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Best Linear Time-Varying Approximation of a

General Class of Nonlinear Time-Varying Systems
Noël Hallemans, Member, IEEE, Rik Pintelon, Fellow, IEEE, Els Van Gheem, Thomas Collet, Raf Claessens,

Benny Wouters, Kristof Ramharter, Annick Hubin and John Lataire, Member, IEEE

Abstract—This paper presents a method for estimating a
linear time-varying approximation of a general class of nonlinear
time-varying systems. It starts from noisy measurements of the
response of the nonlinear time-varying system to a special class
of periodic excitation signals. These measurements are subject to
measurement noise, process noise and a trend.
The proposed method is a two-step procedure. First, the dis-
turbing noise variance is quantified. Next, using this knowledge,
the linear time-varying dynamics are estimated together with
the nonlinear time-varying distortions. The latter are split into
even and odd contributions. As a result, the signal-to-nonlinear-
distortion ratio is quantified. It allows one to decide whether or
not a linear approximation is justifiable for the application at
hand. The two-step algorithm is fully automatic in the sense that
the user only has to choose upper bounds on the number of basis
functions used for modeling the response signal.
The obtained linear time-varying approximation is the best
in the sense that the difference between the actual nonlinear
response and the response predicted by the linear approximation
is uncorrelated with the input. Therefore, it is called the best
linear time-varying approximation (BLTVA).
Finally, the theory is validated on a simulation example, and
illustrated on two measurement examples: the cristallographic
pitting corrosion of aluminum, and copper electrorefining.

Index Terms—odd random phase multisine, time-varying sys-
tems, nonlinear systems, time-varying frequency response func-
tion, even and odd nonlinear distortions, nonparametric estima-
tion, trend

I. INTRODUCTION

IN many engineering applications, models of dynamical

systems are needed, either for control, fault detection,

physical insight, prototyping, prediction, or computer aided

design. Initially, only linear time-invariant (LTI) systems were

studied, owing to the rich and convenient system theoretic

framework. Many types of models exist for this class of

systems, including the impulse response function, the transfer

function and the state space model. Moreover, mathematical

relations transform one model into another, as each of them

has particular pros and cons. Over the years, time- and

frequency domain techniques were developed for identifying

LTI systems [1] [2].
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In practice, the dynamics of very few real-life systems behave

entirely linearly, and as a result, nonlinearities are introduced

whenever the system is excited outside its linear operation

region. These nonlinearities are among others present in

measurements of RF amplifiers due to saturations [3], and in

industrial robots with nonlinear dynamics with respect to the

position [4]. Nonlinear time-invariant (NLTI) models do exist

[5]. However, in many applications where the nonlinearities

are not too strong, linear models are preferred as these are

more simple to use. In response, the concept ‘best linear

approximation’ was introduced in [6] and, next, generalized

to the process noise case in [7] and [8].

Also, the system’s dynamics are not always time-invariant.

The joint impedance dynamics of the human body depend

on time [9], and the impedance of a battery depends on

the state-of-health and state-of-charge [10]. Thereupon, in

frequency domain approaches, the concept of transfer function

was extended to the time-varying transfer function (TV-TF);

basically a transfer function that depends on time too [11].

In [12] a technique is detailed for estimating the TV-TF

nonparametrically using basis functions as regressors, while

in [13] Gaussian process regression is employed to model the

time-variation. This last method has the advantage that the

user interaction is reduced as a result of machine learning

techniques. In both cases it is assumed that the system

behaves linearly. Linear time-varying models have yet been

applied in the chemical field for electrochemical impedance

spectroscopy (EIS) [14] [15] [16] [17] [18].

As could be expected, it is also common that the system’s

dynamics behave both nonlinearly and in a time-varying way.

An example is the pitting corrosion of aluminum immersed in

an aerated sodium chloride solution [19]. Here, the best linear

time-invariant model, under the form of a transfer function,

was identified for the nonlinear time-varying (NLTV) process

with the methods from [20]. The time-variation is detected

via a difference in noise level between the excited and the

non-excited frequencies. However, no direct quantification

of the time-variation is made. As for today, techniques exist

to model the time-variation of NLTV systems assuming that

the nonlinearities are time-invariant. In [21] the time-varying

transfer function is identified using a few periods of the

transient response to a particular class of periodic excitation

signals. However, that method cannot distinguish between

even and odd nonlinear distortions and cannot handle trends

in the data. The method of [22] solves both problems.

Furthermore, it handles very wideband measurements and

makes the user interaction simpler.
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However, for real life systems, the time-invariance assumption

on the nonlinearities does not always hold true. Eliminating

the time-invariance assumption on the nonlinearity made

in [22], is the main contribution of this paper. It requires

a more general definition of the best linear time-varying

approximation (BLTVA) introduced in [21]. As a result,

from the transient response to a special class of periodic

excitation signals, the BLTVA of a general class of time-

varying nonlinear systems can be estimated together with

the noise level and the level of the even and odd nonlinear

distortions. Moreover, in contrast to [22], the even and odd

nonlinear contributions can be split into a time-invariant and

a time-varying part, and the impact of process noise on the

results is analyzed.

The paper is organized as follows. First, we define the

class U of periodic excitation signals and the class S of

nonlinear systems considered (Section II). It includes an

in-depth analysis of the spectral response of the class

S to the class U of periodic inputs, and a study of the

impact of process noise. Next, we handle the estimation

of the disturbing noise variance (Section III), and the best

linear time-varying approximation (Section IV) together

with the even and odd nonlinear distortions (Section V).

