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Abstract

To harness modern multicore processors, it is imperative to develop parallel versions of funda-

mental algorithms. In this paper, we compare different approaches to parallel best-first search in a

shared-memory setting. We present a new method, PBNF, that uses abstraction to partition the state

space and to detect duplicate states without requiring frequent locking. PBNF allows speculative

expansions when necessary to keep threads busy. We identify and fix potential livelock conditions

in our approach, proving its correctness using temporal logic. Our approach is general, allowing it

to extend easily to suboptimal and anytime heuristic search. In an empirical comparison on STRIPS

planning, grid pathfinding, and sliding tile puzzle problems using 8-core machines, we show that

A*, weighted A* and Anytime weighted A* implemented using PBNF yield faster search than

improved versions of previous parallel search proposals.

1. Introduction

It is widely anticipated that future microprocessors will not have faster clock rates, but instead

more computing cores per chip. Tasks for which there do not exist effective parallel algorithms

will suffer a slowdown relative to total system performance. In artificial intelligence, heuristic

search is a fundamental and widely-used problem solving framework. In this paper, we compare

different approaches for parallelizing best-first search, a popular method underlying algorithms such

as Dijkstra’s algorithm and A* (Hart, Nilsson, & Raphael, 1968).

In best-first search, two sets of nodes are maintained: open and closed. Open contains the search

frontier: nodes that have been generated but not yet expanded. In A*, open nodes are sorted by their

f value, the estimated lowest cost for a solution path going through that node. Open is typically

implemented using a priority queue. Closed contains all previously generated nodes, allowing the

search to detect states that can be reached via multiple paths in the search space and avoid expanding

them multiple times. The closed list is typically implemented as a hash table. The central challenge

in parallelizing best-first search is avoiding contention between threads when accessing the open

and closed lists. We look at a variety of methods for parallelizing best-first search, focusing on

algorithms which are based on two techniques: parallel structured duplicate detection and parallel

retracting A*.
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Parallel structured duplicate detection (PSDD) was originally developed by Zhou and Hansen

(2007) for parallel breadth-first search, in order to reduce contention on shared data structures by

allowing threads to enjoy periods of synchronization-free search. PSDD requires the user to supply

an abstraction function that maps multiple states, called an nblock, to a single abstract state. We

present a new algorithm based on PSDD called Parallel Best-NBlock-First (PBNF1). Unlike PSDD,

PBNF extends easily to domains with non-uniform and non-integer move costs and inadmissible

heuristics. Using PBNF in an infinite search space can give rise to livelock, where threads continue

to search but a goal is never expanded. We will discuss how this condition can be avoided in

PBNF using a method we call hot nblocks, as well as our use of bounded model checking to test its

effectiveness. In addition, we provide a proof of correctness for the PBNF framework, showing its

liveness and completeness in the general case.

Parallel retracting A* (PRA*) was created by Evett, Hendler, Mahanti, and Nau (1995). PRA*

distributes the search space among threads by using a hash of a node’s state. In PRA*, duplicate

detection is performed locally; communication with peers is only required to transfer generated

search-nodes to their home processor. PRA* is sensitive to the choice of hashing function used

to distribute the search space. We show a new hashing function, based on the same state space

abstraction used in PSDD, that can give PRA* significantly better performance in some domains.

Additionally, we show that the communication cost incurred in a naive implementation of PRA* can

be prohibitively expensive. Kishimoto, Fukunaga, and Botea (2009) present a method that helps to

alleviate the cost of communication in PRA* by using asynchronous message passing primitives.

We evaluate PRA* (and its variants), PBNF and other algorithms empirically using dual quad-

core Intel machines. We study their behavior on three popular search domains: STRIPS planning,

grid pathfinding, and the venerable sliding tile puzzle. Our empirical results show that the simplest

parallel search algorithms are easily outperformed by a serial A* search even when they are run

with eight threads. The results also indicate that adding abstraction to the PRA* algorithm can give

a larger increase in performance than simply using asynchronous communication, although using

both of these modifications together may outperform either one used on its own. Overall, the PBNF

algorithm often gives the best performance.

In addition to finding optimal solutions, we show how to adapt several of the algorithms to

bounded suboptimal search, quickly finding w -admissible solutions (with cost within a factor of w

of optimal). We provide new pruning criteria for parallel suboptimal search and prove that algo-

rithms using them retain w -admissibility. Our results show that, for sufficiently difficult problems,

parallel search may significantly outperform serial weighted A* search. We also found that the

advantage of parallel suboptimal search increases with problem difficulty.

Finally, we demonstrate how some parallel searches, such as PBNF and PRA*, lead naturally

to effective anytime algorithms. We also evaluate other obvious parallel anytime search strategies

such as running multiple weighted A* searches in parallel with different weights. We show that the

parallel anytime searches are able to find better solutions faster than their serial counterparts and

they are also able to converge more quickly on optimal solutions.

1. Peanut Butter ’N’ (marshmallow) Fluff, also known as a fluffernutter, is a well-known children’s sandwich in the

USA.
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2. Previous Approaches

There has been much previous work in parallel search. We will briefly summarize selected proposals

before turning to the foundation of our work, the PRA* and PSDD algorithms.

2.1 Depth- and Breadth-first Approaches

Early work on parallel heuristic search investigated approaches based on depth-first search. Two

examples are distributed tree search (Ferguson & Korf, 1988), and parallel window search (Powley

& Korf, 1991).

Distributed tree search begins with a single thread, which is given the initial state to expand.

Each time a node is generated an unused thread is assigned to the node. The threads are allocated

down the tree in a depth-first manner until there are no more free threads to assign. When this occurs,

each thread will continue searching its own children with a depth-first search. When the solution

for a subtree is found it is passed up the tree to the parent thread and the child thread becomes free

to be re-allocated elsewhere in the tree. Parent threads go to sleep while their children search, only

waking once the children terminate, passing solutions upward to their parents recursively. Because

it does not keep a closed list, depth-first search cannot detect duplicate states and does not give

good search performance on domains with many duplicate states, such as grid pathfinding and some

planning domains.

Parallel window search parallelizes the iterative deepening A* (IDA*, see Korf, 1985) algo-

rithm. In parallel window search, each thread is assigned a cost-bound and will perform a cost-

bounded depth-first search of the search space. The problem with this approach is that IDA* will

spend at least half of its search time on the final iteration and since every iteration is still performed

in only a single thread, the search will be limited by the speed of a single thread. In addition, non-

uniform costs can foil iterative deepening, because there may not be a good way to choose new

upper-bounds that give the search a geometric growth.

Holzmann and Bosnacki (2007) have been able to successfully parallelize depth-first search for

model checking. The authors are able to demonstrate that their technique that distributes nodes

based on search depth was able to achieve near linear speedup in the domain of model checking.

Other research has used graphics processing units (GPUs) to parallelize breadth-first search for

use in two-player games (Edelkamp & Sulewski, 2010). In the following sections we describe

algorithms with the intent of parallelizing best-first search.

2.2 Simple Parallel Best-first Search

The simplest approach to parallel best-first search is to have open and closed lists that are shared

among all threads (Kumar, Ramesh, & Rao, 1988). To maintain consistency of these data structures,

mutual exclusion locks (mutexes) need to be used to ensure that a single thread accesses the data

structure at a time. We call this search “parallel A*”. Since each node that is expanded is taken

from the open list and each node that is generated is looked up in the closed list by every thread, this

approach requires a lot of synchronization overhead to ensure the consistency of its data structures.

As we see in Section 4.3, this naive approach performs worse than serial A*.

There has been much work on designing complex data structures that retain correctness under

concurrent access. The idea behind these special wait-free data structures is that many threads

can use portions of the data structure concurrently without interfering with one another. Most of

691



BURNS, LEMONS, RUML, & ZHOU

these approaches use a special compare-and-swap primitive to ensure that, while modifying the

structure, it does not get modified by another thread. We implemented a simple parallel A* search,

which we call lock-free parallel A*, in which all threads access a single shared, concurrent priority

queue and concurrent hash table for the open and closed lists, respectively. We implemented the

concurrent priority queue data structure of Sundell and Tsigas (2005). For the closed list, we used

a concurrent hash table which is implemented as an array of buckets, each of which is a concurrent

ordered list as developed by Harris (2001). These lock-free data structures used to implement LPA*

require a special lock-free memory manager that uses reference counting and a compare-and-swap

based stack to implement a free list (Valois, 1995). We will see that, even with these sophistocated

structures, a straightforward parallel implementation of A* does not give competitive performance.

One way of avoiding contention altogether is to allow one thread to handle synchronization of

the work done by the other threads. K -Best-First Search (Felner, Kraus, & Korf, 2003) expands the

best k nodes at once, each of which can be handled by a different thread. In our implementation, a

master thread takes the k best nodes from open and gives one to each worker. The workers expand

their nodes and the master checks the children for duplicates and inserts them into the open list.

This allows open and closed to be used without locking, however, in order to adhere to a strict

k -best-first ordering this approach requires the master thread to wait for all workers to finish their

expansions before handing out new nodes. In the domains used in this paper, where node expansion

is not particularly slow, we show that this method does not scale well.

One way to reduce contention during search is to access the closed list less frequently. A tech-

nique called delayed duplicate detection (DDD) (Korf, 2003), originally developed for external-

memory search, can be used to temporarily delay access to the a closed list. While several vari-

ations have been proposed, the basic principle behind DDD is that generated nodes are added to

a single list until a certain condition is met (a depth level is fully expanded, some maximum list

size is reached (Stern & Dill, 1998), etc.) Once this condition has been met, the list is sorted to

draw duplicate nodes together. All nodes in the list are then checked against the closed list, with

only the best version being kept and inserted onto the open list. The initial DDD algorithm used a

breadth-first frontier search and therefore only the previous depth-layer was required for duplicate

detection. A parallel version was later presented by Niewiadomski, Amaral, and Holte (2006a),

which split each depth layer into sections and maintained separate input and output lists for each.

These were later merged in order to perform the usual sorting and duplicate detection methods.

This large synchronization step, however, will incur costs similar to KBFS. It also depends upon

an expensive workload distribution scheme to ensure that all processors have work to do, decreas-

ing the bottleneck effect of nodes being distributed unevenly, but further increasing the algorithm’s

overhead. A later parallel best-first frontier search based on DDD was presented (Niewiadomski,

Amaral, & Holte, 2006b), but incurs even further overhead by requiring synchronization between

all threads to maintain a strict best-first ordering.

Jabbar and Edelkamp (2006) present an algorithm called parallel external A* (PEA*) that uses

distributed computing nodes and external memory to perform a best-first search. PEA* splits the

search space into a set of “buckets” that each contain nodes with the same g and h values. The

algorithm performs a best-first search by exploring all the buckets with the lowest f value beginning

with the one with the lowest g . A master node manages requests to distribute portions of the current

bucket to various processing nodes so that expanding a single bucket can be performed in parallel.

To avoid contention, PEA* relies on the operating system to synchronize access to files that are

shared among all of the nodes. Jabbar and Edelkamp used the PEA* algorithm to parallelize a

692



BEST-FIRST SEARCH FOR MULTICORE MACHINES

model-checker and achieved almost linear speedup. While partitioning on g and h works on some

domains it is not general if few nodes have the same g and h values. This tends to be the case in

domains with real-valued edge costs. We now turn our attention to two algorithms that will reappear

throughout the rest of this paper: PRA* and PSDD.

2.3 Parallel Retracting A*

PRA* (Evett et al., 1995) attempts to avoid contention by assigning separate open and closed lists

to each thread. A hash of the state representation is used to assign nodes to the appropriate thread

when they are generated. (Full PRA* also includes a retraction scheme that reduces memory use

in exchange for increased computation time; we do not consider that feature in this paper.) The

choice of hash function influences the performance of the algorithm, since it determines the way

that work is distributed. Note that with standard PRA*, any thread may communicate with any of

its peers, so each thread needs a synchronized message queue to which peers can add nodes. In a

multicore setting, this is implemented by requiring a thread to take a lock on the message queue.

Typically, this requires a thread that is sending (or receiving) a message to wait until the operation

is complete before it can continue searching. While this is less of a bottleneck than having a single

global, shared open list, we will see below that it can still be expensive. It is also interesting to

note that PRA* and the variants mentioned below practice a type of delayed duplicate detection,

because they store duplicates temporarily before checking them against a thread-local closed list

and possibly inserting them into the open list.

2.3.1 IMPROVEMENTS

Kishimoto et al. (2009) note that the original PRA* implementation can be improved by remov-

ing the synchronization requirement on the message queues between nodes. Instead, they use the

asynchronous send and receive functionality from the MPI message passing library (Snir & Otto,

1998) to implement an asynchronous version of PRA* that they call Hash Distributed A* (HDA*).

HDA* distributes nodes using a hash function in the same way as PRA*, except the sending and

receiving of nodes happens asynchronously. This means that threads are free to continue searching

while nodes which are being communicated between peers are in transit.

In contact with the authors of HDA*, we have created an implementation of HDA* for multicore

machines that does not have the extra overhead of message passing for asynchronous communica-

tion between threads in a shared memory setting. Also, our implementation of HDA* allows us

to make a fair comparison between algorithms by sharing common data structures such as priority

queues and hash tables.

In our implementation, each HDA* thread is given a single queue for incoming nodes and one

outgoing queue for each peer thread. These queues are implemented as dynamically sized arrays

of pointers to search nodes. When generating nodes, a thread performs a non-blocking call to

acquire the lock2 for the appropriate peer’s incoming queue, acquiring the lock if it is available and

immediately returning failure if it is busy, rather than waiting. If the lock is acquired then a simple

pointer copy transfers the search node to the neighboring thread. If the non-blocking call fails the

nodes are placed in the outgoing queue for the peer. This operation does not require a lock because

the outgoing queue is local to the current thread. After a certain number of expansions, the thread

attempts to flush the outgoing queues, but it is never forced to wait on a lock to send nodes. It

2. One such non-blocking call is the pthread mutex trylock function of the POSIX standard.
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Figure 1: A simple abstraction. Self-loops have been eliminated.

also attempts to consume its incoming queue and only waits on the lock if its open list is empty,

because in that case it has no other work to do. Using this simple and efficient implementation,

we confirmed the results of Kishimoto et al. (2009) that show that the asynchronous version of

PRA* (called HDA*) outperforms the standard synchronous version. Full results are presented in

Section 4.

PRA* and HDA* use a simple representation-based node hashing scheme that is the same one,

for example, used to look up nodes in closed lists. We present two new variants, APRA* and

AHDA*, that make use of state space abstraction to distribute search nodes among the processors.

Instead of assigning nodes to each thread, each thread is assigned a set of blocks of the search space

where each block corresponds to a state in the abstract space. The intuition behind this approach

is that the children of a single node will be assigned to a small subset of all of the remote threads

and, in fact, can often be assigned back to the expanding thread itself. This reduces the number of

edges in the communication graph among threads during search, reducing the chances for thread

contention. Abstract states are distributed evenly among all threads by using a modulus operator in

the hope that open nodes will always be available to each thread.

2.4 Parallel Structured Duplicate Detection

PSDD is the major previously-proposed alternative to PRA*. The intention of PSDD is to avoid

the need to lock on every node generation and to avoid explicitly passing individual nodes between

threads. It builds on the idea of structured duplicate detection (SDD), which was originally devel-

oped for external memory search (Zhou & Hansen, 2004). SDD uses an abstraction function, a

many-to-one mapping from states in the original search space to states in an abstract space. The

abstract node to which a state is mapped is called its image. An nblock is the set of nodes in the

state space that have the same image in the abstract space. The abstraction function creates an ab-

stract graph of nodes that are images of the nodes in the state space. If two states are successors in

the state space, then their images are successors in the abstract graph. Figure 1 shows a state space

graph (left) consisting of 36 nodes and an abstract graph (right) which consists of nine nodes. Each

node in the abstract graph represents a grouping of four nodes, called an nblock, in the original state

space, shown by the dotted lines in the state space graph on the left.
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Figure 2: Two disjoint duplicate detection scopes.

