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Abstract 

Background: Spaced seeds, also named gapped q-grams, gapped k-mers, spaced q-grams, have been proven to be 
more sensitive than contiguous seeds (contiguous q-grams, contiguous k-mers) in nucleic and amino-acid sequences 
analysis. Initially proposed to detect sequence similarities and to anchor sequence alignments, spaced seeds have 
more recently been applied in several alignment-free related methods. Unfortunately, spaced seeds need to be initially 
designed. This task is known to be time-consuming due to the number of spaced seed candidates. Moreover, it 
can be altered by a set of arbitrary chosen parameters from the probabilistic alignment models used. In this general 
context, Dominant seeds have been introduced by Mak and Benson (Bioinformatics 25:302–308, 2009) on the Bernoulli 
model, in order to reduce the number of spaced seed candidates that are further processed in a parameter-free calcu-
lation of the sensitivity.

Results: We expand the scope of work of Mak and Benson on single and multiple seeds by considering the Hit 
Integration model of Chung and Park (BMC Bioinform 11:31, 2010), demonstrate that the same dominance definition 
can be applied, and that a parameter-free study can be performed without any significant additional cost. We also 
consider two new discrete models, namely the Heaviside and the Dirac models, where lossless seeds can be inte-
grated. From a theoretical standpoint, we establish a generic framework on all the proposed models, by applying a 
counting semi-ring to quickly compute large polynomial coefficients needed by the dominance filter. From a practical 
standpoint, we confirm that dominant seeds reduce the set of, either single seeds to thoroughly analyse, or multiple 
seeds to store. Moreover, in http://bioinfo.cristal.univ-lille.fr/yass/iedera_dominance, we provide a full list of spaced 
seeds computed on the four aforementioned models, with one (continuous) parameter left free for each model, and 
with several (discrete) alignment lengths.
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Polynomial form, DFA
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Background
Optimized spaced seeds, or best gapped q-grams, have 

independently been proposed in PatternHunter  [3] and 

by Burkhardt and Karkkainen [4]. �e primary objective 

was either to improve the sensitivity of the heuristic but 

efficient hit and extend BLAST-like strategy (without 

using the neighborhood word principle1), or to increase 

the selectivity for lossless filters on alignments of size ℓ 

under a given Hamming distance of k.

Several extensions of the spaced seed model have then 

been proposed on the two aforementioned problems: 

vector seeds [5], one gapped q-grams [6] or indel seeds [7, 

8], neighbor seeds [9, 10], transition seeds  [11–15], mul-

tiple seeds [16–19], adaptive seeds [20] and related work 

on the associated indexes  [21–26], just to mention a few.

1 We mention an interesting analysis in [92].
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Unfortunately, spaced seeds are known to produce 

hard problems, both on the seed sensitivity computa-

tion [27] or the lossless computation [28], and moreover 

on the seed design [29]. But the choice of the right seed 

pattern has a significant impact on genomic sequence 

comparison  [3, 12, 16, 20, 30–38], on oligonucleotide 

design [39–44], as well as on amino acid sequence com-

parison  [45–53]; this has led to several effective meth-

ods to (possibly greedily) select spaced seeds  [54–61] 

with elaborated alignment models and their associated 

algorithms [62–70].

Another less frequently mentioned problem is that the 

seed design is mostly performed on a fixed and already 

fully parameterized alignment model (for example, a Ber-

noulli model where the probability of a match p is set to 

0.7). �ere is not so much choice for the optimal seed, 

when, for example, the scoring system is changed, and 

thus the expected distribution of alignments.

We note that several recent works mention the use of 

spaced seeds in alignment-free methods  [71–73] with 

applications in phylogenetic distance estimation  [74], 

metagenomic classification [75, 76], just to cite a few.

Finally, we also noticed that several recent studies 

use the overlap complexity  [54, 56, 57, 77–79] which is 

closely linked to the variance of the number of spaced-

word matches  [80] and is known to provide an upper/

lower bound for the expectation of the length preced-

ing the first seed hit  [27, 66, 81]. We mention here that 

a similar parameter-free approach could also be applied 

for the variance induced selection of seeds, but an inter-

esting question remains in that case: to find a dominance 

equivalent criterion associated with the selection of can-

didate seeds.

�e paper is organized as follows. We start with an 

introduction to the spaced seed model and its associated 

sensitivity or lossless aspect, and show how semi-rings on 

DFA can help determining such features. Section “Semi-

rings and number of alignments” restricts the description 

to counting semi-rings that are applied on a specific DFA 

to perform an efficient dynamic programming algorithm 

on a set of counters. �is is a prerequisite for the two 

next sections that present respectively continuous mod-

els and discrete models. Section “Continuous models” is 

divided into two parts : the first one outlines the polyno-

mial form of the sensitivity proposed by  [1] to compute 

the sensitivity on the Bernoulli model together with the 

associated dominance principle, whereas the second 

one extends this polynomial form to the Hit Integration 

model of [2], and explains why the dominance principle 

remains valid. Section “Discrete models” describes two 

new Dirac and Heaviside models, and shows how lossless 

seeds can be integrated into them. �en, we report our 

experimental analysis on all the aforementioned models, 

display and explain several optimal seed Pareto plots for 

the restricted case of one single seed, and links to a wide 

range of compiled results for multiple seeds. �e last sec-

tion brings the discussion to the asymptotic problem, and 

to several finite extensions.

Spaced seeds and seed sensitivity
We suppose here that strings are indexed starting from 

position number 1. For a given string u, we will use the 

following notation: u[i] gives the i-th symbol of u, |u| is 

the length of u, and |u|a is the number of symbol letters a 

that u contains.

Nucleotide sequence alignments without indels can be 

represented as a succession of match or mismatch sym-

bols, and thus represented as a string x over a binary 

alphabet {0,1}.

A spaced seed can be represented as a string π over a 

binary alphabet {0, 1} but with a different meaning for 

each of the two symbols: 1 indicates a position on the 

seed π where a single match must occur in the align-

ment x (it is thus called a must match symbol), whereas 0 

indicates a position where a single match or a single mis-

match is allowed (it is thus called a don’t-care symbol).

�e weight of a seed π (denoted by w or wπ) is defined 

as the number of must match symbols (wπ = |π |1): the 

weight is frequently set constant or with a minimal value, 

because it is related to the selectivity of the seed. �e 

span or length of a seed π (denoted by sπ) is its full length 

(sπ = |π |). We will also frequently use ℓ for the length of 

the alignment (ℓ = |x|).

