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N G ke W N

Abstract: DNA (Deoxyribonucleic Acid) Cryptography has revolutionized information security by
combining rigorous biological and mathematical concepts to encode original information in terms of
a DNA sequence. Such schemes are crucially dependent on corresponding DNA-based cryptographic
keys. However, owing to the redundancy or observable patterns, some of the keys are rendered
weak as they are prone to intrusions. This paper proposes a Genetic Algorithm inspired method to
strengthen weak keys obtained from Random DNA-based Key Generators instead of completely
discarding them. Fitness functions and the application of genetic operators have been chosen and
modified to suit DNA cryptography fundamentals in contrast to fitness functions for traditional
cryptographic schemes. The crossover and mutation rates are reducing with each new population
as more keys are passing fitness tests and need not be strengthened. Moreover, with the increasing
size of the initial key population, the key space is getting highly exhaustive and less prone to Brute
Force attacks. The paper demonstrates that out of an initial 25 x 25 population of DNA Keys, 14 keys
are rendered weak. Complete results and calculations of how each weak key can be strengthened
by generating 4 new populations are illustrated. The analysis of the proposed scheme for different
initial populations shows that a maximum of 8 new populations has to be generated to strengthen all
500 weak keys of a 500 x 500 initial population.

Keywords: DNA cryptography; genetic algorithm; data encryption; best key; key generation

1. Introduction

Security of information in both transit and storage is extremely crucial to ensure
its confidentiality, integrity, availability, and privacy. DNA cryptography [1,2] is one of
the latest favourable techniques that has encompassed traditional cryptographic schemes
with myriads of advantages. It is grounded on DNA computing where information is
enciphered in the form of a DNA nucleotide by combining it with either a symmetric
key or an asymmetric key [3,4]. Therefore, it combines the fundamentals of biological
as well as mathematical concepts. The entire security of DNA cryptography relies on
biological techniques and hence has no computation involved and is immune to attacks [5,6].
Moreover, information is represented in the form of four nitrogenous bases A, T, C and G
thus the exponential power is four. Whereas in traditional cryptography, mostly binary
values 0 and 1 are used giving an exponential power of two. Thus, each DNA encrypted
bit becomes eight times stronger than its traditional counterpart. The constant endeavours
to enhance the strength of cryptosystems further led to the implementation of the Genetic
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Algorithm (GA) in cryptography [7,8]. GA is an adaptive search algorithm which exploits
the fundamentals of natural selection and genetics. It is used to solve problems with the
help of evolutionary biological mechanisms like selection, crossover and mutation [9,10].

The Genetic Algorithm procedures begin with a random initial population which is
composed of several individual chromosomes. In the majority of the cases, the chromo-
somes are binary i.e., either 0 or 1. Next, various operators are then iteratively applied to
this initial population to create a better population. During selection [11], most fit chromo-
somes are chosen from the population to build the next generations of the population. The
higher the fitness value, the more chances to be selected. The crossover [12] genetic operator
joins two parent chromosomes to generate child chromosomes which are composed of
chromosomes from each parent. The resultant child chromosomes are believed to possess
the best characteristics of their parents and hence are considered to be more fit. Different
types of crossovers are possible such as single-point crossover, two-point crossover, and
uniform crossover. Mutation [13] is the genetic operator that assures genetic diversity
among each generation. After crossover, mutation changes at least 1 bit in the chromosome
to reflect the aftermaths of natural surroundings on the genetic procedures. This operation
replaces the fewer fit chromosomes with the more fit ones. Like this, several generations
of the population are created. Ultimately the best solution is selected from the updated
population based on their probability or fitness function.

Fitness functions are extremely crucial as they enable effective exploration of the
search space to get the best possible solution to the problem. The population is generated
in keeping in mind that fit individuals are more likely to be replicated whereas unfit
individuals are discarded. Cryptographic Key Selection is a type of selection problem
where the key with the highest fitness and randomness ought to be selected. Therefore, this
makes GA a reliable platform for key generation and selection. The application of Genetic
Algorithms in traditional cryptography has been prevalent over the years.

The main contributions of this paper are highlighted as follows:

e Inculcate the benefits of Genetic Algorithms in DNA cryptography instead of
Traditional Cryptography.

o  Categorize the initial population of keys as strong or weak. The strong keys are used
as it is for encryption. The weak keys instead of getting dropped are strengthened by
the Genetic Algorithm. This step reduces the key generation time by only applying
the scheme to weak keys. It also reduces key wastage.

e  Propose suitable fitness functions by checking the frequency and gap of occurrence
of the four nitrogenous bases to convert the weak keys into their fitter counterparts.
It also reduces key wastage and enhances their efficiency for effective DN A-based
cryptographic schemes.

This paper first provides a brief introduction to DNA Cryptography and explains
why DNA-based schemes are more secure. It also touches upon the basic concepts of
Genetic Algorithms. Section 2 focuses on related work of existing research. The proposed
methodology is illustrated in Section 3 which first shows the basic block diagram of
the overall steps involved and their descriptions. All the results obtained have been
categorically demonstrated in Section 4. Section 5 provides the security analysis of the
strengthened cryptographic keys. The conclusions drawn and the future scope of work are
presented in Section 6.

2. Related Work

Soni et al. [14] proposed a simple genetic algorithm-based symmetric key generation
scheme. Selection, Crossover and Mutation, the basic genetic operators are applied to
the keys obtained from a random key generator to strengthen them. A similar GA-based
cryptographic scheme was suggested by Singh et al. [15] to transfer secret information
safely and securely. Their proposed scheme reads two consecutive bytes of the output of a
binary random number generator and applies the common genetic operators on them to
derive a safer key.
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Mishra et al. [16] suggested that GA can be an excellent deciding factor to choose keys
for public key cryptography after the keys are categorized on basis of their fitness.

Jhingran et al. [17] showcased how inculcating Genetic Algorithms into the RSA en-
cryption scheme enhanced its immunity to attacks from intruders. Malhotra et al. [18]
offered a genetic approach to generate a symmetric key for the IDEA algorithm to miti-
gate the occurrence of any weak keys in the process. They first categorized the possible
weak keys that might be generated and then suggested techniques to make them use
my performing crossover and mutation operations. Jain et al. [19] suggested a GA-based
improvisation for OTP Key Generator. They emphasized the two main characteristics of
speed and randomness both of which were improved by applying the genetic operators on
the initial pad obtained from the linear congruential generator.

Chunka et al. [20] proposed an efficient mechanism to establish an initial secret key
from the entire population based on Roulette Wheel Selection and two fitness functions
negotiated between the sender and receiver beforehand. Suitable crossover and mutation
operations were applied to get the improved population. Finally, the fittest one was
designated to be the initial key which is then utilized to generate dynamic keys to perform
the actual encryption of original data. The implication of GA to enhance the security of
cryptosystems also garnered the interest of Nazeer et al. [21]. They first generated a key
through a random number generator and then applied genetic operations to it. Next, they
diffused the plaintext also by similar genetic operators. Finally, logical operations were
performed amidst the diffused plaintext and the key to conduct the encipherment.