Each nblock has an open and closed list. To avoid contention, a thread will acquire exclusive

access to an nblock. Additionally, the thread acquires exclusive access to the nblocks that corre-

spond to the successors in the abstract graph of the nblock that it is searching. For each nblock we

call the set of nblocks that are its successors in the abstract graph the its duplicate detection scope.

This is because these are the only abstract nodes to which access is required in order to perform

perfect duplicate detection when expanding nodes from the given nblock. If a thread expands a

node n in nblock b the children of n must fall within b or one of the nblocks that are successors of

b in the abstract graph. Threads can determine whether or not new states generated from expanding

n are duplicates by simply checking the closed lists of nblocks in the duplicate detection scope.

This does not require synchronization because the thread has exclusive access to this set of nblocks.

In PSDD, the abstract graph is used to find nblocks whose duplicate detection scopes are dis-

joint. These nblocks can be searched in parallel without any locking during node expansions.

Figure 2 shows two disjoint duplicate detection scopes delineated by dashed lines with different

patterns. An nblock that is not in use by any thread and whose duplicate detection scope is also

not in use is considered to be free. A free nblock is available for a thread to acquire it for search-

ing. Free nblocks are found by explicitly tracking, for each nblock b, σ(b), the number of nblocks
among b’s successors that are in use by another thread. An nblock b can only be acquired when

σ(b) = 0.

The advantage of PSDD is that it only requires a single lock, the one controlling manipulation

of the abstract graph, and the lock only needs to be acquired by threads when finding a new free

nblock to search. This means that threads do not need to synchronize while expanding nodes, their

most common operation.

Zhou and Hansen (2007) used PSDD to parallelize breadth-first heuristic search (Zhou&Hansen,

2006). In this algorithm, each nblock has two lists of open nodes. One list contains open nodes

at the current search depth and the other contains nodes at the next search depth. In each thread,

only the nodes at the current search depth in an acquired nblock are expanded. The children that

are generated are put in the open list for the next depth in the nblock to which they map (which will

be in the duplicate detection scope of the nblock being searched) as long as they are not duplicates.

When the current nblock has no more nodes at the current depth, it is swapped for a free nblock
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that does have open nodes at this depth. If no more nblocks have open nodes at the current depth,

all threads synchronize and then progress together to the next depth. An admissible heuristic is used

to prune nodes that fall on or above the current solution upper bound.

2.4.1 IMPROVEMENTS

While PSDD can be viewed as a general framework for parallel search, in our terminology, PSDD

refers to an instance of SDD in a parallel setting that uses layer-based synchronization and breadth-

first search. In this subsection, we present two algorithms that use the PSDD framework and attempt

to improve on the PSDD algorithm in specific ways.

As implemented by Zhou and Hansen (2007), the PSDD algorithm uses the heuristic estimate

of a node only for pruning; this is only effective if a tight upper bound is already available. To

cope with situations where a good bound is not available, we have implemented a novel algorithm

using the PSDD framework that uses iterative deepening (IDPSDD) to increase the bound. As we

report below, this approach is not effective in domains such as grid pathfinding that do not have a

geometrically increasing number of nodes within successive f bounds.

Another drawback of PSDD is that breadth-first search cannot guarantee optimality in domains

where operators have differing costs. In anticipation of these problems, Zhou and Hansen (2004)

suggest two possible extensions to their work, best-first search and a speculative best-first layering

approach that allows for larger layers in the cases where there are few nodes (or nblocks) with the

same f value. To our knowledge, we are the first to implement and test these algorithms.

Best-first PSDD (BFPSDD) uses f value layers instead of depth layers. This means that all

nodes that are expanded in a given layer have the same (lowest) f value. BFPSDD provides a best-

first search order, but may incur excessive synchronization overhead if there are few nodes in each

f layer. To ameliorate this, we loosen the best-first ordering by enforcing that at least m nodes

are expanded before abandoning a non-empty nblock. (Zhou & Hansen, 2007 credit Edelkamp &

Schrödl, 2000 with this idea.) Also, when populating the list of free nblocks for each layer, all of

the nblocks that have nodes with the current layer’s f value are used or a minimum of k nblocks are

added where k is four times the number of threads. (This value for k gave better performance than

other values tested.) This allows us to add additional nblocks to small layers in order to amortize the

cost of synchronization. In addition, we tried an alternative implementation of BFPSDD that used

a range of f values for each layer. A parameter ∆f was used to proscribe the width (in f values)

of each layer of search. This implementation did not perform as well and we do not present results

for it. With either of these enhancements, threads may expand nodes with f values greater than that

of the current layer. Because the first solution found may not be optimal, search continues until all

remaining nodes are pruned by the incumbent solution.

Having surveyed the existing approaches to parallel best-first search, we now present a new

approach which comprises the main algorithmic contribution of this paper.

3. Parallel Best-NBlock-First (PBNF)

In an ideal scenario, all threads would be busy expanding nblocks that contain nodes with the lowest

f values. To approximate this, we combine PSDD’s duplicate detection scopes with an idea from

the Localized A* algorithm of Edelkamp and Schrödl (2000). Localized A*, which was designed

to improve the locality of external memory search, maintains sets of nodes that reside on the same

memory page. The decision of which set to process next is made with the help of a heap of sets
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1. while there is an nblock with open nodes

2. lock; b ← best free nblock; unlock

3. while b is no worse than the best free nblock or we’ve done fewer than min expansions

4. m ← best open node in b

5. if f (m) ≥ f (incumbent), prune all open nodes in b
6. else if m is a goal

7. if f (m) < f (incumbent)
8. lock; incumbent ← m; unlock

9. else for each child c of m

10. if c is not on the closed list of its nblock

11. insert c in the open list of the appropriate nblock

Figure 3: A sketch of basic PBNF search, showing locking.

ordered by the minimum f value in each set. By maintaining a heap of free nblocks ordered on each

nblocks best f value, we can approximate our ideal parallel search. We call this algorithm Parallel

Best-NBlock-First (PBNF) search.

In PBNF, threads use the heap of free nblocks to acquire the free nblock with the best open

node. A thread will search its acquired nblock as long as it contains nodes that are better than those

of the nblock at the front of the heap. If the acquired nblock becomes worse than the best free

one, the thread will attempt to release its current nblock and acquire the better one which contains

open nodes with lower f values. There is no layer synchronization, so threads do not need to wait

unless no nblocks are free. The first solution found may be suboptimal, so search must continue

until all open nodes have f values worse than the incumbent solution. Figure 3 shows high-level

pseudo-code for the algorithm.

Because PBNF is designed to tolerate a search order that is only approximately best-first, we

have freedom to introduce optimizations that reduce overhead. It is possible that an nblock has only

a small number of nodes that are better than the best free nblock, so we avoid excessive switching

by requiring a minimum number of expansions. Due to the minimum expansion requirement it is

possible that the nodes expanded by a thread are arbitrarily worse than the frontier node with the

minimum f . We refer to these expansions as “speculative.” This can be viewed as trading off node

quality for reduced contention on the abstract graph. Section 4.1 shows the results of an experiment

that evaluates this trade off.

Our implementation also attempts to reduce the time a thread is forced to wait on a lock by

using non-blocking operations to acquire the lock whenever possible. Rather than sleeping if a lock

cannot be acquired, a non-blocking lock operation (such as pthread mutex trylock) will

immediately return failure. This allows a thread to continue expanding its current nblock if the lock

is busy. Both of these optimizations can introduce additional ‘speculative’ expansions that would

not have been performed in a serial best-first search.

3.1 Livelock

The greedy free-for-all order in which PBNF threads acquire free nblocks can lead to livelock in

domains with infinite state spaces. Because threads can always acquire new nblocks without waiting

for all open nodes in a layer to be expanded, it is possible that the nblock containing the goal will
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never become free. This is because we have no assurance that all nblocks in its duplicate detection

scope will ever be unused at the same time. For example, imagine a situation where threads are

constantly releasing and acquiring nblocks that prevent the goal nblock from becoming free. To

fix this, we have developed a method called ‘hot nblocks’ where threads altruistically release their

nblock if they are interfering with a better nblock. We call this enhanced algorithm ‘Safe PBNF.’

We use the term ‘the interference scope of b’ to refer to the set of nblocks that, if acquired,

would prevent b from being free. The interference scope includes not only b’s successors in the

abstract graph, but their predecessors too. In Safe PBNF, whenever a thread checks the heap of

free nblocks to determine if it should release its current nblock, it also ensures that its acquired

nblock is better than any of those that it interferes with (nblocks whose interference scope the

acquired nblock is in). If it finds a better one, it flags that nblock as ‘hot.’ Any thread that finds

itself blocking a hot nblock will release its nblock in an attempt to free the hot nblock. For each

nblock b we define σh(b) to be the number of hot nblocks that b is in the interference scope of. If
σh(b) �= 0, b is removed from the heap of free nblocks. This ensures that a thread will not acquire
an nblock that is preventing a hot nblock from becoming free.

Consider, for example, an abstract graph containing four nblocks connected in a linear fashion:

A ↔ B ↔ C . A possible execution of PBNF can alternate between a thread expanding from

nblocks A and C . If this situation arrises then nblocks B will never be considered free. If the only

goals are located in nblock B then, in an infinite search space there may be a livelock. With the

“Safe” variant of PBNF, however, when expanding from either A or C a thread will make sure to

check the f value of the best open node in nblock B periodically. If the best node in B is seen to be

better than the nodes in A or C then B will be flagged as “hot” and both nblocks A and C will no

longer be eligable for expansion until after nblock B has been acquired.

More formally, let N be the set of all nblocks, Predecessors(x ) and Successors(x ) be the sets
of predecessors and successors in the abstract graph of nblock x , H be the set of all hot nblocks,

IntScope(b) = {l ∈ N : ∃x ∈ Successors(b) : l ∈ Predecessors(x )} be the interference scope
of an nblock b and x ≺ y be a partial order over the nblocks where x ≺ y iff the minimum f

value over all of the open nodes in x is lower than that of y . There are three cases to consider when

attempting to set an nblock b to hot with an undirected abstract graph:

1. H ∩ IntScope(b) = {} ∧ H ∩ {x ∈ N : b ∈ IntScope(x )} = {}; none of the nblocks b
interferes with or that interfere with b are hot, so b can be set to hot.

2. ∃x ∈ H : x ∈ IntScope(b) ∧ x ≺ b; b is interfered with by a better nblock that is already

hot, so b must not be set to hot.

3. ∃x ∈ H : x ∈ IntScope(b) ∧ b ≺ x ; b is interfered with by an nblock x that is worse than

b and x is already hot. x must be un-flagged as hot (updating σh values appropriately) and in
its place b is set to hot.

Directed abstract graphs have two additional cases:

4. ∃x ∈ H : b ∈ IntScope(x ) ∧ b ≺ x ; b is interfering with an nblock x and b is better than x

so un-flag x as hot and set b to hot.

5. ∃x ∈ H : b ∈ IntScope(x ) ∧ x ≺ b; b is interfering with an nblock x and x is better than b

so do not set b to hot.
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This scheme ensures that there are never two hot nblocks interfering with one another and that

the nblock that is set to hot is the best nblock in its interference scope. As we verify below, this

approach guarantees the property that if an nblock is flagged as hot it will eventually become free.

Full pseudo-code for Safe PBNF is given in Appendix A.

3.2 Correctness of PBNF

Given the complexity of parallel shared-memory algorithms, it can be reassuring to have proofs of

correctness. In this subsection we will verify that PBNF exhibits various desirable properties:

3.2.1 SOUNDNESS

Soundness holds trivially because no solution is returned that does not pass the goal test.

3.2.2 DEADLOCK

There is only one lock in PBNF and the thread that currently holds it never attempts to acquire it a

second time, so deadlock cannot arise.

3.2.3 LIVELOCK

Because the interaction between the different threads of PBNF can be quite complex, we modeled

the system using the TLA+ (Lamport, 2002) specification language. Using the TLC model checker

(Yu, Manolios, & Lamport, 1999) we were able to demonstrate a sequence of states that can give rise

to a livelock in plain PBNF. Using a similar model we were unable to find an example of livelock

in Safe PBNF when using up to three threads and 12 nblocks in an undirected ring-shaped abstract

graph and up to three threads and eight nblocks in a directed graph.

In our model the state of the system is represented with four variables: state, acquired, isHot and

Succs. The state variable contains the current action that each thread is performing (either search

or nextblock). The acquired variable is a function from each thread to the ID of its acquired nblock

or the value None if it currently does not have an nblock. The variable isHot is a function from

nblocks to either TRUE or FALSE depending on whether or not the given nblock is flagged as hot.

Finally, the Succs variable gives the set of successor nblocks for each nblock in order to build the

nblock graph.

The model has two actions: doSearch and doNextBlock. The doSearch action models the search

stage performed by a PBNF thread. Since we were interested in determining if there is a livelock,

this action abstracts away most of the search procedure and merely models that the thread may

choose a valid nblock to flag as hot. After setting an nblock to hot, the thread changes its state

so that the next time it is selected to perform an action it will try to acquire a new nblock. The

doNextBlock simulates a thread choosing its next nblock if there is one available. After a thread

acquires an nblock (if one was free) it sets its state so that the next time it is selected to perform an

action it will search.

The TLA+ source of the model is located in Appendix B.

Formal proof: In addition to model checking, the TLA+ specification language is designed to

allow for formal proofs of properties. This allows properties to be proved for an unbounded space.

Using our model we have completed a formal proof that a hot nblock will eventually become free
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regardless of the number of threads or the abstract graph. We present here an English summary.

First, we need a helpful lemma:

Lemma 1 If an nblock n is hot, there is at least one other nblock in its interference scope that is

in use. Also, n is not interfering with any other hot nblocks.

Proof: Initially no nblocks are hot. This can change only while a thread searches or when it releases

an nblock. During a search, a thread can only set n to hot if it has acquired an nblock m that is in

the interference scope of n . Additionally, a thread may only set n to hot if it does not create any

interference with another hot nblock. During a release, if n is hot, either the final acquired nblock

in its interference scope is released and n is no longer hot, or n still has at least one busy nblock in

its interference scope. ✷

Now we are ready for the key theorem:

Theorem 1 If an nblock n becomes hot, it will eventually be added to the free list and will no

longer be hot.

Proof: We will show that the number of acquired nblocks in the interference scope of a hot nblock

n is strictly decreasing. Therefore, n will eventually become free.

Assume an nblock n is hot. By Lemma 1, there is a thread p that has an nblock in the interfer-

ence scope of n , and n is not interfering with or interfered by any other hot nblocks. Assume that

a thread q does not have an nblock in the interference scope of n . There are four cases:

1. p searches its nblock. p does not acquire a new nblock and therefore the number of nblocks

preventing n from becoming free does not increase. If p sets an nblock m to hot, m is not in

the interference scope of n by Lemma 1. p will release its nblock after it sees that n is hot

(see case 2).

2. p releases its nblock and acquires a new nblockm from the free list. The number of acquired

nblocks in the interference scope of n decreases by one as p releases its nblock. Since m ,

the new nblock acquired by p, was on the free list, it is not in the interference scope of n .

3. q searches its nblock. q does not acquire a new nblock and therefore the number of nblocks

preventing n from becoming free does not increase. If q sets an nblock m to hot, m is not in

the interference scope of n by Lemma 1.

4. q releases its nblock (if it had one) and acquires a new nblockm from the free list. Sincem ,

the new nblock acquired by q , was on the free list, it is not in the interference scope of n and

the number of nblocks preventing n from becoming free does not increase.

✷

We can now prove the progress property that we really care about:

Theorem 2 A node n with minimum f value will eventually be expanded.