�e spaced seed π hits at position i of the alignment x 

where i ∈
[

1 . . . |x| − |π | + 1
]

=
[

1 . . . ℓ − sπ + 1
]

 iff

For example, the seed π = 1101 hits the alignment 

x = 111010101111 twice, at positions 2 and 9. 

π occ1
1 1 0 1

π occ2

.

.
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.
.
.
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x 1 1
−

1
−

0 1
−

0 1 0 1
−

1
−
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−

Naturally, the shape of the seed, i.e.  possible placement 

of a set of don’t-care symbols between any consecutive 

pair of the w must match symbols, plays a significant role 

and must be carefully controlled. Requiring at least one 

hit for a seed, on an alignment x, is the most common 

(but not unique) way to select a good seed.

However, depending on the context and the problem 

being solved, even measuring this simple feature can 

easily take one of the two (previously briefly mentioned) 

forms:

∀j ∈
[

1 . . . sπ
]

π [j] = 1 =⇒ x[j + i − 1] = 1
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a. When considering that any alignment x is of given 

length ℓ, and each symbol is generated by a Bernoulli 

model (so there is no restriction on the number of 

match or mismatch symbols an alignment must 

contain, but with some configurations more prob-

able than others), the problem is to select a good seed 

(respectively the best seed) as the one that has a high 

probability (respectively the best probability) to hit at 

least once.

b. When considering that any alignment x is of given 

length ℓ, and contains at most k mismatch symbols, 

a classical requirement for a good seed is to guaran-

tee that all the possible alignments, obtained by any 

placements of k mismatch symbols on the ℓ align-

ment symbols, will all be detected by at least one 

seed hit each: when this distinctive feature occurs, 

the seed is considered lossless or (ℓ, k)-lossless.

�e two problems can be solved by first considering the 

language recognized by the seed π, in this context the at 

least one hit  regular language, and its associated DFA. As 

an illustration, Fig.  1 displays the at least one hit   DFA 

for the spaced seed 1101: this automaton recognizes the 

associated regular language {0,1}∗(1101|1111){0,1}∗, 

or less formally, any binary alignment sequence x that has 

at least one occurrence of 1101 or 1111 as a factor.

�e second step consists in computing, by using a sim-

ple dynamic programming (DP) procedure set for any 

states of the DFA and for each step i ∈

[

1 . . . ℓ
]

,

a. Either, the probability to reach any of the automaton 

states.

b. Otherwise, the minimal number of mismatch sym-

bols 0 that have been crossed to reach any state.

For example, considering the probability problem (a) on a 

Bernoulli model where a match has a probability p set to 

0.7, we show it can be computed—by first “replacing”, on 

the automaton of Fig. 1, the transition symbols 0 and 1 by 

their respective probabilities 0.3 and 0.7—then, on each 

step i, it is possible to compute the probability P (i, q) to 

reach each of the states q by applying a recursive formula 

that uses the probability to be at any of its preceding states 

on step i − 1. For the automaton of Fig.  1, this gives 

i = 0 P(0, q1) = 1.0
other states q have a P(0, q ) = 0.0

i = 1 P(1, q1) = P(0, q1 or q2 or q4) × 0.3
= P(0, q1) + P(0, q2) + P(0, q4) × 0.3
= (1.0 + 0.0 + 0.0) × 0.3 = 0.3

P(1, q2) = P(0, q1) × 0.7 = 1.0 × 0.7 = 0.7
other states q have a P(1, q ) = 0.0

i = 2 P(2, q1) = P(1, q1 or q2 or q4) × 0.3
= P(1, q1) + P(1, q2) + P(1, q4) × 0.3
= (0.3 + 0.7 + 0.0) × 0.3 = 0.3

P(2, q2) = P(1, q1) × 0.7 = 0.3 × 0.7 = 0.21
P(2, q3) = P(1, q2) × 0.7 = 0.7 × 0.7 = 0.49

other states q have a P(2, q ) = 0.0
i = 3 P(3, q1) = P(2, q1 or q2 or q4) × 0.3

= P(2, q1) + P(2, q2) + P(2, q4) × 0.3
= (0.3 + 0.21 + 0.0) × 0.3 = 0.153

P(3, q2) = P(2, q1) × 0.7 = 0.3 × 0.7 = 0.21
P(3, q3) = P(2, q2) × 0.7 = 0.21 × 0.7 = 0.147
P(3, q4) = P(2, q3 or q5) × 0.3

= P(2, q3) + P(2, q5) × 0.3
= (0.49 + 0.0) × 0.3 = 0.147

P(3, q5) = P(2, q3) × 0.7 = 0.49 × 0.7 = 0.343
P(3, q6) = 0.0

i = 4 . . .

 on step i = 4, the probability to reach the final state q6 can 

be computed to P(4, q6) = 0.343 ( 0.73 ), as a logical (and 

first non-null) probability for the seed π = 1101 to detect 

alignments of length ℓ = 4—on step i = 5, the prob-

ability to reach q6 can be computed to P(5, q6) = 0.51793 

(0.73 × (1 + 0.3 + 0.7 × 0.3)) to detect alignments of 

length ℓ = 5 .

Another example, considering now the lossless prop-

erty (b) for the spaced seed π = 1101: we can show that 

this seed is lossless for one single mismatch, when ℓ ≥ 6 

(but computational details are left to the reader, after a 

remark on tropical semi-rings in the next paragraph): the 

seed is thus (ℓ = 6, k = 1)-lossless ; however, this seed is 

not (ℓ = 5, k = 1)-lossless, since reading the consistent 

sequence 10111 leads to a non-final state.

Finally, we simply mention that this second computa-

tional step involves the implicit use of semi-rings,

a. Either probability semi-rings: (E = R0≤r≤1, ⊕ = +,

⊗ = × , 0⊕,ǫ⊗
= 0, 1⊗ = 1)  ; the final state(s) of the 

DFA give(s) the probability of having at least one hit 

after ℓ steps of the DP algorithm,

b. Otherwise tropical semi-rings: (E = R≥0, ⊕ = min,

⊗ = + 0⊕,ǫ⊗
= ∞, 1⊗ = 0). �e seed is (ℓ, k)-loss-

less iff all the non-final states of the DFA have a mini-

mal number of mismatches that is strictly greater than 

k, after ℓ steps of the DP algorithm.2

2 �e opposite is equivalent to say that at least one string of length ℓ with ≤ k 
mismatches is not hit by the seed; in other words, that the seed is not (ℓ, k)
-lossless. Note that k does not need to be initially set: it can be estimated 
using this requirement, even after the DP run.

q1start q2 q3

q4

q5

q6

0

1

0

1

0

1

0
1

0
1

0,1

Fig. 1 Spaced seed DFA. We represent the at least one hit DFA for the 
spaced seed π = 1101. This automaton recognizes any alignment 
sequence with at least one occurrence of 1101 or 1111
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Semi-rings and number of alignments
Semi-rings are a flexible and powerful tool, employed 

for example to compute probabilities, scores, distances, 

counts (to name a few) in a generic dynamic program-

ming framework  [82, 83]. �e first problem involved, 

mentioned at the end of the previous section, is the right 

choice of the semi-ring, adapted to the question being 

addressed. Sometimes, selecting an alternative semi-ring 

to count elements, may turn out to be a flexible choice 

that solves more involved problems (for example comput-

ing probabilities is one of them, and will be described in 

next section).