Using these results, the uncertainty calculation of the best

linear time-varying approximation is elaborated (Section VI).

Further, the proposed algorithm is validated on a simulated

nonlinear time-varying system that satisfies the assumptions

made (Section VII), and its performance is illustrated

on measurements of crystallographic pitting corrosion

(Section VIII) and copper electrorefining (Section IX).

Finally, some conclusions are drawn in Section X.

II. CLASS OF EXCITATION SIGNALS AND SYSTEMS

CONSIDERED

A. Class of excitation signals considered

When identifying a system, the user has to decide on an

appropriate excitation signal u(t). Using a frequency domain

approach, it is common to excite the system with a random

phase multisine. Furthermore, when the system behaves non-

linearly, the following specially designed odd random phase

multisines are used, which allows one to detect and quantify

even and odd nonlinear distortions [22]:

Definition 1 (Class U of odd random phase multisines). U is

the class of periodic excitation signals defined as

u(t) =
∑

ke∈Hexc

ake
sin(ωke

t+ ϕke
) (1)

where Hexc ⊂ N denotes the set of excited harmonics,

ωke
= 2πke

Tp
, Tp is the period of the multisine, ake

> 0 are

the user-defined amplitudes and ϕke
are independently (over

ke) uniformly distributed random phases ∈ [0, 2π) such that

E{ejϕke } = 0.

The set of excited frequencies Hexc is chosen such that only

odd harmonics are excited. It is constructed as follows. First,

all odd harmonics in the frequency band of interest are

generated. Next, these odd harmonics are grouped into L

consecutive numbers, where L > 1. Finally, out of each

group of L numbers, one randomly selected odd harmonic

is eliminated.

For instance for L = 5, an example of the set Hexc in

Definition 1 would be

Hexc = {1, 3, 5, 9, 11, 13, 17, 19, 21, 23, ...}.

In practical measurements, sampled and windowed signals are

available. Moreover, the discrete Fourier transform (DFT) is

used to transform the signals into the frequency domain. The

DFT of a signal x(t) is defined as

X(k) =
1

N

N−1
∑

n=0

x(nTs)e
−j2πkn/N , (2)

where k ∈ K = {0, 1, ..., N − 1} is the DFT bin, N is the

number of time-domain samples, Ts = 1/fs is the sampling

time, fs is the sampling frequency and the measurement time

is given by T = NTs. In order to increase the frequency

resolution fres of the measurement, fres = 1/T , with respect

to the frequency resolution f0 of the multisine, f0 = 1/Tp,

an integer number P ≫ 1 of periods of the multisine are

measured, such that the measurement time T = PTp. Hence,

the DFT (2) of P periods of u(t) is only nonzero for the

harmonics from the set

Kexc = PHexc. (3)

Increasing the frequency resolution of the measurement is ben-

eficial for visualizing the time-variation in the output spectrum

(see Section II-D) and contributes to the identifiability.

B. Class of nonlinear time-varying systems

To define the class of nonlinear time-varying systems con-

sidered, we must first recall some properties of the time-

varying frequency response function.

For a certain time window t ∈ [0, T ], the input-output relation

of continuous-time LTV systems can be written as [11]

y(t) = L−1{G(s, t)U(s)}, (4)

where y(t) is the output signal, G(s, t) is called the time-

varying transfer function (TV-TF) and U(s) is the Laplace

transform of the input signal u(t). Note that this input-output

relation is very similar to the one of an LTI system. However,

here the transfer function also depends on the time. Identifying

the LTV system boils down to obtaining the TV-TF G(s, t).
The series expansion of the TV-TF in a complete set of basis

functions bp(t) gives

G(s, t) =

∞
∑

p=0

Gp(s)bp(t). (5)

Truncating this series

G(s, t) =

Np
∑

p=0

Gp(s)bp(t) (6)
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Fig. 1. Block schematic of LTV systems.

gives an arbitrarily good approximation for Np sufficiently

large. Combining the truncated series (6) with (4) results in

the block diagram of Fig. 1 with ys(t) = 0,

y(t) =

Np
∑

p=0

L−1{Gp(s)U(s)}bp(t). (7)

In practice, the hyper parameter Np is unknown beforehand,
and is deduced from the data. For good numerical condition-
ing, Legendre polynomials are used as basis functions. These
fulfill Legendre’s differential equation,

d

dx

(

(1− x
2)
dLp(x)

dx

)

+ p(p+ 1)Lp(x) = 0 x ∈ [−1, 1] (8)

and are rescaled over the measurement window [0, T ],

bp(t) = Lp

(

2t

T
− 1

)

. (9)

Moreover, the Legendre polynomials fulfill the conditions

b0(t) = 1 and
1

T

∫ T

0

bp(t)dt = 0 for p ≥ 1. (10)

These properties will be exploited later on.

In this paper all the LTI blocks Gp are allowed to be NLTI

systems, resulting in the block schematic of Fig. 2. The class

of NLTI systems includes all systems whose response to the

class U of input signals can be approximated arbitrary well

in mean square sense by a Volterra series. The input-output

relation of such a nonlinear block NLp, illustrated in Fig. 3,

yields

yp(t) = L−1{Gp(s)U(s)}+ ys,p(t), (11)

where Gp(s) is the best linear approximation (BLA) of NLp

and ys,p(t) is a residual signal containing the nonlinear distor-

tions [6]. Moreover these nonlinear distortions are uncorrelated

with – but not independent of – the input u(t), and can be

split into the even and odd nonlinear contributions. These

come respectively from the even and odd degree kernels in

the Volterra series [2],

ys,p(t) = ys,even,p(t) + ys,odd,p(t). (12)

Fig. 2. Block schematic of the considered class of systems S.