Kalsi et al. [22] proposed an interesting key generation scheme using GA. They gen-
erated their initial key population and applied the common genetic operators; however,
they applied Run Test and Needleman- Wunsch Algorithm to check the randomness and
degree of similarity to check the fitness of the newly generated population of keys. The
most random and least similar key is chosen for encryption.

A combination of tree parity machines and Genetic Algorithms was utilized by
Turcanik et al. [23] to generate the encryption keys at both the sender and receivers’ sites.
They generated the initial population from the tree parity machine by manipulating the
synaptic weights and then went on to apply the aforesaid genetic operations.

A novel key generation scheme for DNA cryptography was suggested by Vidhya et al. [24]
using Genetic operators and the well acclaimed Diffie Hellman Key Exchange Protocol. The
first DNA encoded the original plaintext from its ASCII values converted to their binary
counterpart. Next, they generated two secret keys using the basic Diffie Hellman protocol
onto which they applied several genetic algorithms to get more random and secure keys.
One of the keys was used for single-point crossover and the other for bitwise mutation.
Finally, they calculated the DNA sequence of their ciphertext which is transmitted to
the receiver.

Tahir et al. [25] proffered a new model CryptoGA which is a genetic algorithm-
based cryptosystem to cope with data security and privacy issues in cloud computing.
Abduljabbar et al. [26] presented an encryption approach based on genetic operators. In
this scheme, they divided the original message characters into pairs, and applied crossover
onto them, followed by mutation to achieve the encrypted text.

Salamudeen et al. [27] proposed an enhancement to Audio Cryptosystems by applying
GA. Each initial audio sample is genetically engineered by applying several operators to
yield the final cipher audio. Garg et al. [28] suggested a genetic algorithm and DNA
cryptography-based encryption scheme for Fog Networks. Hussein and Ayoob [29] came
up with a secure key generation scheme to enhance Vigenere Cipher using the concepts
of GA.

After scrutinizing the related work in Table 1, it can be observed that:

1.  The majority of the existing schemes are based on traditional binary keys and much
less emphasis has been made on DNA-based keys.

2. Most existing algorithms discussed are applying their proposed methodology to the
initial key population which makes the key generation process lengthy and difficult.
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3. Based on the suitability of their proposal, each algorithm has defined its fitness test
and selection, crossover, and mutation are the predominant genetic operators used.

Table 1. Analysis of Related Work.

Type of

Genetic

Whether GA-Applied

Author Name Cryptosystem Operators Used Fitness Test Applied onKi;nIlELiﬁeaIt?;::al
Selection
Soni et al. (2012) Traditional Crossover Nil Yes
Mutation
Singh et al. (2013) Traditional Crossover Nil Yes
Selection , ..
Mishra et al. (2013) Traditional Crossover Pearson’s Coefﬁgent of Yes
. auto-correlation
Mutation
Selection
Jhingran et al. (2015) Traditional Crossover Nil Yes
Mutation
Selection
Malhotra et al. (2015) Traditional Crossover Comparing with parents No
Mutation
Selection Frequgncy Test.
Jain et al. (2017) Traditional Crossover Serial T?St’ Yes
Mutation Autocorrelation Test,
Poker Test
Frequency test,
Block frequency,
Selection Runs test,
Chunka et al. (2018) Traditional Crossover Cumulative sums Yes
Mutation forward,
Cumulative sums
backward
Selection
Nazeer et al. (2018) Traditional Crossover Shannon Key Entropy Yes
Mutation
Selection
Kalsi et al. (2018) DNA Crossover Run Test and Nee'dleman- Yes
Mutation Wunsch Algorithm
Selection
Turcanik et al. (2019) Traditional Crossover Frequency Test Yes
Mutation
Selection
Vidhya et al. (2020) DNA Crossover Shanon Key Entropy Yes
Mutation
Selection
Tahir et al. (2021) Traditional Crossover Shanon key Entropy Yes
Mutation
Selection
Abduljabbar et al. (2021) Traditional Crossover Nil Yes
Mutation
Bits fission
Salamudeen et al. (2021) Audio Sw1tch11:rl1lgSilc\)/Lutat10n Fission-Fusion Scheme Yes
Deconditioning
Crossover
Garg et al. (2022) DNA Mutation NA Yes
Hussein et al. (2022) Traditional Crossover Entropy Test Yes

Mutation
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- — decreasing order of fitness
v I

Thus, the prime motivation of this paper is to introduce a scheme for enhanced
security of DNA-based cryptographic keys as DNA cryptography is an upcoming field and
traditional binary keys cannot be used there,

1. To choose the appropriate fitness test to be used as four different nitrogenous bases
are involved in DNA cryptosystems.

2. To decide whether the methodology is to be applied to the initial key population
or not. For this, the fitness test is applied, and keys are categorized as strong or
weak. If found strong, they are directly used for encryption. Only the weak keys are
acted upon and thus the number of keys to be acted upon is reduced and the time
complexity will reduce.

3. Toreduce key wastage by strengthening the weak keys and removing visible patterns
instead of completely discarding them.

3. Proposed Methodology

An essential criterion for a secure cryptographic key is that the length of the key must
be greater than or equal to the size of the original plaintext. Moreover, to add to the security
of the cryptosystem, the same keys should not be repeated in another encryption. Thus, an
obvious choice to quickly generate a large number of probable keys is through a pseudo-
random key generator. Such keys, while not completely random, are still random enough
for cryptographic purposes. However, amongst the generated keys, some keys might turn
out to be weak and are rendered useless for encryption as they are vulnerable to attacks
from intruders. The sole purpose of this paper is to design an algorithm to strengthen such
weak keys using the concepts of Genetic Algorithms and make them usable to continue
with the encryption process. Figure 1 gives the basic flowchart of the steps of the proposed
methodology after which the sub-steps are explained in detail.

Apply Fail
Fitness

Test

Pass

Define the Fitness
Function
1

Arrange Keysin

Pseudo Random Key Generator

Perform Crossover among

most fit parents

v ]

Generate Initial Key Perform Mutation
Population

| Generate New
Population

Apply
Fitness
Test

Pass Fail

Figure 1. Block Diagram of Proposed Algorithm.

3.1. Generating the Initial Population

Let N be the number of DNA strings and M be the length of each DNA string. The
number of DNA strings must be considerably large to encrypt a large chunk of the original
message. The length of the DNA string is crucial as it needs to be greater than or equal to
the length of the plaintext. The first essential task is to choose suitable values of N and M to
generate the N x M initial population through a Random Key Generator. There are three
possibilities: N < M, N =M, or N > M.
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3.2. Applying Fitness Tests

After the initial population is generated for a particular value of N and M, both strong
and weak keys are identified. Two fitness tests: The frequency Test and the Gap Test are
applied to the initial population to test the strength of the keys.