Counting semi-rings  [84] are adapted for this task: 

when applied on the right language and its right 

automaton, they can report the number of alignments 

cπ ,m that are at the same time detected by the seed π 

while having m matches out of ℓ alignment symbols. 

�e main idea that enables the computation of these 

cπ ,m counting coefficients (illustrated on Fig.   2 as the 

intersection product) is first to intersect the language 

recognized by the seed π (the at least one hit language 

of π) with the classes of alignments that have exactly 

m matches: the automaton associated with all of these 

classes of alignments with m matches has a very simple 

linear form with ℓ + 1 states, where several distinct final 

states are defined according to all the possible values of 

m ∈ [0 . . . ℓ]. Finally, since the intersection of two regu-

lar languages is regular [�eorem 4.8 of the timeless 85], 

× q1start q2

q3

q4

q5

p0

start

p1

p2

p
−1

p

p0 × q1

start
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−1 × q1 p
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1

0,1
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Fig. 2 DFA intersection product. We represent the resulting intersection product of the at least one hit DFA for the seed π = 101 (top horizontal 
automaton), with the 1-counting DFA (left vertical automaton). The dashed transitions represent ellipsis in the construction between m = 2 and 
m = ℓ − 1, while the dotted transitions at the bottom of the resulting automaton make it complete
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it can thus be represented by a conventional DFA, while 

keeping the feature of having several distinct final states.

As an illustration, Fig.   2 displays the at least one 

hit DFA for the spaced seed 101 (on the top), the lin-

ear 1-counting DFA (on the vertical left part) to isolate 

alignments with exactly m matches, and finally their 

intersection product, that represent the intersecting 

language as a new DFA (itself obtained by crossing 

synchronously the two previous DFAs). Note that each 

of the final states pm × q5 (for m < ℓ) of the resulting 

DFA is reached by alignment sequences with exactly m 

matches that are also detected by the seed 101 (unless 

for the last state pl × q5, where ≥ ℓ matches may have 

been detected).

�en, starting with the empty word (counted once 

from the initial state p0 × q1), it is then possible to 

count the number of words of size one (two words 0 

and 1 on a binary alphabet) by following transitions 

from the initial state to p0 × q1 and p1 × q2, respec-

tively; from the (two) states already reached, it is then 

possible to count words of size two (four words on a 

binary alphabet), and so on, while keeping, for each 

DFA state pm × qj and on each step i, a single count 

record, which represents the size of the subset of the 

partition of the 2i words that reach pm × qj.

Note that, for a seed π of weight wπ and span sπ (thus 

with sπ − wπ don’t-care symbols), the at least one hit 

automaton size is in O(wπ2
sπ−wπ ), so the intersection 

with the classes of alignments that have m matches out 

of ℓ leads to a full size in O(ℓwπ2
sπ−wπ ): the compu-

tational complexity of the algorithm can thus be esti-

mated in O(ℓ2wπ2
sπ−wπ ) in time and O(ℓwπ2

sπ−wπ ) in 

space. As shown by [1], it can be processed incremen-

tally for all the alignment lengths up to ℓ, with the only 

restriction that the numbers of alignments per state 

(≤ 2
ℓ) fit inside an integer word (64 or 128bits).

We first mention that a breadth-first construction of 

the intersection product can be used to limit the depth 

of the reached states to ℓ. We have already noticed that 

several authors have performed equivalent tasks with a 

matrix for the full automaton [86], or with a vector for 

each automaton state [1], probably because contiguous 

memory performance is better. An advantage of such 

lazy automaton product evaluation may be that, besides 

the fact that it is a generic automaton product, we 

avoid sparse data-structures combined with many non-

reachable states (for example, pℓ−1 × q1 and pℓ × q1 

will never be reached on any sequences of size ℓ > 2: 

since two mismatches are needed to reach them, then 

pm must always have its associated number of matches 

m ≤ ℓ − 2).

We finally mention that a similar method was used 

in [87] to compute correlation coefficients between the 

seed number of hits or the seed coverage, and the true 

alignment Hamming distance.3

In the following sections, we will use the (m-matches 

counting) cπ ,m coefficients to compute, either probabili-

ties on continuous models, or frequencies on discrete 

models.

Continuous models
Bernoulli polynomial form and dominance between seeds

Once the cπ ,m coefficients (the number of alignments of 

length ℓ with m matches that are detected by the seed 

π ) are determined, the probability to hit an alignment of 

length ℓ under a Bernoulli model (where the probability of 

having a match is p) can be directly computed as a poly-

nomial over p of degree at most ℓ:

�e expression (1) was first proposed by [1] for spaced 

seeds, noticing that each alignment with m match symbols 

and ℓ − m mismatch symbols, “no matter how arranged”, 

has the same probability pm(1 − p)ℓ−m to occur. �e 

coefficient cπ ,m then gives the number of such (obviously 

independent) alignments that are detected by the seed π. 

�is leads, for all the possible number of match/mismatch 

symbols in an alignment of length ℓ, to the expression (1) 

of the sensitivity for π. At first sight, we would conclude 

that this formula might be numerically unstable without 

any adapted computation, due to large cπ ,m coefficients, 

opposed to rather small pm(1 − p)ℓ−m probability values. 

But we will see that this expression (1) is not so frequently 

evaluated, and when it is, requires more involved tools 

than a classical numerical computation.

Mark and Benson [1] also include in their paper an 

elegant and simple partial order named dominance 

between seeds: suppose that two spaced seeds πa and 

πb have to be compared according to their respec-

tive cπa,m and cπb ,m coefficients: now, assume that, 

∀m ∈ [0 . . . ℓ] cπa,m ≥ cπb ,m (with at least a single dif-

ference on at least one of the coefficients), then we can 

conclude that πa dominates πb, and thus that πb can be 

discarded from the possible set of optimal seeds. Indeed, 

the sensitivity, defined by the formula (1) as a sum of 

same positive terms pm(1 − p)ℓ−m , each term being 

respectively multiplied by a seed-dependent positive coef-

ficient cπ ,m, guarantee that the sensitivity of πb will never 

be better than the sensitivity of πa, whatever parameter 

p ∈ [0, 1] is chosen.