Fig. 3. Connection between an NLTI block and its BLA. ys,p(t) is uncorre-
lated with u(t).

The algorithm presented in this paper allows us (i) to classify

between the even and odd nonlinear distortions, and (ii) to

distinguish the nonlinear contributions (12) of each branch in

Fig. 2. Combining Figs. 2 and 3 yields Fig. 1, where

y(t) =

Np
∑

p=0

L−1{Gp(s)U(s)}bp(t) + ys(t) (13)

with

ys(t) = ys,even(t) + ys,odd(t), (14)

ys,even(t) =

Np
∑

p=0

ys,even,p(t)bp(t). (15)

and

ys,odd(t) =

Np
∑

p=0

ys,odd,p(t)bp(t). (16)

Note that the nonlinear distortions ys(t) of the system class

S are the sum of amplitude modulated nonlinear distortions

of NLTI systems. The considered class of systems and its

best linear time-varying approximation (BLTVA) are now

respectively formalized in Definitions 2 and 3.

Definition 2 (Class S of nonlinear time-varying systems). The

considered class of systems S includes all nonlinear time-

varying systems of which the input-output relationship can be

written under the form of (13), where ys(t) is given by (14),

and where ys,p(t) are the nonlinear distortions originating

from an NLTI system whose response to the class U of input
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signals can be approximated arbitrary well in mean square

sense by a Volterra series.

Note that this class of systems does not include all possi-

ble NLTV systems. Subharmonics, rate-independent hysteresis

and chaos are, for instance, not covered. Still, it is shown to be

a general class of NLTV systems as it works fine for different

electrochemical processes, see the measurement examples in

Sections VIII and IX.

Definition 3 (Best linear time-varying approximation). The

best linear time-varying approximation of the class of systems

S is given by the block schematic of Fig. 1 with ys(t) = 0,

where Gp is the BLA of NLp. It is called the ‘best’ approxima-

tion as ys,p(t) (12) is uncorrelated with – but not independent

of – u(t).

In addition, a trend can be included by the proposed model
structure. Different trend creating mechanisms are detailed
in the Appendix. Furthermore, noise ny(t) is allowed in the
measurement, resulting in the input-output relation

y(t) = ytrend(t) +

Np
∑

p=0

L−1{Gp(s)U(s)}bp(t) + ys(t) + ny(t),

(17)

where the trend is modeled as

ytrend(t) =

Nq
∑

q=0

θqbq(t). (18)

The output noise signal ny(t) fulfills Assumption 1 [22].

Assumption 1 (Output noise). The disturbing noise signal

ny(t) is assumed to be filtered band-limited white noise. Hence

its DFT, (2), can be written as

Ny(k) = H(jωk)E(k) + TH(jωk), (19)

where H(jωk) is a rational function of jωk representing

the filtering operation, E(k) is circular complex Gaussian

distributed and uncorrelated over the frequency, and TH(jωk)
a rational function of jωk representing the noise transient.

The output spectrum Y (k) of the class of signals S is obtained

by taking the DFT (2),

Y (k) = Ytrend(k) + Ybltv(k) + T ◦(jωk) + Ys(k) + V (k),
(20)

with V (k) = H(jωk)E(k) the noise contribution without the

noise transient,

Ytrend(k) =

Nq
∑

q=0

θqBq(k), (21)

Ybltv(k) =

Np
∑

p=0

Gp(jωk)U(k) ∗Bp(k) (22)

the output spectrum of the BLTVA of the system (Defini-

tion 3), where ∗ represents the convolution, T ◦(jωk) the sum

of the system and the noise transient, which is a smooth

Fig. 4. Connection between an NLTI block with process noise and its BLA.
wp(t) and ys,p(t) are mutually uncorrelated and are uncorrelated with u(t).

function of the frequency, and Ys(k) the nonlinear distortions

that can be elaborated as

Ys(k) = Ys,even(k) + Ys,odd(k) (23)

with

Ys,even(k) =

Np
∑

p=0

Ys,even,p(k) ∗Bp(k) (24)

and

Ys,odd(k) =

Np
∑

p=0

Ys,odd,p(k) ∗Bp(k). (25)

Note that the spectra of the Legendre polynomials fulfill the

following conditions due to properties (10),

B0(0) = 1, B0(k) = 0 for k 6= 0 and Bp(0) = 0 for p ≥ 1.
(26)

In practice the right hand side property is not entirely fulfilled

because a finite number of samples are observed. Therefore,

the mean values of the sampled and windowed bp(t) p ≥ 1
are subtracted as in [22].

The objective of this paper is to identify the frequency

response functions Gp(jωk) for p = 0, 1, ..., Np and k ∈ Kexc,

and to detect and quantify the disturbing noise level and the

level of the even and odd nonlinear distortions in each branch

of Fig. 2.

