
Best-First Minimax Search: Othello Results 

Richard E. Korf and David Maxwell Chickering 
Computer Science Department 

University of California, Los Angeles 
Los Angeles, Ca. 90024 

korf@cs.ucla.edu 

Abstract 

We present a very simple selective search algorithm for 
two-player games. It always expands next the frontier 
node that determines the minimax value of the root. 
The algorithm requires no information other than a 
static evaluation function, and its time overhead per 
node is similar to that of alpha-beta minimax. We 
also present an implementation of the algorithm that 
reduces its space complexity from exponential to lin- 
ear in the search depth, at the cost of increased time 
complexity. In the game of Othello, using the evalu- 
ation function from BiIl (Lee & Mahajan 1990), best- 
first minimax outplays alpha-beta at moderate depths. 
A hybrid best-first extension algorithm, which com- 
bines alpha-beta and best-first minimax, performs sig- 
nificantly better than either pure algorithm even at 
greater depths. Similar results were also obtained for 
a class of random game trees. 

Introduction and Overview 
The best chess machines are competitive with the best 
humans, but generate millions of positions per move. 
Their human opponents, however, only examine tens 
of positions, but search much deeper along some lines 
of play. Obviously, people are more selective in their 
choice of positions to examine. The importance of se- 
lective search was first recognized by (Shannon 1950). 

Most work on game-tree search has focussed on 
algorithms that make the same decisions as full- 
width, fixed-depth minimax. This includes alpha-beta 
pruning (Knuth & Moore 1975), fixed and dynamic 
node ordering (Slagle & Dixon 1969), SSS* (Stock- 
man 1979), Scout (Pearl 1984), aspiration-windows 
(Kaindl, Shams, & Horacek 1991), etc. We define 
a selective search algorithm as one that makes dif- 
ferent decisions than full-width, fixed-depth minimax. 
These include B* (Berliner 1979), conspiracy search 
(McAllester 1988), min/max approximation (Rivest 
1987), meta-greedy search (Russell & Wefald 1989), 
and singular extensions (Anantharaman, Campbell, & 
Hsu 1990). All of these algorithms, except singular ex- 
tensions, require exponential memory, and most have 
large time overheads per node expansion. In addition, 
B* and meta-greedy search require more information 

than a single static evaluation function. Singular ex- 
tensions is the only algorithm to be successfully incor- 
porated into a high-performance program. 

We describe a very simple selective search algorithm, 
called best-first minimax. It requires only a single 
static evaluator, and its time overhead per node is 
roughly the same as alpha-beta minimax. We de- 
scribe an implementation of the algorithm that reduces 
its space complexity from exponential to linear in the 
search depth. We also explore best-first extensions, a 
hybrid combination of alpha-beta and best-first mini- 
max. Experimentally, best-first extensions outperform 
alpha-beta in the game of Othello, and on a class of 
random game trees. Earlier reports on this work in- 
clude (Korf 1992) and (Korf & Chickering 1993). 

Best-First Minimax Search 
The basic idea of best-first minimax is to always ex- 
plore further the current best line of play. Given a 
partially expanded game tree, with static evaluations 
of the leaf nodes, the value of an interior MAX node is 
the maximum of its children’s values, and the value of 
an interior MIN node is the minimum of its children’s 
values. There exists a path, called the principal varia- 
tion, from the root to a leaf node, in which every node 
has the same value. This leaf node, whose evaluation 
determines the mini max value of the root, is called the 
principal leaf. Best-first minimax always expands next 
the current principal leaf node, since it has the greatest 
affect on the minimax value of the root. 

Consider the example in figure 1, where squares rep- 
resent MAX nodes and circles represent MIN nodes. 
Figure 1A shows the situation after the root has been 
expanded. The values of the children are their static 
values, and the value of the root is 6, the maximum of 
its children’s values. Thus, the right child is the prin- 
cipal leaf, and is expanded next, resulting in the situa- 
tion in figure 1B. The new frontier nodes are statically 
evaluated at 5 and 2, and the value of their MIN par- 
ent changes to 2, the minimum of its children’s values. 
This changes the value of the root to 4, the maximum 
of its children’s values. Thus, the left child of the root 
is the new principal leaf, and is expanded next, result- 

Two-Player Games 1365 

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



A 

6 w 4 6 

Figure 1: Best-first minimax search example 

ing in the situation in figure 1C. The value of the left 
child of the root changes to the minimum of its chil- 
dren’s values, 1, and the value of the root changes to 
the maximum of its children’s values, 2. At this point, 
the rightmost grandchild is the new principal leaf, and 
is expanded next, as shown in figure 1D. 