3 Technical details at  http://bioinfo.cristal.univ-lille.fr/yass/iedera_cover-
age/index_additional.html.

(1)

Prπ (p, ℓ) = cπ ,0 p
0(1 − p)ℓ + cπ ,1 p

1(1 − p)ℓ−1
+ · · ·

· · · + cπ ,ℓ−1 p
ℓ−1(1 − p)1 + cπ ,ℓ p

ℓ(1 − p)0

http://bioinfo.cristal.univ-lille.fr/yass/iedera%5fcoverage/index%5fadditional.html
http://bioinfo.cristal.univ-lille.fr/yass/iedera%5fcoverage/index%5fadditional.html
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In practice, from the initial set of all the possible seeds 

of given weight w and maximal span s, several seeds can 

be discarded using this dominance principle, reducing the 

initial set to a small subset of candidate seeds to optimal-

ity. But this dominance principle is a partial order between 

seeds: this signifies that some seeds cannot be compared.

As an illustration, Table  1 lists the cπ ,m coef-

ficients of two single seeds, the contiguous seed 

(11111111111), and the Patternhunter  I spaced 

seed (111010010100110111), for the alignment 

length ℓ = 64. Note that comparing only the pairs of 

coefficients c11111111111,m and c111010010100110111,m 

does not help in choosing/discarding any of the 

two seeds by the dominance principle, since 

c11111111111,m > c111010010100110111,m when m ≤ 18 , 

or c11111111111,m ≤ c111010010100110111,m otherwise 

(with a strict inequality when m ≤ 59). Actually, both 

seeds are included in the set of the dominant seeds of 

weight w = 11 found on alignments of length ℓ = 64, as 

mentioned by [1], and verified in our experiments.

Surprisingly, according to the experiments of [1], 

very few single seeds are overall dominant in the class 

of seeds of same weight w and fixed or restricted span 

s (e.g. s ≤ 2 × w) : this dominance criterion was thus 

used as a filter for the pre-selection of optimal seeds. 

In the section “Experiments” , we show that the domi-

nance selection also scales reasonably well for select-

ing multiple seeds candidates.

Hit Integration and its associated polynomial form

Hit Integration (HI) for a given seed π was proposed 

by [2] as 

∫ pb
pa

Prπ (p,ℓ) dp

pb−pa
 for a given interval [pa, pb] (with 

0 ≤ pa < pb ≤ 1), where Prπ (p, ℓ) is the probability for 

the seed π to hit an alignment of length ℓ generated by 

a Bernoulli model of parameter p, as mentioned at the 

beginning of the previous part.

�e main idea behind this integral formula is that, 

to cope with a “once set” and “single” p value that 

gives higher probabilities to alignments with percent 

Table 1 Polynomial coe�cients

m c11111111111,m vs c111010010100110111,m c11111111111,m − c111010010100110111,m
=64

m

11 54 > 47 +7 3284214703056
12 2809 > 2491 +318 13136858812224
13 71656 > 64766 +6890 47855699958816
14 1194726 > 1101022 +93704 159518999862720
15 14641250 > 13762775 +878475 488526937079580
16 140614565 > 134875195 +5739370 1379370175283520
17 1101959040 > 1079001425 +22957615 3601688791018080
18 7244724760 > 7244718291 +6469 8719878125622720
19 40770844660 < 41657015519 -886170859 19619725782651120
20 199422609750 < 208283509933 -8860900183 41107996877935680
21 857960383280 < 916431510317 -58471127037 80347448443237920
22 3277621380677 < 3582286065137 -304664684460 146721427591999680
23 11204891663658 < 12537156246105 -1332264582447 250649105469666120
24 34497110919250 < 39535559114049 -5038448194799 401038568751465792
25 96159187213600 < 112936248584277 -16777061370677 601557853127198688
26 243763479345750 < 293540495751220 -49777016405470 846636978475316672
27 564093286500926 < 696814345058019 -132721058557093 1118770292985239888
28 1195421472109319 < 1515471845391157 -320050373281838 1388818294740297792
29 2326215369539880 < 3027659295087000 -701443925547120 1620288010530347424
30 4166062298664175 < 5568629383085086 -1402567084420911 1777090076065542336
31 6879820141519780 < 9446128578860855 -2566308437341075 1832624140942590534
32 10492775658436071 < 14799578653936876 -4306802995500805 1777090076065542336
33 14798700315741024 < 21439532801385436 -6640832485644412 1620288010530347424
34 19320389713130985 < 28740508306965946 -9420118593834961 1388818294740297792
35 23366558713472100 < 35669405026997193 -12302846313525093 1118770292985239888
37 27219853884514060 < 43615425947917806 -16395572063403746 846636978475316672
38 26225237830956885 < 42947005673390702 -16721767842433817 601557853127198688
39 23419576997614252 < 39105472634332839 -15685895636718587 401038568751465792
40 19375279711450000 < 32890005171748738 -13514725460298738 250649105469666120
41 14838407971200840 < 25512761744419311 -10674353773218471 146721427591999680
42 10508138298881405 < 18217341897718037 -7709203598836632 80347448443237920
43 6871432453555670 < 11945918621774786 -5074486168219116 41107996877935680
44 4141671553771500 < 7173408931309221 -3031737377537721 19619725782651120
45 2295920726320600 < 3931419207110065 -1635498480789465 8719878125622720
46 1167451399456015 < 1958941918042764 -791490518586749 3601688791018080
47 542811202068762 < 883659819808009 -340848617739247 1379370175283520
48 229916824107023 < 359224789199125 -129307965092102 488526937079580
49 88333146992720 < 131012177925790 -42679030933070 159518999862720
50 30629979651075 < 42697694041897 -12067714390822 47855699958816
51 9532295505880 < 12400365695291 -2868070189411 13136858812224
52 2645918048566 < 3205551423838 -559633375272 3284214703056
53 650712755004 < 737766347839 -87053592835 743595781824
54 140817870050 < 151204825507 -10386955457 151473214816
55 26634941702 < 27534130189 -899188487 27540584512
56 4374599544 < 4426105322 -51505778 4426165368
57 619583272 < 621216072 -1632800 621216192
58 74955853 < 74974368 -18515 74974368
59 7624506 < 7624512 -6 7624512
60 635376 = 635376 0 635376
61 41664 = 41664 0 41664
62 2016 = 2016 0 2016
63 64 = 64 0 64
64 1 = 1 0 1

Number cπ ,m of alignments of length ℓ = 64 with exactly m matches that are hit, by the contiguous seed (�rst column), by the Patternhunter I spaced seed (second 

column), and their respective di�erence (third column). The fourth column indicates the maximal number of alignments of length ℓ = 64 with exactly m matches that 

could have been detected: when equality occurs with the �rst or the second column, the seed is then considered to be lossless: when this occurs, the background of 

the cell is pink
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identities close to p, a given interval [pa, pb] is more 

suitable. In terms of the generative process, 

∫ pb
pa

Prπ (p,ℓ) dp

pb−pa
 

can be interpreted as choosing uniformly a value for 

the Bernoulli parameter p in the range [pa, pb], each 

time and once per alignment sequence, before run-

ning the Bernoulli model to generate this full alignment 

sequence x of length ℓ.