C. Impact of process noise

Real life measurements are not only subject to measurement

noise, but also to process noise. This is noise generated by the

system itself. The methods of this paper can be extended to

the case of process noise. The process noise np(t) acts on

each nonlinear block NLp, and the equivalence of Fig. 4 can

then be stated [7], [8]. Hence, it holds that

yp(t) = L−1{Gp(s)U(s)}+ ys,p(t) + wp(t), (27)

where the nonlinear distortions ys,p(t) and the process noise

wp(t) of the block NLp are respectively defined as

ys,p(t) = E{yp(t)|u(t)} − L−1{Gp(s)U(s)} (28)

and

wp(t) = yp(t)− E{yp(t)|u(t)}, (29)

where E{yp(t)|u(t)} is the expected value of yp(t) for a fixed

input signal u(t). The process noise wp(t) and the stochastic

nonlinear distortions ys,p(t) are mutually uncorrelated and are

uncorrelated with – but not independent of – the input u(t) [7],
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[8]. Contrary to the linear case, wp(t) depends – in general

– on the input u(t). This is due to the nonlinear interactions

between the input u(t) and the noise np(t) produced by the

nonlinear system. Hence, changing the input rms value, can

modify the variance of wp(t). The process noise of the total

NLTV block schematic of Fig. 2 can then be written as

w(t) =

Np
∑

p=0

wp(t)bp(t). (30)

Note that this process noise is non-stationary. Finally, the

process noise can be added to the output noise ny(t) from

Assumption 1, resulting in the noise signal

n′

y(t) = ny(t) + w(t). (31)

In Section III, a stationary approximation of the time-varying

second order properties of (31) will be estimated.

D. Response of the class S of systems to the class U of inputs

With the choice of the odd random phase multisine from

the class U, the output spectrum Y (k) (20) has a particular

form.

For an odd multisine excitation (i.e. which excites only

odd multiples of the fundamental frequency f0 = P/T )

the nonlinear distortions ys,even,p(t) and ys,odd,p(t) have only

contributions at respectively even and odd multiples of the

fundamental frequency, and hence at, respectively, the sets of

harmonics [2]

Knl,even = {0, 2P, 4P, ...} (32)

and

Knl,odd = {P, 3P, 5P, ...}. (33)

Note that the set of excited harmonics is always a subset

of Knl,odd. As U(k), Ys,even,p(k) and Ys,odd,p(k) are thus only

nonzero for, respectively, k ∈ Kexc, Knl,even and Knl,odd, the

convolutions of (22), (24) and (25) are rewritten as follows,

Ybltv(k) =
∑

k′∈Kexc

Np
∑

p=0

Gp(jωk′)U(k′)Bp(k − k′), (34)

Ys,even(k) =
∑

k′∈Knl,even

Np
∑

p=0

Ys,even,p(k
′)Bp(k − k′) (35)

and

Ys,odd(k) =
∑

k′∈Knl,odd

Np
∑

p=0

Ys,odd,p(k
′)Bp(k − k′). (36)

It follows that the output spectrum Y (k) (20) is given by the

sum of scaled basis functions Bp(k) – called skirts – centered

around all the harmonics of the set

Knl = {0, P, 2P, 3P, ...}, (37)

superposed by the transient term, which is a smooth function

of the frequency, and the disturbing noise. An illustration of

the input-output spectra of the system simulated in Section VII

20 25 30 35 40
-75

-50

-25

20 25 30 35 40

-150

-125

-100

-75

-50

-25

Fig. 5. Top: input-output spectra of a system belonging to the class S and
excited by a signal from the class U. Blue dots: U(k) and red dots: Y (k).
Bottom: decomposed input-output spectra of a system from the class S excited
by a signal from the class U. Blue: U(k), orange: Ybltv(k), purple: Ys,even(k),
green: Ys,odd(k), bordeaux: Ytrend(k) and light blue: V (k). The system’s
parameters are detailed in the Section VII.

is shown at the top of Fig. 5, and a decomposed version with

Ytrend(k), Ybltv(k), Ys,even(k), Ys,odd(k) and V (k) separately is

shown in the bottom. Note that around the excited frequencies,

Ybltv(k) and Ys,odd(k) have similar shapes and add up, making

them undistinguishable from each other.

It will be explained in Section VII how Ybltv(k), Ys,even(k) and

Ys,odd(k) were obtained from the simulation example.

It was discussed in [22] that a spectrum with skirts can be

modeled by hyperbolas and polynomials. From these insights it

will be possible to model the output spectrum, and to estimate

the noise level from the residuals (Section III). In a next step,

the TV-FRF is estimated together with its uncertainty due to

the disturbing noise only and due to nonlinear distortions only.

III. NOISE ESTIMATION

The algorithm for estimating the noise is quite similar to

the one in [22]. The difference is that skirts are fitted around

all the integer multiples of the fundamental frequency instead

of around the excited frequencies only. Moreover, as opposed

to [22], the nonlinear distortions cannot be quantified in this

step. The reason for this is that the algorithm automatically

eliminates the redundant basis functions without identifying

explicitly which basis functions are linearly independent. Here,

the nonlinear distortions are quantified together with the

time-varying FRF in the second step of the procedure (see

Section V).

The noise estimation is done in a sliding frequency band,

where the variable kc runs over the entire band of interest.

The band Kw is formed by taking 2n+1 bins centered around
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the bin kc and removing the bins from the set Knl, i.e.