Proof: We consider n’s nblock. There are three cases:

1. The nblock is being expanded. Because n has minimum f , it will be at the front of open and

will be expanded.
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2. The nblock is free. Because it holds the node with minimum f value, it will be at the front of

the free list and selected next for expansion, reducing to case 1.

3. The nblock is not on the free list because it is in the interference scope of another nblock that

is currently being expanded. When the thread expanding that nblock checks its interference

scope, it will mark the better nblock as hot. By Theorem 1, we will eventually reach case 2.

✷

3.2.4 COMPLETENESS

This follows easily from liveness:

Corollary 1 If the heuristic is admissible or the search space is finite, a goal will be returned if one

is reachable.

Proof: If the heuristic is admissible, we inherit the completeness of serial A* (Nilsson, 1980) by

Theorem 2. Nodes are only re-expanded if their g value has improved, and this can happen only a

finite number of times, so a finite number of expansions will suffice to exhaust the search space. ✷

3.2.5 OPTIMALITY

Because PBNF’s expansion order is not strictly best-first, it operates like an anytime algorithm, and

its optimality follows the same argument as that for algorithms such as Anytime A* (Hansen &

Zhou, 2007).

Theorem 3 PBNF will only return optimal solutions.

Proof: After finding an incumbent solution, the search continues to expand nodes until the minimum

f value among all frontier nodes is greater than or equal to the incumbent solution cost. This means

that the search will only terminate with the optimal solution. ✷

Before discussing how to adapt PBNF to suboptimal and anytime search, we first evaluate its

performance on optimal problem solving.

4. Empirical Evaluation: Optimal Search

We have implemented and tested the parallel heuristic search algorithms described above on three

different benchmark domains: grid pathfinding, the sliding tile puzzle, and STRIPS planning. We

will discuss each domain in turn. With the exception of the planning domain, the algorithms were

programmed in C++ using the POSIX threading library and run on dual quad-core Intel Xeon E5320

1.86GHz processors with 16Gb RAM. For the planning results the algorithms were written inde-

pendently in C from the pseudo code in Appendix A. This gives us additional confidence in the

correctness of the pseudo code and our performance claims. The planning experiments were run

on dual quad-core Intel Xeon X5450 3.0GHz processors limited to roughly 2GB of RAM. All open

lists and free lists were implemented as binary heaps except in PSDD and IDPSDD which used a

queue giving them less overhead since they do not require access to minimum valued elements. All

closed lists were implemented as hash tables. PRA* and APRA* used queues for incoming nodes,

and a hash table was used to detect duplicates in both open and closed. For grids and sliding tiles,
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we used the jemalloc library (Evans, 2006), a special multi-thread-aware malloc implementation,

instead of the standard glibc (version 2.7) malloc, because we found that the latter scales poorly

above 6 threads. We configured jemalloc to use 32 memory arenas per CPU. In planning, a custom

memory manager was used which is also thread-aware and uses a memory pool for each thread.

On grids and sliding tiles abstractions were hand-coded and, nblock data structures were created

lazily, so only the visited part of abstract graph was instantiated. The time taken to create the

abstraction is accounted for in all of the wall time measurements for these two domains. In STRIPS

planning the abstractions were created automatically and the creation times for the abstractions are

reported separately as described in Section 4.5.

4.1 Tuning PBNF

In this section we present results for a set of experiments that we designed to test the behavior of

PBNF as some of its parameters are changed. We study the effects of the two important parameters

of the PBNF algorithm: minimum expansions required before switching to search a new nblock

and the size of the abstraction. This study used twenty 5000x5000 four-connected grid pathfinding

instances with unit cost moves where each cell has a 0.35 probability of being an obstacle. The

heuristic used was the Manhattan distance to the goal location. Error bars in the plots show 95%

confidence intervals and the legends are sorted by the mean of the dependent variable in each plot.

In the PBNF algorithm, each thread must perform a minimum number of expansions before

it is able to acquire a new nblock for searching. Requiring more expansions between switches is

expected to reduce the contention on the nblock graph’s lock but could increase the total number

of expanded nodes. We created an instrumented version of the PBNF algorithm that tracks the

time that the threads have spent trying to acquire the lock and the amount of time that threads

have spent waiting for a free nblock. We fixed the size of the abstraction to 62,500 nblocks and

varied the number of threads (from 1 to 8) and minimum expansions (1, 8, 16, 32 and 64 minimum

expansions).

The upper left panel in Figure 4 shows the average amount of CPU time in seconds that each

thread spent waiting to acquire the lock (y-axis) as the minimum expansions parameter was in-

creased (x-axis). Each line in this plot represents a different number of threads. We can see that the

configuration which used the most amount of time trying to acquire the lock was with eight threads

and one minimum expansion. As the number of threads decreased, there was less contention on

the lock as there were fewer threads to take it. As the number of minimum required expansions

increased the contention was also reduced. Around eight minimum expansions the benefit of in-

creasing the value further seemed to greatly diminish.

The upper right panel of Figure 4 shows the results for the CPU time spent waiting for a free

nblock (y-axis) as minimum expansions was increased (x-axis). This is different than the amount

of time waiting on the lock because, in this case, the thread successfully acquired the lock but

then found that there were no free nblocks available to search. We can see that the configuration

with eight threads and one for minimum expansions caused the longest amount of time waiting

for a free nblock. As the number of threads decreased and as the required number of minimum

expansions increased the wait time decreased. The amount of time spent waiting, however, seems

fairly insignificant because it is an order of magnitude smaller than the lock time. Again, we see

that around eight minimum expansions the benefit of increasing seemed to diminish.
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Figure 4: PBNF locking behavior vs minimum expansions on grid pathfinding with 62,500

nblocks. Each line represents a different number of threads.

The final panel, on the bottom in Figure 4, shows the total number of nodes expanded (y-axis,

which is in thousands of nodes) as minimum expansions was increased. Increasing the minimum

number of expansions that a thread must make before switching to an nblock with better nodes

caused the search algorithm to explore more of the space that may not have been covered by a strict

best-first search. As more of these “speculative” expansions were performed the total number of

nodes encountered during the search increased. We can also see that adding threads increased the

number of expanded nodes too.

From the results of this experiment it appears that requiring more than eight expansions be-

fore switching nblocks had a decreasing benefit with respect to locking and waiting time. In our

non-instrumented implementation of PBNF we found that slightly greater values for the minimum

expansion parameter lead to the best total wall times. For each domain below we use the value that

gave the best total wall time in the non-instrumented PBNF implementation.
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Figure 5: PBNF abstraction size: 5000x5000 grid pathfinding, 32 minimum expansions.

Since PBNF uses abstraction to decompose a search space it is also important to understand the

effect of abstraction size on search performance. Our hypothesis was that using too few abstract

states would lead to only a small number of free nblocks therefore making threads spend a lot of

time waiting for an nblock to become free. On the other hand, if there are too many abstract states

then there will be too few nodes in each nblock. If this happens, threads will perform only a small

amount of work before exhausting the open nodes in their nblock and being forced to switch to

a new portion of the search space. Each time a thread must switch nblocks the contention on the

lock is increased. Figure 5 shows the results of an experiment that was performed to verify this

theory. In each plot we have fixed the minimum expansions parameter to 32 (which gave the best

total wall time on grid pathfinding) and varied the number of threads (from 1 to 8) and the size of

the abstraction (10,000, 62,500 and 250,000 nblocks).

The upper left panel of Figure 5 shows a plot of the amount of CPU seconds spent trying to ac-

quire the lock (y-axis) versus the size of the abstraction (x-axis). As expected, when the abstraction

was very coarse there was little time spent waiting on the lock, but as the size of the abstraction grew
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and the number of threads increased the amount of time spent locking increased. At eight threads

with 250,000 nblocks over 1 second of CPU time was spent waiting to acquire the lock. We suspect

that this is because threads were exhausting all open nodes in their nblocks and were, therefore,

being forced to take the lock to acquire a new portion of the search space.

The upper right panel of Figure 5 shows the amount of time that threads spent waiting for an

nblock to become free after having successfully acquired the lock only to find that no nblocks are

available. Again, as we suspected, the amount of time that threads wait for a free nblock decreases

as the abstraction size is increased. The more available nblocks, the more disjoint portions of the

search space will be available. As with our experiments for minimum expansions, the amount of

time spent waiting seems to be relatively insignificant compared to the time spent acquiring locks.

The bottom panel in Figure 5 shows that the number of nodes that were expanded increased

as the size of the abstraction was increased. For finer grained abstractions the algorithm expanded

more nodes. This is because each time a thread switches to a new nblock it is forced to perform at

least the minimum number of expansions, therefore the more switches, the more forced expansions.

4.2 Tuning PRA*

We now turn to looking at the performance impact on PRA* of abstraction and asynchronous com-

munication. First, we compare PRA* with and without asynchronous communication. Results from

a set of experiments on twenty 5000x5000 grid pathfinding and a set of 250 random 15-puzzle in-

stances that were solvable by A* in 3 million expansions are shown in Figure 6. The line labeled

sync. (PRA*) used synchronous communication, async. sends, used synchronous receives and asyn-

chronous sends, async. receives, used synchronous sends and asynchronous receives and async.

(HDA*), used asynchronous communication for both sends and receives. As before, the legend is

sorted by the mean performance and the error bars represent the 95% confidence intervals on the

mean. The vertical lines in the plots for the life cost grid pathfinding domains show that these

configurations were unable to solve instances within the 180 second time limit.

The combination of both asynchronous sends and receives provided the best performance. We

can also see from these plots that making sends asynchronous provided more of a benefit than

making receives asynchronous. This is because, without asynchronous sends, each node that is gen-

erated will stop the generating thread in order to communicate. Even if communication is batched,

each send may be required to go to a separate neighbor and therefore a single send operation may be

required per-generation. For receives, the worst case is that the receiving thread must stop at each

expansion to receive the next batch nodes. Since the branching factor in a typical search space is

approximately constant there will be approximately a constant factor more send communications as

there are receive communications in the worst case. Therefore, making sends asynchronous reduces

the communication cost more than receives.

Figure 7 shows the results of an experiment that compares PRA* using abstraction to distribute

nodes among the threads versus PRA* with asynchronous communication. The lines are labeled

as follows: sync. (PRA*) used only synchronous communication, async. (HDA*) used only asyn-

chronous communication and sync. with abst. (APRA*) used only synchronous communication and

used abstraction to distribute nodes among the threads and async. and abst. (AHDA*) used a com-

bination of asynchronous communication and abstraction. Again, the vertical lines in the plots for

the life cost grid pathfinding domains show that these configurations were unable to solve instances

within the 180 second time limit.
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Figure 6: PRA* synchronization: 5000x5000 grids and easy sliding tile instances.

It is clear from these plots that the configurations of PRA* that used abstraction gave better

performance than PRA* without abstraction in the grid pathfinding domain. The reason for this is
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Figure 7: PRA* abstraction: 5000x5000 grids and easy sliding tile instances.

because the abstraction in grid pathfinding will often assign successors of a node being expanded

back to the thread that generated them. When this happens no communication is required and the
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nodes can simply be checked against the local closed list and placed on the local open list if they

are not duplicates. With abstraction, the only time that communication will be required is when a

node on the “edge” of an abstract state is expanded. In this case, some of the children will map into

a different abstract state and communication will be required. This experiment also shows that the

benefits of abstraction were greater than the benefits of asynchronous communication in the grid

pathfinding problems. We see the same trends on the sliding tile instances, however they are not

quite as pronounced; the confidence intervals often overlap.

Overall, it appears that the combination of PRA* with both abstraction for distributing nodes

among the different threads and using asynchronous communication gave the best performance. In

the following section we show the results of a comparison between this variant of PRA*, the Safe

PBNF algorithm and the best-first variant of PSDD.

4.3 Grid Pathfinding

In this section, we evaluate the parallel algorithms on the grid pathfinding domain. The goal of

this domain is to navigate through a grid from an initial location to a goal location while avoiding

obstacles. We used two cost models (discussed below) and both four-way and eight-way movement.

On the four-way grids, cells were blocked with a probability of 0.35 and on the eight-way grids

cells were blocked with a probability of 0.45. The abstraction function that was used maps blocks

of adjacent cells to the same abstract state, forming a coarser abstract grid overlaid on the original

space. The heuristic was the Manhattan distance to the goal location. The hash values for states

(which are used to distribute nodes in PRA* and HDA*) are computed as: x · ymax + y of the state

location. This gives a minimum perfect hash value for each state. For this domain we were able to

tune the size of the abstraction and our results show execution with the best abstraction size for each

algorithm where it is relevant.

4.3.1 FOUR-WAY UNIT COST

In the unit-cost model, each move has the same cost: one.

Less Promising Algorithms Figure 8, shows a performance comparison between algorithms that,

on average, were slower than serial A*. These algorithms were tested on 20 unit-cost four-way

movement 1200x2000 grids with the start location in the bottom left corner and the goal location in

the bottom right. The x-axis shows the number of threads used to solve each instance and the y-axis

shows the mean wall clock time in seconds. The error bars give a 95% confidence interval on the

mean wall clock time and the legend is sorted by the mean performance.

From this figure we can see that PSDD gave the worst average solution times. We suspect that

this was because the lack of a tight upper bound which PSDD uses for pruning. We see that A* with

a shared lock-free open and closed list (LPA*) took, on average, the second longest amount of time

to solve these problems. LPA*’s performance improved up to 5 threads and then started to drop off

as more threads were added. The overhead of the special lock-free memory manager along with

the fact that access to the lock-free data structures may require back-offs and retries could account

for the poor performance compared to serial A*. The next algorithm, going down from the top in

the legend, is KBFS which slowly increased in performance as more threads were added however

it was not able to beat serial A*. A simple parallel A* implementation (PA*) using locks on the

open and closed lists performed worse as threads were added until about four where it started to

give a very slow performance increase matching that of KBFS. The PRA* algorithm using a simple
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Figure 8: Simple parallel algorithms on unit cost, four-way 2000x1200 grid pathfinding.

state representation based hashing function gave the best performance in this graph but it was fairly

erratic as the number of threads changed, sometimes increasing and sometimes decreasing. At 6

and 8 threads, PRA* was faster than serial A*.

We have also implemented the IDPSDD algorithm which tries to find the upper bound for a

PSDD search using iterative deepening, but the results are not shown on the grid pathfinding do-

mains. The non-geometric growth in the number of states when increasing the cost bound leads to

very poor performance with iterative deepening on grid pathfinding. Due to the poor performance of

the above algorithms, we do not show their results in the remaining grid, tiles or planning domains

(with the exception of PSDD which makes a reappearance in the STRIPS planning evaluation of

Section 4.5, where we supply it with an upper bound).

More Promising Algorithms The upper left plot in Figure 9 shows the performance of algorithms

on unit-cost four-way grid pathfinding problems. The y-axis represents the speedup over serial A*

and the x-axis shows the number of threads in use for each data point. Error bars indicate 95%

confidence intervals on the mean over 20 different instances. Algorithms in the legend are ordered

by their average performance. The line labeled “Perfect speedup” shows a perfect linear speedup

where each additional thread increases the performance linearly.

A more practical reference point for speedup is shown by the “Achievable speedup” line. On

a perfect machine with n processors, running with n cores should take time that decreases linearly

with n . On a real machine, however, there are hardware considerations such as memory bus con-

tention that prevent this n-fold speedup. To estimate this overhead for our machines, we ran sets

of n independent A* searches in parallel for 1 ≤ n ≤ 8 and calculated the total time for each set
to finish. On a perfect machine all of these sets would take the same time as the set with n = 1.
We compute the “Achievable speedup” with the ratio of the actual completion times to the time
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Figure 9: Speedup results on grid pathfinding and the sliding tile puzzle.

for the set with n = 1. At t threads given the completion times for the sets, 〈C1,C2, ...,Cn〉,
achievable speedup(t) = t ·C1

Ct
.
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The upper left panel shows a comparison between AHDA* (PRA* with asynchronous commu-

nication and abstraction), BFPSDD and Safe PBNF algorithm on the larger (5000x5000) unit-cost

four-way problems. Safe PBNF was superior to any of the other algorithms, with steadily decreas-

ing solution times as threads were added and an average speedup over serial A* of more than 6x

when using eight threads. AHDA* had less stable performance, sometimes giving a sharp speedup

increase and sometimes giving a decreased performance as more threads were added. At seven

threads where AHDA* gave its best performance, it was able to reach 6x speedup over serial A*

search. The BFPSDD algorithm solved problems faster as more threads were added however it was

not as competitive as PBNF and AHDA* giving no more than 3x speedup over serial A* with eight

threads.