By always expanding the principal leaf, best-first 
minimax may appear to suffer from the exploration of 
a single path to the exclusion of all others. This does 
not occur in practice, however. The reason is that the 
expansion of a node tends to make it look worse, thus 
inhibiting further exploration of the subtree below it. 
For example, a MAX node will only be expanded if 
its static value is the minimum among its brothers, 
since its parent is a MIN node. Expanding it changes 
its value to the maximum of its children, which tends 
to increase its value, making it less likely to remain as 
the minimum among its siblings. Similarly, hlIN nodes 
also tend to appear worse to their MAX parents when 
expanded, making it less likely that their children will 
be expanded next. This tempo effect adds balance to 
the tree searched by best-first minimax, and increases 
with increasing branching factor. Surprisingly, while 
this oscillation in values with the last player to move 
is the reason that alpha-beta avoids comparing nodes 
at different levels in the tree, it turns out to be advan- 
tageous to best-first minimax. 

While in principle best-first minimax could make a 
move at any point in time, we choose to move when 
the length of the principal variation exceeds a given 
depth bound, or a winning terminal node is chosen for 
expansion. This ensures that the chosen move has been 
explored to a significant depth, or leads to a win. 

The simplest implementation of best-first minimax 
maintains the current tree in memory. When a node 
is expanded, its children are evaluated, its value is up- 
dated, and the algorithm moves up the tree updating 
the values of its ancestors, until it reaches the root, 
or a node whose value doesn’t change. It then moves 
down the tree to a maximum-valued child of a MAX 
node, or a minimum-valued child of a MIN node, until 

1366 Search 

it reaches a new principal leaf. A drawback of this im- 
plementation is that it requires exponential memory, a 
problem that we address below. 

Despite its simplicity, best-first minimax has appar- 
ently not been explored before. The algorithm is men- 
tioned as a special case of AO*, a best-first search of an 
AND-OR tree, in (Nilsson 1969). The chess algorithm 
of (Kozdrowicki & Cooper 1973) seems related, but 
behaves differently on their examples. Best-first min- 
imax is also related to conspiracy search (McAllester 
19SS), and only expands nodes in the conspiracy set. 
It is also related to Rivest’s min/max approximation 
(Rivest 1987). Both algorithms strive to expand next 
the node with the largest affect on the root value, but 
best-first minimax is much simpler. All four related 
algorithms above require exponential memory. 

Recursive Best-First Minimax Search 
Recursive Best-First Minimax Search (RBFMS) is an 
implementation of best-first minimax that runs in 
space linear in the search depth. The algorithm is a 
generalization of Simple Recursive Best-First Search 
(SRBFS) (Korf, 1993), a linear-space best-first search 
designed for single-agent problems. Figure 2 shows the 
behavior of RBFMS on the example of figure 1. 

Associated with each node on the principal variation 
is a lower bound Alpha, and an upper bound Beta, 
similar to the bounds in alpha-beta pruning. A node 
will remain on the principal variation as long as its 
minimax value stays within these bounds. The root is 
bounded by -oo and 00. Figure 2A shows the situa- 
tion after the root is expanded, with the right child on 
the principal variation. It will remain on the principal 
variation as long as its minimax value is greater than 
or equal to the maximum value of its siblings (4). The 
right child is expanded next, as shown in figure 2B. 

The value of the right child changes to the minimum 
of its children’s values (5 and 2), and since 2 is less than 
the lower bound of 4, the right child is no longer on 
the principal variation, and the left child of the root is 
the new principal leaf. The algorithm returns to the 



Figure 2: Recursive best-first minimax search example 

root, freeing memory, but stores with the right child its 
new minimax value of 2, as shown in figure 2C. This 
method of backing up values and freeing memory is 
similar to that of (Chakrabarti et al. 1989). 

The left child of the root will remain on the principal 
variation as long as its value is greater than or equal to 
2, the largest value among its siblings. It is expanded, 
as shown in figure 2D. Its new value is the minimum 
of its children’s values (8 and 1)) and since 1 is less 
than the lower bound of 2, the left child is no longer 
on the principal variation, and the right child of the 
root becomes the new principal leaf. The algorithm 
returns to the root, and stores the new minimax value 
of 1 with the left child, as shown in figure 2E. Now, 
the right child of the root will remain on the principal 
variation as long as its minimax value is greater than 
or equal to 1, the value of its best sibling, and is ex- 
panded next. The reader is encouraged to complete the 
example. Note that the values of interior nodes on the 
principal variation are not computed until necessary. 

