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Abstract

In 1968 Dicke proposed coded 1maging of x and y rays
via randor pinholes, Since then, many authors have
s agreed with him that this technique cen offer sigrifi-
 cant image improvement. Ko present a best linear de~
. eoding of the coded image and show its superiority
i over the conventional matched filter decoding. Exper-
: fmental results in the visible lignt region are
;pnsenmd.
\ I. _Introductien
!

i

i In 1968 Dicke’ proposed a random pinhole array be used

: f x-ray astronomy as & means of increasing the SIN

| ratio of a pinhole camera. Since then much experimen~

‘ tal wark has besn “”"‘5 on various types of coded aper-
tures. Barrett et al< have considered a Fresnel zone

plate_for the medical imaging application.

i et a1° presented at last year's Nuclear Science Sympo-

‘ sfum an application of the Fresne) zone plate aperture

tagether with a multiwire proportional counter and

t computer reconstruction. In [1-3] and also (4] & (5],

i the fmage reconstruction was performed by a matched

{ filtaring of the caded image.

e oy s

i

; Generally two problems arise when the raadom ginhale

- arvay of the Fresne) zone plate §s used for imaging

» extendad gbiects, i.e., aojects defined over extended
regions of space. First, a large d.c. background ap-
pears in the decoded image. Second, the S/N ratio

- deteriorates marsediy au tie object size increases.

{ In this paper we articulate the coded aperture problem

: in a system theory setting. Using the concepts af
statistical communication” theory,”s8 we formulate the

' prablem of image recomstruction as one of optimally

; decoding the measured image. He present a best linear

! decoding algorithm for processing the coded aperture

i image and show its superiority aver the conventional

. satched filter decading used by others.

! I1. Background: Coded Aperture Imaging

To provide adequate background, we first present a

; brief discussion of Dicke's coded aperture camera, It

' consists of a perforated entrance plate with each per

i faration acting as a single pinnale. A point source

, radiates the face plate and an image of the mask is

! formed in the image plame. This image is recorded
using radiographic film, a muitiwire proportional

* counter, or other types of x-ray detection devices.

* The basic motivation for using muitiple pinngles is
simply to improve the signai-to-rsise ratio (S/N) of

- the single pintole imaging by introducing répeated

! measurenents. This i5 easy to -ae for the case above

* of a single isolated point source. If there are a
tatal of P pinholes in the mask and the noise Fields
incident to the measurement are such that the noise
contributed at each image point is independent, the
S/R improvement is achieved by registering and aver-
aging the individual images frem each pinhole. This
resulis in an improvement factor of/F. Clearly for P
on the order of say 10%, this improvement will be
considerable,

For the case of extended objects, {as arises in the
medical application}, the situation is substantially
mare complex. (et us assume that ¢he distridbution of

#acOonald, ~

pinholes in the aperture plane is given by the rero-one
function him,n).* That 1s, at those points in the plane
which are pinholes, we have him,n) = 1; otherwise, it
1s 2ero. MNow, for a point source of magnitude s(m',n"}
the formed imac> wilf be s{m’',n’Jh{mem* ,n-n"). Ye can
consider an ext 1ded abject to be an array aof point
sources {s{m',n ) defined over z finite region in the
distant object p sne. Because a translation of the
object resuits in a translation of the image, we have
the image of this extended object as

y(m.n) = 357 s{m',a') himem',n-nt) . {1)
.0’

In this representatior the coded image field y(m,n) is
rajated to the object “j23d by a discrete two-gimensional
(2-D}) convolution, wherz h(m,n} is the so-called point-
spread response of the r-ask. It 1s important to note
that the arrays in (1) - prasent the magnitude of fields
{for example, g{m,n) ma;.3e the i)luminance of the image
field}, and are therefor. positive fu::tions with non-
2ev0 means.

Bacause error is associated with all physical measure-
ments, the accessiole fmage a(m,n} is made up of the
coded jmage y{m,n) and measurement noise w{m,n}. This
error or noise 15 taken to be strictly additive, It
arises from insufficient source statistics, limited
precision instruments, background effects, sersor noise,
atc, This noise may be functionally related to or
{ndependent of the coded image.

Now, in order to decode such imagery Dicke suggested a
matched filter decoder. His rationale was if h(m,n}
was chosen such that its correlation was sharply peaked
at the origin, the cross-correlation of him,n) with
the coded images would give peaks in locations correse
poriding to point sources. That is Dicke's decoder
tavolved forming

dmn) =L X aln',n*) Bim'-mnt-n)d.
'

2)

This 15, of course, a matched filter or correlation
aperaticn ?ng appears to have been attractive to Dicke
and others!~> tp a great extent because of 1ts ease
and variety of implementations.

