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Abstract 

Best-fit is the best known algorithm for on-line bin- 
packing, in the sense that no algorithm is known to 
behave better both in the worst case (when Best-fit has 
performance ratio 1.7) and in the average uniform case, 
with items drawn uniformly in the interval [0, l] (then 
Best-fit has expected wasted space O(n’/2(log n)“/“)). 
In practical applications, Best-fit appears to perform 
within a few percent of optimal. In this paper, in 
the spirit of previous work in computational geometry, 
we study the expected performance ratio, taking the 
worst-case multiset of items L, and assuming that 
the elements of L are inserted in random order, with 
all permutations equally likely. We show a lower 
bound of 1.08 . . . and an upper bound of 1.5 on the 
random order performance ratio of Best-fit. The upper 

bound contrasts with the result that in the worst case, 
any (deterministic or randomized) on-line bin-packing 
algorithm has performance ratio at least 1.54. . . . 

1 Introduction 

1.1 Background. Bin-packing is a basic problem 
of computer science: given a list of items between 0 
and 1, L = (21,. . . , z~), assign each item to a bin, so 
that the sum of the values of the items assigned to the 
same bin does not exceed 1, and the goal is to minimize 
the number of bins used. This problem is NP-hard [7] 
and heuristics have been developed to approximate the 
minimum number of bins. In the on-line version of the 
problem, the items arrive one by one, and zi must be 
assigned to a bin without knowledge of the future items 
(%+1,. . ,G). 

The simplest and most classical algorithms designed 
for this problem are Next-fit, First-fit and Best-fit. 
Best-fit maintains a list of current bins, ordered by sizes, 
and upon arrival of item x, puts it in the current fullest 
bin in which it fits, opening a new bin for x if this fails. 
First-fit maintains a list of current bins, ordered by the 
date at which they were opened, and upon arrival of 
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item x, puts it in the first bin in which it fits, opening 
a new bin for x if this fails. Next-fit maintains the 
last opened bin, and upon arrival of item 2, puts it in 
that bin if it fits and opens a new bin otherwise. More 
recently, the Harmonic algorithm was designed [12]; it 
is more complicated, but linear time, and tailored to 
behave well in worst-case situations. 

The notion of performance ratio is used to evalu- 
ate bin-packing algorithms. Let OPT denote the (un- 
known) optimal off-line algorithm, and, for an algorithm 
A and a list L, let A(L) denote the number of bins used 
by algorithm A run on L. 

DEFINITION 1. The performance T&O 

gorithm A is: 

C(A) = limsup A(L) 
OPT(L)+m OPT(L). 

In the seminal paper [8], Johnson et al. proved 

C(A) of al- 

that Best-fit and First-fit have performance ratio 1.7, 
while Next-fit has performance ratio 2. The Harmonic 
algorithm is proved in [12] to have performance ratio 
1.69.. ., and improved versions have slightly lower per- 
formance ratios; the current best performance ratio is 
1.58.. . [16]. The quest for better algorithms was some- 
what quelched by Yao’s lower bound: no determinis- 
tic on-line algorithm can have performance ratio better 
than 1.5 [19]. This lower bound was later improved up 
to 1.54.. . in [13, 6, 181, and proved to hold even for 
randomized algorithms [l]. 