An illustration of the full probability mass function 

for the Hit Integration compared with the Bernoulli and 

the Heaviside distributions (the latter is defined in the 

next section) is given in Fig. 3 for alignments of length 

ℓ = 64.

Chung and Park [2] pointed out that designed spaced 

seeds were of different shapes, and that several seeds 

obtained on [pa = 0, pb = 1] or [pa = 0.5, pb = 1] were 

in practice better (compared with three other criteria 

tested in their paper). We also noticed that the method 

of [2] was modeled on the [27] recursive decomposi-

tion, and is based on a very careful and non-trivial anal-

ysis of the terms Ik [i, b] defined by :

with i: position along alignment, b: align-

ment suffix that is also π-prefix hitting, over the 

parameter k ∈
[

|b|1 . . . ℓ − i + |b|
]

, and their rela-

tionship: this leads to their recurrence formula 

Ik [i, b] =

∫

pk × Prπ
(

�i , b �
)

dp

Ik [i, b] = Ik [i, b0] + Ik+1[i, b1] − Ik+1[i, b0] computed 

with the [27] algorithm scheme, using an additional 

internal loop layer for k ∈ [|b|1 . . . ℓ − i + |b|], and a 

non-obvious ordering of the computed terms on k vs |b| 

to remain DP-tractable.

Even if the algorithm we propose to compute the 

Hit Integration (in the next paragraph) has the same 

theoretical worst case complexity, its advantages are 

twofold:

  • We propose a dynamic programming algorithm 

that is strictly equivalent to the one previously pro-

posed for the the Bernoulli model : in fact, both 

model-dependent algorithms can even pool their 

most time-consuming part. Moreover, the automa-

ton used by the dynamic programming algorithm 

can be previously minimized: this reduction is 

greatly appreciated when multiple seeds are pro-

cessed.

  • We propose a parameter-free approach for the pa 

or pb parameters: it is therefore possible to com-

pute, on any interval, how far a seed is optimal; 

moreover, we will show that the dominance crite-

rion can be applied as a pre-processing step.

�e Hit Integration 
∫ pb
pa

Prπ (p, ℓ) dp can be rewritten by 

applying the polynomial formula (1) into:

Fig. 3 Bernoulli, Hit Integration, and Heaviside models. The Bernoulli (for p = 0.7), the 
∫
1.0

0.5
 Hit Integration, and the 

∑
1
1

2

 Heaviside probability mass 
functions of the number of matches, on alignments of length ℓ = 64. Highlighted dots indicate the weights given for each alignment class with a 
given number of matches m out of ℓ alignment symbols, under each of the three models. Note that, since the sum of the weights is always 1 for any 
model, and since the class of alignments with exactly m = 32 matches out of ℓ = 64 is fully included in 

∑
1
1

2

 Heaviside model but only half-included 
in 

∫
1.0

0.5
 Hit Integration model, there is a thin difference between the two resulting lines
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Two interesting features can then be deduced from this 

trivial rewriting.

First, for any constant integers u and v, 

since the integral of the polynomial part 
∫ pb
pa

pu(1 − p)v dp =

[

pu+1
∑v

k=0

(

v
k

)

(−p)k

u+k+1

]pb

pa
 can be 

easily computed (as a larger degree polynomial), the 

integral of the right part of the formula (2) can be pre-

computed independently of the counting coefficients 

cπ ,m, and thus independently of the seed π. �us, only 

cπ ,m coefficients characterize the seed π for both the 

Bernoulli model and the Hit Integration model.

Moreover, we can see that, for 0 ≤ pa < pb ≤ 1 and 

for all m ∈ [0 . . . ℓ], the integral 
∫ pb
pa

pm(1 − p)ℓ−m dp 

of the right part of the formula (2) is always positive. 

�erefore, the dominance between seeds also can be 

directly applied on the cπ ,m coefficients to select domi-

nant seeds before computing the Hit Integration (for 

any range [pa, pb]) by applying the formula (2), thereby 

saving computation time for the optimal set of seeds.

As a consequence, even if the optimal seeds selected 

from the Bernoulli and the Hit Integration models may 

(2)

∫ pb

pa

Prπ (p, ℓ) dp =

∫ pb

pa

ℓ∑
m=0

cπ ,m pm(1 − p)ℓ−mdp

=

ℓ∑
m=0

cπ ,m

∫ pb

pa

pm(1 − p)ℓ−mdp

have different shapes, all such optimal seeds are guar-

anteed to be dominant4 in the sense of [1]. Note that 

the dominance of a seed can be computed indepen-

dently of any parameter p, or here, any parameters 

[pa, pb]: the dominance criterion can thus be used to 

pre-select seeds using exactly the same process pro-

posed at the end of the previous part.

As an illustration, Fig.  4 plots the Bernoulli (left) and 

the 
∫
x

0
 Hit Integration (right) polynomials of two seeds: 

the contiguous seed (11111111111) and the Pattern-

hunter I spaced seed (111010010100110111) which 

are the two already mentioned out of the forty domi-

nant seeds of weight w = 11 on alignments of length 

ℓ = 64. Note that the Patternhunter  I spaced seed, 

when compared to the contiguous seed, turns out to be 

better, if we consider the Bernoulli criterion only when 

p > 0.13209 (dark red dashed line)5, or if we consider 

the 
∫
x

0
 Hit Integration criterion only when x > 0.14301 

(dark red dashed line). However, if one wants to con-

sider, not the 
∫
x

0
, but the 

∫
1

x
 Hit Integration criterion 

(data not shown), then the Patternhunter I spaced seed 

will always outperform the contiguous seed, even if 

both seeds are dominant in terms of cπ ,m coefficients 

and cannot be directly compared at first with this par-

tial order dominance.

4 �is side result is not discussed in [2], probably because they were more 
interested by the seed rank and not necessary the “optimal seed”, which 
they sometime called “dominant”.
5 As already observed by [63].