4.3.2 FOUR-WAY LIFE COST

Moves in the life cost model have a cost of the row number of the state where the move was

performed—moves at the top of the grid are free, moves at the bottom cost 4999 (Ruml & Do,

2007). This differentiates between the shortest and cheapest paths which has been shown to be a

very important distinction (Richter & Westphal, 2010; Cushing, Bentor, & Kambhampati, 2010).

The left center plot in Figure 9 shows these results in the same format as for the unit-cost variant –

number of threads on the x axis and speedup over serial A* on the y axis. On average, Safe PBNF

gave better speedup than AHDA*, however AHDA* outperformed PBNF at six and seven threads.

At eight threads, however, APRA* did not perform better than at seven threads. Both of these al-

gorithms achieve speedups that are very close to the “Achievable speedup” for this domain. Again

BFPSDD gave the worst performance increase as more threads were added reaching just under 3x

speedup.

4.3.3 EIGHT-WAY UNIT COST

In eight-way movement path planning problems, horizontal and vertical moves have cost 1, but

diagonal movements cost
√
2. These real-valued costs make the domain different from the previous

two path planning domains. The upper right panel of Figure 9 shows number of threads on the x

axis and speedup over serial A* on the y axis for the unit cost eight-way movement domain. We see

that Safe PBNF gave the best average performance reaching just under 6x speedup at eight threads.

AHDA* did not outperform Safe PBNF on average, however it was able to achieve a just over 6x

speedup over serial A* at seven threads. Again however, we see that AHDA* did not give very

stable performance increases with more threads. BFPSDD improved as threads were added out to

eight but it never reached more than 3x speedup.

4.3.4 EIGHT-WAY LIFE COST

This model combines the eight-way movement and the life cost models; it tends to be the most diffi-

cult path planning domain presented in this paper. The right center panel of Figure 9 shows threads

on the x axis and speedup over serial A* on the y axis. AHDA* gave the best average speedup over

serial A* search, peaking just under 6x speedup at seven threads. Although it outperformed Safe

PBNF on average at eight threads AHDA* has a sharp decrease in performance reaching down to

almost 5x speedup where Safe PBNF had around 6x speedup over serial A*. BFPSDD again peaks

at just under 3x speedup at eight threads.
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Figure 10: Comparison of wall clock time for Safe PBNF versus AHDA* on the sliding tile puzzle.

4.4 Sliding Tile Puzzle

The sliding tile puzzle is a common domain for benchmarking heuristic search algorithms. For these

results, we use 250 randomly generated 15-puzzles that serial A* was able to solve within 3 million

expansions.

The abstraction used for the sliding tile puzzles ignores the numbers on a set of tiles. For

example, the results shown for Safe PBNF in the bottom panel of Figure 9 use an abstraction that

looks at the position of the blank, one and two tiles. This abstraction gives 3360 nblocks. In order

for AHDA* to get the maximum amount of expansions that map back to the expanding thread (as

described above for grids), its abstraction uses the one, two and three tile. Since the position of the

blank is ignored, any state generation that does not move the one, two or three tiles will generate a

child into the same nblock as the parent therefore requiring no communication. The heuristic that

was used in all algorithms was the Manhattan distance heuristic. The hash value used for tiles states

was a perfect hash value based on the techniques presented by Korf and Schultze (2005).

The bottom panel of Figure 9 shows the results for AHDA*, and Safe PBNF on these sliding

tiles puzzle instances. The plot has the number of threads on the x axis and the speedup over serial

A* on the y axis. Safe PBNF had the best mean performance but there was overlap in the confidence

intervals with AHDA*. BFPSDD was unable to show a speedup over serial A* and its performance

was not shown in this plot.

Because sliding tile puzzles vary so much in difficulty, in this domain we also did a paired-

difference test, shown in Figure 10. The data used for Figure 10 was collected on the same set of

runs as shown in the bottom panel of Figure 9. The y-axis in this figure, however, is the average,

over all instances, of the time that AHDA* took on that instance minus the time that Safe PBNF

took. This paired test gives a more powerful view of the algorithms’ relative performance. Values

greater than 0.0 represent instances where Safe PBNF was faster than AHDA* and values lower than
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0.0 represent those instances where AHDA* was faster. The error bars show the 95% confidence

interval on the mean. We can clearly see that the Safe PBNF algorithm was significantly faster than

AHDA* across all numbers of threads from 1 to 8.

4.5 STRIPS Planning

In addition to the path planning and sliding tiles domains, the algorithms were also embedded into

a domain-independent optimal sequential STRIPS planner. In contrast to the previous two domains

where node expansion is very quick and therefore it is difficult to achieve good parallel speedup,

node expansion in STRIPS planning is relatively slow. The planner used in these experiments uses

regression and the max-pair admissible heuristic of Haslum and Geffner (2000). The abstraction

function used in this domain is generated dynamically on a per-problem basis and, following Zhou

and Hansen (2007), this time was not taken into account in the solution times presented for these

algorithms. The abstraction function is generated by greedily searching in the space of all possible

abstraction functions (Zhou & Hansen, 2006). Because the algorithm needs to evaluate one candi-

date abstraction for each of the unselected state variables, it can be trivially parallelized by having

multiple threads work on different candidate abstractions.

Table 1 presents the results for A*, AHDA*, PBNF, Safe PBNF, PSDD (given an optimal upper

bound for pruning and using divide-and-conquer solution reconstruction), APRA* and BFPSDD.

The values of each cell are the total wall time in seconds taken to solve each instance. A value

of ’M’ indicates that the program ran out of memory. The best result on each problem and results

within 10% of the best are marked in bold. Generally, all of the parallel algorithms were able to

solve the instances faster as they were allowed more threads. All of the parallel algorithms were

able to solve instances much faster than serial A* at seven threads. The PBNF algorithm (either

PBNF or Safe PBNF) gave the best solution times in all but three domains. Interestingly, while

plain PBNF was often a little faster than the safe version, it failed to solve two of the problems. This

is most likely due to livelock, although it could also simply be because the hot nblocks fix forces

Safe PNBF to follow a different search order than PBNF. AHDA* tended to give the second-best

solution times, followed by PSDD which was given the optimal solution cost up-front for pruning.

BFPSDD was often better than APRA*,

The column, labeled “Abst.” shows the time that was taken by the parallel algorithms to serially

generate the abstraction function. Even with the abstraction generation time added on to the solution

times all of the parallel algorithms outperform A* at seven threads, except in the block-14 domain

where the time taken to generate the abstraction actually was longer than the time A* took to solve

the problem.

4.6 Understanding Search Performance

We have seen that the PBNF algorithm tends to have better performance than the AHDA* algorithm

for optimal search. In this section we show the results of a set of experiments that attempts to

determine which factors allow PBNF to perform better in these domains. We considered three

hypotheses. First, PBNF may achieve better performance because it expands fewer nodes with f

values greater than the optimal solution cost. Second, PBNF may achieve better search performance

because it tends to have many fewer nodes on each priority queue than AHDA*. Finally, PBNF

may achieve better search performance because it spends less time coordinating between threads.

In the following subsections we show the results of experiments that we performed to test our

713



BURNS, LEMONS, RUML, & ZHOU

A* AHDA* PBNF

threads 1 1 3 5 7 1 3 5 7

logistics-6 2.30 1.44 0.70 0.48 0.40 1.27 0.72 0.58 0.53

blocks-14 5.19 7.13 5.07 2.25 2.13 6.28 3.76 2.70 2.63

gripper-7 117.78 59.51 33.95 15.97 12.69 39.66 16.43 10.92 8.57

satellite-6 130.85 95.50 33.59 24.11 18.24 68.14 34.15 20.84 16.57

elevator-12 335.74 206.16 96.82 67.68 57.10 156.64 56.25 34.84 26.72

freecell-3 199.06 147.96 93.55 38.24 27.37 185.68 64.06 44.05 36.08

depots-7 M 299.66 126.34 50.97 39.10 M M M M

driverlog-11 M 315.51 85.17 51.28 48.91 M M M M

gripper-8 M 532.51 239.22 97.61 76.34 229.88 95.63 60.87 48.32

SafePBNF PSDD

threads 1 3 5 7 1 3 5 7

logistics-6 1.17 0.64 0.56 0.62 1.20 0.78 0.68 0.64

blocks-14 6.21 2.69 2.20 2.02 6.36 3.57 2.96 2.87

gripper-7 39.58 16.87 11.23 9.21 65.74 29.37 21.88 19.19

satellite-6 77.02 24.09 17.29 13.67 61.53 23.56 16.71 13.26

elevator-12 150.39 53.45 34.23 27.02 162.76 62.68 43.34 36.66

freecell-3 127.07 47.10 38.07 37.02 126.31 53.76 45.47 43.71

depots-7 156.36 63.04 42.91 34.66 159.98 73.00 57.65 54.70

driverlog-11 154.15 59.98 38.84 31.22 155.93 63.20 41.85 34.02

gripper-8 235.46 98.21 63.65 51.50 387.81 172.01 120.79 105.54

APRA* BFPSDD Abst.

threads 1 3 5 7 1 3 5 7 1

logistics-6 1.44 0.75 1.09 0.81 2.11 1.06 0.79 0.71 0.42

blocks-14 7.37 5.30 3.26 2.92 7.78 4.32 3.87 3.40 7.9

gripper-7 62.61 43.13 37.62 26.78 41.56 18.02 12.21 10.20 0.8

satellite-6 95.11 42.85 67.38 52.82 62.01 24.06 20.43 13.54 1

elevator-12 215.19 243.24 211.45 169.92 151.50 58.52 40.95 32.48 0.7

freecell-3 153.71 122.00 63.47 37.94 131.30 57.14 47.74 45.07 17

depots-7 319.48 138.30 67.24 49.58 167.24 66.89 48.32 42.68 3.6

driverlog-11 334.28 99.37 89.73 104.87 152.08 61.63 42.81 34.70 9.7

gripper-8 569.26 351.87 236.93 166.19 243.44 101.11 70.84 59.18 1.1

Table 1: Wall time on STRIPS planning problems.
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Figure 11: Cumulative normalized f value counts for nodes expanded with eight threads on unit-

cost four-way grid pathfinding (left) and the 15-puzzle (right).

three hypotheses. The results of these experiments agree with the first two hypotheses, however, it

appears that the third hypothesis does not hold and, in fact, PBNF occasionally spends more time

coordinating between threads than AHDA*.

4.6.1 NODE QUALITY

Because both PBNF and AHDA* merely approximate a best-first order, they may expand some

nodes that have f values greater than the optimal solution cost. When a thread expands a node

with an f value greater than the optimal solution cost its effort was a waste because the only nodes

that must be expanded when searching for an optimal solution are those with f values less than the

optimal cost. In addition to this, both search algorithms may re-expand nodes for which a lower

cost path has been found. If this happens work was wasted during the first sub-optimal expansion

of the node.

Threads in PBNF are able to choose which nblock to expand based on the quality of nodes in

the free nblocks. In AHDA*, however, a thread must expand only those nodes that are assigned

to it. We hypothesized that PBNF may expand fewer nodes with f values that are greater than the

optimal solution cost because the threads have more control over the quality of the nodes that they

choose to expand.

We collected the f value of each node expanded by both PBNF and AHDA*. Figure 11 shows

cumulative counts for the f values of nodes expanded by both PBNF and AHDA* on the same set

of unit-cost four-way 5000x5000 grid pathfinding instances as were used in Section 4.3 (right) and

on the 15-puzzle instances used in Section 4.4 (left). In both plots, the x axis shows the f value of

expanded nodes as a factor of the optimal solution cost for the given instance. The y axis shows

the cumulative count of nodes expanded up to the given normalized f over the set of instances.
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Figure 12: Mean CPU time per open list operation.

By looking at y-location of the right-most tip of each line we can find the total number of nodes

expanded by each algorithm summed over all instances.

On the left panel of Figure 11 we can see that both algorithms tended to expand only a very

small number of nodes with f values that were greater than the optimal solution cost on the grid

pathfinding domain. The AHDA* algorithm expanded more nodes in total on this set of instances.

Both PBNF and AHDA* must expand all of the nodes below the optimal solution cost. Because of

this, the only way that AHDA* can have a greater number of expansions for nodes below a factor

of 1 is if it re-expanded nodes. It appears that AHDA* re-expanded more nodes than PBNF and this

seems to account for the fact that AHDA* expanded more nodes in total.

The right half of Figure 11 shows the results on the 15-puzzle. We see that, again, AHDA*

expanded more nodes in total than PBNF. In this domain the algorithms expanded approximately

the same number of nodes with f values less than the optimal solution cost. We can also see from

this plot that AHDA* expanded many more nodes that had f values greater than or equal to the

optimal solution cost. In summary, PBNF expanded fewer nodes and better quality nodes than

AHDA* in both the grid pathfinding and sliding tiles domains. We speculate that this may happen

because in PBNF the threads are allowed to choose which portion of the space they search and they

choose it based on low f value. In AHDA* the threads must search the nodes that map to them and

these nodes may not be very good.

4.6.2 OPEN LIST SIZES

We have found that, since PBNF breaks up the search space into many different nblocks, it tends

to have data structures with many fewer entries than AHDA*, which breaks up the search space

based on the number of threads. Since we are interested general-purpose algorithms that can handle

domains with real-valued costs (like eight-way grid pathfinding) both PBNF and AHDA* use binary

heaps to implement their open lists. PBNF has one heap per nblock (that is one per abstract state)

whereas AHDA* has one heap per thread. Because the number of nblocks is greater than the
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number of threads AHDA* will have many more nodes than PBNF in each of its heaps. This causes

the heap operations in AHDA* to take longer than the heap operations in PBNF.

The cost of operations on large heaps has been shown to greatly impact overall performance of

an algorithm (Dai & Hansen, 2007). In order to determine the extent to which large heaps effect the

performance of AHDA* we added timers to all of the heap operations for both algorithms. Figure 12

shows the mean CPU time for a single open list operation for unit-cost four-way grid pathfinding

domain and for the 15-puzzle. The boxes show the second and third quartiles with a line drawn

across at the median. The whiskers show the extremes of the data except that data points residing

beyond the first and third quartile by more than 1.5 times the inter-quartile range are signified by

a circle. The shaded rectangle shows the 95% confidence interval on the mean. We can see that,

in both cases, AHDA* tended to spend more time performing heap operations than PBNF which

typically spent nearly no time per heap operation. Heap operations must be performed once for each

node that is expanded and may be required on each node generation. Even though these times are in

the tens of microseconds the frequency of these operations can be very high during a single search.

Finally, as is described by Hansen and Zhou (2007), the reduction in open list sizes can also ex-

plain the good single thread performance that PBNF experiences on STRIPS planning (see Table 1).

Hansen and Zhou point out that, although A* is optimally efficient in terms of node expansions, it is

not necessarily optimal with respect to wall time. They found that the benefit of managing smaller

open lists enabled the Anytime weighted A* algorithm to outperform A* in wall time even though

it expanded more nodes when converging to the optimal solution. As we describe in Section 9, this

good single thread performance may also be caused by speculative expansions and pruning.