The performance ratio has the drawback that for 
Best-fit, the worst-case sequences upon which it relies 
are very contrived and never occur in practice. These 
sequences are contrived in two ways: on the one hand, 
the values of the items inserted are very special, and 
on the other hand, they must be inserted in increas- 
ing order. In fact, it has been observed that Best- 
fit usually behaves within a few percent of optimal in 
practice, much better than predicted by the perfor- 
mance ratio. To explain this, researchers have studied 
the behavior of on-line algorithms when the items are 
drawn independently from particular distributions. Of 
particular interest is the uniform distribution in [O, l]. 
In his thesis, Peter Shor analyzed Best-fit and First- 
fit under this distribution, and proved that they are 
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asymptotically optimal on average, and that the ex- 
pected amount of wasted space (number of bins mi- 
nus the sum of the item sizes) is O(n1/2(logn)3/4) for 
Best-fit and about n2i3 for First-fit 117, 41. This is 
in fact even better than practice: real-life distribu- 
tions are not always as nice as the uniform distribu- 
tion! In recent years, people have also studied other 
distributions: a discretized version of the uniform dis- 
tribution as well as some truncated versions, where the 
items are drawn uniformly in interval [u, b]. Analyzing 
these distributions precisely is a challenging problem. 
For example, in a recent paper [3], it was shown, using 
a computer program to compute Lyapunov functions 
to analyze multi-dimensional bounded-jump homoge- 
neous Markov chains, that Best fit has linear expected 
waste when the items are drawn uniformly from the 
set {l/11,2/11,. . .8/11}, and also when the items are 
drawn uniformly from the set {l/12,2/12, . . . , g/12}. In 
[ll], it is shown that Best fit has constant expected 
waste when the items are drawn uniformly from the set 
{l/k, 2/k,. . .) (k - 2)/k}. 

1.2 The result. Best-fit emerges as the winner 
among the various on-line algorithms: it is simple, 
behaves well in practice, and no algorithm is known 
which beats it both in the worst-case and in the average 
uniform case. But the worst-case performance ratio and 
the uniform-distribution performance ratio are not quite 
satisfactory measures for evaluating on-line bin-packing 
algorithms. Moreover, it appears that studying given 
distributions accurately is an extremely challenging 
problem. 

In this paper, we focus on Best-fit, and propose a 
new measure of performance evaluation, that of worst- 
case list of input items, but random insertion order, all 
permutations being equally likely. This model was used 
in computational geometry with extreme success (see 
for example [2]). 

DEFINITION 2. The random-order performance ra- 
tio RC(A) of an on-line algorithm A is 

Z’(A) = limsup &A(L4 
OPT(L)+co OPT(L) ’ 

where L, is the permuted list (x0(I), . . .,x,(,)) and the 
expectation is taken over all permutations CT E S,,. 

Note that the order is often crucial in the bad-case 
examples of bin-packing heuristics. A textbook example 
of why Best-fit is not optimal is the list 

L=(~/2-E,.;.,1/2-E/,1/2+r ,..., 1/2+r). 
. / 

n n 

The optimal packing uses just n bins for L, while Best- 
fit uses 1.572 bins. However, if the list L is randomly 

permuted, the situation is completely different. It can 
be simulated by drawing each item independently and 
uniformly from {l/2 - E, l/2 + E}. The sequence can 
be viewed as an unbiased random walk in the plane, 
where at each step we move by ($1, fl) depending on 
whether the arriving item is larger or smaller than l/2. 
the number of items left unpaired is bounded by the 
vertical span of the random walk, which is of order o(n) 
with high probability. So, in dramatic contrast with its 
behavior when the items of L are inserted in increasing 
order, Best-fit behaves optimally for this list if the order 
is random! 

We prove lower and upper bounds on the random- 
order performance ratio of Best-fit. First, we prove 
that for any list L, the random-order performance ratio 
is asymptotically less than 1.5. Second, we exhibit a 
list L such that the random-order performance ratio is 
1.08.. .* 

THEOREM 1.1. The random-order performance ra- 
tio of Best-fit satisfies: 

1.08 5 RC(BF) 5 1.5. 

We expect the true answer to lie somewhere close 
to 1.15. 

The proof of the lower bound analyzes the perfor- 
mance of Best-fit when the items are drawn indepen- 
dently from the distribution which gives l/2 with prob- 
ability p and l/3 with probability q = 1 - p, for which 
the optimum packing is perfect. The analysis can be 
reduced to studying a five-states Markov chain, which 
is then solved by linear algebra. 