RBFMS consists of two recursive and entirely sym- 
metric functions, one for MAX and one for MIN. Each 
takes three arguments: a node, a lower bound Alpha, 
and an upper bound Beta. Together they perform 
a best-first minimax search of the subtree below the 
node, as long as its backed-up minimax value remains 
within the Alpha and Beta bounds. Once it exceeds 
those bounds, the function returns the new backed-up 
minimax value of the node. At any point, the recursion 
stack contains the current principal variation, plus the 

siblings of all nodes on this path. Its space complexity 
is thus O(bd), where b is the branching factor of the 
tree, and d is the maximum depth. 

The children of a node are generated and evaluated 
one at a time. If the value of any child of a MAX node 
exceeds Beta, or the value of any child of a MIN node 
is less than Alpha, that child’s value is immediately 
returned, without generating the remaining children. 

BFMAX (Node, Alpha, Beta) 
FOR each Child[i] of Node 
M cil := Evaluation(Child[i]) 
IF M[i] > Beta return M[i] 

SORT ChildCi] and Mb] in decreasing order 
IF only one child, MC21 := -infinity 
WHILE Alpha <= ML11 C= Beta 

MC11 := BFMIN(Child~l],max(Alpha,MC21),Beta) 
insert ChildCll and MC11 in sorted order 

return M Cl] 

BFMIN (Node, Alpha, Beta) 
FOR each Child[i] of Node 

MCil := Evaluation(Child[il) 
IF M[i] < Alpha return M[i] 

SORT Child[il and Mb] in increasing order 
IF only one child, MC21 := infinity 
WHILE Alpha <= MC13 <= Beta 

MC11 := BFMAX(Child[ll,Alpha,min(Beta,M[2])) 
insert Child[l] and MC11 in sorted order 

return M Cl1 

Two-Player Games 1367 



Syntactically, recursive best-first minimax appears 
very similar to alpha-beta, but behaves quite differ- 
ently. Alpha-beta makes its move decisions based on 
the values of nodes all at the same depth, while best- 
first minimax relies on node values at different levels.’ 

Saving the Tree 
RBFMS reduces the space complexity of best-first min- 
imax by generating some nodes more than once. This 
overhead is significant for deep searches. On the other 
hand, the time per node generation for RBFMS is less 
than for standard best-first minimax. In the standard 
implementation, when a new node is generated, the 
state of its parent is copied, along with any changes to 
it. The recursive algorithm does not copy the state, 
but rather makes only incremental changes to a single 
copy, and undoes them when backtracking. 

Our actual implementation uses the recursive control 
structure of RBFMS. When backing up the tree, how- 
ever, the subtree is retained in memory. Thus, when a 
path is abandoned and then reexplored, the entire sub- 
tree is not regenerated, While this requires exponential 
space, it is not a major problem, for several reasons. 

The first is that once a move is made, and the oppo- 
nent moves, we only save the remaining relevant sub- 
tree, and prune the subtrees below moves that weren’t 
chosen by either player, releasing the corresponding 
memory. While current machines will exhaust their 
memories in minutes, in a two-player game, moves are 
made every few minutes, freeing much of the memory. 

The second reason that memory is not a serious con- 
straint is that only the backed-up minimax value of a 
node, and pointers to its children must be saved. The 
actual game state, and alpha and beta bounds, are in- 
crementally generated from the parent. Thus, a node 
only requires a few words of memory. 

If memory is exhausted while computing a move, 
however, there are two options. One is to complete the 
current move search using the linear-space algorithm, 
thus requiring no more memory than for the recur- 
sion stack. The other is to prune the least promising 
parts of the current search tree. Since all nodes off the 
principal variation have their backed-up minimax val- 
ues stored at all times, pruning is simply a matter of 
recursively freeing the memory in a given subtree. 

Since best-first minimax spends most of its time on 
the expected line of play, it can save much of the tree 
computed for one move, and apply it to subsequent 
moves, particularly if the opponent moves as expected. 
Saving the tree between moves improves the perfor- 
mance considerably. In contrast, the standard depth- 
first implementation of alpha-beta doesn’t save the tree 
from one move to the next, but only a subset of the 

‘While Recursive Best-First Search (RBFS) is more ef- 
ficient than Simple Recursive Best-First Search (SRBFS) 
for single-agent problems (Korf 1993), the minimax gener- 
alizations of these two algorithms behave identically.- 

nodes in a transposition table. Even if alpha-beta is 
modified to save the tree, since it searches every move 
to the same depth, relatively little of the subtree com- 
puted during one move is still relevant after the player’s 
and opponent’s moves. In the best case, when alpha- 
beta searches the minimal tree and the opponent moves 
as expected, only l/b of the tree that is generated in 
computing one move is still relevant after the player’s 
and opponent’s moves, where b is the branching factor. 