4.6.3 COOORDINATION OVERHEAD

Our third hypothesis was that the amount of time that each algorithm spent on “coordination over-

head” might differ. Both parallel algorithms must spend some of their time accessing data structures

shared among multiple threads. This can cause overhead in two places. The first place where coor-

dination overhead can be seen is in the synchronization of access to shared data structures. PBNF

has two modes of locking the nblock graph. First, if a thread has ownership of an nblock with open

nodes that remain to be expanded then it will use try lock because there is work that could be

done if it fails to acquire the lock. Otherwise, if there are no nodes that the thread could expand

then it attempt to acquire the lock on the nblock graph using the normal operation that blocks on

failure. AHDA* will use a try lock on its receive queue at each expansion where it has nodes

on this queue and on its open list. In our implementation AHDA* will only use the blocking lock

operation when a thread has no nodes remaining to expand but has nodes remaining in its send or

receive buffers.

The second place where overhead may be incurred is when threads have no nodes to expand.

In PBNF this occurs when a thread exhausts its current nblock and there are no free nblocks to

acquire. The thread must wait until a new nblock becomes free. In AHDA* if no open nodes map

to a thread then it may have no nodes to expand. In this situation the thread will busy-wait until a

node arrives on its receive queue. In either situation, locking or waiting, there is time that is wasted

because threads are not actively searching the space.

When evaluating coordination overhead, we combine the amount of time spent waiting on a

lock and the amount of time waiting without any nodes to expand. Figure 13 shows the per-thread

coordination times for locks, waiting and the sum of the two normalized to the total wall time.
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Figure 13: Per-thread ratio of coordination time to wall time on unit-cost four-way pathfinding (top)

and the 15-puzzle (bottom).

Unlike the previous set of boxplots, individual data points residing at the extremes are not signified

by circles in order to improve readability. The “Locks” column of this plot shows the distribution

of times spent by each thread waiting on a lock, the “Wait” column shows the distribution of times

that threads spent waiting without any nodes available to expand and the “Sum” column shows the

distribution of the sum of the mean lock and wait times.

The left side of Figure 13 shows the results for grid pathfinding. From “Locks” column we see

that threads in AHDA* spent almost no time acquiring locks. This is expected because AHDA*

uses asynchronous communication. It appears that the amount of time that threads in PBNF spent

acquiring locks was significantly greater than that of AHDA*. The “Wait” column of this plot

shows that both PBNF and AHDA* appeared to have threads spend nearly the same amount of time

waiting without any nodes to expand. Finally, the “Sum” column shows that the threads in PBNF

spent more time overall coordinating between threads.

The bottom half of Figure 13 shows the coordination overhead for the 15-puzzle domain. Again,

we see that threads in AHDA* spent almost no time acquiring a lock. Individual threads in PBNF,

however, tended to spend a larger fraction of their time waiting on locks in the sliding tiles domain
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than in grid pathfinding. In the “Wait” column of this figure we can see that AHDA* spent more

time than PBNF without any nodes to expand. Finally, we see that, over all, PBNF spent more time

coordinating between threads than AHDA*.

Overall our experiments have verified that our first two hypotheses that PBNF expanded better

quality nodes than AHDA* and that it spent less time performing priority queue operations than

AHDA*. We also found that our third hypothesis did not hold and that threads in PBNF tended to

have more coordination overhead that AHDA* but this seems to be out-weighed by the other two

factors.

4.7 Summary

In this section we have shown the results of an empirical evaluation of optimal parallel best-first

search algorithms. We have shown that several simple parallel algorithms can actually be slower

than a serial A* search even when offered more computing power. Additionally we showed empir-

ical results for a set of algorithms that make good use of parallelism and do outperform serial A*.

Overall the Safe PBNF algorithm gave the best and most consistent performance of this latter set of

algorithms. Our AHDA* variant of PRA* had the second fastest mean performance in all domains.

We have also shown that using abstraction in a PRA* style search to distribute nodes among

the different threads can give a significant boost in speed by reducing the amount of communica-

tion. This modification to PRA* appears to be a lot more helpful than simply using asynchronous

communication. Using both of these improvements in conjunction (AHDA*), yields a competitive

algorithm that has the additional feature of not relying on shared memory.

Finally, we performed a set of experiments in an attempt to explain why Safe PBNF tended to

give better search performance than AHDA*. Our experiments looked at three factors: node quality,

open list sizes and thread-coordination overhead. We concluded that PBNF is faster because it

expands fewer nodes with suboptimal f values and it takes less time to perform priority queue

operations.

5. Bounded Suboptimal Search

Sometimes it is acceptable or even preferable to search for a solution that is not optimal. Suboptimal

solutions can often be found much more quickly and with lower memory requirements than optimal

solutions. In this section we show how to create bounded-suboptimal variants of some of the best

optimal parallel search algorithms.

Weighted A* (Pohl, 1970), a variant of A* that orders its search on f ′(n) = g(n) + w · h(n),
with w > 1, is probably the most popular suboptimal search. It guarantees that, for an admissible
heuristic h and a weight w , the solution returned will be w -admissible (within a w factor of the

optimal solution cost) (Davis, Bramanti-Gregor, & Wang, 1988).

It is possible to modify AHDA*, BFPSDD, and PBNF to use weights to find suboptimal so-

lutions, we call these algorithms wAHDA*, wBFPSDD and wPBNF. Just as in optimal search,

parallelism implies that a strict f ′ search order will not be followed. The proof of weighted A*’s

w -optimality depends crucially on following a strict f ′ order, and for our parallel variants we must

prove the quality of our solution by either exploring or pruning all nodes. Thus finding effective

pruning rules can be important for performance. We will assume throughout that h is admissible.
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5.1 Pruning Poor Nodes

Let s be the current incumbent solution and w the suboptimality bound. A node n can clearly be

pruned if f (n) ≥ g(s). But according to the following theorem, we only need to retain n if it is on
the optimal path to a solution that is a factor of w better than s . This is a much stronger rule.

Theorem 4 We can prune a node n if w · f (n) ≥ g(s) without sacrificing w -admissibility.

Proof: If the incumbent is w -admissible, we can safely prune any node, so we consider the case

where g(s) > w ·g(opt), where opt is an optimal goal. Note that without pruning, there always exists
a node p in some open list (or being generated) that is on the best path to opt. Let f ∗ be the cost of an

optimal solution. By the admissibility of h and the definition of p, w ·f (p) ≤ w ·f ∗(p) = w ·g(opt).
If the pruning rule discards p, that would imply g(s) ≤ w · f (p) and thus g(s) ≤ w · g(opt), which
contradicts our premise. Therefore, an open node leading to an optimal solution will not be pruned

if the incumbent is not w -admissible. A search that does not terminate until open is empty will not

terminate until the incumbent is w -admissible or it is replaced by an optimal solution. ✷

We make explicit a useful corollary:

Corollary 2 We can prune a node n if f ′(n) ≥ g(s) without sacrificing w -admissibility.

Proof: Clearly w · f (n) ≥ f ′(n), so Theorem 4 applies. ✷

With this corollary, we can use a pruning shortcut: when the open list is sorted on increasing f ′ and

the node at the front has f ′ ≥ g(s), we can prune the entire open list.

5.2 Pruning Duplicate Nodes

When searching with an inconsistent heuristic, as in weighted A*, it is possible for the search to

find a better path to an already-expanded state. Likhachev, Gordon, and Thrun (2003) noted that,

provided that the underlying heuristic function h is consistent, weighted A* will still return a w -

admissible solution if these duplicate states are pruned during search. This ensures that each state

is expanded at most once during the search. Unfortunately, their proof depends on expanding in

exactly best-first order, which is violated by several of the parallel search algorithms we consider

here. However, we can still prove that some duplicates can be dropped. Consider the expansion

of a node n that re-generates a duplicate state d that has already been expanded. We propose the

following weak duplicate dropping criterion: the new copy of d can be pruned if the old g(d) ≤
g(n) + w · c∗(n, d), where c∗(n, d) is the optimal cost from node n to node d .
Theorem 5 Even if the weak dropping rule is applied, there will always be a node p from an optimal

solution path on open such that g(p) ≤ w · g∗(p).
Proof: We proceed by induction over iterations of search. The theorem clearly holds after expansion

of the initial state. For the induction step, we note that node p is only removed from open when it

is expanded. If its child pi that lies along the optimal path is added to open, the theorem holds. The

only way it won’t be added is if there exists a previous duplicate copy p ′i and the pruning rule holds,

i.e., g(p′i) ≤ g(pi−1) + w · c∗(pi−1, pi). By the inductive hypothesis, g(pi−1) ≤ w · g∗(pi−1), and
by definition g∗(pi−1) + c∗(pi−1, pi) = g∗(pi), so we have g(p

′
i) ≤ w · g∗(p ′i). ✷

Note that the use of this technique prohibits using the global minimum f value as a lower bound on

the optimal solution’s cost, because g values can now be inflated by up to a factor of w . However,

if s is the incumbent and we search until the global minimum f ′ value is ≥ g(s), as in a serial
weighted A* search, then w -admissibility is assured:

720



BEST-FIRST SEARCH FOR MULTICORE MACHINES

Corollary 3 If the minimum f ′ value is ≥ g(s), where s is the incumbent, then we have g(s) ≤
w · g∗(opt)

Proof: Recall node p from Theorem 5. g(s) ≤ f ′(p) = g(p) + w · h(p) ≤ w · (g∗(p) + h(p)) ≤
w · g∗(opt). ✷

It remains an empirical question whether pruning on this rather weak criterion will lead to better

performance in practice. Our results indicate that it does provide an advantage in the grid pathfinding

domain. Results are presented in Section 6.1. It should be noted that, while extra pruning can

preserve w -admissibility, it may result in solutions of lower quality than those resulting from search

without pruning.

5.3 Optimistic Search

Korf (1993) showed that weighted A* typically returns solutions that are better than the bound, w ,

would suggest. To take advantage of this, Thayer and Ruml (2008) use an optimistic approach to

bounded suboptimal search that works in two stages: aggressive search using a weight that is greater

than the desired optimality bound to find an incumbent solution and then a cleanup phase to prove

that the incumbent is indeed within the bound. The intuition behind this approach is that wA* can

find a solution within a very tight bound (much tighter than w ·g(opt)), then the search can continue
looking at nodes in f order until the bound can be proved. Thayer and Ruml show that, indeed,

this approach can surpass the speed of wA* for a given optimality bound. We have implemented an

optimistic version of PBNF (oPBNF).

One of the requirements of oPBNF is that it must have access to the minimum f value over all

nodes in order to prove the bound on the incumbent solution. For the aggressive search stage, the

open lists and the heap of free nblocks are sorted on f ′ instead of f so a couple of additions need to

be made. First, each nblock has an additional priority queue containing the open search nodes sorted

on f . We call this queue openf . The openf queue is simply maintained by adding and removing

nodes as nodes are added and removed from the f ′ ordered open list of each nblock. Second, a

priority queue, called minf , of all of the nblocks is maintained, sorted on the lowest f value in each

nblock at the time of its last release. minf is used to track a lower bound on the minimum f value

over all nodes. This is accomplished by lazily updating minf only when an nblock is released by

a thread. When a thread releases an nblock, it sifts the released nblock and its successors to their

new positions in the minf queue. These are the only nblocks whose minimum f values could have

been changed by the releasing thread. Since the global minimum f value over all nodes is strictly

increasing (assuming a consistent heuristic) we have the guarantee that the f value at the front of

the minf queue is strictly increasing and is a lower bound on the global minimum f value at any

given time. Using this lower bound, we are able to prove whether or not an incumbent solution is

properly bounded.

oPBNF needs to decide when to switch between the aggressive search phase and the cleanup

phase of optimistic search. As originally proposed, optimistic search performs aggressive search

until the first incumbent is found then it switches between cleanup (when f ′(n) ≥ g(s), where n
is the best node based on f ′ and s is the incumbent solution) and aggressive search (when f ′(n) <
g(s)) to hedge against the case when the current incumbent is not within the bound. In oPBNF,
we were left with a choice: switch between aggressive search and cleanup on a global basis or on

a per-nblock basis. We choose to switch on a per-nblock basis under the assumption that some

threads could be cleaning up areas of the search space with low f values while other threads look
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for better solutions in areas of the search space with low f ′ values. In oPBNF, when deciding if

one nblock is better than another (when deciding to switch or to set an nblock to hot), the choice

is no longer based solely on the best f ′ value of the given nblock, but instead it is based on the f ′

value first, then the f value to break ties of if the best f ′ value is out of the bound of the incumbent.

When acquiring a new nblock, a thread takes either the free nblock with the best f ′ value or best f

value depending on which nblock is better (where the notion of better is described in the previous

sentence). Finally, when expanding nodes, a thread selects aggressive search or cleanup based on

the same criteria as standard optimistic search for the nodes within the acquired nblock.

6. Empirical Evaluation: Bounded Suboptimal Search

We implemented and tested weighted versions of the parallel search algorithms discussed above:

wAHDA*, wAPRA*, wBFPSDD, wPBNF and oPBNF. All algorithms prune nodes based on the

w · f criterion presented in Theorem 4 and prune entire open lists on f ′ as in Corollary 2. Search
terminates when all nodes have been pruned by the incumbent solution. Our experiments were

run on the same three benchmark domains as for optimal search: grid pathfinding, the sliding tile

puzzle, and STRIPS planning.

6.1 Grid Pathfinding

Results presented in Table 2 show the performance of the parallel search algorithms in terms of

speedup over serial weighted A* on grid pathfinding problems. Duplicate states that have already

been expanded are dropped in the serial wA* algorithm, as discussed by Likhachev et al. (2003).

The rows of this table show the number of threads and different algorithms whereas the columns

are the weights used for various domains. Each entry shows the mean speedup over serial weighted

A*. We performed a Wilcoxon signed-rank test to determine which mean values were significantly

different; elements that are in bold represent values that were not significantly different (p < 0.05)
from the best mean value in the given column. In general, the parallel algorithms show increased

speedup as threads are added for low weights, and decreased speedup as the weight is increased.

In unit-cost four-way movement grids, for weights of 1.1, and 1.2 the wPBNF algorithm was

the fastest of all of the algorithms tested reaching over five times the speed of wA* at a weight of

1.1 at and over 4.5x at a weight of 1.2 . At a weight of 1.4 wPBNF, wBFPSDD and wAHDA* did

not show a significant difference in performance at 8 threads. wAHDA* had the best speed up of

all algorithms at a weight of 1.8. wAPRA* never gave the best performance in this domain.

In eight-way movement grids wPBNF gave the best performance for a weight of 1.1 and 1.4,

although in the latter case this best performance was a decrease over the speed of wA* and it was

achieved at 1 thread. wAHDA* was the fastest when the weight was 1.2, however, this did not scale

as expected when the number of threads was increased. Finally wAPRA* gave the least performance

decrease over weighted A* at a weight of 1.8 with 1 thread. In this case, all algorithms were slower

than serial weighted A* but wAPRA* gave the closest performance to the serial search. wBFPSDD

never gave the best performance in this domain.

In the life-cost domain wPBNF outperformed all other algorithms for weights 1.1, 1.2 and 1.4.

