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ttstract 
to 1968 Dtclte proposed coded imaging of x and ? rays 
via random pinholes. Since then, many authors have 
•greed with him that this technique can offer signifi-
cant image inproveaient. Ke present a best linear de­
coding of the coded imago and show its superiority 

iover the conventional matched fiIter decoding. Exper-
laantal results in the visible light region are 

• presented. 
I. Introduction 

I 

to 1968 Oickê  proposed a random pinhole array be used 
1s x-ray astronomy as a means of increasing the S/N 
ratio of a pinhole camera. Since then much experimen­
tal work has been done on various types of coded aper­
tures. Barrett et al 2 have considered a Fresnel zone 
plate for the medical imaging application. MacOanald, 
et a l 3 presented at last year's Nuclear Science Sympo­
sium an application of the Frasnel zone plate aperture 
together with a multiwire proportional counter and 
coeputer reconstruction. In [1-3] and also [4] IS [5], 
the image reconstruction was performed by a matched 
filtering of the coded image. 

! Generally two problems arise when the random pinhole 
• array of the Fresnel zone plate is used for imaging 
• extended objests, i . e . , oajeets defined over extended 

regions of space. First , a large d.c. background ap­
pears in the decoded image. Second, the 5/N ratio 
oeteriorates markedly <a the object size increases. 

I to this paper we articulate the coded aperture problem 
; in a system theory setting. Using the concepts of 

s ta t is t ical conmuni cation theory,',8 we formulate the 
problem of image reconstruction as one of optimally 

.' decoding the measured image. Me present a best linear 
! decoding algorithm for processing the coded aperture 
i taage and show i ts superior* ty aver the conventional 
. latched f i l ter deciding used by others. 

I I . Background: Coded Aperture Imaging 

To provide adequate background, we f i rs t present a 
, brief discussion of Dicke's coded aperture camera. I t 

consists of a perforated entrance plate with each per-
j foration acting as a single pinnale. A point source 
; radiates the face plate and an image of the mask is 
! farmed in the Image plane. This image is recorded 
j using radiographic film, a multiwire proportional 
! counter, or other types of x-ray detection devices. 
' the basic motivation for using multiple pinholes is 

Sisply to improve the signaJ-to-<">ise ratio (S/NJ of 
• the single pinhole imaging by introducing repeated 
! aeasurements. This is easy to -.<>« for the case above 
' of a sinole isolated point source. If there are a 

total of 9 pinholes in the mask and the noise fields 
incident to the measurement are Such that the noise 
contributed at each image point is independent, the 
S/N improvement is achieved by registering and aver­
aging the Individual images from each pinhole. This 
results in an improvement factor ofvf. Clearly for P 
on the order of say 10+, this improvement will be 
considerable. 
For the case of extended objects, {as arises in the 
oedtcal application), the situation is substantially 
more complex, let us assume that the distribution of 

pinholes in the aperture plane 1s given by the zero-one 
function h{m,n).* That is , at those points in the plane 
which are pinholes, we have h(m,n) » 1; otherwise, i t 
is zero. Now, for a point source of maqnitude s(m',n') 
the formed imaĉ  will be s{m,,n,)h{ffl-m%n-nl). We can 
consider an ext ided object to be an array of point 
sources {s(m',n } defined over a finite region in the 
distant object p ana. Because a translation of the 
object results in a translation of the iit.age, we have 
tfce Image of this extended object as 

y(«,«) " £ 3 C s{m',<i') hCm-m'.n-n') 
«*,n' 

(1) 

In this representation the coded image field y(m,n) is 
related to the object leld by a discrete two-dimensional 
(2-D) convolution, wher=> h(m,n) is the so-called point-
spread response of the rask. it is important to note 
that the arrays in (1) - nresent the magnitude of fields 
(for exanple, glm.n) maj/je the illuminance of the image 
field), and are therefort positive filiations with non­
zero means. 

Because error is associated with all physical measure­
ments, the accessiole image a(m,n) is made up of the 
coded image y£m,n) and measurement noise w<n,n). This 
error or noise Is taken to be strictly additive. It 
arises from insufficient source statistics, limited 
precision instruments, background effects, sensor noise, 
etc. This noise may be functionally related to or 
Independent of the coded image. 