Othello Results 
The test of a selective search algorithm is how well 
it plays. We played best-first minimax against alpha- 
beta in the game of Othello, giving both algorithms the 
same amount of computation, and the same evaluation 
function from the program Bill (Lee & Mahajan 1990), 
one of the world’s best Othello players. 

The efficiency of alpha-beta is greatly affected by 
the order in which nodes are searched. The simplest 
ordering scheme, called fixed ordering (Slagle & Dixon 
1969), fully expands each node, statically evaluates 
each child, sorts the children by their values, and then 
searches the children of MAX nodes in decreasing or- 
der, and the children of MIN nodes in increasing order. 
We use fixed ordering on newly generated nodes until 
one level above the search horizon. At that point, since 
there is no advantage to further ordering, the children 
are evaluated one at a time, allowing additional prun- 
ing. To ensure a fair comparison to best-first minimax, 
our alpha-beta implementation saves the relevant sub- 
tree from one move to the next. This allows us to order 
previously generated nodes by their backed-up values 
rather than their static values, further improving the 
node ordering and performance of alpha-beta. 

Each tournament consisted of 244 pairs of games. 
Different games were generated by making all possi- 
ble first four moves, and starting the game with the 
fifth move. Each game was played twice, with each 
algorithm moving first, to eliminate the effect of a par- 
ticular initial state favoring the first or second player 
to move. An Othello game is won by the player with 
the most discs at the end. About 3% of the games were 
tied, and are ignored in the results presented below. 

When alpha-beta can search to the end of the game, 
both algorithms use alpha-beta to complete the game, 
since alpha-beta is optimal when the static values are 
exact. In Othello, the disc differential is the exact 
value at the end of the game. Since best-first minimax 
searches deeper than alpha-beta in the same amount 
of time, however, it reaches the endgame before alpha- 
beta does. Since disc differentials are not compara- 
ble to the values returned by Bill’s heuristic function, 
best-first minimax evaluates endgame positions at -oo 
if MAX has lost, 00 if MAX has won, and -oo + 1 for 
ties. If the principal leaf is a winning terminal node 
for best-first, it stops searching and makes a move. If 
alpha-beta makes the expected response, the principal 
leaf doesn’t change, and best-first minimax will make 

1368 Search 



AB depth 1 2 3 4 S 6 7 BF depth 1 St% 7% i:% 15 19 23 AB depth 1 2 3 4 S 6 7 8 
BF wins SO% 57% 68% Sl% BF depth 1 4 7 10 14 18 21 24 

BF wins SO% 67% 83% 81% 67% 72% 67% 60% 

Table 1: Pure best-first vs. alpha-beta on Othello 

its next move without further search. Conversely, if 
the principal leaf is a loss or tie, best-first minimax 
will continue to search until it finds a win, or runs out 
of time. While this endgame play is not ideal, it is the 
most natural extension of best-first minimax. 

For each alpha-beta search horizon, we experimen- 
tally determined what depth limit caused best-first 
minimax to take most nearly the same amount of time. 
This was done by running a series of tournaments, and 
incrementing the search horizon of the algorithm that 
took less time in the last tournament. Node evalua- 
tion is the dominant cost, and running time is roughly 
proportional to the number of node evaluations. 

Table 1 shows the results of these experiments. The 
top line shows the alpha-beta search depths, and the 
second line shows the best-first search depth that took 
most nearly the same amount of time as the corre- 
sponding alpha-beta depth. The third line shows the 
percentage of games that were won by best-first mini- 
max, excluding ties. Each data point is an average of 
244 pairs of games, or 488 total games. 

Both algorithms are identical at depth one. At 
greater depths, best-first searches deeper than alpha- 
beta, and wins most of the time. Its winning percent- 
age increases to 78%, but then begins to drop off as 
the gap between the alpha-beta and best-first horizons 
becomes very large. At greater depths, we believe that 
best-first will lose to alpha-beta. 

