M represents the num-
Necessary conditiorAssume now that there existg such that e, of \Web servers over the Internet. Of course, there would be
Py, > 1. Defining no reason in practice to assume symmetry. This assumption is
e . introduced solely for reasons of tractability.
g(XxX) =) o, Although our focus is on the star-shaped topology, the mean
>t field approach can be applied to other symmetrical topologies.
It thus allows one to consider routes with more than two hops.

we immediately have, . i . ) o
The corresponding extended model is described in detail in Sec-

E[g(X(n+1)) —g(X(n)) | X(n) = X] tion IV-B below, where the corresponding fixed point equations
N - - are derived. Section IV-C then presents analytical results for the
= Or ('P[Axr(”) =1[X(n) =X] star-shaped network. Results of numerical investigation of the
>ty

fixed point equations are reported in Section V.

B. Fixed point equations for large symmetrical networks

> —[Cgop[O fC[O} > 0. We use the following notation in the sequel.
« N: total number of links;
Since the jumps are bounded, the chain is transient. B « L: length of a route through the network;
« R™: number of routes going through a given link;
IV. MEAN FIELD ANALYSIS OF LARGE NETWORKS « XN number of active connections on lifikc ., in station-

It does not appear possible to obtain closed form expressi@iy state;
for the stationary distribution of the best-effort network state um-X": number of active connections on routegoing through
der the min policy. We therefore turn to the study of these stéaks r(1),...,r(L);
tionary distributions under a limiting regime on network size and A: arrival rate on a link;
topology. A similar approach has previously been successfullyo: mean message length;
applied to loss networks (see [8], [9], and references therein)p £ A o load of a link.
and to queueing networks in [10], [11]. It is inspired by the We have implicitly assumed here that the number of routes
so-called mean field models of statistical physics. going through a linkR™, is the same for all links. We shall
Mean field analysis in the present context is best illustratéd fact assume further that the network topology is the same,
by the star-shaped network of Fig. 2. This network Ng2 as seen from any route. We do not attempt to give a formal
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N The chaos propagation assumptiomplies thatorf(N> obeys a
L : law of large numbers:

N L e S L Y gl N N _ ) POX —
Lo Y T Y B a, = ’\lllinooali ) = ,\|I|Ln°° P(XN = k) = IP(X = k).

R R B It appears that the dynamics of the system are drivea®y
NI 3 N o A IRV traditionally referred to as thmean field The following nota-
_ " SR Y tion will also be useful:

LR [ o
00010 '} RCEEEEN ey '
N | N N

L I K e A aVE S kal,  aZEX =Y ka.
\ \ . RS R L Y ‘ Y k>0 k>0
00100 000y . . . . .
NS e In order to derive the equation satisfied by the limit stationary

: distribution a,, we must first describe the possible transitions
for aN). The two cases of interest are
« arrival on a link withk connections:

(00,000) 10,000)

Fig. 3. A hypercube-shaped network with dimension 5.

1

(N) N 4 =

o ) _ _ k k N’ ak+1_’ak+1+N
definition of this symmetry assumption here. The reader is re- ) _ _

ferred to [9] for a thorough discussion on the minimal symme-departure from a link witk > 0 connections:

try assumptions required. Symmetry implies notably that each 1 1
. (N) (N) (N) (N)

route has the same number of hops and the same traffic pa- a. —a - N’ a - —a+ N

rameters. The star-shaped network discussed above constitutes . . , ,
an example of such a symmetrical network whes: 2 (with The transition corresponding to a new connection arrival has
RN =N/2). rateA. The main problem is to compute the departure rate from

: . ) il , :
It is more difficult to come up with meaningful examples oft Nk ¢, given thatit has™ = k ongoing transfers. This can be
symmetrical networks supporting routes with> 2: in partic- Wrtten as

ular, the network should not be fully connected, since routes 1 N) i )
{ —ZEprmn V :@. @)
longer than one hop would then be pointless. One reasonable o4 Oer x(N[}, 12
model is a hypercube (Fig. 3) of large dimension, in which each ) ()
edge contains two one-way links. Since the total number of routes is much larger than the size