The Frequency Test is performed to check the randomness of the key. It checks the
frequency or number of occurrences of each nitrogenous base A. T, C and G in each DNA
string. In this paper, if their respective frequency is nearly 25% of the length of the key, the
key is considered strong, otherwise, it is categorized as a weak key. Another test known as
the Gap Test is performed to determine the interval between two successive occurrences
of similar nucleotides. In this paper, up to three successive repetitions of A, T, C or G are
allowed to consider the string as strong. More than three repetitions enable intruders to
identify a probable pattern in the resultant encrypted ciphertext thus making them prone to
attacks. Therefore, after applying the fitness tests, the keys are either categorized as strong
or weak. If strong keys are obtained, they can be directly utilized in encryption procedures.
If weak keys are obtained suitable genetic operators are applied to strengthen these keys

3.3. Defining Fitness Functions for Weak Keys

Two Fitness Functions A; and A, are defined based on the Frequency Test and the
Gap Test, respectively. Next A is calculated by summing the obtained values of A; and A;.
Finally, the Fitness function F is obtained. All steps are illustrated next.

To calculate A; let the total number of weak keys be n. The frequency or number
of occurrences of A, T, C, and G are stored in four variables A, T, C, and G, respectively.
The ideal value of frequency which is approximately 25% of the length of keys is stored
in the variable i. Next, the concept of standard deviation is applied to find the devia-
tion of obtained frequency from the ideal frequency for each of the four nucleotides and
stored in oa, 01, oc and og. Finally, A; is calculated as the average of 04, o1, oc and og.
Equations (1)—(5) give the necessary formulas to calculate A;,

on = M)
or = =1 @
oc = €= @)
o — [ U= @

M = (0a + 0 + 0c + 0G)/4 5)

Let A; be a flag to show which DNA string has more than three repetitive occurrences
for any of the four nucleotides. Each of the 14 weak keys is scrutinized. If such a scenario
for any of the A, T, C or G is obtained, A; is made 1 else 0.

The value of A is calculated by summing the individual values of A; and A; as given
in Equation (6). Table 2 showcases the calculation of A for each of the 14 weak keys of the
initial 25 x 25 population.

A=A +N (6)
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Table 2. Calculation of Fitness Function based on Frequency Test (A1).

Weak Key a t c g oA orT oc oG M
AGGTTCACTGGGCCCCTCTGCTTTT 2 9 8 6 1.069 0.802 0.535 0 0.6015
TGCTACGGGAAACAGACACGGTTAA 9 4 5 7 0.802 0.535 0.266 0.266 0.4673
TACTGGGGGGAGTTGTCCGCGGGAC 3 5 5 12 0.802 0.266 0.266 1.603 0.7342
ACATCTCTGTAACGACTAGATCCCT 7 7 8 3 0.266 0.266 0.535 0.802 0.4673
ACAACGCCACGATAGCCGTCACGTC 7 3 10 5 0.266 0.802 1.069 0.266 0.6008
ACAGGCCAGTGTCTTCACCAGACGA 7 4 8 6 0.266 0.535 0.535 0 0.3340
ATATTGTGACTTCTGGTCGAGGTAT 5 10 3 6 0.266 1.069 0.802 0 0.5343
TTTCTTCCTGGATGAGTTTGGTATC 3 12 4 6 0.802 1.603 0.535 0 0.7350
CGGGAGGGTACGTAGGAACGCCTAC 6 3 6 9 0 0.802 0 0.802 0.4010
TAGAGGCGAGCGCATGTAGCAAGGC 7 3 5 9 0.266 0.802 0.266 0.802 0.5340
GGAAACAGGTCGGGCGACGGGCCGC 5 1 7 12 0.266 1.336 0.266 1.603 0.8677
GTCCATATTGCAGTTAGAGATTCTG 6 9 4 6 0 0.802 0.535 0 0.3343
CGCGTTCGGAAGGGGGCACCATCTC 4 4 8 9 0.535 0.535 0.535 0.802 0.6018
CGAATCGGGAGGAAAATTTGTCTCT 7 7 4 7 0.266 0.266 0.535 0.266 0.3332

The final Fitness Function F is calculated by the formula given in Equation (7). The
keys faring well in the frequency test and gap test are considered more fit as compared to
their other counterparts. Thus, a lower value of A implies a better value of F.

1

F=—
14 e?

@)

3.4. Arranging in Decreasing Order of Fitness Function

After calculating fitness function F, the 14 weak keys are arranged in decreasing order
of their fitness by simply comparing and sorting the values. Although the step is simple, it
still holds a lot of importance, as the two fittest keys will be selected first and crossover will
be applied to them to generate the newer population. The more keys there are, the stronger
they will be to be used for encryption.

3.5. Perform Crossover Operation

After arranging the 14 weak keys obtained from the initial 25 x 25 population in
decreasing order of their fitness, the next task is to choose the type of crossover operation
as well as a suitable crossover point. The different possible crossovers are single-point
crossover, two-point crossover, and uniform crossover. Single point crossover chooses
one point on the parent strings and all data beyond that point is swapped between the
two parents. In contrast, two-point crossover chooses two random points on the parent
strings and all data between these points are exchanged between the two parents. Uniform
contrast simply selects one bit in the parent string randomly and toggles it with the corre-
sponding bit in another parent. Currently, this paper emphasizes single-point crossover
and there can be three possibilities to choose the point. The preferred point can be towards
the starting of the strings, at the midpoint or towards the end. To receive a somewhat
balanced crossover, this paper chooses a crossover point in the middle. Finally, the child
DNA strings are generated by applying single point crossover on each group of two-parent
DNA Key strings arranged in decreasing order of fitness. If a parent string does not have a
pair, it is left as is.

3.6. Perform Mutation Operation

This paper mainly utilizes the concept of mutation to try to distribute the frequency
distribution to some further extent on the child strings obtained post crossover operation to
make them comparatively fitter and useful for the encryption process. The steps involved
are described next.

The frequency or number of operations for each of A, T, C, and G are recalculated for
all child DNA strings for each child population obtained for the three crossover points.
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They are again stored in 4 variables A, T, C, and G, respectively. As already mentioned
in Section 3.3, the ideal value for the frequency is i. The lowest and highest occurring
nitrogenous base is identified by Min (g, t, ¢, §) and Max (g, t, ¢, §). This paper proposes
to perform mutation on the nucleotide having the least number of occurrences with the
nucleotide having the highest occurrence to somewhat distribute the frequency. If multiple
nucleotides have the same Min value, only one can be chosen. If multiple nucleotides
have the same Max values, choose the one that has more consecutive repetitions as this
makes the key more eligible to pass the Gap Test in the future. Let m be the number of
instances of the nitrogenous base to be muted. The formula for the same is depicted in
Equation (8) and m instances of the highest occurring nucleotide are substituted with the
least occurring nucleotide again making sure that the substitution does not lead to more
than three consecutive repetitions.

m=i—Min(a, t, c, g) 8)

Next, substitute M instances of the least occurring nucleotide with the highest occur-
ring one. However, while doing so, we must keep in mind that substitution does not lead
to more than three successive occurrences consecutively.