Fig. 4 Bernoulli and Hit Integration polynomials. The Bernoulli and 
∫
x

0
 Hit Integration polynomials plots for the contiguous seed and the Pattern-

hunter I spaced seed, on alignments of length ℓ = 64. The two polynomials have been plotted according to their respective formulas (1) and (2). 
A vertical mark indicates where they cross each other in the range x ∈ ]0, 1[ : the contiguous seed is better under this marked value; otherwise, the 
Patternhunter I spaced seed is better
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We finally mention that, for alignments of length 

ℓ = 64, both the contiguous seed and the Pattern-

hunter I seed are in the set of the twelve optimal seeds 

found for the Bernoulli model6 (they are reported by 

symbols 0  and R  in Fig.  5, top line of the first plot). 

Both are also in the set of the eight optimal seeds for 

the 
∫
x

0
 Hit Integration model. But, quite surprisingly, 

neither of the two is in the set of the four optimal seeds 

for the 
∫
1

x
 Hit Integration model (reported in Fig.  6, top 

line of first plot). In fact, for the 
∫
1

x
 Hit Integration 

model, the spaced seed 111001011001010111 

(reported by a symbol O  in Fig.   6, top line of first 

plot) is optimal7 on a wide range of x (x ∈ [0, 0.97189]) 

before being surpassed by three other seeds ( K  , P  

and N  in Fig.  6, top line of the first plot).

Discrete models and lossless seeds
In this section, we propose two additional models for 

selecting seeds. We will name them Dirac and Heaviside. 

�ese models can be seen as the discrete counterparts 

of the Bernoulli and the Hit Integration models, and are 

simply defined by:

1 Diracπ (m, ℓ) =

cm,π

( ℓ
m)

, to give the ratio between the 

number of alignments detected by the seed π over all 

the alignments of length ℓ with exactly m matches,

2 Heavisideπ (ma,mb, ℓ) =

mb∑

m=ma

Diracπ (m,ℓ)

mb−ma+1
, to give 

the average ratio, over any number of matches m 

between ma and mb (out of ℓ) of the previously 

defined Dirac model. �e Heaviside full distribution 

has already been illustrated in Fig.  3, together with 

the Hit Integration distribution with similar param-

eters.

As long as we allow the possible loss of some of the 

strictly equivalent8 seeds in terms of sensitivity defined 

6 As already mentioned by [1].

7 As already mentioned by [2], but for the non-parametrized 
∫
1

0
 and 

∫
1
1

2

 
Hit Integration model.
8 To give a quick and intuitive example, we consider an extreme case : an 
alignment of fixed length ℓ without any mismatch symbol. Any seed π of 
weight wπ ≤ ℓ and span sπ ≤ ℓ obviously detects this alignment, whatever 
its shape is, so Diracπ (m = ℓ, ℓ) and Heavisideπ (ma = ℓ,mb = ℓ, ℓ) reach 
their maximal sensitivity of 1. For a given weight w, the restriction of all 
these seeds to dominant seeds implies that many are lost when dominance 
selection is applied to keep the best representatives.

by the Dirac and Heaviside functions, the dominance 

criterion can be applied to filter out many candidate 

seeds.

In addition, the Dirac and Heaviside functions are 

based on rational number computations/comparisons: 

they are thus one or two orders of magnitude faster and 

lighter to compute and store, compared to the polyno-

mial forms given by the continuous models of the previ-

ous section.

Finally, an interesting feature of the Diracπ (m, ℓ), also 

true for the specific Heavisideπ (m, ℓ, ℓ), is that, when 

the number of match symbols m is large enough, one 

seed π (or sometime several seeds) can meet the equality 

cπ ,m′ =

(

ℓ

m′

)

 for all m′
≥ m. Such seeds are thus lossless 

since they can detect all the alignments of length ℓ with at 

least m matches (or with at most ℓ − m mismatches), and 

obviously the best lossless ones are retained in the set of 

dominant seeds, when the equality cπ ,m =

(

ℓ

m

)

 occurs. 

As a side consequence, the best lossless seeds are also 

in the set of dominant seeds and will be reported in the 

experiments.

Note that, to keep a symmetric notation with the 
∫ pb
pa

Hit Integration, and also have the same range for the 

domain of definition (0 ≤ pa < pb ≤ 1), we will use 

the “frequency” notation 
∑fb

fa
Heaviside to designate 

Heaviside(⌊ℓ × fa⌋, ⌊ℓ × fb⌋, ℓ). We will also rescale 

the Dirac function on the Bernoulli’s domain of defini-

tion, by using the frequency f (0 ≤ f ≤ 1) to designate 

Dirac(⌊ℓ × f ⌋, ℓ).

Experiments
Single spaced seeds (n = 1) and multiple co-designed 

spaced seeds (n ∈ [2 . . . 4]) of weight w ∈ [3 . . . 16] and 

span s at most 2 × w have been considered. Note that, 

for single seeds of large weight (w ≥ 15), or for multiple 

seed, the full enumeration is respectively burdensome or 

intractable, so we prefer to apply the hill-climbing algo-

rithm of Iedera [88]: selected dominant spaced seeds are 

thus locally dominant, since it would be computation-

ally unfeasible to guarantee their overall dominance. All 

the spaced seeds are evaluated on alignments of length 

ℓ ∈ [2 × w . . . 64].

�e main idea during the evaluation, also used by [1] 

but only for the single Bernoulli criterion and on a single 

spaced seed, is to split the computation in two distinct 

stages:

(See figure on previous page.) 
Fig. 5 Bernoulli and Dirac optimal seeds. The Bernoulli and Dirac optimal seeds, for single seeds of weight 11 and span ≤ 22, over the match 
probability or the match frequency of each model (x-axis), and on any alignment length ℓ ∈ [22 . . . 64] (y-axis). On both Figs. 5 and 6, we choose 
to represent the same seeds with the same label and with the same background color. On discrete models, a pink mark is set. Seeds on the right of 
this mark are lossless for the two parameters indicated on the right margin: the minimum number of matches m over the alignment length ℓ
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1 Selecting the set of dominant seeds is the first stage: 

it provides a reduced set of candidate seeds. Note 

that the dominant selection can be applicable with-

out prior knowledge of the sensitivity criterion being 

used, provided that this sensitivity criterion is estab-

lished on i.i.d sequence alignments (this last require-

ment is true for the Bernoulli, the Hit Integration, the 

Dirac, and the Heaviside models).