The proof of the upper bound, much more difficult, 
is a mixture of worst-case and average-case analysis, and 
its heart lies in proving that the number of items per 
bin in the optimum packing of the first t items converges 
quickly to its final value; this in turn can be reduced to 
upright-matching. 

Another question of theoretical interest would be to 
design an algorithm tailored to behave well under the 
performance measure random-order performance ratio; 
it is likely that it is possible to design an optimal 
algorithm in this sense, since a recent paper by Hhee 
and Talagrand shows that if the input comes from an 
arbitrary fixed distribution then there is a distribution- 
dependent optimal algorithm [15]; however such an 
algorithm would be of theoretical interest only: in 
practice efficiency is a crucial issue and only the simplest 
algorithms, such as Next Fit, First Fit or Best Fit, are 
actually used. 

It is also conceivable that this approach is of interest 
for offline bin packing. The best practical algorithm 
for offline bin packing is Best-fit-decreasing (BFD), in 
which the Best fit algorithm is applied to the items, 
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previously sorted in decreasing order. Johson et al. [8] 
proved that the worst-case performance ratio of BFD is 
11/9 - 1.22. If, as seems likely, the performance ratio 
of random order Best fit is less than 1.22, this raises the 
possibility of a better alternate offline algorithm: first 
shuffle the items randomly, then apply Best fit. 
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2 The upper bound 

Let L be a list of n items, and let L, denote the 
list ordered according to permutation F. Let LO(u, w) 
denote the list of items of L, inserted between time u 
and time v. The proof is in four steps. 

2.1 Reduce the analysis of Best Fit to an 
analysis of OPT. An important fact to remember is 
that there is always at most one bin filled up to level 
5 l/2. Let us first look at easy restricted cases. We 
classify the items inserted into three types, according to 
their size: small (Z 5 l/3), medium (l/3 < x 5 l/2), 
and large (Z > l/2). We first study Best Fit when not 
all types occur. 

First, imagine that there are no large items. Then 
all items are less than or equal to l/2. It is well-known 
that the worst-case performance ratio of Best Fit in this 
setting is 1.5. In fact, all bins except at most two are 
filled up to level 2/3 or more. To see that, first note that 
all bins except possibly the last one contain at least two 
items. Now, take the bins in the order in which they 
were opened, and consider the first bin I? whose final 
size is less than 2/3. Any bin created later than B and 
with more than one item contains as first two items 
values between l/3 and l/2, whose sum is at least 2/3. 
Thus the only bins filled up to less than 2/3 are B and 
possibly the last bin (if it only contains one medium 
item). This implies 

BF(L) I: 2 + 3W(L)/2 5 2 + 30PT(L)/2. 

Second, imagine that there are no small items. 
Then all items are strictly greater than l/3, and the 
worst-case performance ratio of Best-Fit in this setting 
is 1.5. To see this, observe that there are at most two 
items per bin, and that with the Best Fit algorithm, 
since only one bin can be less than half full, only the 
large items can be alone in their bin (except possibly 
for one bin). Let z be the number of large items and 
y = IZ - z the number of medium items. The optimal 
algorithm uses. at least n/2 bins; Best Fit uses at most 
c + y/2 + 1, which is maximized for 2 = n/2 and gives 
BF(L) 5 30PT(L)/2 + 1. 

Third, in the general case, all sizes can occur. We 
will prove the following lemma. 

LEMMA 2.1. There exists a 2, such that the total 

number of bins used by Best fit on L, is at most 

; [OPqLo(L to)> + OPqL,(t, + 1, n))] + 2. 

Proof: Fix the permutation u. Let t, be the last 
time that a small item z was inserted into a bin B 
which either was new or was filled up to less than l/2 
immediately prior to inserting Z. 