The hypercube is a classical structure with many symmetriésof the network, we assume that the probability of having more
Itis characterized by its dimensidn Its vertices are representedhan one connection on a routs negligible?, and that the links
by d-tuples of Os and 1s (e.d0,1,1,0, 1)) and its edges connecton router are independent, conditioned oV = 1}3. The first

two vertices differing in only one coordinate. property allows to rewrite (4) as
The total number of links in such a networkNs= d29. The 1 1
number of routes going through any link is p > EN | XN =K IE [r/ninx(—N) ’ XN = 1}. (5)
El4 'er Y4
(@1 L e
RY = L(df ) Let j be a given link and let be one route using link, i.e.,

r > j. The distribution ofXj(N), conditioned on there being one
where the only routes considered are the shortest paths betwsstthection om, is then
two vertices which differ in exactly. coordinates. Note that

the results below do not depend on the precise topology of the IE [ﬂ{x(N):k/}ﬂ{xgmzl}]
network. P [Xi(N) =K[x"=1]= IIJEJI '
We now derive the fixed point equations. It should be stressed (xN=1}

that this derivation is heuristic. We clearly mention which steps By symmetry, it is possible to sum both sides of the above
need further justification in the course of the derivation. We anction over all 'the routes going through lifik
believe that the equations are very good approximations, how-
ever, especially in view of the numerical and simulation results IE [XJ.(NML
presented in the following section. P[XN =K ‘ V=1 = i
Assume now thap < 1 and that the system is in stationary ] EXN
stateX™ = (XN r € Z). For anyk > 0, the proportion of links KIEaM
in statek is = ﬁ.
(N) def E Z 1We have not proven that this assumption holds. It seems, however, that the
e

N {X;N):k}' techniques developed in [9] could be applied to prove that this is the case, pro-

vided the parametd®™ goes to infinity withN.

2This fact is easy to prove in finite time, but requires more work for the sta-
tionary regime.

3This is the point where the heuristic is not completely exact; it is however
IP(XN =k) = IE al(('\”, Vle Z. likely to be true wherp tends either to 0 or 1.

By symmetry, it holds that
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Inbound links Outbound links

Departure rate (5) then becomes, in view of the assumed in-
dependence property between X;ﬁ) givenx, =1,

-~ <EAk—A-~Ak—)|'L#§).
W A 2 /i) Ea >

Taking the limitN — oo, the invariant measure equations fol-
low. We have:

\Y

1
*/\ao‘i’EalF:O (6)
and

1 Y1 U
)‘(Uk-l_ak)+g<ak+15|_ 1~ Ny 1)20 Q)
Fig. 4. The asymmetrical star-shaped network
fork > 1, where

ot ® 1 1 1\ L Remark 1: When considering the star-shaped network as a
U =K Z (k AbrANe k> _I_Lkiaki' (8)  model for Web transfers over the Internet, as suggested in Sec-
Kyl =1 2 L7i= tion IV-A, inbound links could be seen as the CPU of Web
Equations (6) and (7) can be rewritten in a more concise fofRrvers and outbound links as the last hop between the ISP’s
backbone and the end customers. It thus makes sense to relax
the symmetry assumption we had made between inbound and
Oy qUyr = pa-"ta,, vk > 0. (9) outbound links, as the two types of bottlenecks are of a differ-
ent nature. We might thus consider a star-shaped network with
The two sets of equations (8) and (9) together constitute tRe inbound linksN°* outbound links, inbound (resp. outbound)
fixed point equations we require. As noted in the introductiqmks having capacityC” (resp.C*), see Fig. 4. Assume the
of this section, these equations do not depend on the topologyiffan message lengthis the same for each two-hop route, and