The performance of this decoder, particularly when
imaging extended objects, is devendent on h{m,n) having
a sharply peaked correlation function. Yo achieve this
Dicke intraduced a random pinhole mask {Barrett and
others2,3 have used a Fresnel zone plate). For h{m,n)
defined on an N-by-N grid, this mask &as a random
distribution of pinholes such that the probability of
any particular point being a pinhole is 1/2. _The aver-
age number of pinholes in the total mask is N2/2.

While the correlation of this mask is peaked at the
origin, 1ts background is nonzero. For the correlation
*For simplicity in notation we assume these functions
are defined over a normalized sampling grid; hence, m
and n are igtegers,
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{peak normatized to 1, the background has a mean of 1/2
jand variance of 1/N2, The basic Fresnel zone plate
icorrelation has similar artifacts in its background.
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The use of Dicke's decoding scheme when imaging with
either the random mask or Fresnel zone plate results in
objectionable distortion in the decoded image. The
degree of distortion is directly related to the spatial
extent of the object fields. There are two principal
sources of this distortion. The first of these is
deterministic and an artifact of the decoding. This 1s
ithe large background or DC level buildup associated with
ithe correlation function of h{m,n})." Copsider the
{4maging of an M-by-M array of point sources. In the
{above decoding, each paint source contributes a back-
ground of 1/2 for a total background of M¢/2, Thus,
the ratio of the deocded image at a point source
-Tocation to its mean background is

uz:z +1

/2

‘Clearly, far even modest sized M, this background
:completely daminates the correlation peaks. Unfortu-
}ute!y this distortion cannot be satisfactorily removed
jfrom the decoded image by simply subtracting 1ts sample
,mean, due to the presence of background noise, We
will demonstrate below that this can be avoided with
iproper decoding, howavar, and is therefore not a
fundamental limication.

g‘rhe second source of distortion is due to the nature of
fthe discrete, random emissions of x-ray and y-ray
.sources. When the counting statistics are such that a
-1¥miting number of photeons are collected during image
formation, the dominant noise Source in the measured
image s a quantum noise. Assuming 3 Stochastic source
model with Poisson statistics (this model will be elab-
orated below), the noise field is uncorrelated with
Ithe source distribution, however, its mean at any point
i{s proportional to the intensity of the image field at
-that point. The implication here is that as the number
of pinholes increases, the naise will increase, thus
ioffsatting to some extent the multiplex advantage of
‘-.ﬂtiple pinholes. This quantum noise is a fundamental
"Mimitation of aperture encoding when imaging extended
sources.

111, Optimal Linear Mean-Square Errpr Decoding

In this section we derive a decading algarithm in which
ithe deterministic degradations invalved with Dicka's
.carrvelation decoding are eliminated. In addition to
Jproviding an improved decoding of this imagery, availa-

jbility of this algorithm also allows us to quantitatively

describe the general limiting performance of multiple
aperture cameras.

In formulating our decoder, we cansider stochastic
models for the images. Both the saurce s{m,n} and the
_measured image a{m,n) are taken to be sample arrays fram
homogeneous random fields with “-7 autocovariances
Kg(m,) and Ka{m,n), respectively. Their crosscovar~
1ance 1s Csa{m,n). As in (2), we assume the form of a
convolutional decoder. However, we take a different
approach from Dicke in that we design the decoder to
obtain (in some useful sense} an optimal estimate of
the source s from the decoding, 1in this articulation,
oyr problem becames analogous to that of image restora~-
tion end we m’ke use of some available restoration
formalisms.6+

tore formally, the estimate of each member in the source
field 1s constructed according to

AEE-S

H 5 142 x 11 PRSI
3(mn) *E alm’n’) gy (m-m'.n-n’)
n',nt .
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{3)

]
where go(m,n) i tie point spread response of the opti-
mal decoder, This spread response 1s chosen so as to
minimize the mean-square error .
¢ = Elfs(mn) - 5(mn) 323, for all myn {9
with ;(m,n) as given in (2) and the expectation taken
over the ensemble of possible x-ray source and moise
arrays. Given the statistical models, this error is a
natural measure of the optimality of the estimates.
The decoder which minimizes & in (4) #s given by the
inverse Fourfer transform of