We first analyze what happens up to time t,. At 
time t,, B is the only bin filled up to less than l/2. 
No bin B’ is filled up to a level 1, l/2 < I < 2/3, since 
otherwise z would have been inserted into B’ rather 
than B. Thus all bins except B are filled up to level at 
least 2/3. Let W(L,(l, to)) denote the total weight of 
items inserted up to time t,. We have: BF(L, (1, t,)) 5 
3W(L,(l,t,))/2 + 1 < 30PT(L,(l,t,))/2 + 1. 

Now, we analyze what happens after time t,. Let 
x be the number of large items and y the number 
of medium items in L,(t, + 1, n). Since all the bins 
created before t, are too full to accept even a medium 
item, the optimal algorithm uses at least (X + y)/2 
additional bins when run on L,(t, + 1, n) starting 
from the configuration of Best fit at t,. But since 
only one bin can be less than half full, every bin 
created after time t, by Best Fit contains either two 
medium items or one large item (except possibly for 
one bin). By definition of t,, the small items are 
only added either to bins created before tb, or to bins 
which already contain one large item or two medium 
items, so they are irrelevant for our analysis. At most 
x + y/2 + 1 bins are created by Best fit, and the ratio 
(BF(L,) - BF(L,(t, + 1, n)))/OPT(L,(t, + 1, n)) is 
maximized for z = y. Thus BF(L,) - BF(L, (1, to)) 5 
SOPT(L,(t, + 1, n))/2 + 1. 

Putting both inequalities together, we obtain the 
inequality of the lemma. 

The rest of the proof consists in proving that the 
average number of items per bins at time u in the 
optimal packing, OPT( L, (1, a)/~), converges quickly 
to its final value OPT(L)/n for random (T. Since 
we cannot analyze the optimal algorithm, we design 
instead a related algorithm A* which is about as good 
as the optimal algorithm, and which can be analyzed 
using upright-matching techniques, as for the analysis 
of Shor’s Modified Best Fit algorithm [4]. 

2.2 Design of an efficient and analyzable algo- 
rithm A*. We fix E > 0. In order to describe the 
algorithm, we first need a few definitions and notations. 

A item is called tiny if it is less than e/2. Let 
R be the set of those pieces in L which are tiny, and 
LL(1, U) be the list, of size u’, obtained from L, (1, u) 
by removing the tiny items. We now define a “rank)) 
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for the items of L’. Let C be an optimal configuration 
of L’. The ran/c r(z) of 2 is its rank among the items 
allocated to the same bin as 2 by configuration C. Let 
Z(z) denote the sum of the values of the items larger 
than z and packed by C in the same bin as z. Finally, 
let Sj denote the set of items of L’ which have rank j, 
and let Ic = 2/c denote the maximum possible rank of 
the items of L’ (which are all greater than or equal to 
c/2). We first describe an algorithm A which only packs 
the items of L’, and assigns them to bins as they arrive 
in the order of L, . 

Algorithm A upon arrival of item 2: 

If r(z) = 1, then open a new bin for x. 
If ~(3) > 1, scan the items already packed to look for a 
y such that the following three conditions hold: 

(4 +I = r(x) - 1 
(b) Z(Y) + Y < l(x) 
(c) y’s bin contains no item of rank r(z). 
If there exists such a y, put z.z in the bin such that 

l(y) + y is maximum; otherwise open a new bin for z. 

Algorithm A* consists in first applying algorithm A 
to L’, and then completing the packing with the items 
of R in ,a greedy fashion. 

Note the similarity between algorithm A and Mod- 
ified Best Fit. It can be seen as a version of Modified 
Best Fit adapted to the case when we want more than 
two items per bin. 