as

the network. The expression fog can be simplified. the link capacitie€™ are fixed. The arrival rate on each route
LetY,,... Y, be random variables with distribution has the form, £ A /N", and the loagh** & A g /C** s less that
yay . 1. The capacityC" of a “backbone” link is chosen to ensure
P =y)=">,2=<i=<L, p" £ AagN>/C"N" < 1 is fixed when the size of the system
- grows. Then, afN"™ andN** increase, witiN"/N°* small, the
and letY = max(,,...,Y,). Then (8) reads inbound links have many active connections and a large capac-
11 ity, while the outbound links remain in “normal” utilization. The
U, = kat—1E [_ A _] (10) same approach as above can then be applied, to yield the set of
kY fixed point equations
Straightforward calculations yield - =t
L1 0 1 1 iUy = PO 70,
4+ 4 _ 4L <L _ alzm]_ullr(] 1 — pmauutalzut’
IE{k/\Y} y;[kAy} P(Y = y) 1ty
© 1 where
= — |P(Y < y) ‘ ) Cout
kay(y—l- 1) up = 20a)',r'min{k7 @y]’
L . . : y>
The simplified form fory, is thus, from the basic properties Cout
of the minimum of independent random variables: wt = Z}af,”‘min{gk,yy
y>
0 y L-1
U =Kk Zkil [ Z mam} . (11) and ay (resp.ap”) represents the proportion of inbound (resp.
y= Y(y+ ) m=0

outbound) links withk ongoing transfers.

Note that, in the case= 2 (i.e., for the star-shaped network) .
. . . . - /C. Analytical results for =2
the original equation (8) is perhaps simpler than the equivalent = _ o . .
expression (11). It yields the following form for the fixed point While equation (9) looks superficially like a “birth and death

equations: process” equation, it is in fact non-linear due to the fact that
_ anda both depend on the.
O = paa, 12) From (10), one clearly sees tha} is increasing ink, and
U = 20(k/\y)ay. (13) tends too_rfl whenk — oo, Thereforep{k is incrfaasing as long
VS asu, < pat~1, and decreasing after that. This means that the
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a, form a modal distribution, which maximal value is attained 0.08 oo
at 0.07 | g§§j§§ B
—_ p=0.
ko =max{k > 0, u, < pa-~1}. 0.06 | ot —
We now present analytical results on the solution of the fixed § ||
point equations fo. = 2. The proof of these results can be é 0.04 lf |
found in [12]. It relies heavily on functional analysis. 3 ool
Equations (12)—(13)_ have an unique soluti_onmmt 1 and, 0.02 Ll
whenp — 1, the following asymptotic expansions hold:
0.01
1 . / ,
EX ~ ——— o
(1_ p)ZA’ 0 200 400 600 800 1000 1200 1400 1600

number of connections

mp P =k) = (1-pBers] 7],

Fig. 5. Distribution of the mean-field probabilities(¥ = k) for L = 20 and
different values of the loag.

whereA andB are non-negative constants.

Thus, under the min policy, any link in the star-shaped net- 0.04
work has a mean queue length which is one order of magni-
tude larger than for a single server queue with the same load
(p/(1—p)). Its tail distribution is still geometrical with factor 0.03
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thenA can be written as follows:

A:/ c(z)dz= lim zV(2) ~ 1.30. _ o _ :
0 z—0 Fig. 6. Distribution of the mean-field probabilitie{¥= k) for different values
of the route length. and loado = 0.9.

Since this system is numerically highly unstable, it has proven
difficult (with the “Livermore stiff ODE” solver from MAPLE)

to derive a better estimate fé¢ As clearly seen in the figure, the distributions are very dif-
Itis interesting to note that the functiov(y) = v(e¥) + 1 sat- ferent from what would be obtained for routes of length 1.
isfies the so-calleBlasius[13] equation In this case, the system consists of a collection of independent
M/M/1 queues and the associated distributjop } is geometric.
w” (y) +w(y)w’(y) = 0, ForL > 1, the{a, } distributions are markedly modal and the po-

] ) ] sitions of the peak values are roughly proportionaltte- p) 2,
which describes a laminar boundary layer along a flat plate (s§ggct has only been proven in Section IV-C for the dase?2.
e.g., [14]). Moreover, since the shape of the distribution is rather narrow,
this position roughly coincides with the mean number of active
connection (as can be seen from the raw data).