Kw = {kc − n, ..., kc, ..., kc + n} \Knl

= {k1, k2, ..., kNw
}. (38)

The data at the bins Knl is disregarded because the model

would not be able to distinguish between noise and dynamic

behavior at these bins. The variable n is chosen based on the

hyper parameter dof called the degrees of freedom which is

set by default to 5,

n = min
(

ceil
(dof + nθ,max + 2

2

)

, P
)

. (39)

The maximal number of parameters to be estimated in this

band is given by nθ,max = Nq + 3Np +Na + 1 as at most 3
elements of Knl can be comprised within the band (38). The

value Na is the degree of a polynomial used for modeling

T ◦(jωk). The data Y (k) in this band is denoted as

Yw = [Y (k1), Y (k2), ..., Y (kNw
)]T . (40)

The set of bins around which skirts could be present that have

an influence on the band Kw is defined as

Knl,w = Knl ∩ {kc − P, ..., kc, ..., kc + P}, (41)

and its cardinality is defined as Nnl,w. For k ∈ Kw, the output

spectrum Y (k) can be modeled by the expression,

Y (k, θ) =
∑

k′∈Knl,w

Np
∑

p=1

θk
′

p

(k − k′)p
+

Nq
∑

q=1

θqBq(k)

+

Na
∑

r=0

αrLr

(

2
k − k1

kNw
− k1

− 1
)

, (42)

where the first double sum models both Ybltv(k) and Ys(k),
the second sum models Ytrend(k) and the third sum models the

sum of system and noise transient, and the parts of Ybltv(k)
and Ys(k) that could not be modeled by the hyperbolas. This

model can be rewritten in matrix notation,

Yw = Kθ + V, (43)

where Yw is given by (40), K is a regression matrix consisting

of the basis functions in (42), θ is a column vector with the

nθ = Nnl,wNp + Nq + Na + 1 complex coefficients θk
′

p , θq
and αr, and V ∼ N (0, CV ) with CV (kl, km) = σ2

V (kl +
k1)δkl,km

. A least squares estimate of the output spectrum is

then obtained as

Ŷw = K(KHK)−1KHYw, (44)

from which the residuals are computed,

ε = Yw − Ŷw = (I −K(KHK)−1KH)Yw. (45)

Using Theorem 1 of [22], the noise variance estimate at the

bin kc is calculated as,

σ̂2
V (kc) =

1

Nw −m
εHmεm, (46)

where

εm = (I − UmUH
m )Yw, (47)

Um = U

[

Im 0
0 0

]

, (48)

U is an orthogonal matrix from the thin singular value de-

composition of K = UΣWH and Im is the m by m identity

matrix. How to obtain m is explained in Algorithm 1 which is

strongly based on Algorithm 1 of [22]. The advantage of this

algorithm is that the user only has to choose upper bounds on

the hyper parameters Np, Nq and Na, because it automatically

selects the significant linear independent basis functions in

(42).

Guidelines for choosing the upper bounds on the hyper pa-

rameters Np, Nq and Na are included here. First of all,

the total number of parameters is limited, as the number of

equations should be higher than the number of parameters to

be estimated. This results in the condition

nθ,max < 2P − 1. (49)

For practical measurements, good initial values are P = 40,

Np = 10, Nq = 5 and Na = 10. The value Na should be in-

creased when the noise variance estimate is significantly higher

in the valleys of the skirts as at the excited frequencies. The

value Np should be increased as long as there is correlation

over the frequency in the residual vector ε. The value Nq can

be chosen from the time-domain output signal. Note that when

(49) does not hold anymore, one should redo the measurement

with a higher number of periods.

Algorithm 1 Noise variance estimation

For each kc in K

Step 1:

1) Take the data Yw (40) in the band Kw (38) and form the

corresponding regression matrix K.

2) Compute Σ = diag([σ1, σ2, ..., σnθ
]) which is the matrix

of singular values of K in decreasing order, i.e. σi >
σi+1.

3) Compute

l = min
i

i s.t.
σi+1

σ1
< 10−10. (50)

4) Compute a first estimate of the noise variance from (47)

σ̂2
V =

1

Nw − l
εHl εl (51)

Step 2:

1) Compute the snr in the band

snr =

√

Y H
w Yw

Nwσ̂2
V

(52)

2) Compute

m = min
i

i s.t.
σi+1

σ1
< a snr, (53)

where a = 10 is a safety factor.

3) Compute the estimate of the noise variance,

σ̂2
V (kc) =

1

Nw −m
εHmεm. (54)
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IV. ESTIMATION OF THE TV-FRF

The model estimation is also performed in a sliding window

algorithm where the variable ke runs over all elements of

the set Kexc. A band comprising three consecutive excited

frequencies, k−e , ke, k
+
e , is then formed as

Kw = {k−e −∆k−e , ..., k
−

e , ..., ke, ..., k
+
e , ..., k

+
e +∆k+e }

= {k1, k2, ..., kNw
}, (55)

where ∆k−e and ∆k+e are half the distances in bins to,

respectively, the previous and the next excited bins outside

the window. Note that here all data is used, as opposed to the

noise estimation. The data at the bins Kw is denoted as

Yw = [Y (k1), Y (k2), ..., Y (kNw
)]T . (56)

Note the double use of notation with respect to (40). However,

both are defined over different frequency bands and, hence, are

distinct. The set

Knl,w = Kw ∩Knl \ ke (57)

contains all bins in the band, except ke, around which skirts

could be present. Define Nnl,w as the cardinality of Knl,w. The

data in the band can then be modeled as

Y (k, θ) =

Np
∑

p=0

θp(ke)Bp(k − ke) +
∑

k′∈Knl,w

Np
∑

p=0

θp(k
′)Bp(k − k′)

+

Nq
∑

q=0

θqBq(k) +

Na
∑

r=0

αrLr

(

2
k − k1

kNw
− k1

− 1
)

, (58)

where

θp(ke) = Gp(jωke
)U(ke) + Ys,odd,p(ke), (59)

θp(k
′) = Ys,even,p(k

′) (60)

for k′ ∈ Knl,even, and

θp(k
′) = Gp(jωk′)U(k′) + Ys,odd,p(k

′) (61)

for k′ ∈ Knl,odd \ ke, where U(k′) = 0 for k′ ∈ Knl,odd \Kexc.