Best-First Extensions 
One explanation for this performance degradation is 
that while best-first minimax evaluates every child of 
the root, it may not generate some grandchildren, de- 
pending on the static values of the children. In partic- 
ular, if the evaluation function grossly underestimates 
the value of a node, it may never be expanded. For 
example, this might occur in a piece trade that begins 
with a sacrifice. At some point, it makes more sense 
to consider all grandchildren of the root, rather than 
nodes 23 moves down the principal variation. 

To correct this, we implemented a hybrid algorithm, 
called best-first extension, that combines the uniform 
coverage of alpha-beta with the penetration of best- 
first minimax. Best-first extension performs alpha- 
beta to a shallow search horizon, and then executes 
best-first minimax to a greater depth, starting with the 
tree, backed-up values, and principal variation gener- 
ated by the alpha-beta search. This guarantees that 
every move will be explored to a minimum depth, re- 
gardless of its evaluation, before exploring the most 
promising moves much deeper. This is similar to the 

Table 2: Best-first extension vs. alphsbeta on Othello 

idea of principal variation lookahead extensions (Anan- 
tharaman 1990). 

Best-first extension has two parameters: the depth 
of the initial alpha-beta search, and the depth of the 
subsequent best-first search. In our experiments, the 
alpha-beta horizon of the initial search was set to one 
less than the horizon of its pure alpha-beta opponent, 
and the best-first horizon was whatever depth took 
most nearly the same total amount of time, includ- 
ing the initial alpha-beta search, as the pure alpha- 
beta opponent. Even in this case, most of the time is 
spent on the best-first extension. Table 2 shows the 
results for Othello, in the same format as table 1. At 
alpha-beta depths greater than two, best-first exten- 
sion performs significantly better than both alpha-beta 
and pure best-first minimax. At increasing depths the 
results appear to stabilize, with best-first extension de- 
feating alpha-beta about two out of three games. 

Random Game Tree Results 

As a separate test of our results, we also experimented 
with a class of random game trees (Fuller, Gaschnig, 
& Gillogly 1973). I n a uniform random game tree with 
branching factor 6 and depth d, each edge is indepen- 
dently assigned a random cost. The static heuristic 
evaluation of a node is the sum of the edge costs from 
the root to the node. Since real games do not have uni- 
form branching factors, we let the number of children 
of any node be a random variable uniformly distributed 
from one to a maximum branching factor B. In order 
not to favor MAX or MIN, the edge-cost distribution 
is symmetric around zero. Our edge-cost distribution 
was uniform from -215 to 215. 

Different random games were generated from dif- 
ferent random seeds. Each game was played twice, 
with each algorithm moving first. A random game 
ends when a terminal position is reached, 100 moves 
in our experiments, and returns the static value of the 
final position as the outcome. Given a pair of random 
games, and the corresponding terminal values reached, 
the winner is the algorithm that played MAX when the 
larger terminal value was obtained. Each random game 
tournament consisted of 100 pairs of games. 

In random games with maximum branching factors 
ranging from 2 to 20, we obtained results similar to 
those for Othello (Korf & Chickering 1993). In par- 
ticular, pure best-first outplayed alpha beta at shal- 
low depths, but tended to lose at greater depths, while 
best-first extension outplayed alpha-beta at all depths. 

Two-Player Games 1369 



Conclusions and Further Work 
We presented a very simple selective search algorithm, 
best-first minimax. It always expands next the fron- 
tier node at the end of the current principal variation, 
which is the node that determines the minimax value 
of the root. One advantage of the algorithm is that 
it can save most of the results from one move com- 
putation, and apply them to subsequent moves. In 
experiments on Othello, best-first minimax outplays 
alpha-beta, giving both algorithms the same amount 
of computation and evaluation function, up to a given 
search depth, but starts to lose beyond that depth. 
We also presented a hybrid combination of best-first 
minimax and alpha-beta, which guarantees that ev- 
ery move is searched to a minimum depth. This best- 
first extension outperforms both algorithms, defeating 
alpha-beta roughly two out of three games. While 
memory was not a limiting factor in our experiments, 
we also showed how to reduce the space complexity of 
the algorithm from exponential to linear in the search 
depth, but at significant cost in nodes generated for 
deep searches. Finally, we performed the same experi- 
ments on a class of random games, with similar results. 

Since pure best-first minimax performs best against 
relatively shallow alpha-beta searches, it is likely to 
be most valuable in games with large branching fac- 
tors, and/or expensive evaluation functions. These 
are games, such as Go, in which computers have been 
least successful against humans. Current research is 
focussed on implementing singular extensions in an at- 
tempt to improve our alpha-beta opponent, and imple- 
mentations on other games. 