Now, in order to decode such imagery Oicke sugqested a 
matched filter decoder. His rationale was if h(m,n) 
was chosen such that its correlation was sharply peaked 
at the origin, the cross-correlation of h(m,n) with 
the coded images would give peaks in locations corres­
ponding to point sources. That is Oicke's decoder 
involved forming 

d(Ml = I S aW.n") Mm'-m.n'-n). {e) 
a',n' 

This is , of course, a matched fi!ter"or correlation 
operation and appears to have been attractive to Oicke 
and othersl-5 to a great extent because of its ease 
and variety of implementations. 
The performance of this decoder, particularly when 
imaging extended objects, is deoendent on h(m,n) havina 
a sharply peaked correlation function. To achieve this 
Oieke introduced a random pinhole mask (Barrett and 
others',* have used a Fresnel zone plate). For h(m,n) 
defined on an N-by-N grid, this mask has a random 
distribution of pinholes such that the probability of 
any particular point being a pinhole is V2. the aver­
age number of pinholes in the total mask is N'/a. 
While the correlation of this mask is peaked at the 
origin, Us background is nonzero. For the correlation 
*For simplicity in notation we assume these functions 
are defined over a normalized sampling gridi hence, m 
and n are integers. 
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lpe>k normalized to"1, the background has a mean of 1/2 
iand variance of 1/N2. The basic Fresnel zone plate 
correlation has similar artifacts in I ts background. 

The use of Oicke's decoding scheme when imaging with 
•lUier the random mask or Fresnel zone plate results 1n 
objectionable distortion in the decoded image. The 

idegree of distortion 1s directly related to the spatial 
extent of the object fields. There are two principal 
sources of this distortion. The f irst of these is 
{deterministic and an artifact of the decoding. This 1s 
•the targe background or DC level buildup associated with 
|the correlation function of h{m,n).' Consider the 
'{•aging of an M-by-M array of point sources. In the 
iabove decoding, each point source contributes a back­
ground of 1/2 for a total background of M2/2. Thus, 
the ratio of the deocded image at a point source 
location to its mean background i s 

f-. b :/2 x n ?tz: TO jy. cr-y 

£JI +1 
K/Z 

0) 

where g0(m,n) fs fie point spread response of the opti­
cal decoder. This spread response i s chosen so as to 
minimize the mean-square error 

e » ECCsCm»nJ - s&n.n)}'}, for all m,» («) 
with s(m,n) as given in (3) and the expectation taken 
over the ensemble of possible x-ray source and noise 
arrays. Given the stat is t ical models, this error is a 
natural measure of the optimallty of the estimates. 

The decoder which minimizes e in (4) is given by the 
inverse Fourier transform of 

• .CM.VJ 
(S) 

Clearly, for even modest sized M, this background 
•conpletely dominates the correlation peaks. Unfortu­
nately this distortion cannot be satisfactorily removed 
jfrOB the decoded image by simply subtracting I ts saiaple 
,nean, due to the presence of background noise. We 
l«till demonstrate below that this can be avoided with 
iproper decoding, however, and i s therefore not a 
lfundamental limitation. 
I 
The second source of distortion is due to the nature of 
the discrete, random emissions of x-ray and y-ray 
sources. When the counting statist ics are such that a 
limiting number of photons are collected during image 
formation, the dominant noise source in the measured 
image is a quantum noise. Assuming a stochastic source 
•odel with Poisson stat is t ics (this model will be elab­
orated below), the noise field is uncorrelated with 
the source distribution, however, i ts mean at any point 

*1s proportional to the intensity of the image field at 
that point. The implication here is that as the number 
of pinholes increases, the noise will increase, thus 
.offsetting to soma extent the multiplex advantage of 
.nultiple pinholes. This quantum noise is a fundamental 
imitation of aperture encoding when imaging extended 
sources, 

H I . Optimal linear Ifean-Square Error Decoding 

In this section we derive a decoding algorithm in which 
the deterministic degradations involved with Dicfcs's 
correlation decoding are eliminated. In addition to 

'providing an improved decoding of this imagery, availa­
bi l i ty of this algorithm also allows us to quantitatively 
describe the general limiting performance of multiple 
aperture cameras. 

In formulating our decoder, we consider stochastic 
aodels for the images. Both the siurce s(m,n) and the 
oeasured image a(«i,n) are taken to be sample arrays from 
homogeneous random fields with ".-0 autocovariances 
Ks(m,n} and Ka<m,n), respectively. Their crosscovar-
iance Is Csa(o.n). As in (2), we assume the form of a 
convolutional decoder. However, we take a different 
approach from Dtcke in that we design the decoder to 
obtain (in some useful sense) an optimal estimate of 
the source s from the decoding. In this articulation, 
our problem becomes analogous to that of image restora­
tion and we make use of some available restoration 
formalisms. 6 ' ' 

Hore formally, the estimate of each member in the source 
field is constructed according to 

where «e have the following 2-D Fourier transform pairs , 

K a ( m , n ) — — » a(u,v) 

Csi(m,n)——— * s a (u ,v) (6) 

90G».n)« 

-» S 4 (u,v) 

-G 0(u,v) 

Assuming the source and noise processes are uncorreiated, 
(5) becomes 

SJu.v) * • 
ff(u,v) *• (u,v) 

|H(u,v)f *.(u,v) + *w(u,v) m 
where, using a notation similar to that above, we have 
the transform paivs. 

h{m,n)-« 
Ks(m,n)-« 
y«!,n}-

-H(u,v} 
-* s(a,v) (8) 

and FT « complex conjugate of H. 