While the analytical results of Section IV-C give some good The impact of route length is illustrated in Fig. 6. It seems
estimates, they are only valid in the heavy traffic regme- 1. that the mean number of active connections (which is again ap-
In addition, similar results fok > 2 are not available. We thusproximately the peak value of the distribution) is roughly pro-
resort to numerical resolution of the equations to gain a bglortional to log.. Note that a logarithmic growth rate is very
ter understanding of the performance of transfers across lagggw suggesting that, beyond 2 or 3, the number of bottlenecks
symmetrical networks. The very form of the equations suggesises not have a significant impact on mean transfer times. They
the use of a fixed-point method for this numerical resolutio@epend much more on the load
starting froma priori values(a,”,k > 0), the algorithm com-  The results presented so far only concern the solution of the
putes the correspondimf) from (8), and then new valueg® fixed point equations. As mentioned earlier, there are gaps in
from (9). Provided special care is taken to avoid instabilities, thiee derivation of these equations. To assess their quality and
iteration of this process converges rapidly (less than 100 steps)investigate the accuracy of the asymptotic approximation for
Sample results are shown in Fig. 5, corresponding to a larfjd@te size networks, we ran a number of simulations of the star-
symmetrical network with routes of length= 20. shaped network. Fig. 7 displays the corresponding results when

V. NUMERICAL ANALYSIS AND SIMULATIONS
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the load on each link is set to = 0.9 for a varying number
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sufficiently complex model, and that the study of symmetrical
networks withL > 2 is less relevant.

The work presented here can be pursued in several directions.
On the theoretical side, the analytical results presented in Sec-
tion IV-C constitute a first step to understanding the solution
of the fixed point equations which could be taken further. An-
other challenging theoretical question is to improve the fixed
point equations in a rigorous way. On a more practical side, the
fixed point equations might be simplified so as to find simple
approximate formulas for mean transfer times as a function of
key parameters (such a8, p°"in the case of the asymmetrical
star-shaped network described in Remark 1). Such approximate
formulas could then lead to engineering rules for capacity plan-
ning.

We view the present study as a preliminary investigation into
the performance of best effort networks with multiple bottleneck
links. A significant result of this investigation is the discovery
that the extension of the processor sharing model valid for a
single bottleneck proves to be very hard. There appears to be

of links. The agreement between the simulation results and th@simple parallel to the familiar fixed point techniques used in

fixed point equation results is excellent fdr= 100 links and
improves adN increases.

loss networks. The problem is, however, of considerable prac-
tical importance for providers seeking to engineer their network

to ensure adequate throughput for document transfers. We hope

VI. CONCLUSIONS

therefore that this paper will incite further work and the devel-

In this paper, we have considered a class of Markov prgPment of alternative heuristic approaches.

cesses called best-effort networks which constitutes a natural
probabilistic model for evaluating the performance of document
transfers over data networks such as the Internet. Unlike almidt
all previous work, this model accounts for the random natug
of traffic: document transfers begin at the epochs of a certain
arrival process and the size of each document is drawn fr

a given probability distribution. In the interests of tractabil-
ity we assumed Poisson arrivals and exponentially distributéd
sizes. We introduced the “min” bandwidth sharing policy asg
conservative approximation to the more classical max-min pol-
icy. Necessary and sufficient ergodicity conditions for best fl
fort networks under the min and max-min policies have been
established. [7]

In order to pursue the analysis of the stationary distributions
of the number of transfers in progress, we have resorted to lagge
network asymptotics applying the mean field approach of stél
tistical physics. This enabled us to derive fixed point equatioH%]
for the probability distribution of the number of ongoing trans-
fers on a given network link. The validity of these equations has
been established by comparing their solution with the results'of
simulations.

Analytical and numerical results show how the mean transféf
time depends on the number of bottleneck links and their load.
The steady state distribution in networks where routes have sev-
eral bottlenecksl( > 1) has a marked modal behavior. This i§.°]
significantly different to the geometric distribution which holdg, 4
when routes have a single bottlenetk=£ 1). Performance is
also much more sensitive to link logdfor multiple bottleneck
routes: ap — 1, mean transfer time increases lik§(1— p)?
in the cased. = 2, whereas the dependence is ji{ll— p) when
L = 1. Finally, the impact of the number of hops per rolte
appears small (given that > 1) compared to that of parame-
ter p. This suggests that the star-shaped network is perhaps a
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