3.7. Generate the New Population

Finally, the new population is generated with comparatively fitter children obtained
after crossover and mutation operations. As per the fundamental concepts of GA, this new
population is comparatively fit as compared to its preceding population and the chances of
them passing the fitness tests are thus tentatively higher.

3.8. Reapply Fitness Test and Repeat the Entire Process

The fitness tests will be reapplied to this population to categorize them into strong
or weak. The encryption process can be continued with strong keys. Fitness Function
is redefined for the newly obtained set of weak keys and then they are rearranged in
decreasing order of fitness. Similar Crossover and Mutation operations will be applied to
the resultant child population.

Thus, the entire process is repeated until each weak key is strengthened and after
applying the fitness test, all strings pass the test and no key is rendered weak.

4. Results and Calculations

This section explains the actual implementations for all the steps mentioned in the
proposed methodology. All the necessary calculations are illustrated in different tables and
necessary analysis has also been provided.

4.1. Generating the Initial Population

The proposed methodology has been implemented on a randomly generated key
population. For ease of demonstration, the implementation is currently depicted for
N =M =25. Thus, we have 25 DNA strings each having 25 chromosomes. Figure 2a
showcases a glimpse of the same.

4.2. Applying Fitness Tests

After generating the initial key population, the already mentioned fitness tests are
applied to segregate the keys as either strong or weak. Here since M = 25, to get a uniform
frequency distribution, the ideal value must be approximately 6. If the total number of
occurrences of each of the four nucleotides A, T, C and G are not equal to the ideal value, or
there are more than three consecutive repetitions of any of these or a pattern is observed
among the keys, they are rendered weak. Figure 2b further illustrates the categorization of
the initial 25 x 25 randomly generated keys into weak and strong. A total of 14 weak keys
have been identified out of the 25 generated key strings. The 11 strong keys can be directly
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utilized for encryption procedures. The proposed scheme proceeds with these 14 weakly

identified keys.

AGGTTCACTGGGCCCCICTGCTTTT
TGCTACGGGAAACAGACACGGTTAA
TACTGGGGGGAGTTGTCCGCGGAC
ACATCTCTGTAACGACTAGATCCCT
TGCTTATGCTCCGACGGCCGAATCT
ACAACGCCACGATAAGCCGTCACGTC
ACAGGCCAGTGTCTTCACCAGACGA
ACGTTGCAAGGGATCCTGGTCITA
TGAACTGTGCACGCCATTAAGATCG
ATATTGTGACTTCTGGTCGAGGTAT
TTTCTTCCTGGATGAGTTTGGTATC
CGGGAGGGTACGTAGGAACGCCTAC
TAGAGGCGAGCGCATGTAGCAAGGC
AGCTCCTCCTCGAGCTAGGACCGAT
GCCATCTGGTTCAAACGCGATGAGT
GGAAACAGGTCGGGCGACGGGCCGC
CAGGCTGCAAAGTTGCGGATTTAGA
CCGGCTCTCACGCTATCAGTACTGA
CTCCGGTACTTTATGGGATCGAACT
GITCCATATTGCAGTTAGAGATTICIG
CGCGTTCGGAAGGGGGCACCATCTC
GTATCAGCAGGCACCGTCGAGCTGT
CTGTGGAAGCTTTCACGCATGCTCA
CGAATCGGAGGAAAATTTGTICTICT
CTGTAGCAGTGATCGCAGTGGTACG

(a)

AGGTTCACTGGGCCCCTCTGCTITT

TGCTACGGGAAACAGACACGGTTAA

TACTGGGGGGAGTTIGTCCGCGGAC

ACATCTCTGTAACGACTAGATCCCT

TGCITATGCTCCGACGGCCGAATCT

ACAACGCCACGATAAGCCGTCACGTC

ACAGGCCAGTGTCTTCACCAGACGA

ACGTTGCAAGGGATCCTGGTCTTA

TGAACTGTGCACGCCATTAAGATCG

ATATTGTGACTICTIGGTCGAGGTAT

TITCTTCCTIGGATGAGTITGGTATC

CGGGAGGGTACGTAGGAACGCCTAC

TAGAGGCGAGCGCATGTAGCAAGGC

AGCTCCTCCTCGAGCTAGGACCGAT

GCCATCTGGTTCAAACGCGATGAGT

GGAAACAGGTCGGGCGACGGGCCGC

CAGGCTGCAAAGTTGCGGATTTAGA

CCGGCICTCACGCTATCAGTACTGA

CTCCGGTACTTTATGGGATCGAACT

GTCCATATTGCAGTTAGAGATICIG

CGCGTTCGGAAGGGGGCACCATCTC

GTATCAGCAGGCACCGTCGAGCIGT

CTGTGGAAGCTITCACGCATGCTCA

CGAATCGGAGGAAAATTTIGTICTICT

CTGTAGCAGTGATCGCAGTGGTACG

W Weak B Sstrong

(b)

Figure 2. (a). Randomly Generated Initial 25 x 25. (b) Categorization of Keys among initial

25 x 25 Keys based on Fitness Tests.

4.3. Defining Fitness Functions for Weak Keys

We have obtained 14 weak keys so nn = 14. The ideal value of frequency which is
approximately 25% of the length of keys is stored in the variable i. Since M = 25, this paper
considers i = 6. Next 05, 0T, 0C, 0G and A are calculated using Equations (1)—(5). Table 2

illustrates the entire calculation of A;.

Each of the 14 weak keys is scrutinized to find a repetition of more than three consecu-
tive occurrences of any of the four nucleotides. If such a scenario for any of the A, T, Cor G

is obtained, the value of A; is made 1 else 0. The process is demonstrated in Table 3.

Table 3. Calculation of Fitness Function based on Gap Test (A;).