B, (us
IR
: it

(s}

ﬁhere we have the following 2-D Fourfer transform pairs,
¥, (msn) e——e 2. {u,v)
Coalmn) =——=0_, (u,v; (6):
qo(m.n)msu(u.v)

Assuming the source and npise processes are uncorrelated,
(5) becomes

Alu,v) o (u.v)
Wl IE ag(0av) + Bytu.v)

where, using a notation similar to that above, we have
the transform paivs,

€]

Gotu.v) =

h{m,n)emmm—eH{u,v}

K (mn)e—e2 (0,v)

(8)

Ku(m.n)--_..@"(u.v)
and T = complex conjugate of H.
Thus, our decoder 1s a classical 2-D Wiener filter. The
mean-square error associated with this decoding® is
given hy

+1/2

e= [f

-2

The relations in (7).and (9) are the principal results
of this section. They specify the optimal Yinear de-
coding and quantitatively describe its performance.
addition to having desirable formal properties, these
results are also intuitively pleasing. For example, in
the absence of noise (i.e., &,{u,v) = 0}, we have

{u,v} = 1/H{u,v). This decoder is simply an inverse
filter and its application to y(m,n) completely removes
the effects of the aperture encoding. This is not the
case with the corralation decoding scheme. Uhen noise
is present, the filter in (7) achieves an optimal
palance between the unremaved remnant of the encoding
and the distortion due to the noise sources, This is,
of course, the case of oractical interest and we will
ngw consider the gquestion of just how well this decoeding
can be perfarmed in the presence of photon-limited agise.
This photon 1imited case would be expected to occur in
x-ray astronomy as well as medical imaging.

4, (u,v) 9, (uw)
H{u.9) |2 og(uwv) + 9, {um)

dudv

.9

In
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‘A, _Photon-Limited Imaging
We construct a compound Poisson model for the imaging.

before, we model the coded image y{m,n) as a reali~
zation of a homogeneous random field with covariance
£.{mn) and mean u~. Here, for each specific realtza~
tlon we take the value at any poiat, say y{m”,n”), to
be the mean event rate of a Poisson scurce. The avails
able or measured image a{m”,n”) is the count of this
source. Accordingly, the error or noise process wWe
constder 1s simply their difference

winen?) & agntan) - y(nean) . (10)

. With Poivsson statistics, the number of events generated

'by the separate source® are statistically independent.
Using this property ard (10), we obtain the following
relations which we state without proof:

where §(m,n) is the discrete delta function. Note
that for h{m,n) a zero-one function, we also have

w = ullnffy = ulinl (3 (4)
iuhere u 1s the mean of the input source s(m,n) and

a N A
11y = Eih(k.2)] & 1In]1, = A .
!

'Using these relations, we can express the mean-square
error associated with this decoding as

+1/2

1
B

b g (u,v)
B 2
Tz s B o )

Where we have averaged aver the ensemble of sources.

; The specific coding function in (15) s a member of

{ the easemble of Dicke's random masks. With high

- probability, {{h{l} = N2/2, and by averaging over this
ensemble, We can write

dudv 15)

! €=

!
1
4
i
i

Yz n o {u,v}
. Ele} -ffgg — lH(s T v)} dedv . (16)
=172 ¥ “Z u,y g (U

This expectation can be evaluated by noting that
{H(u,v)[2 1s approximately Chi~square distributed with
two degrees of freedom.

Thus, having a known source density, ¢s(u,v}), we can
quantitatively determine the performance of our
decoder. In order to obtain a qualitative estimate
of the behavior of this error let us consider the
case of $s{u,v) ¥ o, i.e., constant. This is the
spectrum of a white source field which is a limiting
case of equal energy at all frequencies. for this

K (m.n) = K (m,n) + K (mn) (m
Cplmn) = 0 ‘ a2
K'(n,n) = y* §{mn) {13)

F1e1d the decoding error (16) becomes

. 3 ‘ 1
Efe} = E—————
Shh 2 {‘Z%z‘ 1y, ]2

Now, most fmages of practica) interest wil) pe scaled
such that the mean {s Q" the arder of the standard
deviation, Thus u<< 0%, and a useful approximation of
(171 results in

. (17)

2
Ee} = ual%] . (18)

It 1s of ipterest to compare this to the mean-square
error resulting from no coding-deceding, that is, for 2
single pinhole:

€ v . (19)

Eyidently, employing aperture encoding in this case
involves an average loss of performance. This reasoning
applies to the case of infinite extent, i.e., to homo~
geneous random fields. We next consider the case where
the source field is coanfined to a sub-reglon te the
object plane.