At weight 1.8, wPBNF’s performance quickly dropped, however and wAHDA* had the best results

with more than a 4x speedup over wA*, although the performance appears to have been very in-

consistent as it is not significantly different from much lower speedup values for the same weight.

wAPRA* never gave the best performance in this domain.
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th
re
ad
s

weight

Unit Four-way Grids

1.1 1.2 1.4 1.8

w
P
B
N
F

1 0.98 0.91 0.51 0.73

2 1.74 1.65 1.07 0.87

3 2.47 2.33 1.62 0.89

4 3.12 2.92 2.13 0.90

5 3.76 3.52 2.48 0.91

6 4.30 3.99 2.80 0.89

7 4.78 4.40 3.01 0.88

8 5.09 4.66 3.11 0.87

w
B
F
P
S
D
D

1 0.82 0.84 0.96 0.94

2 1.26 1.26 1.45 0.91

3 1.65 1.65 1.90 0.84

4 1.93 1.92 2.09 0.79

5 2.24 2.24 2.36 0.75

6 2.51 2.51 2.58 0.71

7 2.73 2.69 2.63 0.67

8 2.91 2.84 2.68 0.63

w
A
H
D
A
*

1 0.87 0.79 0.32 0.56

2 1.35 1.17 0.63 0.84

3 1.90 1.69 1.30 1.30

4 2.04 2.10 1.57 1.30

5 1.77 2.08 1.79 0.97

6 3.23 3.03 2.18 1.33

7 3.91 3.78 2.56 1.30

8 3.79 3.64 3.02 1.13

w
A
P
R
A
*

1 0.88 0.81 0.32 0.56

2 0.51 0.44 0.22 0.36

3 0.36 0.32 0.20 0.26

4 0.50 0.44 0.30 0.41

5 0.55 0.56 0.39 0.48

6 0.52 0.49 0.31 0.30

7 0.73 0.67 0.40 0.36

8 1.09 1.07 0.82 0.77

Unit Eight-way Grids

1.1 1.2 1.4 1.8

0.93 1.37 0.73 0.74

1.65 1.82 0.57 0.66

2.36 1.77 0.55 0.61

2.97 1.72 0.53 0.58

3.55 1.67 0.52 0.56

4.04 1.61 0.50 0.54

4.40 1.55 0.49 0.51

4.70 1.49 0.45 0.46

0.87 0.79 0.43 0.33

1.37 1.10 0.43 0.35

1.80 1.22 0.41 0.33

2.13 1.25 0.42 0.33

2.47 1.31 0.39 0.32

2.74 1.21 0.36 0.30

2.94 1.26 0.34 0.29

3.10 1.23 0.32 0.26

0.79 1.10 0.66 0.76

1.04 1.99 0.62 0.61

2.08 2.93 0.64 0.62

2.48 2.84 0.56 0.54

2.49 2.52 0.42 0.41

3.73 2.83 0.49 0.45

4.45 2.89 0.45 0.41

4.39 2.58 0.37 0.38

0.80 1.11 0.67 0.77

0.35 0.69 0.31 0.28

0.41 0.65 0.23 0.22

0.43 0.73 0.22 0.19

0.49 0.87 0.23 0.19

0.50 0.65 0.16 0.14

0.62 0.73 0.17 0.14

0.89 1.38 0.28 0.22

Life Four-way Grids

1.1 1.2 1.4 1.8

0.65 0.66 0.84 0.67

1.15 1.17 1.59 0.39

1.65 1.67 2.32 0.39

2.08 2.10 2.96 0.49

2.53 2.55 3.63 1.49

2.94 2.95 4.20 1.64

3.31 3.33 4.63 2.12

3.61 3.64 5.11 1.06

0.52 0.53 0.58 0.60

0.83 0.83 0.92 0.76

1.10 1.09 1.26 0.84

1.29 1.29 1.48 0.89

1.53 1.51 1.61 0.93

1.73 1.72 1.78 0.93

1.91 1.89 1.94 0.91

2.06 2.03 2.10 0.85

0.56 0.55 0.71 0.22

0.88 0.86 1.29 0.32

1.09 1.39 1.86 0.56

1.60 1.64 2.24 0.56

1.88 1.92 2.58 0.41

2.15 2.17 3.02 1.50

2.39 2.41 3.50 1.07

2.38 2.42 3.55 4.16

0.56 0.56 0.72 0.23

0.35 0.34 0.46 0.12

0.23 0.26 0.32 0.10

0.42 0.43 0.55 0.16

0.54 0.56 0.67 0.20

0.39 0.39 0.49 0.13

0.49 0.49 0.65 0.18

1.00 0.98 1.22 0.42

Table 2: Grid Pathfinding: Average speedup over serial weighted A* for various numbers of

threads.
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threads wPBNF wBFPSDD

1.4 1.7 2.0 3.0 1.4 1.7 2.0 3.0

1 0.68 0.44 0.38 0.69 0.65 0.61 0.44 0.35

2 1.35 0.81 1.00 0.63 0.87 0.74 0.49 0.43

3 1.48 0.97 0.85 0.56 1.05 0.72 0.63 0.46

4 1.70 1.20 0.93 0.60 1.09 1.00 0.57 0.45

5 2.04 1.38 0.97 0.74 1.27 0.97 0.65 0.40

6 2.16 1.30 1.19 0.67 1.33 1.17 0.61 0.39

7 2.55 1.46 1.04 0.62 1.49 1.10 0.59 0.34

8 2.71 1.71 1.10 0.60 1.53 1.08 0.62 0.33

threads wAHDA* wAPRA*

1.4 1.7 2.0 3.0 1.4 1.7 2.0 3.0

1 0.61 0.60 0.59 0.54 0.61 0.59 0.59 0.54

2 1.18 1.11 1.32 0.78 1.18 1.08 1.36 0.78

3 1.53 1.30 1.40 0.73 1.45 1.25 1.32 0.78

4 1.91 1.57 1.55 0.74 1.77 1.50 1.36 0.62

5 2.33 1.70 1.27 0.66 2.32 1.62 1.26 0.64

6 2.28 1.72 1.24 0.52 2.18 1.54 1.83 0.47

7 2.71 1.50 1.03 0.44 2.63 1.40 1.09 0.43

8 2.70 1.51 1.24 0.44 2.34 1.61 1.22 0.41

Table 3: 15-puzzle: Average speedup over serial weighted A* for various numbers of threads.

Unit Four-way Grids Unit Eight-way Grids 250 easy 15-puzzles

threads 1.1 1.2 1.4 1.8 1.1 1.2 1.4 1.8 1.4 1.7 2.0 3.0

1 0.54 0.99 0.74 0.47 0.74 0.76 0.09 0.05 0.56 0.58 0.77 0.60

2 0.99 2.00 1.05 0.45 1.26 0.71 0.09 0.05 0.85 1.07 0.83 0.72

3 1.40 2.89 1.19 0.45 1.64 0.70 0.09 0.05 1.06 0.94 0.79 0.80

4 1.76 3.62 1.26 0.44 1.90 0.69 0.09 0.05 1.01 0.82 0.93 0.69

5 2.11 4.29 1.33 0.43 2.09 0.68 0.08 0.05 1.20 1.21 0.97 0.74o
P
B
N
F

6 2.43 4.84 1.35 0.44 2.21 0.68 0.08 0.05 1.32 0.83 0.99 0.67

7 2.70 5.44 1.37 0.43 2.29 0.67 0.08 0.04 1.14 0.93 0.88 0.71

8 2.97 6.01 1.39 0.42 2.30 0.67 0.08 0.04 1.33 0.87 0.81 0.64

Table 4: Average speedup over serial optimistic search for various numbers of threads.
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Overall, we see that wPBNF often had the best speedup results at eight threads and for weights

less than 1.8. wAHDA*, however, gave the best performance at a weight of 1.8 across all grid

pathfinding domains. wBFPSDD often gave speedup over serial weighted A*, however it was not

quite as competitive as wPBNF or wAHDA*. wAPRA* was only very rarely able to outperform

the serial search.

Table 4 shows the results for the optimistic variant of the PBNF algorithm (oPBNF). Each cell

in this table shows the mean speedup of oPBNF over serial optimistic search. Once again, the bold

cells entries that are not significantly different from the best value in the column. For unit-cost

four-way pathfinding problems oPBNF gave a performance increase over optimistic search for two

or more threads and for all weights less than 1.8. At a weight of 1.2, oPBNF tended to give the

best speedup, this may be because optimistic search performed poorly at this particular weight. In

unit-cost eight-way pathfinding, we see that oPBNF performs comparably to the unit-cost domain

for a weight of 1.1, however, at all higher weights the algorithm is slower than serial optimistic

search.

6.2 Sliding Tile Puzzles

For the sliding tiles domain, we used the standard Korf 100 15-puzzles (Korf, 1985). Results are

presented in Table 3. wPBNF, wAHDA* and wAPRA* tended to give comparable performance in

the sliding tile puzzle domain each having values that are not significantly different for weights of

1.4 and 1.7. At a weight of 3.0, wAHDA* gave the least performance decrease over weighted A* at

2 threads.

The right-most column of Table 4 shows the results for optimistic PBNF on 250 15-puzzle

instances that were solvable by A* in fewer than 3 million expansions. oPBNF gave its best perfor-

mance at a weight of 1.4. For weights greater than 1.4 oPBNF was unable to outperform its serial

counterpart. For greater weights oPBNF tended to perform better with smaller numbers of threads.

One trend that can be seen in both the sliding tiles domain and the grid pathfinding domain is

that the speedup of the parallel algorithms over serial suboptimal search decreases as the weight is

increased. We suspect that the decrease in relative performance is due to the problems becoming

sufficiently easy (in terms of node expansions) that the overhead for parallelism becomes harmful

to overall search. In problems that require many node expansions the cost of parallelism (additional

expansions, spawning threads, synchronization – albeit small, waiting for threads to complete, etc.)

is amortized by the search effort. In problems that require only a small number of expansions,

however, this overhead accounts for more of the total search time and a serial algorithm could

potentially be faster.

To confirm our understanding of the effect of problem size on speedup, Figure 14 shows a com-

parison of wPBNF to weighted A* on all of the 100 Korf 15-puzzle instances using eight threads.

Each point represents a run on one instance at a particular weight, the y-axis represents wPBNF

speedup relative to serial wA*, and the x-axis represents the number of nodes expanded by wA*.

Different glyphs represents different weight values used for both wPBNF and wA*. The figure

shows that, while wPBNF did not outperform wA* on easier problems, the benefits of wPBNF over

wA* increased as problem difficulty increased. The speed gain for the instances that were run at

a weight of 1.4 (the lowest weight tested) leveled off just under 10 times faster than wA*. This is

because the machine has eight cores. There are a few instances that seem to have speedup greater

than 10x. These can be explained by the speculative expansions that wPBNF performs which may
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Figure 14: wPBNF speedup over wA* as a function of problem difficulty.

find a bounded solution faster than weighted A* due to the pruning of more nodes with f ′ values

equal to that of the resulting solution. The poor behavior of wPBNF for easy problems is most

likely due to the overhead described above. This effect of problem difficulty means that wPBNF

outperformed wA* more often at low weights, where the problems required more expansions, and

less often at higher weights, where the problems were completed more quickly.

6.3 STRIPS Planning

Table 5 shows the performance of the parallel search algorithms on STRIPS planning problems,

again in terms of speedup versus serial weighted A*. In this table columns represent various weights

and the rows represent different planning problems with two and seven threads. Bold values rep-

resent table entries that are within 10% of the the best performance for the given domain. All

algorithms had better speedup at seven threads than at two. wPBNF gave the best speedup for the

most number of domains followed by wAHDA* which was the fastest for three of the domains at

seven threads. At two threads there were a couple of domains (satellite-6 and freecell-3) where

wBFPSDD gave the most speedup, however it never did at seven threads. wAPRA* was always

slower than the three remaining algorithms. On one problem, freecell-3, serial weighted A* per-

forms much worse as the weight increases. Interestingly, wPBNF and wBFPSDD do not show this

pathology, and thus record speedups of up to 1,700 times.

6.4 Summary

In this section, we have seen that bounded suboptimal variants of the parallel searches can give

better performance than their serial progenitors. We have also shown that, on the sliding tile puzzle,

parallel search gives more of an advantage over serial search as problem difficulty increases and we

suspect that this result holds for other domains too. We suspect that this is because the overhead of

using parallelism is not amortized by search time for very easy problems.
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wAPRA* wAHDA*

1.5 2 3 5 1.5 2 3 5

logistics-8 0.99 1.02 0.59 1.37 1.25 1.11 0.80 1.51

blocks-16 1.29 0.88 4.12 0.30 1.52 1.09 4.86 0.38

gripper-7 0.76 0.76 0.77 0.77 1.36 1.35 1.33 1.30

satellite-6 0.68 0.93 0.70 0.75 1.15 1.09 1.28 1.44

2
th
re
ad
s

elevator-12 0.65 0.72 0.71 0.77 1.16 1.20 1.27 1.22

freecell-3 1.03 1.00 1.78 1.61 1.49 1.20 7.56 1.40

depots-13 0.73 1.25 0.97 1.08 0.92 1.29 0.96 1.09

driverlog-11 0.91 0.79 0.94 0.93 1.30 0.97 0.96 0.93

gripper-8 0.63 0.61 0.62 0.62 1.14 1.16 1.15 1.16

logistics-8 3.19 3.10 3.26 2.58 4.59 4.60 3.61 2.58

blocks-16 3.04 1.37 1.08 0.37 3.60 1.62 0.56 0.32

gripper-7 1.71 1.74 1.73 1.82 3.71 3.66 3.74 3.83

satellite-6 1.11 1.01 1.29 1.44 3.22 3.57 3.05 3.60

7
th
re
ad
s

elevator-12 0.94 0.97 1.04 1.02 2.77 2.88 2.98 3.03

freecell-3 3.09 7.99 2.67 2.93 4.77 2.71 48.66 4.77

depots-13 2.38 5.36 1.13 1.17 2.98 6.09 1.22 1.17

driverlog-11 1.90 1.25 0.93 0.92 3.52 1.48 0.95 0.92

gripper-8 1.70 1.68 1.68 1.74 3.71 3.63 3.67 4.00

wPBNF wBFPSDD

1.5 2 3 5 1.5 2 3 5

logistics-8 2.68 2.27 4.06 1.00 1.86 2.12 1.14 0.15

blocks-16 0.93 0.54 0.48 1.32 0.34 0.19 0.16 0.32

gripper-7 2.01 1.99 1.99 2.02 1.91 1.89 1.86 1.84

satellite-6 2.02 1.53 5.90 3.04 1.71 2.22 7.50 2.80

2
th
re
ad
s

elevator-12 2.02 2.08 2.21 2.15 1.76 1.76 1.81 2.18

freecell-3 2.06 0.84 8.11 10.69 1.42 0.54 16.88 55.75

depots-13 2.70 4.49 0.82 0.81 1.48 1.58 0.18 0.14

driverlog-11 0.85 0.19 0.69 0.62 0.85 0.11 0.19 0.21

gripper-8 2.06 2.04 2.08 2.07 2.00 1.96 1.97 1.98

logistics-8 7.10 6.88 1.91 0.46 3.17 3.59 0.62 0.10

blocks-16 2.87 0.70 0.37 1.26 0.49 0.22 0.11 0.32

gripper-7 5.67 5.09 5.07 5.18 4.33 4.28 4.14 4.05

satellite-6 4.42 2.85 2.68 5.89 3.13 2.31 3.01 1.05

7
th
re
ad
s

elevator-12 6.32 6.31 6.60 7.10 3.68 3.78 4.04 3.95

freecell-3 7.01 2.31 131.12 1,721.33 2.12 0.70 44.49 137.19

depots-13 3.12 1.80 0.87 0.88 1.88 1.87 0.15 0.12

driverlog-11 1.72 0.43 0.67 0.42 1.26 0.21 0.30 0.23

gripper-8 5.85 5.31 5.40 5.44 4.62 4.55 4.55 4.51

Table 5: Speed-up over serial weighted A* on STRIPS planning problems for various weights.
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7. Anytime Search

A popular alternative to bounded suboptimal search is anytime search, in which a highly suboptimal

solution is returned quickly and then improved solutions are returned over time until the algorithm

is terminated (or the incumbent solution is proved to be optimal). The two most popular anytime

heuristic search algorithms are Anytime weighted A* (AwA*) (Hansen & Zhou, 2007) and anytime

repairing A* (ARA*) (Likhachev, Gordon, & Thrun, 2003). In AwA* a weighted A* search is

allowed to continue after finding its first solution, pruning when the unweighted f (n) ≥ g(s) where
s is an incumbent solution and n is a node being considered for expansion. ARA* uses a weighted

search where the weight is lowered when a solution meeting the current suboptimality bound has

been found and a special INCONS list is kept that allows the search to expand a node at most once

during the search at each weight.