Weak Key

>
N

AGGTTCACTGGGCCCCTCTGCTTTT
TGCTACGGGAAACAGACACGGTTAA
TACTGGGGGGAGTTGTCCGCGGGAC

ACATCTCTGTAACGACTAGATCCCT
ACAACGCCACGATAGCCGTCACGTC
ACAGGCCAGTGTCTTCACCAGACGA

ATATTGTGACTTCTGGTCGAGGTAT

TTTCTTCCTGGATGAGTTTGGTATC
CGGGAGGGTACGTAGGAACGCCTAC
TAGAGGCGAGCGCATGTAGCAAGGC

GGAAACAGGTCGGGCGACGGGCCGC

GTCCATATTGCAGTTAGAGATTCTG
CGCGTTCGGAAGGGGGCACCATCTC
CGAATCGGGAGGAAAATTTGTCTCT

P PO OO0 OOOOoOOoORrOoOr

The value of A is calculated using Equation (6). Table 4 showcases the calculation of A
each of the 14 weak keys of the initial 25 x 25 population. The final value of F is calculated

using Equation (7) and is also shown in Table 4.
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Table 4. Calculation of Sum of Fitness Functions of Frequency and Gap Test (A) and Final Fitness
Function (F).

Weak Key M A2 A F

AGGTTCACTGGGCCCCTCTGCTTTT 0.6015 1 1.6015 0.1868
TGCTACGGGAAACAGACACGGTTAA 0.4673 0 0.4673 0.3852
TACTGGGGGGAGTTGTCCGCGGGAC 0.7342 1 1.7342 0.1500
ACATCTCTGTAACGACTAGATCCCT 0.4673 0 0.4673 0.3852
ACAACGCCACGATAGCCGTCACGTC 0.6008 0 0.6008 0.3541
ACAGGCCAGTGTCTTCACCAGACGA 0.3340 0 0.3340 0.4181
ATATTGTGACTTCTGGTCGAGGTAT 0.5343 0 0.5343 0.3695
TTTCTTCCTGGATGAGTTTGGTATC 0.7350 0 0.7350 0.3241
CGGGAGGGTACGTAGGAACGCCTAC 0.4010 0 0.4010 0.4011
TAGAGGCGAGCGCATGTAGCAAGGC 0.5340 0 0.5340 0.3695
GGAAACAGGTCGGGCGACGGGCCGC 0.8677 0 0.8677 0.2958
GTCCATATTGCAGTTAGAGATTCTG 0.3343 0 0.3343 0.4171
CGCGTTCGGAAGGGGGCACCATCTC 0.6018 1 1.6018 0.1677
CGAATCGGGAGGAAAATTTGTCTCT 0.3332 1 1.3332 0.2113

4.4. Arranging in Decreasing Order of Fitness Function

Table 5 provides the Weak keys arranged in decreasing order of fitness by simply
sorting and rearranging them. This will later enable us to apply genetic operators on the
fittest keys first.

Table 5. Weak Keys in decreasing order of Final Fitness Function (F).

Weak Key F
ACAGGCCAGTGTCTTCACCAGACGA 0.4181
GTCCATATTGCAGTTAGAGATTCTG 0.4171
CGGGAGGGTACGTAGGAACGCCTAC 0.4011
TGCTACGGGAAACAGACACGGTTAA 0.3852
ACATCTCTGTAACGACTAGATCCCT 0.3852
ATATTGTGACTTCTGGTCGAGGTAT 0.3695
TAGAGGCGAGCGCATGTAGCAAGGC 0.3695
ACAACGCCACGATAGCCGTCACGTC 0.3541
TTTCTTCCTGGATGAGTTTGGTATC 0.3241
AGGTTCACTGGGCCCCTCTGCTTTT 0.1868
GGAAACAGGTCGGGCGACGGGCCGC 0.2958
CGAATCGGGAGGAAAATTTGTCTCT 0.2113
CGCGTTCGGAAGGGGGCACCATCTC 0.1677
TACTGGGGGGAGTTGTCCGCGGGAC 0.1500

4.5. Perform Crossover Operation

Among the three possibilities mentioned in Section 3.5, this paper chooses the crossover
point (CP) towards the middle of the strings. Thus CP = 12 is selected and crossover is per-
formed. Figure 3 gives the newly generated child population after performing a crossover
operation with CP = 12 on each pair of parents chosen sequentially from Table 5.
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Parent Strings Resultant Child Siring
ACAGGCCAGTGTCTTCACCAGACGA ; ACAGGCCAGTGTGTTAGAGATTICTG
GTCCATATTGCAGTTAGAGATTICTG GTCCATATTGCACTTCACCAGACGA
CGGGAGGGTACGTAGGAACGCCTAC CGGGAGGGTACGCAGACACGGTTAA
TGCTACGGGAAACAGACACGGTTAA TGCTACGGGAAATAGGAACGCCTAC
ACATCTCTGTAACGACTAGATCCCT ACATCTCTGTAACTGGTCGAGGTAT
ATATTGTGACTTCTGGTCGAGGTAT — ATATTGTGACTTCGACTAGATCCCT
TAGAGGCGAGCGCATGTAGCAAGGC TAGAGGCGAGCGTAGCCGTCACGTC
ACAACGCCACGATAGCCGTCACGTC ACAACGCCACGACATGTAGCAAGGC

TTTCTTCCTGGATGAGTTTGGTATC — TTTCTTCCTGGACCCCTCTGCTTTT
AGGTTCACTGGGCCCCTCTGCTTTT AGGTTCACTGGGTGAGTTTGGTATC
GGAAACAGGTCGGGUGACGGGCCGC - GGAAACAGGTCGAAAATTIGTCTCT

CGAATCGGGAGGAAAATTTGTCTCT CGAATCGGGAGGGGCGACGGGCCGC
CGCGTTCGGAAGGGGGCACCATCTC CGCGTTCGGAAGTTGTCCGCGGGAC
TACTGGGGGGAGTTGTCCGCGGGAC TACTGGGGGGAGGGGGCACCATCTC

Figure 3. New Population after Crossover for Crossover Point (CP) = 12.

4.6. Perform Mutation Operation

The child populations obtained after crossover is next scrutinized for mutation. Table 6
illustrates this step for the child population shown in Figure 3. Like our previous calcula-
tions, i = 6. The Min (g, t, ¢, g) and Max (g, t, ¢, g) values are highlighted in bold for easy
identification. If multiple nucleotides have the same Max values, choose the one having
more consecutive repetitions as this we the key becomes more eligible to pass the Gap Test
in future. Still, if all have identical occurrences, any nucleotide can be chosen randomly.
m is calculated using Equation (8).

Table 6. The number of instances to be muted (1) calculation for Child Population.