It is easy to see that algorithm A is correct, i.e. 
never packs in the same bin items which sum to more 
than 1. Note that the optimal configuration C, if it 
packs items in decreasing order, puts x in a bin whose 
current level is 1(z) immediately prior insertion of 2. 
One can see: 

LEMMA 2.2. If x is packed in a bin whose current 
level is 1 immediately prior to the insertion of x, then 
1 5 l(x). 
This is proved by induction on the rank of I. It is 
obvious if T(X) = 1. If r(x) = T > 1, then the lemma 
is trivial if x is put in a new bin: 0 5 I(x). Otherwise, 
z is put in a bin which contains y, some item of rank 
T - 1, as well as possibly other items of lower rank. By 
induction the level of that bin is at most l(y) + y. By 
condition (b), we have Z(y)+y 5 1(x), hence the lemma. 

For an example of how algorithm A works, consider 
the sequence alb2a3a2blb3, where al = .5, a2 = .4, 
us = .l, bl = .6, 62 = .2, b3 = .2, and the optimal 
packing packs alazag together and blb2b3 together. 
A new bin is opened for al. 
Since al 5 bl, item b2 is packed with al. 
Since bl + b2 5 al + a2, item ag is packed with bz. 
Since the bin of al already contains an item of rank 2, 
a new bin is opened for ag. 

A new bin is opened for bl. 
Since al -I- a2 > bl + 62, a new bin is opened for b3. 
We thus obtain the packing with albaas together and 
each other item in a bin of its own. The constraint 
al+b:!+as< lisimpliedbyai <bl,bl+bz <al+a2, 
and al + a2 + a3 5 1. 

We can now make the similarity with Modified Best 
fit (MBF) more explicit. Pick a rank T > 1. From the 
list LL , construct a list 17, by removing all items except 
those of ranks r - 1 or r, and replacing each y of rank 
r - 1 by y’ = l(y) -+ y. Call these “large”, and the 
items of rank T “small”. Then algorithm A packs 2, of 
rank r, in y’s bin, if and only if MBF applied to U, 
packs z with y’. Thus the analysis of MBF can be used 
for A, with only slight modifications, due to the fact 
that the list U, is not quite the same as if the items 
were drawn from the uniform distribution U[O, 11: one 
difference is that in our setting, the number of “small” 
items is exactly equal to the number of “large” items; 
for a uniform distribution, that would only be true 
on the average, with an expected discrepancy of 6. 
The other difference is that the set of “large” items 
which can potentially be matched to the ith smallest 
%mall” item has size exactly i, for every i, while again 
this only holds on average for a uniform distribution. 
Nevertheless these differences are slight enough that the 
results derived for MBF on the distribution U[O, l] will 
hold in our case. 

2.3 Elimination of tiny pieces. The analysis of A* 
can be reduced to an analysis of A, thanks to a lemma 
used in [5, lo]. 

LEMMA 2.3. 

A*(L) 5 max(A(L’), (1+ E)W(L) + 1). 

In fact, if adding tiny pieces does not require 
opening new bins, then A* (L) = A(L). If it does require 
opening new bins, then all bins are filled up to level 
at least 1 - c/2 by algorithm A* (with the possible 
exception of the last bin), and so 

A*(L) 5 +V(L) + 12 (1+ +WL) + 1. 

2.4 Probabilistic analysis. We have the following 
three lemmas. The first one relies heavily on upright- 
matching results. The proofs are omitted in this 
preliminary abstract. 

LEMMA 2.4. If W(L’) > c2W(L)/2, then with high 
probability we have 

sup 
u 

A(L;(l, u)) - $X’T(L’)] = o(OPT(L’)). 
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LEMMA 2.5. ZfW(L’) > E’W(L)/~, then with high Now, let us look at the case when W(L’) 5 
probability we have c2W(L)/2. Since all items of L’ are > e/2, we have: 

s”up [Ul- Zn’] = o(n’). 

LEMMA 2.6. IfW(L’) > E’W(L)/~, then with high 
probability we have 

2.5 Putting everything together. Let us first look 
at the most important case, when W(L’) > c2W(L)/2. 
From Lemma 2.1, and using the fact the OPT is always 
at least as good as A*, we get: 

n’ 2 W(L’)2/E 5 EW(L). 