8. Stgnals of Limited Supgort

Let the source field be bounded by a smallest rectangle
here taken to be asquare of side M for simplicity.
Now place this signal s in an N x N square, "the object
plane", by adding random shift modulo - N x N, Finally,
create a homogeneous random field over all space by
periodic repetition of this N x N cycle. He are now

in a position to apply our previaus results. Ue can
speak of averages over all space or what is the same
the N x N square. Also we can talk of averages gver
the M x M support of s. Since photon noise has the
same support as the signal we have

e« 87 o o

where eﬁc £ error in the uncoded case ensemble averaded
over the K x K square. ‘e note that il is agproximately
the homogeneous error e mentioned above in the infinite
support case, when M is large compared to the correla~
tion distances involved.

Far the coded case, represented by the subscript "c®,
we have approximately, for N >> M,

Efel) = £4c} (21

becawse the random mask with high prgbabilitv creates
a nearly homogenequs naise field in the detector glane.
qun decoding this homogeneity is preserved by the
shift-invariant decoder. Combining (18-21) we have
finally

2
e = @F e, - (22)
Thus the coding gain s expected to be
6= (WM%an(e®ru) > 1. (>N (23)

From this average value, we can conclude that at least
half of the random masks will achieve half of the
coding gain and there exists at least ane mask which
will achieve it all, for othevwise tne averaae couvld
not be correct. This is analogous to the random
coding arguments of Informatfon Theory.

[t can also be shawn that no T{near decoder can do
petter than
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thus the factor tnfo?/u} deseribes the non-optimality
iof choosing & mash at random. For typical froges this
factor 15 on the order of 2, thus the random cusks are
Sctn to be fairly efficient. Hawever, it tumns out

| thare 15 & very sicple way of actually achieving (24).
ISIloli repeat the tmage, f.e.. oultiplen it fn Space
(NN tires. Than stack up the vesults.

 However, 1¢ one could not anticipate the shape of the
‘object and the value of H shead of timy, soce type of
ldapt!n procedure would be recessdry to fit the

(N/N)€ plctures into the ! x i squire. Also, for

R xM sources that display a =aried non-homggentety, (¢t
could be expected that the brigat regicns of the Source
would have relatively Yess error ang the Syrk regions
of the source would have relatively core srror than
_the non-overlapping multiplex schene.

To summarize very succinetly, it haogens that the

best coded apertures spread ocut the ohoton notse sO

. that averiges over the N x i odject pline are equal
‘with or nlmogt cotding, and the rancoa mysk i3 off dy

- & factor in{oc/u) 3 2 (typically). Future work shoyld
' canter on finding the good coces for doth wnite ind

| mon-white source spectra. Minioizatton of (15} sudbject
. to the 0-1 constraint en the umi,c oF b, could by
. spproached s a nan-linear optimtzaticn prodlen.

1¥. _Exparimental Results

' Experimental results were obtained in the oatical
regton using & small (tan grid units high) letter €.
The notses nere are film f0g an¢ gratn noise. The
grain roise being signai cecencent &8 15 tne
case with photen noise. Figure | snows an fzage of

" the 100 x 100 randomy mask. Figure 2 shows the caded
image of the letter €. The optical zatched filter
decoded £ was barely visidle dur to dackground byl ldw
snd-hence {s not snown. Figure 3 shows a coTouter

. satched filtering with ceans reroved, 7iqure 4 Shows

i “optimal®” esticate waere the desion $5% was choten

 to maintatn fmage resolution., Figure & 15 such sharper
than Figure 3 and does not have the horizonial ang

. vertfcal artifacts of Figure 3. Finally Fiqurme §
presents the decoded image of & tuo lexi! € wherw the
bottom half s 10 tices intensity of the upper haif.

i ¥. Conclusions

We have consicered coded aperture {caging with randonly
chosen masks. ¥ have sagun that the previous decoding
methods suffered fron deteeninistic [for 3 givan cask)
ervors that lead to buildup of backgrsung ynd high
frequency errors in the decoded image. Systen theory
was applied via icage ennance=ant 33 the aperture
coding problem. For the photen ' .nited case the opti-
sl linear decoder was derived. e found that the
error with the randos cask heg ire correct dependence
on {WN) in the finite supporl case.
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