Child String a t c g i m
ACAGGCCAGTGTGTTAGAGATTCTG 6 7 4 8 6 2
GTCCATATTGCACTTCACCAGACGA 7 6 8 4 6 2

CGGGAGGGTACGCAGACACGGTTAA 7 3 5 10 6 3
TGCTACGGGAAATAGGAACGCCTAC 8 4 6 7 6 2
ACATCTCTGTAACTGGTCGAGGTAT 6 8 5 6 6 1
ATATTGTGACTTCGACTAGATCCCT 6 9 6 4 6 2
TAGAGGCGAGCGTAGCCGTCACGTC 5 4 7 9 6 2
ACAACGCCACGACATGTAGCAAGGC 9 2 8 6 6 4
TTTCTTCCTGGACCCCTCTGCTTTT 1 12 9 3 6 5
AGGTTCACTGGGTGAGTTTGGTATC 4 9 3 9 6 3
GGAAACAGGTCGAAAATTTGTCTCT 8 7 4 6 6 2
CGAATCGGGAGGGGCGACGGGCCGC 4 1 7 13 6 5
CGCGTTCGGAAGTTGTCCGCGGGAC 3 5 7 10 6 3
TACTGGGGGGAGGGGGCACCATCTC 4 4 6 11 6 2

Next, M instances of the least occurring nucleotide are substituted with the highest
occurring one as per Table 6. However, while doing so again it has to be made sure that
substitution does not lead to many successive occurrences consecutively. The child string is
traversed, and three or more consecutive occurrences of A, T, C, and G are noted. Within
that portion of nucleotides, one occurrence is muted after verifying that this mutation does
not lead to more than three continuous occurrences of the nucleotides in muted string.
This verification is done by keeping a track of the nucleotide preceding and succeeding
the concerned nucleotide A, T, C, and G before and after mutation Figure 4 represents the
generation of muted string from the original child string. The particular instance which is
being muted is also highlighted in Figure 4.
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Child String Muted String

Z
ACAGGCCAGTGTGTTAGAGATTCTG ACACGCCAGTGTCTTAGAGATTICTG

2
GTCCATATTGCACTTCACCAGACGA Wmmmp

GTCGATATTGCACTTCACGAGACGA
3

CGGGAGGGTACGCAGACACGGTTAA ) CGTGAGTGTACGCAGACACTGTTAA
2

TGCTACGGGAAATAGGAACGCCTAC TGCTACGGGATATAGGATCGCCTAC
1

ACATCTCTGTAACTGGTCGAGGTAT ACATCTCTGC AACTGGTCGAGGTAT
2

ATATTGTGACTTCGACTAGATCCCT ATATGGTGACTGCGACTAGATCCCT
2

TAGAGGCGAGCGTAGCCGTCACGTC ) TAGAGTCGAGCGTATCCGTCACGTC
4

ACAACGCCACGACATGTAGCAAGGC ACATCGCCTCGTCATGTAGCATGGC
=]

TTTCTTCCTGGACCCCTCTGCTTTT S TATCTACCTGGACCCCTCAGCTATA
3

AGGTTCACTGGGTGAGTTTGGTATC AGGCTCACTGGGCGAGTCTGGTATC
2

GGAAACAGGTCGAAAATTTGTCTCT GGACACAGGTCGAACATTTGTCTCT

5
CGAATCGCGGAGGGGCGACGGGCCGC — CTAATCTGTAGTGGCGACGTGCCGC

3
CGCGTTCGGAAGTTGTCCGCGGGAC CGOGTTCAGAAGTTATCCGCGAGAC

2
TACTGGG GGGAGGGGGCACCATCTC ) TACTGGAGGGAGGAGGCACCATCTC

Figure 4. Mutation of Child Population.

4.7. Generate the New Population
Finally, the first set of the new population is generated which comprises the muted
strings as calculated in Figure 4. This new population is shown in Figure 5a.

ACACGCCAGTGTCTITAGAGATICTG

ACACGCCAGTGTCTTAGAGATTCTG

GTCGATATTGCACTTCACGAGACGA

GTCGATATTGCACTTCACGAGACGA

CGTGAGTGTACGCAGACACTGTTAA

CGTGAGTGTACGCAGACACTGTTAA

TGCTACGGGATATAGGATCGCCTAC

TGCTACGGGATATAGGATCGCCTAC

ACATCTCTGCAACTGGTCGAGGTAT

ACATCTCTGCAACTGGTCGAGGTAT

ATATGGTGACTGCGACTAGATCCCT

ATATGGTGACTGCGACTAGATCCCT

TAGAGTCGAGCGTATCCGTCACGTC

TAGAGTCGAGCGTATCCGTCACGTC

ACATCGCCTCGTCATGTAGCATGGC

ACATCGCCTCGTCATGTAGCATGGC

TATCTACCTGGACCCCTCAGCTATA

TATCTACCTGGACCCCTCAGCTATA

AGGCTCACTGGGCGAGTCTGGTATC

AGGCTCACTGGGCGAGTCTGGTATC

GGACACAGGTCGAACATTTGICICT

GGACACAGGTCGAACATTTGTCTCT

CTAATCTGTAGTGGCGACGTGCCGC

CTAATCTGTAGTGGCGACGTGCCGC

CGCGTTCAGAAGTTATCCGCGAGAC

CGCGTTCAGAAGTTATCCGCGAGAC

TACTGGAGGGAGGAGGCACCATCTC

TACTGGAGGGAGGAGGCACCATCTC

@)

Figure 5. (a) First New Population after Crossover and Mutation. (b) Weak Keys in the First New

Population based on Fitness Tests.

B Weak B Strong
(b)
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4.8. Reapply Fitness Test and Repeat the Entire Process

The fitness tests are re-applied to the first new population to categorize them into
strong or weak. Figure 5b represents the weak keys obtained in this new population.

After applying the proposed methodology to this new population of 14 weak keys,
only 4 weak keys are encountered. Thus, the suggested technique could strengthen the
majority of the keys and render them useful for the encryption process.

Next, the already mentioned steps are re-applied to these weak keys obtained from the
new population. In this new population as per Figure 5b, 4 weak keys have been obtained.
Table 7 shows the fitness function F calculation for the same. Based on Fitness value, they
are arranged in decreasing order.

Table 7. Calculation of Final Fitness Function (F) for First New Population.

Weak Key a t c g oA oT oc oG M A A F
TATCTACCTGGACCCCTCAGCTATA 6 7 9 3 0 0266 0.802 0.802 04675 1 1.4675 0.1873
AGGCTCACTGGGCGAGTCTGGTATC 4 6 6 9 0.535 0 0 0.802 03342 0 0.3342 0.4172
CTAATCTGTAGTGGCGACGTGCCGC 4 6 7 8 0.535 0 0266 0.535 03340 O 0.3340 04172
TACTGGAGGGAGGAGGCACCATCTC 6 4 6 9 0 0.535 0 0.802 03342 0 0.3342 04172

After this, a crossover is applied to this new population for again CP = 12. The
corresponding child population for this first new population is shown in Figure 6a. A
mutation is applied to this child population after calculating the value of m as shown in
Table 8, the process is illustrated in Figure 6b. These muted strings form the second new
population which is shown in Figure 6¢ and its corresponding strong and weak keys after
applying the fitness tests are shown in Figure 6d. Only 2 weak keys are obtained. Therefore,
the suggested technique reduces the number of weak keys significantly on each iteration.