In this section we present anytime versions of the best performing parallel searches from our

previous sections. We used the PBNF framework to implement Anytime weighted PBNF (Aw-

PBNF) and Anytime Repairing PBNF (ARPBNF). We use the PRA* framework to create anytime

weighted AHDA* (AwAHDA*). We also show the performance of a very simple algorithm that

runs parallel weighted A* searches with differing weights. In the planning domain, we have imple-

mented anytime weighted BFPSDD (AwBFPSDD) for comparison as well.

Because our parallel searches inherently continue searching after their first solutions are found,

they serve very naturally as anytime algorithms in the style of Anytime weighted A*. The main

difference between the standard, optimal versions of these algorithms and their anytime variants is

that the anytime versions will sort all open lists and the heap of free nblocks on f ′(n) = g(n) +
w · h(n). In fact, in both cases the optimal search is a degenerate case of the anytime search
where w = 1. This approach (simply using w > 1) is used to implement all algorithms except for
ARPBNF and multi-weighted A*.

Next, we will discuss the details of the ARPBNF algorithm. Following that, we introduce a

new parallel anytime algorithm called multi-weighted A*. Finally, we show the results of a set of

comparisons that we performed on the anytime algorithms discussed in these sections.

7.1 Anytime Repairing PBNF

ARPBNF is a parallel anytime search algorithm based on ARA* (Likhachev et al., 2003). In

ARPBNF, open lists and the heap of nblocks are sorted on f ′ as in AwPBNF, but instead of merely

continuing the search until the incumbent is proved optimal, ARPBNF uses a weight schedule. Each

time an incumbent is found, the weight on the heuristic value is lowered by a specified amount, all

open lists are resorted and the search continues. On the final iteration, the weight will be 1.0 and
the optimal solution will be found.

The following procedure is used to resort the nblocks in parallel between incumbent solutions:

1. The thread calling for a resort (the one that found a goal) becomes the leader by taking the

lock on the nblock graph and setting the resort flag. (If the flag has already been set, then

another thread is already the leader and the current thread becomes a worker). After the flag

is set the leader thread releases the lock on the nblock graph and waits for all nblocks to have

σ values of zero (no nblocks are acquired).

2. Threads check the resort flag each expansion, if it is set then threads release their nblocks and

become worker threads and wait for the leader to set the start flag.
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3. Once all nblocks have σ = 0, the leader re-takes the lock on the nblock graph and ensures
that all σ values are still zero (if not, then it releases the lock and retries). The leader sets
the global weight value to the next weight on the weight schedule and populates a lock-free

queue with all nblocks. Once the queue has been populated, the leader sets the start flag.

4. All threads greedily dequeue nblocks and resort them until the queue is empty.

5. When all nblocks have been resorted, the leader thread clears the resort flag and the start flag

and releases the lock on the nblock graph. All threads will now acquire new nblocks and the

search will continue.

We modeled this procedure in TLA+ and showed it to be live-lock and dead-lock free for up to

4 threads and 5 nblocks by the use of the TLC model checker (Yu et al., 1999). This model is very

simple so we do not include it in an appendix.

7.2 Multi-weighted A*

In this section we introduce a new and simple parallel anytime algorithm called multi-weighted A*.

The PBNF and PRA* frameworks for parallelizing anytime algorithms can be thought of as one

end on a spectrum of parallel anytime algorithms. In PBNF and PRA* all threads are working on

finding a single solution of a given quality; on the opposite end of the spectrum each thread would

be working to find its own solution. To compare to an algorithm at that end of the spectrum we

implemented an algorithm we call multi-weighted A* that allocates its available threads to their own

weighted A* searches. The thread that finishes first will generally be the thread that was searching

at the greatest weight and therefore the solution will be of the worst quality. The next thread to

finish will have the next greatest weight, and so on. The final thread to complete will generally be

searching at a weight of 1.0, performing a standard A* search, and will return the optimal solution.

The algorithm is given a schedule of weighs in decreasing order. The largest weights in the

schedule are distributed among the available threads. The threads begin searching using wA* with

their given weight values. When a thread finds a new solution that is better than the current one,

it updates the incumbent that is shared between all threads to allow for pruning. When a thread

finds a better incumbent solution, it will be w -admissible with respect to the weight the thread was

searching with. If a thread finishes (either finding a solution or pruning its entire open list), it takes

the highest unclaimed weight from the schedule and starts a fresh search using that weight. If there

are no weights left in the schedule, the thread terminates. When all threads have terminated, the

search is complete. If the final weight in the schedule is 1.0, then the last solution found will be

optimal.

One of the benefits of multi-weighted A* is that it is a very simple algorithm to implement.

However, as we will see below, it doesn’t benefit much from added parallelism. A reason for

this may be because, when the weight schedule is exhausted (a thread is searching with the lowest

weight, 1.0) threads that complete their searches will sit idle until the entire search terminates. Since

the final weight will take the longest, this may be a majority of the search time. A more dynamic

schedule could be used to keep threads busy until the optimal solution is found. One could also

attempt to use more threads at once by using some multi-threaded search at each weight, such as

wPBNF or wAHDA*. We leave these extensions for future work.
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Figure 15: Raw data profiles (top) and lower hull profiles (bottom) for AwA* (left), AwPBNF (cen-

ter), and ARA* (right). Grid unit-cost four-way pathfinding.

8. Empirical Evaluation: Anytime Search

The implementation and empirical setup was similar to that used for suboptimal search. For ARA*,

ARPBNF and Multi-wA* we considered four different weight schedules: {7.4, 4.2, 2.6, 1.9, 1.5,
1.3, 1.1, 1}, {4.2, 2.6, 1.9, 1.5, 1.3, 1.1, 1.05, 1}, {3, 2.8, . . . , 1.2, 1}, {5, 4.8, . . . , 1.2, 1}. For AwA*
and the other anytime parallel algorithms we consider weights of: 1.1, 1.2, 1.4, 1.8 and 3.4 for grid

pathfinding and 1.4, 1.7, 2.0, 3.0 and 5.0 for the sliding tiles domain. To fully evaluate anytime

algorithms, it is necessary to consider their performance profile, i.e., the expected solution quality

as a function of time. While this can be easily plotted, it ignores the fact that the anytime algorithms

considered in this paper all have a free parameter, namely the weight or schedule of weights used

to accelerate the search. In order to compare algorithms, we make the assumption that, in any

particular application, the user will attempt to find the parameter setting giving good performance

for the timescale they are interested in. Under this assumption, we can plot the performance of each

anytime algorithm by computing, at each time point, the best performance that was achieved by any

of the parameter settings tried for that algorithm – that is minimum solution cost over all parameter

settings for a given algorithm up to the given time point. We refer to this concept as the ‘lower hull’

of the profiles, because it takes the minimum over the profiles for each parameter setting.
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Figure 16: Grid unit-cost four-way pathfinding lower hull anytime profiles.

The top row of Figure 15 shows an example of the raw data for three algorithms on our

5000x5000 unit-cost four-way grid pathfinding problems. The y-axis of these plots is the solu-

tion quality as a factor of optimal and the x-axis is the wall clock time relative to the amount of

time A* took to find an optimal solution. The bottom row of this figure shows the lower hull for the

respective data displayed above. By comparing the two images on the left that display the data for

the AwA* algorithm, one can see that the three big “steps” in the lower hull plot is where a differ-

ent weight is used in the hull because it has found a better solution for the same time bound. The

center panel in Figure 15 shows that the AwPBNF algorithm gives a similar performance to AwA*,

however it is often faster. This is not surprising since AwPBNF is based on the AwA* approach and

it is running at eight threads instead of one. The final panel in Figure 15 shows ARA*, which uses

weight schedules instead of a single weight.

Figures 16-17 present the lower hulls of both serial and parallel algorithms on grid pathfinding

and the sliding tile puzzle. In each panel, the y-axis represents solution cost as a factor of the optimal

cost. In Figure 16 the x-axis represents wall time relative to the amount of time that serial A* took to

find an optimal solution. This allows for a comparison between the anytime algorithms and standard

serial A*. Since A* is not able to solve all of Korf’s 100 15-puzzle instances on this machine, the

x-axis in Figure 17 is the absolute wall time in seconds. Both serial and parallel algorithms are

plotted. The profiles start when the algorithm first returns a solution and ends when the algorithm

has proved optimality or after a 180 second cutoff (since Multi-wA* can consume memory more

quickly than the other algorithms, we gave it a 120 second cutoff on the sliding tile puzzle to prevent

thrashing).

8.1 Four-Way Unit Cost Grids

Figure 16 shows the anytime performance for unit cost four-way movement grid pathfinding prob-

lems. AwAHDA* and AwPBNF found the best solutions quicker than the other algorithms. Both
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Figure 17: Korf’s 100 15-puzzles lower hull anytime profiles.

of these algorithms improved in the amount of time taken to find better solutions as more threads

were added. AwPBNF converged more quickly as more threads were added. Even at two threads

AwPBNF was the first algorithm to converge on the optimal solution in 60% of the time of serial A*.

The next two algorithms are Multi-wA* and anytime repairing PBNF (ARPBNF). Multi-wA* con-

verged more quickly as threads were added, but its performance on finding intermediate solutions

did not change too much for different numbers of threads. ARPBNF, on the other hand, took longer

to find good solutions for low thread counts, but as threads were added it started to perform better,

eventually matching Multi wA* at eight threads. Both of these algorithms improved the solution

quality more steadily than AwPBNF and AwAHDA* which had large jumps in their lower hulls.

Each of these jumps corresponds to the hull switching to a different weight value (compare with the

raw data for AwPBNF in Figure 15). All of the parallel algorithms found good solutions faster than

serial AwA* and serial ARA*. Some parallel algorithms, however, took longer to prove optimality

than AwA* in this domain.

8.2 Sliding Tile Puzzles

Figure 17 presents lower hulls for the anytime algorithms on Korf’s 100 instances of the 15-puzzle.

In this figure, the x-axes show the total wall clock time in seconds. These times are not normalized to

A* because it is not able to solve all of the instances. In these panels, we see that AwAHDA* tended

to find good solutions faster than all other algorithms. AwA* and AwPBNF performed very similarly

at two threads and as the number of threads increased AwPBNF begun to find better solutions faster

than AwA*. ARPBNF took longer to find good solutions than AwPBNF and AwAHDA* but it

was able to find better solutions faster than its serial counterpart. The simple Multi wA* algorithm

performed the worst of the parallel algorithms. Increasing the number of threads used in Multi-wA*

did not seem to increase the solution quality. ARA* gave the worst performance in this domain; its

profile curve can be seen at the very top of these three panels.

732



BEST-FIRST SEARCH FOR MULTICORE MACHINES

AwAPRA* AwAHDA*

1.5 2 3 5 1.5 2 3 5

logistics-6 1.09 1.06 1.40 1.40 1.23 1.21 1.59 1.66

blocks-14 1.36 7.76 56.41 >90.16 1.62 9.90 63.60 >110.16
gripper-7 0.78 0.77 0.76 0.75 1.35 1.33 1.32 1.33

satellite-6 0.77 0.78 0.78 0.76 1.26 1.23 1.24 1.23

2
th
re
ad
s

elevator-12 0.64 0.67 0.69 0.70 1.20 1.19 1.16 1.17

freecell-3 1.37 1.43 4.61 1.37 1.66 1.68 5.65 1.95

depots-7 1.24 1.30 1.30 2.68 1.51 1.51 1.50 3.18

driverlog-11 1.15 1.19 1.11 1.20 1.50 1.55 1.46 1.54

gripper-8 0.61 0.62 0.62 0.62 1.16 1.11 1.14 1.11

logistics-6 1.45 1.43 1.81 1.81 2.87 2.81 3.65 3.74

blocks-14 2.54 15.63 98.52 >177.08 3.30 19.91 132.97 >231.45
gripper-7 1.77 1.68 1.71 1.73 3.75 3.69 3.61 3.67

satellite-6 1.22 1.22 1.26 1.26 3.56 3.46 3.51 3.50

7
th
re
ad
s

elevator-12 0.93 0.93 0.95 0.94 2.77 2.75 2.79 2.77

freecell-3 3.64 3.75 11.59 4.44 5.00 4.97 16.36 21.57

depots-7 3.60 3.64 3.65 7.60 4.41 4.42 4.40 9.25

driverlog-11 3.04 3.20 3.05 3.17 4.74 4.82 4.66 4.87

AwPBNF AwBFPSDD

1.5 2 3 5 1.5 2 3 5

logistics-6 1.06 1.35 1.94 1.98 0.68 0.91 0.91 0.56

blocks-14 1.91 1.99 13.22 >22.36 1.02 1.18 7.71 >11.92
gripper-7 2.05 1.96 1.99 1.95 1.94 1.89 1.94 1.82

satellite-6 1.58 1.96 1.98 1.91 1.85 1.87 1.49 1.80

2
th
re
ad
s

elevator-12 2.01 2.07 2.13 2.07 1.74 1.74 1.75 1.69

freecell-3 1.93 1.06 2.78 6.23 1.45 1.46 1.97 3.08

depots-7 1.94 2.00 2.01 4.10 1.44 1.45 1.32 2.40

driverlog-11 1.95 2.10 1.99 0.77 1.73 1.78 1.59 1.41

gripper-8 2.04 2.05 2.09 2.06 2.01 2.00 1.98 1.96

logistics-6 2.04 2.46 4.19 4.21 1.02 1.35 1.37 0.92

blocks-14 3.72 22.37 25.69 >7.20 1.60 1.96 12.10 >19.94
gripper-7 5.61 5.05 5.03 5.06 4.30 4.24 4.16 3.96

satellite-6 5.96 4.66 5.74 4.70 4.10 3.54 4.16 3.88

7
th
re
ad
s

elevator-12 6.18 6.03 6.20 6.05 3.71 3.74 3.73 3.38

freecell-3 3.54 1.50 15.32 11.46 1.78 1.82 2.59 4.14

depots-7 5.74 5.52 5.48 10.84 2.02 1.96 1.92 3.68

driverlog-11 5.78 5.83 5.73 2.18 2.58 2.86 2.57 2.34

Table 6: Speed-up of anytime search to optimality over serial AwA* on STRIPS planning using

various weights.

8.3 STRIPS Planning

Table 6 shows the speedup of the parallel anytime algorithms over serial anytime A*. All algorithms

were run until an optimal solution was proved. (For a weight of 5, AwA* ran out of memory on

blocks-14, so our speedup values at that weight for that instance are lower bounds.) The bold entries
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AwPBNF AwBFPSDD AwAPRA*

1.5 2 3 5 1.5 2 3 5 1.5 2 3 5

logistics-6 1.48 1.84 2.36 2.27 0.68 0.93 0.71 0.54 1.12 1.08 1.08 0.98

blocks-14 1.24 1.22 0.21 0.03 0.87 0.18 0.16 0.16 1.46 1.46 1.42 0.94

gripper-7 1.07 0.99 0.99 1.00 0.93 0.95 0.93 0.92 0.99 1.03 1.01 0.99

satellite-6 1.10 0.87 1.08 0.88 0.88 0.77 0.91 0.90 0.99 1.00 1.01 1.02

elevator-12 1.06 1.04 1.04 1.03 0.77 0.78 0.76 0.73 1.02 1.00 1.00 1.00

7
T
h
re
ad
s

freecell-3 1.05 0.44 0.99 0.29 0.64 0.64 0.20 0.14 1.13 1.16 0.82 0.10

depots-7 1.20 1.15 1.15 1.08 0.54 0.53 0.52 0.49 M M M M

driverlog-11 1.16 1.15 1.19 0.43 0.53 0.58 0.54 0.50 M M M M

gripper-8 1.06 0.99 0.99 1.00 0.99 0.98 0.99 0.97 M M M M

Table 7: Speed-up of anytime search to optimality over PBNF on STRIPS planning problems using

various weights.

in the table represent values that are within 10% of the best performance for the given domain.