Thus the bins used by Best, fit on L are of two types: 
either they contain some item of L’; there are at most 
EW(L) such bins. Or they contain items less than e/2 
only, and are thus all filled up to level 1 - c/2 at least 
except for possibly one: there are at most (l+~)w(L)+l 
such bins. The total number of bins is at most 

E,(BF(L,)) 5 (1+2+V(L)+I 5 (1+2E)OPT(L)+I. 

BF(L,) I ; [A*(L,(l,b)) + A*(&@, + l,n)>l+ 2. Hence overall we get: RC(BF) 5 (1 + ~)3/2. Since 
this holds for any E, it implies RC(BF) 5 3/2, which 

From Lemma 2.2, we can write: concludes the proof of the upper bound. 

max(A(Lk(l,L)), (I+ ~)W(-L(l,t,)) + I)+ 

max(A(L’,(t, + 1, n)), (1 + e)W(L,(t, + I, n)) + l)] . 

From lemmas 2.4 and 2.5, we know that no matter what 
t, is, with high probability we have (remembering that 
t; = l-L&t,)I): 

W:,Wd 

I $OPT(L’) + o(OPT(L’)) 

I :oPT(L’) -I o(OPT(L’)). 

Similarly we have: 

A(L:,(t, + 1, n)) I +OPT(L’) + o(OPT(L’)) 

W(Lo(l, to)) I +qL) + o(W(L)) 

W(Lo (b + 1, n)) 5 +w(L) + o(W(L)). 

Since both OPT(L’) and W(L) are bounded by 
OPT(L), we obtain: 

BF(L,) 5 %(1+ E)OPT(L) + o(OPT(L)) 

with high probability. In addition, when the low 
probability event occurs, we can always use the upper 
bound BP(L) 5 1.70PT(L) + 2, valid for any L and 
proved in [8]. Thus we obtain for the expectation: 

E,(BF(L,)) 5 ;OPT(L) + o(OPT(L)). 

3 The lower bound 

The lower bound presented here was suggested by David 
Johnson and worked out in collaboration with Johnson, 
Shor and Young. It is both an improvement and a 
significant simplification of the original lower bound. 

The calculations are only sketched here. Instead of 
taking items from a fixed list in random order, we will 
draw n items independently from a fixed distribution. 
This will generate a random multiset L, of n items 
inserted in random order. We will show that as n 
goes to infinity, the average performance ratio of Best- 
fit is 1.08.. . . It follows that there exists at least one 
multiset for which the random-order performance ratio 
is greater than or equal to 1.08.. . . We assume that 
each insertion is l/2 with probability p and l/3 with 
probability q = 1 -p. The optimal algorithm is perfect, 
while Best-Fit will occasionally create bins with one l/2 
and one l/3. 

A bin is called closed if it can no longer receive any 
more items (i.e. its current size is 5/6 or 1). We have 
a Markov chain, where the state of the system after i 
insertions is determined by the collection of open bins, 
and the transitions correspond to inserting l/2 or l/3 
with probability p or q. 

The Markov chain is finite and has just five states: 
either there is no open bin (a), or one open bin whose 
current content is I/2 (b), or one bin containing l/3 (c), 
or one bin containing a total of 2/3 (d), or two bins, one 
containing l/2 and one containing 2/3 (e). 

The transitions are drawn in the figure 1. The 
chain is aperiodic and irreducible. The stationary 
probabilities are given by the following system (where 
the name of a state is identified with its stationary 

/ / 

/ 



Figure 1: Markov chain describing Best-fit under inser- 
tions from {l/2,1/3}. 

probability) : 

a = b-tpc+qd 
b = pa + qe 

; z 
w 
qc+pe 

e = pd 
1 = a+b+c+d+e. 