Child String Muted String
1

Parent String Child String TATCTACCTGGACGAGICIGGTATC ™ TATCTACCIGGTCGAGICTGGTATC

CTAATCTGTAGTGGOG AL

TATCTACCTGGACCCCTCAGCTATA

GTGOOGL CTAATCTGTAGT

’ 1
GGOGACGTGOOGC
- COOCTCAGCTATA AGGCTCACTGGGCCCCTCAGCTATA # AGGCTCACTGGGCTCCTCAGCTATA
TATCTACCTGGA 1

CTAATCTGTAGTGAGGCACCATCTC ‘ CTAATCTGTAGTGAGGCAGCATCTC
3
TACTGGAGGGAGGGCGACGTGCCGC ‘ TACTGTAGTGAGTGCGACGTGCCGC

(a) (b)

TATCTACCTGGTCGAGTCTGGTATC

TATCTACCTGGTCGAGTCTGGTATC AGGCTCACTGGGCTCCTCAGCTATA
AGGCTCACTGGGCTCCTCAGCTATA CTAATCTGTAGTGAGGCAGCATCTC
CTAATCTGTAGTGAGGCAGCATCTC TACTGTAGTGAGTGCGACGTGCCGC

TACTGTAGTGAGTGCGACGTGCCGC

- Weak - Strong
(©) (d)

Figure 6. (a) Child Population from First New Population. (b) Mutation of Child Population from
First New Population. (c) Second New Population after Crossover and Mutation. (d) Weak Keys in
the Second New Population based on Fitness Tests.

Table 8. The number of instances to be muted (1) calculation in First New Population.

Child String a t c g i m
TATCTACCTGGACGAGTCTGGTATC 5 8 6 6 6 1
AGGCTCACTGGGCCCCTCAGCTATA 5 5 9 6 6 1
CTAATCTGTAGTGAGGCACCATCTC 6 7 7 5 6 1
TACTGGAGGGAGGGCGACGTGCCGC 4 3 6 12 6 3
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Next, a crossover is applied to the second new population at CP = 12. The resultant
child strings and muted strings are shown in Figure 7a. A mutation is applied to this child
population after calculating the value of m as shown in Table 9 and the process is shown

in Figure 7b.
Child String Muted String
Parent Strings Resultant Child String =
AGGCTCACTGGGCTCCTCAGCTATA AGGCTCACTGGGTGUGACGTGUUGL AGGCTCACTGGGTGCGACGTGCCGC ‘ AGACTCACTGAGTGCGACGTACCGC
TACTGTAGTGAGTGCGACGTGCCGC ‘ TACTGTAGTGAGCTCCTCAGCTATA 1
TACTGTAGTGAGCTCCTCAGCTATA - TACTGTAGTGAGCGCCTCAGCTATA
(a) (b)
AGACTCACTGAGTGCGACGTACCGC AGACTCACTGAGTGCGACGTACCGC | [l Weak
TACTGTAGTGAGCGCCTCAGCTATA TACTGTAGTGAGCGCCTCAGCTATA | . Stmng
(c) (d)

Figure 7. (a) Child Population from Second New Population (b) Mutation of Child Population from
Second New Population. (c) Third New Population after Crossover and Mutation. (d) Weak Keys in
the Third New Population based on Fitness Tests.

Table 9. The number of instances to be muted (1) calculation for Second New Population.

Child String a t c g i m
AGGCTCACTGGGTGCGACGTGCCGC 3 4 8 10 6 3
TACTGTAGTGAGCTCCTCAGCTATA 6 8 6 5 6 1

After this, the previously mentioned steps are re-applied to these weak keys obtained
from the third new population. In this new population, as per Figures 7c,d, only 1 weak
key is encountered. Therefore, no crossover operation is performed. Directly mutation is
applied as shown in Table 10 and Figure 8.

Table 10. The number of instances to be muted (1) calculation for Third New Population.

Child String a t c g i m
AGACTCACTGAGTGCGACGTACCGC 6 4 8 7 6 2
Child String Muted String
2

AGACTCACTGAGTGCGACGTACCGC ‘ AGACTCACTGAGTGTGATGTACCGC

Figure 8. Mutation of Child Population from Third New Population.

The fourth new population is generated from the muted strings as shown in Figure 9a.
Its classification into strong and weak keys is shown in Figure 9b.

AGACTCACTGAGTGTGATGTACCGC ‘ | AGACTCACTGAGTGTGATGTACCGC

(a) (b)

Figure 9. (a) Third New Population after Crossover and Mutation. (b) Weak Keys in the Third New
Population based on Fitness Tests.

Therefore, after applying the fitness test to the fourth population, no weak keys are
obtained. Hence, the proposed method could successfully strengthen all the weak keys
obtained at each step from different populations.
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5. Analysis of Proposed Methodology
5.1. Number of Crossover and Mutation

The crossover rate and mutation rate play a crucial role to decide the chances that the
two strings exchange some of their parts. It is the number of times crossover and mutation
operations occur. A high crossover and mutation rate means most of the child strings are
made from crossover and mutation operations and are comparatively fitter. However, this
adversely affects the runtime complexity of the system. Figure 10 shows the number of
crossovers and mutation operations performed in each generation of the 25 x 25 initial
populations. It shows that with each new population the number of genetic operations to
be applied is reducing drastically which reduces the further complexity of the system.

Number of
operation 20
performed

Distinet Population

Figure 10. Comparison of Crossover and Mutation Rate in Different Generations.

5.2. Effect of Different Values of N and M on the Number of Weak Keys Achieved

This paper scrutinizes the effect of different values of N and M on the number of weak
keys achieved for each of the cases. It is evident that as the values of N and M increase, the
number of weak keys generated is drastically increasing which necessitates the fact that
procedures should be implemented to strengthen these instead of discarding and rendering
them useless. Table 11 gives a demonstration of the same.

Table 11. The number of Weak Keys Obtained for Different values of N and M.

M =25 M =50 M =100 M =150 M =200 M =250 M =300 M =350 M =400 M =450 M =500

N=25 14 22 24 24 24 25 25 25 25 25 25

N=50 22 38 44 49 49 49 50 50 50 50 50

N=100 34 87 94 97 98 98 99 99 100 100 100
N=150 60 89 95 112 139 146 147 148 149 150 150
N=200 79 98 126 157 164 179 198 198 199 200 200
N=250 89 99 135 168 173 191 240 248 249 250 250
N=300 107 115 142 196 248 289 291 298 299 299 300
N= 350 137 141 156 198 249 324 335 340 350 350 350
N=400 148 159 175 180 237 329 367 384 400 400 400
N=450 158 173 192 226 290 316 384 437 450 450 450
N= 500 173 213 246 287 314 384 453 488 497 500 500

5.3. The Comparison of Number of Populations Generated to Strengthen Weak Keys Using
Proposed Algorithm

The comparison of the number of populations generated to strengthen weak keys
using genetic operators is also represented in Table 12. It is evident that at most 8 new
populations are generated to successfully convert weak keys into strong ones. Therefore,
from an implementation point of view it is evident that for a 500 x 500 initial population
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of keys, all the 500 keys might fall out to be weak keys based on frequency and gap test.
They can be strengthened by the proposed method by generating a maximum of 8 new
populations by applying the crossover and mutation operations.