Thus, our decoder Is a classical 2-D Wiener f i l t e r . The 
mean-square error associated with this decoding8 1s 
given by 

+V2 a s(u,y) »w(u,v) 
dudv 

lifn |H(u,v)r * s{u,v) + * W ( U , T ) 
(95 

The relations in (7).and (9) are the principal results 
of this section. They specify the optimal linear de­
coding and quantitatively describe i ts performance. In 
addition to having desirable formal properties, these 
results are also intuitively pleasing. For example, in 
the absence of noise ( i . e . , ^{u.v) - 0) , we have 
GQ(U,V) * 1/H{u,v). This decoder Is simply an Inverse 
f i l te r and i ts application to y(m,n) completely removes 
the effects of the aperture encoding. This Is not the 
case with the correlation decoding scheme. When noise 
is present, the f i l t e r in (7) achieves an optimal 
balance between the unreiroved remnant of the encoding 
and the distortion due to the noise sources. This i s , 
of course, the case of practical interest and we will 
now consider the question of just how well this decoding 
can be performed in the presence of photon-limited noise. 
This photon limited case would be expected to occur 1n 
x-ray astronomy as well as medical imaging. 
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A. Photon-limited Imaging 
He construct a compound Polsson model for the imaging. 
ta before, we model the coded image y(m,n) as a reali­
zation of a homogeneous random field with covariance 
Ky(ntitt} and mean u". Here, for each specific realiza­
tion we take the value at any point, say y(m',n'), to 
be the mean event rate of a Poisson source. The avail­
able or measured Image a{m',n') is the count of this 
source. Accordingly, the error or noise process we 
consider 1s simply their difference 

»(•-,«'! S a(r.n') - y(m-,n-} (10) 

With Polsson statistics, the number of events generated 
by the separate source? are statistically independent. 
Using this property ar.J (IP), we obtain the following 
relations which we state without proof: 

^(•,n) » Kyfni.n) + y m . n ) 

^(n,n) • 0 

KgCn.n) • v' 6(n,n) 

where 4(m,n) is the discrete delta function. Note 
that for h(m,n) a zero-one function, we also have 

("1 

mi 
(») 

(14) ! u - • M U M I , • W I N | | 

! where v 1s the mean of the input source s(m,n) and 

! ||h||,2s|h<M)| & ||h|| 2-^h 2(k,i) . 

fusing these relations, we can express the mean-square 
error associated with this decoding as 

r *Vf » »s ( u - v ) 

dudv («) 

1 
i 
I Where we have averaged over the ensemble of sources. 
i The Specific coding function in (15) is a member of 
j the ensemble of Dicke's random masks. With high 
probability, ||b.|li = N'/2, and by averaging over this 
ensemble, we can write 

-inl P + - % |H(«.vJ)2*s(u.v)j 

This expectation can be evaluated by noting that 
|H(u,v)|* 1s approximately Chi-square distributed with 
two degrees of freedom. 
Thus, having a known source density, »s("<vJ. we can 
quantitatively determine the performance of our 
decoder. In order to obtain a qualitative estimate 
of the behavior of this error let us consider the 
case of »s(u,v) " o2, I.e., constant. This is the 
spectrum of a white source field which is a limiting 
case of equal energy at all frequencies. For this 

'.S Ft.i < t '3 - 11 »V>Z TO ?}': C"r 

field the decoding error (16) becomes 

He) • * 
20* 

!H(u,v)| z 

(") 

Now, most Images of practical Interest will be scaled 
the order of the standard 
and a useful approximation of 

such that the mean Is on the order of the standard 
deviation. Thus u « o' , 
(17) results In 

E{e} Vinf^l (18) 

It Is of Interest to compare this to the mean-square 
error resulting from no coding-decoding, that Is , for a 
single pinhole: 

=UC' (19) 