2 Comparing each of the seeds from the set of domi-

nant seeds with a sensitivity criterion is the second 

stage: it usually depends on at least one parameter 

(for example, for the Bernoulli model: the probabil-

ity p to generate a match) which has different conse-

quences on continuous and discrete models:

• For the Bernoulli and the Hit Integration continu-

ous models, this implies comparing p-parametrized 

or [pa, pb]-parametrized polynomials: we follow the 

idea proposed in [1] for the Bernoulli model and 

also apply it on the Hit Integration model where we 

compute the 
∫
x

0
 HI and the 

∫
1

x
 HI respectively. Let us 

concentrate on the Bernoulli model with a (single) 

free parameter p: For two dominant seeds πa and πb 

and a given length ℓ, we compute their respective 

polynomials Prπa(p, ℓ) and Prπb
(p, ℓ) and their dif-

ference Prπa−πb
(p, ℓ) = Prπa(p, ℓ) − Prπb

(p, ℓ) (an 

example of its associated coefficients is illustrated 

on the third column of Table 1), from which zeros 

in the range p ∈ [0, 1] are numerically extracted 

using solvers from maple or maxima. Using the 

p-intervals between these zeros, it is then possible 

to determine whether Prπa−πb
(p, ℓ) is positive or 

negative, and thus which of the two seeds πa or πb 

is better according to p. Finally, the Pareto envelope 

(optimal seeds) can be extracted from the initial set 

of dominant seeds.

•  For the Dirac and the Heaviside discrete mod-

els, this implies comparing, instead of real-valued 

polynomials, integer numbers for the Dirac model 

(and respectively rational numbers for the Heavi-

side model), which is an easier and lighter process. 

�e Pareto envelope can then be easily extracted 

from these discrete models to select the optimal 

seeds from the set of dominant seeds. We have also 

extracted the lossless part for the Dirac and the 
∑

1

x
 

Heaviside criteria.

In the aforementioned experiments, we noticed that the 

size of the set of dominant seeds was at most 3359 (with 

a median size of 57 and an average size of 303 for all the 

experiments). To briefly illustrate this point, a list of 

each maximum size in our experiments is provided on 

Table 2.

So far, we restricted the span of our designed seeds to 

2 × w, and also did not consider one single fixed proba-

bility p during the optimization process. �ese restrictive 

conditions could be of course alleviated, but we mention 

here that computed sensitivities are close to (even if not 

strictly speaking “better than”) the top ones mentioned in 

several publications  [56, 77, 78, 80] where the emphasis 

was on the heuristic being used for designing seed, the 

speed of the optimization algorithm, and the best seed 

for a fixed probability p. Table 3 has been extracted from 

the Table 1 of recently published paper [80] and summa-

rizes known optimal sensitivities.

Note that we did not use any Overlap 

Complexity/Covariance heuristic optimisation here (to 

stay in a generic framework), and simply apply the very 

simple hill-climbing algorithm of Iedera. We also men-

tion that our seeds are not definitely the best ones, but 

since they are published, their sensitivity can be checked 

using other software, as mandala [63], SpEED [56], or ras-

bhari [80] ([43, 57] did the same with the seeds obtained 

with the SpEED software).

Finally, to show a typical output of this generalized 

parameter-free approach, optimal single (n = 1) seeds of 

weight w = 11 have been plotted according to the main 

parameter of each model (horizontal axis) and the length 

ℓ of the alignment (vertical axis) in Figs.  5 and 6. On dis-

crete models, a pink mark represents the lossless border: 

seeds on the right of this border are by essence lossless for 

the set of parameters. On the right margin of the discrete 

models, we indicate the fraction of the minimum number 

of matches m over the alignment length ℓ to be lossless.

We provide the scripts and the whole set of single and 

multiple seeds, in http://bioinfo.cristal.univ-lille.fr/yass/

iedera_dominance in the hope this will be useful to align-

ment software and spaced seeds alignment-free metagen-

omic classifiers.

(See figure on previous page.) 
Fig. 6 Hit Integration and Heaviside optimal seeds. The 

∫
1

x
 Hit Integration and 

∑
1

x
 Heaviside optimal seeds, for single seeds of weight 11 and span 

≤ 22, over the match probability or the match frequency of each model (x-axis), and on any alignment length ℓ ∈ [22 . . . 64] (y-axis). On both Figs. 5 
and 6, we choose to represent the same seeds with the same label and with the same background color. On discrete models, a pink mark is set. 
Seeds on the right of this mark are lossless for the two parameters indicated on the right margin: the minimum number of matches m over the 
alignment length 

ℓ

http://bioinfo.cristal.univ-lille.fr/yass/iedera%5fdominance
http://bioinfo.cristal.univ-lille.fr/yass/iedera%5fdominance
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Discussion
In this paper, we have presented a generalization of the 

usage of dominant seeds, first on the Hit integration 

model with a parameter-free approach, and also on two 

new discrete models (named Dirac and Heaviside) that 

are related to lossless seeds. In this parameter-free con-

text, we show that all these models can be computed with 

help of a method for counting alignments of particular 

classes, themselves represented by regular languages, 

and a counting semi-ring to perform an efficient set size 

computation.

We open the discussion with the complementary 

asymptotic problem, before going to finite but multivari-

ate model extensions.

Complementary asymptotic problem

So far, we only have considered a set of finite alignment 

lengths ℓ to design seeds. But  limiting the length is far 

from satisfactory, so the next problem deserves consid-

eration too: the asymptotic hit probability of seeds  [63, 

89–91].

As an example, if we consider the Bernoulli model 

where we choose p in the interval ]0,  1[, and then con-

sider the probability Prπ (p, ℓ) for π to hit an alignment of 

length ℓ (noted Prπ (ℓ) to simplify), then it can be shown 

that the complementary probability Prπ (ℓ) [see for exam-

ple 91, equation (3)] follows

Here �π is the largest (positive) eigenvalue of the sub-sto-

chastic matrix of π where final states have been removed, 

this matrix computing thus the distribution Prπ (ℓ) when 

powered to ℓ (see section 3.1 �π and βπ of [63]).

As an example, for p = 0.7 and for the Patternhunter I 

spaced seed, we have (with help of a Maple script) 

{�,β}111010010100110111 = {0.98731, 0.22667}, that can 

lim
ℓ→∞

Prπ (ℓ) = βπ�
ℓ
π

(

1 + o(1)
)

be compared with the contiguous seed of same weight 

{�,β}11111111111 = {0.99364, 0.44784}. [63] have proven 

that, in the class of seeds with the same weight, contigu-

ous seeds have the largest value � and thus are the asymp-

totic worst-case in terms of hit probability, a trait shared 

with the uniformly spaced seeds of same weight (e.g. 