Table 12. Number of Populations Generated to Strengthen the Weak Keys for Different values of N
and M.

M =25 M =50 M =100 M =150 M=200 M =250 M =300 M=350 M=400 M =450 M =500

N=25
N=50
N=100
N=150
N=200
N=250
N=300
N=350
N= 400
N=450
N= 500

&)
&)

NN N NN NN U1 O
ONNNNNNNNOoONy ot
XN NNNININNININNo
00NN 00NN
[oole e e Te N BN BN BN o N

Q0 00 0 0 0 0 NN Ul
Q0 00 00 0 0 0 0 NI NGl
Q 00 00 00 00 00 0 I N O U1
Q0 00 00 W W W NN

[oJecle e Jo le cie RN AN e NN &)
Q 00 00 00 00 00 0 I N O U1

5.4. Immunity to Security Attacks

From a security point of view, the most prominent attack is the Brute Force attack. In
Bruce Force attacks, the intruder conducts an exhaustive search over the entire key space to
guess the probable key. Binary keys consider only 0/1 hence the exponential power is 2. In
DNA keys, because of the usage of 4 nitrogenous bases and different values of M and N, the
key space to be traversed can be calculated by 4* x M x N. Thus, the exponential power
is 4. Therefore, each DNA key component is 8 times stronger than its binary counterpart.
Figure 11 illustrates that the size of the key space is increasing exponentially, thus making
the keys less vulnerable to intrusions.

7.00,00,000
6.00.00,000

5.00.00.000

Size of 4 9.00.000
Keyspace

3.00.00.000

2.00,00.000
Ll |“ | “ ‘ ‘
0 ol _. |II|||| » |||||| 2 || 4 | i i i il i I|

M=25 M=50 M=100M=150M=200M=250M=300M=350M =400 M =450 M =500

B N=25 m N=50 mN=100 m N=150 m N=200 m N=250 m N=300 m N=350 m N=400 m N=450 mN=500
Different Values of N for Particular Values of M

Figure 11. Size of Key Space to be searched for Brute Force Attacks for different values of M and N.

5.5. Complexity Analysis

The Genetic Algorithm’s time complexity is dependent on the selection operator,
fitness function, as well as the type of genetic operators used. For single-point crossover, it
is given by O (g(nm + nm + n)) where g is the number of generations, # is the population size
and m is the size of the individuals. Therefore, the complexity is on the order of O(gnm)) by
taking the leading term. The space complexity is always twice the population storage each
time a new population is generated.
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This time complexity is less compared to the time complexity of encryption schemes.
The complexity of encryption schemes further depends on the components used for the
same. Simple Permutation, Substitution, XOR, Split and Combine, as well as shifting
operations take less time when compared to other advanced methodologies. Symmetric
key schemes are faster than asymmetric key schemes as only one key must be generated
and shared.

The overall complexity of encryption will depend on both the complexities of key gen-
eration and actual encryption. Strengthening the weak keys will be time taking than simply
generating new key space each time and it will impact the overall encryption procedure.
However, security will not be compromised if the proposed methodology is followed and
the immunity to intrusions is enhanced at the cost of time and space complexity.

5.6. Practical Application of Proposed Scheme

DNA Cryptography is a promising area of Cryptography which is more secure than
traditional cryptosystems because of the use of four nitrogenous bases as already discussed
in Section 5.4. The proposed scheme gives a best-fit DNA key generation methodology and
therefore will find avid application in any DNA cryptosystem. Any type of input, namely
text-based or image-based, can be encoded in DNA string form by applying the appropriate
DNA Encoding method. To further enhance the security, it can be treated by a suitable
DNA key resulting in a double-layer encryption technique. Therefore, the enhanced key
can be applied to any image encryption and confidential communication procedures.

6. Conclusions and Future Work

DNA keys are more immune to attacks compared to their traditional counterpart
because of the utility of four nitrogenous bases in contrast to the binary 0s and 1s. How-
ever, if the key strings have a non-uniform distribution of A, T, G and C, or have more
than three occurrences within the key, they become more predictable and vulnerable to
intrusions. Therefore, such keys are categorized as weak keys. With increasing values of M
(length of each DNA key string) and N (number of strings), it is evident that the number
of weak keys generated is drastically high and sometimes, most of the keys are rendered
weak. The proposed methodology strives to make such keys usable for encryption by
strengthening them using the concept of genetic algorithms.

This paper provides a standard deviation-based Fitness Function calculation for the
weak keys. These keys are arranged in decreasing order of their fitness, and the child
population is generated by applying suitable genetic operators. It was seen that a maximum
of 8 new populations had to be generated for a 500 x 500 initial population, where all
500 key strings failed the fitness test and were classified as weak initially. It is also evident
that the crossover and mutation rates are reducing from 7 to 0 and 38 to 2, respectively with
each new population as more keys are passing the fitness tests. From a security point of
view, the proposed scheme is immune to Brute Force attacks as the key space to be searched
is reaching to be exponentially large with different values of M and N. Even for the initial
25 x 25 population, the size of the key space is 160,000 tremendously high bases.

The future scope of work plans to investigate the effect of different crossover points
over the initial populations. The clauses for the fitness tests can also be further modified
to check the strength of the keys and make them less vulnerable to attack from intruders.
Cheating [30], Spoofing [31], and Intrusion [32] Detection systems are garnering a lot of
research interest and will be studied later on. Other domains such as Neural networks, Ma-
chine Learning, Blockchain Technology [33], and Game Theory based Authentication [34]
and their applications in the field of Cryptology will be explored in future endeavours. Iris
biometrics has recently gained a lot of popularity and efficiency in a variety of security appli-
cations. However, presentation attacks can target biometric systems. This attack is carried
out by impersonating any biometric feature and appearing to be a real trait [35]. However,
various spoofing attacks have been employed in recent years to compromise the security
of a biometric system. A biometric liveness identification system uses a person’s specific
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biological characteristics to quickly and reliably identify them [36]. By distinguishing the
characteristics of live fingerprints from those of phoney fingerprints, a liveness detection
system can be developed to foil the various types of spoof assaults that could be launched.
Over the course of the last few years, academics have proposed many methods that are
based either on hardware or software [37-39]. Comparison of the hardened key with keys
generated by other advanced algorithms, e.g., Range-gated laser image compression and
encryption scheme based on bidirectional diffusion, novel image encryption algorithms
based on least squares generative adversarial network random number generators can also
be experimented on in further courses of action.
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