The first sum in (58) models both the time-variation and

nonlinearities at the middle excited bin, the second double

sum models the remaining of Ybltv(k) and Ys(k), the third sum

models Ytrend(k), and the fourth term models T ◦(jωk). Note

that the time-varying and the nonlinear behavior are undis-

tinguishable at the middle excited bin and, hence, grouped in

(59). From this model of the output spectrum, we identify the

coefficients Gp(jωke
), p = 0, 1, ..., Np. Note that the same

values for the hyper parameters Np, Nq and Na are chosen as

in Section III.

Again, a matrix equality can be formed,

Yw = Kθ + V, (62)

where K is the regression matrix, see Algorithm 2, and θ
contains the coefficients θp(ke), θp(k

′), θq and αr. These

parameters can be estimated in least squares sense from the

data Yw using Algorithm 2. This algorithm is quite similar

to Algorithm 2 in [22]. However, in its present form, skirts

are fitted around all integer multiples of the fundamental

frequency, and only the significant basis functions are retained.

This algorithm first removes those polynomials that depend

linearly on the functions Bp. Next, it selects the basis func-

tions Bp with a contribution – at least at one frequency –

above the noise level. Finally, a least squares estimate of the

parameters θ is computed. From θ̂, the estimates Ĝp(jωke
),

p = 0, ..., Np are retained. These estimates are affected by

the terms Ys,odd,p(ke) and V (k). The uncertainty due to these

terms is handled in Section VI. Finally the estimate of the

BLTVA yields, for k ∈ Kexc,

Ĝ(jωk, t) =

Np
∑

p=0

Ĝp(jωk)bp(t). (63)

V. NONLINEAR DISTORTIONS ESTIMATION

In Section IV we identified the level of the even and odd

nonlinear distortions in each branch of the block diagram of

Fig. 2. From these values we can estimate the variance of the

nonlinear distortions at the nonlinear harmonics. To estimate

the variance at the excited frequencies we take an average of

the variances at the nearest odd nonlinear harmonics left and

right from the excited one. Proceeding in this way we get:

σ̂2
Ys,class,p

(k) =

{

max
(

σ2
tmp,class,0(k)− σ̂2

V (k), 0
)

for p = 0

σ2
tmp,class,p(k) for p > 1,

(69)

where class is either even or odd,

σ2
tmp,even,p(k) = |Ŷs,even,p(k)|

2 for k ∈ Knl,even (70)

and

σ2
tmp,odd,p(k) =

{

|Ŷs,odd,p(k)|
2 for k ∈ Knl,odd \Kexc

1
2

(

|Ŷs,odd,p(k
−)|2 + |Ŷs,odd,p(k

+)|2
)

for k ∈ Kexc,
(71)

with k− and k+ respectively the closest bins left and right

from k belonging to the set Knl,odd \ Kexc. The indices are

taken from the set Knl,odd, as only odd nonlinear distortions

can be centered around the excited frequencies.

From the levels of σ̂2
Ys,even,p

(k) and σ̂2
Ys,odd,p

(k) with respect to

|Y (k)|2 at the excited frequencies, one can decide whether the

linear approximation of the system is acceptable or not for a

certain application.

VI. UNCERTAINTY ESTIMATION

The TV-FRF (63) is computed from data corrupted by

nonlinear distortions and (process) noise. Unfortunately, one

cannot always discriminate between the nonlinear distor-

tions Ys(k) and the best linear time-varying output spec-

trum Ybltv(k). The skirts created by nonlinear distortions are

summed to the linear output spectrum around the excited

frequencies, and both cannot be distinguished. Hence, uncer-

tainties are introduced in the estimated TV-FRF. In this section

the problem is addressed via the total variance on the TV-

FRF, which is the variance due to the noise and the nonlinear

distortions.

Consider again the sliding window algorithm of Section IV.
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Algorithm 2 Signal model estimation

For each ke in Kexc

1) Compute the band Kw (55) and consider the data Yw (56)

in this band.

2) Form the regression matrix K, with in the first Np + 1
columns the regressors Bp(k−ke), in the next Nnl,w(Np+
1) columns the regressors Bp(k) centered around Knl,w,

in the next Nq+1 columns the regressors Bq(k) centered

around DC and, finally, in the last Na + 1 columns the

polynomials Lr(2
k−k1

kNw−k1

− 1)
3) Determine the transient order:

For d = Na, Na − 1, ..., 1

- compute the thin SVD of K.

- compute

ld = argmin
i

σi

σ1
> 10−10.

- if ld ≤ ld−1 − 1: end loop.

else: remove the last column of K.

4) Compute the parameters

θ̂ = K+Yw. (64)

5) Compute the mean value of the noise variance estimates

(46) in the band

σ2
n = mean

(

[σ̂2
V (k1), σ̂

2
V (k2), ..., σ̂

2
V (kNw

)]
)

. (65)

6) for r = (Nnl,w + 1)(Np + 1) +Nq + 1, ..., 1

- compute

ar = max
i

(

|θ̂[r]|
2|K[i,r]|

2
)

(66)

where K[i,r] denotes the element on the i-th row and

r-th column of K and θ̂[r] the r-th element of θ̂.