For all algorithms, speedup over serial generally increased with more threads and a higher weight.

PBNF gave the fastest performance for all except two domains (blocks-14 and freecell-3). In these

two domains the AwAHDA* gave the best performance by at least a factor of 10x over AwPBNF.

Hansen and Zhou (2007) show that AwA* can lead to speedup over A* for some weight values

in certain domains. Finding a suboptimal solution quickly allows f pruning that keeps the open list

short and quick to manipulate, resulting in faster performance even though AwA* expands more

nodes than A*. We found a similar phenomenon in the corresponding parallel case. Table 7 shows

speedup over unweighted optimal PBNF when using various weights for the anytime algorithms. A

significant fraction of the values are greater than 1, representing a speedup when using the anytime

algorithm instead of the standard optimal parallel search. In general, speedup seems more variable

as the weight increases. For a weight of 1.5, AwPBNF always provides a speedup.

8.4 Summary

In this part of the paper we have shown how to create some new parallel anytime search algorithms

based on the frameworks introduced in the previous sections. We have also created a new parallel

anytime algorithm that simply runs many weighted A* searches with differing weights. In our

experiments, we have seen that AwPBNF and AwAHDA* found higher quality solutions faster than

other algorithms and that they both showed improved performance as more threads were added.

Additionally, ARPBNF, a parallel algorithm that is based on ARA*, improved with more threads

and tended to give a smoother increase in solution quality than the former two algorithms, although

it did not find solutions quite as quickly and it was unable to converge on the optimal solution in

the sliding tiles domain within the given time limit. Running multiple weighted A* searches did

not give solutions faster as the number of threads increased, and its convergence performance was

mixed.

9. Discussion

We have explored a set of best-first search algorithms that exploit the parallel capabilities of modern

CPUs. First we looked at parallel optimal search with (Safe) PBNF, several variants of PRA* and a
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set of simpler previously proposed algorithms. Overall, Safe PBNF gave the best performance for

optimal search. Next we created a set of bounded-suboptimal search algorithms based on PBNF,

the successful variants of PRA*, and the BFPSDD algorithm. PBNF and PRA* with asynchronous

communication and abstraction (AHDA*) gave the best performance over all, with PBNF doing

slightly better on the average. In addition, we showed some results that suggest that bounded-

suboptimal PBNF has more of an advantage over serial weighted A* search as problem difficulty

increases. Finally we converted PBNF and PRA* into anytime algorithms and compared them with

some serial anytime algorithms and a new algorithm called multi-weighted A*. We found that

anytime weighted PBNF and the anytime variant of AHDA* gave the best anytime performance

and were occasionally able to find solutions faster than their non-anytime counterparts.

Our results show that PBNF outperforms PSDD. We believe that this is because of the lack of

layer-based synchronization and a better utilization of heuristic cost-to-go information. The fact

that BFPSDD got better as its f layers were widened is suggestive evidence. Another less obvious

reason why PBNF may perform better is because a best-first search can have a larger frontier size

than the breadth-first heuristic search used by PSDD. This larger frontier size will tend to create

more nblocks containing open search nodes. There will be more disjoint duplicate detection scopes

with nodes in their open lists and, therefore, more potential for increased parallelism.

Some of our results show that, even for a single thread, PBNF can outperform a serial A* search

(see Table 1). This may be attributed in part to the speculative behavior of the PBNF algorithm.

Since PBNF uses a minimum number of expansions before testing if it should switch to an nblock

with better f values, it will search some sub-optimal nodes that A* would not search. In order to

get optimal solutions, PBNF acts as an anytime algorithm; it stores incumbent solutions and prunes

until it can prove that it has an optimal solution. Zhou and Hansen show that this approach has the

ability to perform better than A* (Hansen & Zhou, 2007) because of upper bound pruning, which

reduces the number of expansions of nodes with an f value that is equal to the optimal solution

cost and can reduce the number of open nodes, increasing the speed of operations on the open list.

PBNF may also give good single thread performance because it breaks up the search frontier into

many small open lists (one for each nblock). Because of this, each of the priority queue operations

that PBNF performs can be on much smaller queues than A*, which uses one big single queue (see

Section 4.6.2).

9.1 Possible Extensions

While the basic guideline for creating a good abstractions in SDD (and PBNF) is to minimize the

connectivity between abstract states, there are other aspects of abstraction that could be explored.

For instance, discovering which features are good to include or abstract away may be helpful to

users of PBNF. Too much focus on one feature could cause good nodes to be too focused in a small

subset of nblocks (Zhou & Hansen, 2009). Likewise, size of the abstraction could be examined in

more detail. Although we always use a constant abstraction size in our current work for simplicity

it seems likely that abstraction size should change when number of threads changes or perhaps even

based on features of the domain or problem instance. If a guideline could be devised, such as a ratio

between number of nblocks to threads or h value of the start state, a problem-adaptive abstraction

size would be much simpler in real world use. Additionally, edge partitioning (Zhou & Hansen,

2007) could allow us to reduce connectivity of the abstraction used by PBNF, but further study will

be necessary to discover the full impact of this technique on PBNF’s behavior.
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Some possible future extensions to PBNF include adaptive minimum expansion values, use of

external memory, and extension to a distributed setting. Our preliminary work on adapting min-

imum expansion values indicated that simply increasing or decreasing based on lock failures and

successes had either neutral or negative effect on performance. One reason for this may be because

the minimum expansions parameter adds speculation.

It may be possible to combine PBNF with PRA* in a distributed memory setting. This algorithm

may use a technique based on PRA* to distribute portions of the search space among different nodes

on a cluster of work stations while using a multicore search such as PBNF on each node.

An additional technique that was not explored in this paper is running multicore search algo-

rithms with more threads than there are available cores. This technique has been used to improve

the performance of parallel delayed duplicate detection (Korf, 1993; Korf & Schultze, 2005) which

is heavily I/O intensive. Using this approach, when one thread is blocked on I/O another thread

can make use of the newly available processing core. Even without disk I/O this technique may be

useful if threads spend a lot of time waiting to acquire locks.

10. Conclusions

In this paper we have investigated algorithms for best-first search on multicore machines. We have

shown that a set of previously proposed algorithms for parallel best-first search can be much slower

than running A* serially. We have presented a novel hashing function for PRA* that takes advantage

of the locality of a search space and gives superior performance. Additionally, we have verified re-

sults presented by Kishimoto et al. (2009) that using asynchronous communication in PRA* allows

it to perform better than using synchronous communication. We present a new algorithm, PBNF,

that approximates a best-first search ordering while trying to keep all threads busy. We proved

the correctness of the PBNF search framework and used it to derive new suboptimal and anytime

algorithms.

We have performed a comprehensive empirical comparison with optimal, suboptimal and any-

time variations of parallel best-first search algorithms. Our results demonstrate that using a good

abstraction to distribute nodes in PRA* can be more beneficial than asynchronous communication,

but that these two techniques can be used together (yielding AHDA*). We also found that the orig-

inal breadth-first PSDD algorithm does not give competitive behavior without a tight upper bound

for pruning. We implemented a novel extension to PSDD, BFPSDD, that gives reasonable perfor-

mance on all domains we tested. Our experiments, however, demonstrate that the new PBNF and

AHDA* algorithms outperformed all of the other algorithms. PBNF performs best for optimal and

bounded-suboptimal search and both PBNF and AHDA* gave competitive anytime performance.

Acknowledgments

We gratefully acknowledge support from NSF (grant IIS-0812141), the DARPA CSSG program

(grant HR0011-09-1-0021) and helpful suggestions from Jordan Thayer. Some of these results

were previously reported by Burns, Lemons, Zhou, and Ruml (2009b) and Burns, Lemons, Ruml,

and Zhou (2009a).

736



BEST-FIRST SEARCH FOR MULTICORE MACHINES

Appendix A. Pseudo-code for Safe PBNF

In the following pseudo code there are three global structures. The first is a pointer to the current

incumbent solution, incumbent, the second is a done flag that is set to true when a thread recognizes

that the search is complete and the third is the nblock graph. The nblock graph structure contains

the list of free nblocks, freelist along with the σ and σh values for each nblock. For simplicity, this
code uses a single lock to access either structure. Each thread also has a local exp count. The best

function on a set of nblocks results in the nblock containing the open node with the lowest f value.

SEARCH(INITIAL NODE)

1. insert initial node into open

2. for each p ∈ processors, THREADSEARCH()
3. while threads are still running, wait()
4. return incumbent

THREADSEARCH()

1. b ← NULL

2. while ¬done
3. b ← NEXTNBLOCK(b)
4. exp ← 0
5. while ¬SHOULDSWITCH(b, exp)
6. m ← best open node in b

7. if m > incumbent then prune m

8. if m is a goal then

9. if m < incumbent then

10. lock; incumbent ← m; unlock

11. else if m is not a duplicate then

12. children ← expand(m)
13. for each child ∈ children

14. insert child into open of appropriate nblock

15. exp ← exp+ 1

SHOULDSWITCH(B, EXP)

1. if b is empty then return true

2. if exp < min-expansions then return false

3. exp ← 0
4. if best(freelist) < b or best(interferenceScope(b)) < b then

5. if best(interferenceScope(b)) < best(freelist) then
6. SETHOT(best(interferenceScope(b)))
7. return true

8. lock

9. for each b′ ∈ interferenceScope(b)
10. if hot(b ′) then SETCOLD(b ′)
11. unlock

12. return false
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SETHOT(B)

1. lock

2. if ¬hot(b) and σ(b) > 0
3. and ¬∃i ∈ interferenceScope(b) : i < b ∧ hot(i) then
4. hot(b) ← true

5. for each m ′ ∈ interferenceScope(b)
6. if hot(m ′) then SETCOLD(m ′)
7. if σ(m ′) = 0 and σh(m

′) = 0
8. and m ′ is not empty then

9. freelist ← freelist \ {m ′}
10. σh(m

′) ← σh(m
′) + 1

11. unlock

SETCOLD(B)

1. hot(b) ← false

2. for each m ′ ∈ interferenceScope(b)
3. σh(m

′) ← σh(m
′)− 1

4. if σ(m ′) = 0 and σh(m
′) = 0 and m ′ is not empty then

5. if hot(m ′) then
6. SETCOLD(m ′)
7. freelist ← freelist ∪ {m ′}
8. wake all sleeping threads

RELEASE(B)

1. for each b ′ ∈ interferenceScope(b)
2. σ(b ′) ← σ(b ′)− 1
3. if σ(b ′) = 0 and σh(b

′) = 0 and b ′ is not empty then
4. if hot(b ′) then
5. SETCOLD(b ′)
6. freelist ← freelist ∪ {b ′}
7. wake all sleeping threads

NEXTNBLOCK(B)

1. if b has no open nodes or b was just set to hot then lock

2. else if trylock() fails then return b

3. if b �= NULL then

4. bestScope ← best(interferenceScope(b))
5. if b < bestScope and b < best(freelist) then
6. unlock; return b

7. RELEASE(b)
8. if (∀l ∈ nblocks : σ(l) = 0) and freelist is empty then
9. done ← true

10. wake all sleeping threads

11. while freelist is empty and ¬done, sleep
12. if done then n ← NULL
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13. else

14. m ← best(freelist)
15. for each b ′ ∈ interferenceScope(m)
16. σ(b ′) ← σ(b ′) + 1
17. unlock

18. return m
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Appendix B. TLA+ Model: Hot Nblocks

Here we present the model used to show that Safe PBNF is live-lock free. Refer to Section 3.2.3.
MODULE HotNblocks

EXTENDS FiniteSets , Naturals
CONSTANTS nnblocks, nprocs , search, nextblock , none
VARIABLES state, acquired , isHot , Succs
Vars

∆

= 〈state, acquired , isHot , Succs〉
States

∆

= {search, nextblock}
Nblocks

∆

= 0 . . nnblocks − 1
Procs

∆

= 0 . . nprocs − 1
ASSUME nnblocks ≥ nprocs ∧ nprocs > 0 ∧ nnblocks > 1 ∧ none /∈ Nblocks ∧ Cardinality(States) = 2
Preds(x )

∆

= {y ∈ Nblocks : x ∈ Succs [y ]} Set of predecessors to Nblock x

IntScope(x )
∆

= Preds(x ) ∪ UNION {Preds(y) : y ∈ Succs [x ]} The interference scope of x

IntBy(x )
∆

= {y ∈ Nblocks : x ∈ IntScope(y)} Set of Nblocks which x interferes.

Busy(A)
∆

= A ∪ UNION {Succs [x ] : x ∈ A} Set of Nblocks which are busy given the set of acquired nblocks

Overlap(x , A)
∆

= A ∩ IntScope(x ) Set of Busy Nblocks overlapping the successors of x

Hot(A)
∆

= {x ∈ Nblocks : isHot [x ] ∧Overlap(x , A) �= {}} Set of all hot nblocks given the set of acquired nblocks

HotInterference(A)
∆

= UNION {IntScope(x ) : x ∈ Hot(A)} Set of Nblocks in interference scopes of hot nblocks

Free(A)
∆

= {x ∈ Nblocks : Overlap(x , A) = {} ∧ x /∈ HotInterference(A)} Free Nblocks

Acquired
∆

= {acquired [x ] : x ∈ Procs} \ {none} Set of Nblocks which are currently acquired

OverlapAmt(x )
∆

= Cardinality(Overlap(x , Acquired)) The number of nblocks overlapping x .

doNextBlock(x )
∆

= ∧ UNCHANGED 〈Succs〉
∧ state[x ] = nextblock ∧ acquired [x ] = none ⇒ Free(Acquired) �= {}
∧ IF Free(Acquired \ {acquired [x ]}) �= {} THEN

∧ ∃ y ∈ Free(Acquired \ {acquired [x ]}) : acquired ′ = [acquired EXCEPT ! [x ] = y ]
∧ state ′ = [state EXCEPT ! [x ] = search]
∧ isHot ′ = [y ∈ Nblocks �→ IF y ∈ Free(Acquired \ {acquired [x ]})

THEN FALSE ELSE isHot [y ]]
ELSE ∧ acquired ′ = [acquired EXCEPT ! [x ] = none]

∧ isHot ′ = [y ∈ Nblocks �→ IF y ∈ Free(Acquired ′)
THEN FALSE ELSE isHot [y ]]

∧ UNCHANGED 〈state〉
doSearch(x )

∆

= ∧ UNCHANGED 〈acquired , Succs〉
∧ state[x ] = search ∧ state ′ = [state EXCEPT ! [x ] = nextblock ]
∧ ∨ UNCHANGED 〈isHot〉

∨ ∃ y ∈ IntBy(acquired [x ]) : ∧ ¬isHot [y ]
∧ IntScope(y) ∩ Hot(Acquired) = {}
∧ y /∈ HotInterference(Acquired)
∧ isHot ′ = [isHot EXCEPT ! [y ] = TRUE]

Init
∆

= ∧ state = [x ∈ Procs �→ nextblock ] ∧ acquired = [x ∈ Procs �→ none]
∧ isHot = [x ∈ Nblocks �→ FALSE]
This is a basic graph where each nblock is connected to its neighbors forming a loop.

∧ Succs = [x ∈ Nblocks �→ IF x = 0 THEN {nnblocks − 1, x + 1}
ELSE IF x = nnblocks − 1 THEN {0, x − 1} ELSE {x − 1, x + 1}]

Next
∆

= ∃ x ∈ Procs : (doNextBlock(x ) ∨ doSearch(x ))
Fairness

∆

= ∀ x ∈ Procs :WFVars(doNextBlock(x ) ∨ doSearch(x ))
Prog

∆

= Init ∧✷[Next ]Vars ∧ Fairness

HotNblocks
∆

= ∀ x ∈ Nblocks : isHot [x ] � ¬isHot [x ] The property to prove
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