The number of bins open after n insertions tends to 
n(p/2 + q/3) for OPT and to n(a + e) for Best-Fit. 
Solving, we obtain: 

~WYW) 1+2p-p2 

OfqL) - 1 + 3p/2 + 3p2/2 - p3/6’ 

Maximizing over p yields 1.08 . . 
Simulations of various distributions seem to indicate 

that 1.15 should be a lower bound. 

Acknowledgments 

The author wishes to thank Richard Karp for numer- 
ous discussions and Mor Harchol for help with finding 
the relevant references. Moreover, the author particu- 
larly wishes to thank David Johnson, Peter Shor and 
Neal Young for working on the lower bound (both for 
getting the new proof and for doing simulations). 

References 

[l] B. Chandra, Does randomization help in on-line bin- 
packing? IPL 43, 1, 15-19, 1992. 

[2] K.L. Clarkson and P. W. Shor. Algorithms for diametral 
pairs and convex hulls that are optimal, randomized, 
and incremental. In Proceedings of the 4th Ann. ACM 
Symp. on Comput. Geometry, 12-17, 1988. 

[3] E.G. Coffman, D.S. Johnson, P.W. Shor, R.R. We- 
ber. Markov chains, computer proofs, and average-case 
analysis of best-fit bin packing. STOC 1993, 412-421. 

w 

c51 

Fl 

VI 

PI 

PI 

WI 

Pll 

WI 

PI 

P41 

P51 

WI 

1171 

WI 

WI 

CLAIRE KENYON 

E.G. Coffman, Jr. and George S. Lueker. Probabilis- 
tic Analysis of Packing and Partitioning Algorithms. 
Wiley & Sons, 1991. 
W. Fernandez de la Vega and G.S. Lueker. Bin Packing 
can be solved within l+e in linear time. Combinatorics 
1 (4) (1981) 349-355. 
Galambos and Frenk, A simple proof of Liang’s lower 
bound for on-line packing and the extension to the 
parametric case, Discrete Applied Math, 41, 1993, 173- 
178. 
Michael R. Garey and David S. Johnson. Comput- 
ers and Intractability: a guide to the theory of NP- 
completeness. Freeman & Co., 1979. 
D.S. Johnson, A.Demers, J.D. Ullman, M.R. Garey, 
and R.L. Graham. Worst-case performance bounds for 
simple one-dimensional packing algorithms, SIAM J. 
on Computing 3, 229-325 (1974). 
D.S. Johnson, Fast algorithms for bin-packing, JCSSS, 
272-314, 1974. 
N. Karmakar and R.M. Karp. An E’cient Approxi- 
mation Scheme for the One-Dimensional Bin-Packing 
Problem. FOCS 23 (1982), 312-320. 
C. Kenyon, Y. Rabani and A. Sinclair. Biased Random 
Walks, Lyapunov Functions, and Stochastic Analysis 
of Best Fit Bin Packing. These proceedings. 
C.C. Lee and D.T. Lee, A simple on-line packing 
algorithm, JACM 32, 562-572, 1985. 
Frank M. Liang, A lower bound for on-line bin-packing, 
IPL 10,2, 1980. 
P.Ramanan, D.J. Brown, C.C. Lee and D.T. Lee. On- 
line bin-packing in linear time, J. Alg. 10, 305-326, 
1989. 
W.T. Rhee and M. Talagrand. On Line Bin Packing 
with Items of Random Size, Mathematics of Operations 
Research, 18 (2), 1993, 438-445. 
M.B. Richey, Improoed bounds for refined harmonic bin 
packing, unpublished, 1990. 
P.W. Shor. The average-case analysis of some on-line 
algorithms for bin packing. Combinatorics 6 (2) (1986) 
179-200. 
A. Van Vliet, An improved lower bound for on-line bin 
packing algorithms, IPL 43, 5, 277-284, 1992. 
A.C. Yao, New algorithms in bin packing, JACM 27, 
207-227, 1980. 