- if ar < 3σ2
n (95 % confidence bound): remove the r-th

column of K.

7) Recompute the parameters with the new regression matrix

K,

θ̂ = K+Yw. (67)

8) Obtain the estimates

Ĝp(jωke
) =

θ̂[p]

U(ke)
for p = 0, 1, ..., Np, (68)

where the ones that were not identified due to the

reduction of the number of basis functions are set to zero.

9) Also retain the coefficients corresponding to Ŷs,even,p(k)
for k ∈ Knl,even and Ŷs,odd,p(k) for k ∈ Knl,odd \Kexc from

θ̂.

The parameters of the model θ̂ for the band Kw (55) are

computed via a pseudoinverse (64). The noise covariance of

these estimated parameters is then given by

Cθ̂ = cov{θ̂} = K+CV K
+H , (72)

where CV is the covariance matrix of the noise in the band

(55), which is very simply formed as

CV = diag
(

[σ2
V (k1), σ

2
V (k2), ..., σ

2
V (kNw

)]
)

, (73)

where σ2
V (k) is obtained from (46).

Remember that the estimates Ĝp(jωke
) are given by (68)

where

θ[p] = Gp(jωke
)U(ke) + Ys,odd,p(ke). (74)

Note that only the noise (31) and the odd nonlinear distortions

have an impact on the uncertainties of Ĝp(jωke
). Both are

uncorrelated and, hence, for

G(jωke
) = [Ĝ0(jωke

), Ĝ1(jωke
), ..., ĜNp

(jωke
)]T , (75)

one finds that,

CG(jωke
) = cov{G(jωke

)} =
Cθ + CY s,odd

|U(ke)|2
. (76)

Here, one has that

Cθ = Cθ̂[1:Np+1,1:Np+1], (77)

where MATLAB notation has been used for the indices and

Cθ̂ is given by (72). Further, CY s,odd
= cov{Y s,odd}, with

Y s,odd = [Ys,odd,0(ke), Ys,odd,1(ke), ..., Ys,odd,Np
(ke)]

T . (78)

Since Y s,odd is unknown, CY s,odd
is approximated as

CY s,odd
≈

1

2

(

Y
−

s,oddY
−H

s,odd −B+
l CV B

+H
l

+ Y
+

s,oddY
+H

s,odd −B+
r CV B

+H
r

)

, (79)

with Bl and Br Nw ×Np + 1 matrices

Bl =
[

B0(Kw − k−) B1(Kw − k−) . . . BNp
(Kw − k−)

]

,
(80)

Br =
[

B0(Kw − k+) B1(Kw − k+) . . . BNp
(Kw − k+)

]

,
(81)

Y
−

s,odd = [Ŷs,odd,0(k
−), Ŷs,odd,1(k

−), ..., Ŷs,odd,Np
(k−)]T (82)

and

Y
+

s,odd = [Ŷs,odd,0(k
+), Ŷs,odd,1(k

+), ..., Ŷs,odd,Np
(k+)]T , (83)

and where k− and k+ are respectively the closest harmonics

left and right from ke that belong to the set Knl,odd \Kexc. The

coefficients Ŷs,odd,p are found from the last step in Algorithm 2.

Note that the noise variance has been removed from the

nonlinear distortion variances. Moreover, the covariances of

G(jωke
) due to nonlinear distortions only, and due to noise

only are, respectively,

CG,Ys
(jωke

) =
CY s,odd

|U(ke)|2
and CG,V (jωke

) =
Cθ

|U(ke)|2
.

(84)
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Fig. 6. Flowchart of the complete modelling procedure. Kexc is defined in
(3), Knl in (37), the noise variances σ̂2

V (k) in (46), the nonlinear distortion

variances σ̂2

Ys,p
(k) in (69), the BLTVA Ĝ(jωk, t) in (63) and its variance

σ̂2

Ĝ
(jωk, t) in (87).

Finally, since the TV-FRF can be written as

Ĝ(jωke
, t) = b(t)G(jωke

), (85)

where

b(t) = [b0(t), b1(t), ..., bNp
(t)], (86)

the total variance of the estimated TV-FRF is given by

σ̂2
Ĝ
(jωke

, t) = b(t)CG(jωke
)b

T
(t). (87)

Similarly, we find for the variance caused by nonlinear distor-

tions

σ̂2
Ĝ,Ys

(jωke
, t) = b(t)CG,Ys

(jωke
)b

T
(t) (88)

and for the variance caused by noise

σ̂2
Ĝ,V

(jωke
, t) = b(t)CG,V (jωke

)b
T
(t). (89)

As a summary, a flow chart of the complete modelling

procedure for obtaining an estimate of the BLTVA Ĝ(jωke
, t)

and its uncertainty σ̂2
Ĝ
(jωke

, t) is given in Fig. 6.

VII. SIMULATION EXAMPLE

The identification methodology of this paper is validated by

100 Monte-Carlo runs on a system satisfying Definition 2 (see

Fig. 2 with Np = 2), corrupted by a trend and additive noise

at the output. The input signal u(t) is an odd random phase

multisine (see Definition 1) of 1Vrms with a period length

Tp = 100 s and L = 5. Each nonlinear block NLp of the

system is given by a block schematic as in Fig. 7, where Hp(s)
is an LTI dynamic system and f1

p (x) and f2
p (x) are static

nonlinear functions.

Fig. 7. Simulated nonlinear blocks NLp.