101010101010101010101 or 1001001001001001

001001001001001).

Comparing seeds asymptotically can thus be done eas-

ily by comparing their respective � eigenvalue, or their β 

when � equality occurs, but it seems to be computation-

ally possible9 only if p is set numerically before the 

analysis.

Moreover dominant seeds’ extracted from this paper 

on a limited alignment length ℓ (here ℓ ≤ 64) would not 

always be optimal for any ℓ: such seeds can, however, 

be justified as “good” candidates for seeds of restricted 

span (e.g. s ≤ 2 × w), but definitely not the optimal ones, 

unless dominance is computed on a wider range of align-

ment length ℓ values.

For example, the best (smallest) � for any domi-

nant seed of weight w = 11 and span at most 2 × w , 

on alignments of length ℓ ≤ 64 is 0.98714 for the seed 

1110010100110010111. Surprisingly, even if this 

seed reaches the smallest � out of its dominant class, it 

never occurred in the optimal seeds, in any of our experi-

ments. Moreover, we have checked that another seed 

1110010100100100010111 has an even smaller 

� = 0.98669: this last seed was not dominant for ℓ ≤ 64, 

but would be in the class of seeds of span at most 2 × w if 

larger values of ℓ were selected.

Finally, a parameter-free analysis implying both p and ℓ 

seems difficult to apply for large seeds. It is interesting to 

notice that several of our preliminary experiments 

9 At least to the author, but this parametrized problem is intrinsically inter-
esting in itself.

Table 2 Maximum size of the set of dominant seeds

For n seeds of weight w, we indicate the maximum size of the dominant set found in our experiments on all the alignment lengths ℓ ∈ [s . . . 64]. We also give the 

largest alignment length (ℓ) where this maximum has been reached

w

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 7 8 13 15 26 23 32 40 45 46 48 74 84

(64) (64) (62) (64) (64) (61) (60) (62) (64) (63) (64) (59) (64) (64)

2 5 12 35 41 52 99 128 197 231 207 350 320 439 376

(64) (63) (63) (61) (64) (64) (60) (62) (61) (59) (63) (64) (64) (41)

3 6 26 85 84 204 320 391 485 854 932 1103 1449 1508 1812

(60) (64) (64) (62) (64) (60) (56) (56) (62) (64) (64) (41) (64) (63)

4 7 29 124 190 254 535 811 1041 1450 1908 1775 2364 3125 3359

(64) (64) (64) (64) (64) (59) (64) (58) (63) (64) (62) (39) (63) (37)
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suggest that, asymptotically, and only10 for a restricted set 

of seeds (e.g. of weight w = 11 and span at most 2 × w), 

one seed is optimal whatever the value of p. �is remains 

to be confirmed experimentally and theoretically because 

it might be possible that special cases exist, where at least 

two (or even more) seeds share the p partition.

Models and multivariate analysis

As far as i.i.d sequences are considered, the full frame-

work of [1], including the dominant seed selection, can 

be applied on any extended spaced seed model (such as 

transition constrained seeds, vector seeds, indel seeds,...). 

However, additional free-parameters (such as the transi-

tion/transversion rate, the indel/mismatch rate, ...) lead to 

an increase in the number of alignment classes (for exam-

ple, alignments of length ℓ, with i indels, v transversion 

errors, t transitions errors, and remaining m matches, 

such that ℓ = i + v + t + m) that have to be considered 

by the dominance selection. Moreover, it involves a much 

more complex multivariate polynomial analysis, if more 

than one parameter is, at this point, left free.

In a more general way, if i.i.d sequences are ignored, and 

dominant seed selection thus abandoned in its original 

form, one could mix several numerically-fixed models: 

for example, mixing a given HMM representing coding 

sequences, with a numerically-fixed Bernoulli model. �e 

idea is here to use a free probability parameter to create 

a balance between the two models: either initially before 

generating the alignment, to choose each of the two mod-

els; or along the alignment generation process, to switch 

10 �is restricted set of seeds condition is necessary: if removed, best seeds 
span will increase along ℓ, see [18].

between each of the two models. Seeds designed could 

thus be two-handed for analyzing both coding and non-

coding genomic sequences at the same time, but with 

an additional control parameter that helps to change the 

known percentage of such genomic sequences. To com-

pute the sensitivity in this model, a simple idea is to apply 

a polynomial semi-ring (with at least one parameter-free 

variable: here the one used to create the balance) on the 

automaton, and perform, not a numeric, but a symbolic 

computation.

Finally, as a logical consequence of the two previous 

remarks, we mention that any HMM with one (or pos-

sibly several) free probability parameter(s) could always 

be analysed with a (multivariate) polynomial semi-ring, 

increasing thus the scope of the method to applications 

that depend on Finite State Machines : such parameter-

free pre-processing can, at some point, be applied; more-

over if several equivalence classes are established in term 

of probability, it may be possible to use equivalent domi-

nance method to filter out candidates when comparing 

several elements.
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Table 3 Sensitivity comparison of di�erent programs

Italic values indicate the best sensitivity

The reported sensitivity for n = 4 seeds of weight w on alignments of length l = 50 under a Bernoulli model with a match probability p. All the reported results are 

extracted from the Table 1 of [80], but the last column that corresponds to our current public seeds, with a δ di�erence to the optimal seed

w p SpEED AcoSeed FastHC MuteHC Rasbhari Current sensitiv-
ity (δ)

10 0.75 90.9098 90.9513 90.7312 92.6812 90.9614 90.8753 (1.8059%)

0.80 97.8337 97.8521 97.7625 98.3836 97.8554 97.8203 (0.5633%)

0.85 99.7569 99.7614 99.7431 99.8356 99.7618 99.7568 (0.0788%)

11 0.75 83.3793 83.4728 83.3068 83.4127 83.4679 83.4297 (0.0431%)

0.80 94.9861 95.037 94.9453 95.0194 95.0386 95.0127 (0.0259%)

0.85 99.2431 99.2478 99.2250 99.2486 99.2506 99.2452 (0.0054%)

12 0.80 90.5750 90.6328 90.4735 90.5820 90.6648 90.5571 (0.1077%)

0.85 98.1589 98.1766 98.1199 98.1670 98.1824 98.1591 (0.0233%)

0.90 99.8821 99.8853 99.8771 99.8836 99.8864 99.8840 (0.0024%)

16 0.85 84.8212 84.9829 84.6558 84.8764 84.969 84.9668 (0.0161%)

0.90 97.4321 97.4712 97.3556 97.4460 97.5035 97.4730 (0.0305%)

0.95 99.9388 99.9419 99.9347 99.9424 99.9441 99.9414 (0.0027%)
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