Evidently, employing aperture encoding In this case 
involves an average loss of performance. This reasoning 
applies to the case of infinite extent. I . e . , to homo­
geneous random fields. We next consider the ease where 
the source field is confined to a sub-region to the 
object plane. 

fl. Signals of limited Support 

U t the source field be bounded by a smallest rectanqle 
here taken to be a square of side M for simplicity. 
Now place this signal s in an N x H square, "the object 
plane", by adding random shift modulo - N x N. Finally, 
create a homogeneous random field over all space by 
periodic repetition of this N x N cycle. He are now 
in a position to apply our previous results. He can 
speak of averages over all space or what is the same 
the N x N square. Also we can talk of averages over 
the M x M support of s. Since photon noise has the 
same support as the signal we have 

*UC t¥ im 
where eye = error in the uncoded case ensemble averaaed 
over the K x K square. Ys note that e™ Is approximately 
the homogeneous error c mentioned above in the infinite 
support case, when M is large compared to the correla­
tion distances involved. 

For the coded case, represented by the subscript "c", 
we have approximately, for N » H, 

Efcjj} • ECeJj} «D 
because the random mask with high probability creates 
a nearly homogeneous noise field in the detector olane. 
Upon decoding this homogeneity is preserved by the 
shift-invariant decoder. Combining (18-21) we have 
finally 

EfeJ!) » {£)* ln(2-) e u c . (22) 

Thus the coding gain is expected to be 

G • (»/H)2/*n(o2/u) » I. (« » M) (23) 

From this average value, we can conclude that at least 
half of the random masks will achieve half of the 
coding gain and there exists at least one mask which 
will achieve it all, for otherwise tne averane could 
not be correct. This 1s analogous to the random 
coding arguments of Information Theory. 
It can also be shown that no linear decoder can do 
better than 



WJKL rr.BSK I i/t * t IS/ti. PKiJ.r SJ 

• S - * * ^ - * * <uc • <»» 
this the factor tn{o !/u> describes the non-optisellty 
of choosing t Hsk »t randoo. For typical tcsges tuts 
factor is on the order of 2 , thus the random easks are 
s«en to be fair ly eff icient. However, i t turns out 
then is a very staple «ay of actually achieving (,2a). 
Simply repeat the Image, i . e . , sultiplea i t in space 

;<H/M)Z times. Then suck up the results. 

However, i f one could not anticipate the shape of the 
object and the value of H ahead of t i e } , sone type of 
adaptive procedure would be necessary to f i t the 
(H/M)' pictures into Che it « :i square. Also, for 
H xN sources that display a sarted ncn-hoajgenlety, i t 
could be expected that the brlc.it regions of the source 
would have relatively less error and the dark regions 
of the source would have relatively core error than 
the non-overlapping multiple* scheae. 

To summarize 'ery succinctly, i t happens that the 
best coded apertures spread out the photon noise so 

, that averages over the u x H object plane are equal 
with or without coding, and the randoaaask is off by 
a factor Jn(evu) > 2 ( typical ly) , future work should 

' center on finding the good codes for both wnlte and 
{ non-white source spectra. Minioiiation of (IS) subject 
, to the 0-1 constraint on the range of h. could be 
. approached as a nan-linear opttet2atton problem.* 
i 

U . Experimental Results 

' Experimental results were obtained in the osiieal 
region using a scull (ten grid units nigs) letter E. 
The noises nere ere film fog tnt grain noise. The 
grain noise being signal oteencent as is « » 
case with photon noise. Figure I snows an Usage of 
the 100 x 100 randos mask. Figure 2 shows the coded 
Image of the letter £. The optical eetched f i l t e r 
decoded E was barely visible due to background buildup 
and-hence is not snown. Figure 3 shows a cewuter 
aatched f i l ter ing witn Mans reeoved. Figure a snows 

• an "optimal" estieate where the design V.S was chosen 
: to maintain ieage resolution. Figure 4 is euch sharper 

than Figure 3 and does not have the horiicntal and 
vertical artifacts of Figure 3. Finally Figure 5 
presents the decoded lease of a two levs' £ where the 
bottom half 1s 10 tioes Intensity of the upper half. 

i V. Conclusions 

I Me have considered coded aperture jeaglng with randomly 
• chosen masks. He have s«o.m that the previous decoding 
1 methods suffered fron detcmlnislic (for a glwn aask) 

errors that lead to but ICup of background and nigh 
frequency errors in the decoded Inac*. Systea theory 
was applied via Icage ennancemnt to the aperture 
coding problem. For the photcn United case the opti­
mal linear decoder was derived Vt found that the 
error wlth the randoa cask hao trt correct dependence 
on (H/N) in the finite support cast. 
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