Acknowledgements 
Thanks to Kai-Fu Lee for the sources to Bill, to Judea 
Pearl, Joe Pemberton, and Weixiong Zhang for many 
helpful discussions, and to Hermann Kaindl for com- 
ments on an earlier draft. This work was supported by 
NSF Grant No. IRI-9119825, and a grant from Rock- 
well International. 

References 
Anantharaman, T.S., A statistical study of selective 
min-max search in computer chess, Ph.D. Thesis, 
Dept. of Computer Science, Carnegie-Mellon Univ., 
Pittsburgh, Pa. 1990. 
Anantharaman, T., M.S. Campbell, and F.-H. Hsu, 
Singular extensions: Adding selectivity to brute-force 
searching, Artificial Intelligence, Vol. 43, No. 1, 1990, 
pp. 99-109. 
Berliner, H.J., The B* tree search algorithm: A best- 
first proof procedure, Artificial Inteldigence, Vol. 12, 
1979, pp. 23-40. 
Chakrabarti, P.P., S. Ghose, A. Acharya, and S.C. de 
Sarkar, Heuristic search in restricted memory, Artifi- 
cial Intelligence, Vol. 41, No. 2, 1989, pp. 197-221. 

Fuller, S.H., J .G. Gaschnig, and J .J . Gillogly, An 
analysis of the alpha-beta pruning algorithm, Tech- 
nical Report, Dept. of Computer Science Carnegie- 
Mellon University, Pittsburgh, Pa., 1973. 
Kaindl, H., R. Shams, and H. Horacek, Minimax 
search algorithms with and without aspiration win- 
dows, IEEE Transactions on Pattern Anadysis and 
Machine Intelligence, Vol. 13, No. 12, 1991, pp. 1225- 
1235. 
Knuth, D.E., and R.E. Moore, An analysis of Alpha- 
Beta pruning, Artificial Intelligence, Vol. 6, No. 4, 
1975, pp. 293-326. 
Korf, R.E., Best-first minimax search: Initial results, 
Technical Report, CSD-920021, Computer Science 
Dept., University of California, Los Angeles, 1992. 
Korf, R.E., Linear-space best-first search, Artificial 
Intelligence, Vol. 62, No. 1, 1993, pp. 41-78. 
Korf, R.E., and D.M. Chickering, Best-first mini- 
max search: First results, Proceedings of the AAAI 
Fall Symposium on Games: Planning and Learning, 
Raleigh, NC, Oct. 1993, pp. 39-47. 
Kozdrowicki, E.W., and D.W. Cooper, COKO III: 
The Cooper-Koz chess program, C.A.C.M., Vol. 16, 
No. 7, 1973, pp. 411-427. 
Lee, K.-F. and S. Mahajan, The development of a 
world-class Othello program, Artificial Intelligence, 
Vol. 43, No. 1, 1990, pp. 21-36. 
McAllester, D.A., Conspiracy numbers for min-max 
search, Artificial Intelligence, Vol. 35, No. 3, 1988, 
pp. 287-310. 
Nilsson, N . J . , Searching problem-solving and game- 
playing trees for minimal cost solutions, in Informa- 
tion Processing 68, Proceedings of the IFIP Congress 
1968, A.J.H. Morrell (Ed.), North-Holland, Amster- 
dam, 1969, pp. 1556-1562. 
Pearl, J. Heuristics, Addison-Wesley, Reading, Mass., 
1984. 
Rivest, R.L., Game tree searching by min/max ap- 
proximation, Artificial Intelligence, Vol. 34, No. 1, 
1987, pp. 77-96. 
Russell, S., and E. Wefald, On optimal game-tree 
search using rational meta-reasoning, Proceedings of 
the Eleventh International Joint Conference on Arti- 
ficial InteZZigence (IJCAI-89), Detroit, MI, 1989, pp. 
334-340. 
Shannon, C.E., Programming a computer for playing 
chess, Philosophical Magazine, Vol. 41, 1950, pp. 256- 
275. 
Slagle, J .R., and Dixon, J .K., Experiments with some 
programs that search game trees, J.A.C.M., Vol. 16, 
No. 2, 1969, pp. 189-207. 
Stockman, G., A minimax algorithm better than 
Alpha-Beta ? Artificial Intelligence, Vol. 12, No. 2, 
1979, pp. 179-196. 

1370 Search 