The simulated system is defined by the following input-

output relation,

y(t) = ytrend(t) + yblock(t) + v(t) (90)

where

ytrend(t) = 5b1(t) + 3b2(t), (91a)

yblock(t) =

Np
∑

p=0

yp(t)bp(t), (91b)

yp(t) = f2
p

(

L−1{Hp(s)L{f
1
p (u(t))}}

)

, (91c)

f1
0 (x) = x+ 0.02 tanh(x− 2), (91d)

f2
0 (x) = x+ 0.03 tanh(x− 1), (91e)

f1
1 (x) = x+ 0.08x2, f2

1 (x) = x, (91f)

f1
2 (x) = x, f2

2 (x) = x+ 0.15x3, (91g)

and

v(t) ∼ N (0, σ2
v). (91h)

Furthermore, H0(s), H1(s) and H2(s) are second order filters

(all zeros at infinity) with natural frequencies ωn,0 = 0.7Hz,

ωn,1 = 1Hz, ωn,2 = 1.5Hz, damping ratios ζ0 = 0.15,

ζ1 = 0.1 and ζ2 = 0.15, and DC gains H0(0) = 1,

H1(0) = 0.2 and H2(0) = 0.2, and σv = 0.005. The signal-

to-noise ratio is equal to 342. Note that NL0 is a Wiener-

Hammerstein system, NL1 a Hammerstein system and NL2 a

Wiener system.

The signals u(t) and y(t) are measured for P = 40 periods at

a sampling rate fs = 20Hz, resulting in a measurement time

of T = 4000 s and N = 80000 data points.

The procedures of Sections III-VI are applied to the simulated

data with the following upper bounds on the hyper parameters

in (42) and (58): Np = 8, Na = 10, Nq = 5 and dof = 5.

With these choices, the local bandwidth in step 1 (Section III)

equals 2n + 1 = 45 (0.0112Hz). For the noise estimation,

the number of nonzero singular values m, varies over the

frequency between 11 and 24 while nθ = 32 or 40, depending

on the local frequency band. From Fig. 8, one notices that

the noise variance has been estimated correctly. In Fig. 9 the
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variances of the nonlinearities are shown. They are correctly

detected, quantified and classified. In agreement with (91d),

(91e), (91f) and (91g) the time-invariant branch contains both

even and odd nonlinear distortions, the branch p = 1 only even

ones and the branch p = 2 only odd ones. The variances of the

nonlinear distortions are at least 20 dB smaller than the linear

part of the measurement. Hence, with this knowledge the user

can determine whether a linear model is justifiable, depending

on the application. Note that the true even nonlinear distortion

variances have a contribution at DC, despite the fact that DC

is not excited in the simulation. When NLp has even nonlinear

contributions, excited frequencies are folded back to DC.

The true values of Ys,even,p(k) and Ys,odd,p(k) were obtained

as follows. For each nonlinear block NLp the BLA Gp(s) is

computed by averaging the ratio Y (k)/U(k), with k ∈ Kexc,

over 100 different random phase realizations of the input

signal. Then Ys,p(k) = Y (k) − Gp(jωk)U(k) is computed,

and further the variances of Ys,even,p(k) and Ys,odd,p(k).
The estimated block schematic FRFs Gp(jωke

) and their

covariances CG(jωke
) and CG,V (jωke

) are shown in Fig. 10.

Note that while the user asks for maximal Np + 1 = 9
LTI blocks, only 3 blocks are selected by the procedure of

Section IV, which is in agreement with the actual simulated

system. For validating the uncertainties, we compare the

sample variance over the 100 estimates to the mean value of

the estimated total variances. The total variances on each of

the branches of the block structure were identified correctly

as they coincide within the 95% uncertainty bounds of the

Monte-Carlo simulation. Note that the variance on G1 due to

nonlinear distortions is zero, as in this branch the nonlinear

distortions are purely even, and hence introduce no uncertainty

on the BLA.
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-60

-40
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0

Fig. 8. Input-output spectrum of the simulation. Blue: U(f), red: Y (f)
and light blue: mean value of the estimated noise variances σ̂2

V (f) over 100
random phase realizations of the multisine. Note that the estimated noise
variances lay on top of the true noise variance σ2

V = −89 dB.
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Fig. 9. Monte-Carlo simulation for 100 random phase realizations of the
multisine. Black: Gp(j2πf)U(f), purple: σ2

Ys,even,p
(f), green: σ2

Ys,odd,p
(f)

(full line: true values, dots: mean of estimated values). Left: p = 0, middle:
p = 1 and right p = 2.
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Fig. 10. Monte-Carlo (MC) simulation for 100 random phase realizations of
the multisine. The true BLA’s of the simulation (upper full lines) coincide
with the mean values of the estimated BLA’s (dots). The sample variances
of the estimated BLA’s (lower full lines) coincide with the mean value of
the estimated total variances (circles). These total variances lie well above
the estimated noise variances (dots). Blue: p = 0, red: p = 1 and yellow:
p = 2.)

VIII. MEASUREMENT EXAMPLE I

The method described in this paper is now applied to mea-

surements of crystallographic pitting corrosion of aluminum.

The objective is to estimate the time-varying admittance of

the aluminum during a corrosion process. This is done by

imposing a voltage to the system and measuring the current

response. The chemical information about the aluminum sam-

ple and the corrosion process is detailed in Section 2 of [19].

The excitation signal is the open circuit potential of 797mV

superimposed by an odd random phase multisine of 15mVrms,

exciting 179 frequencies in the band [19mHz, 24Hz] and

with a period length Tp = 52 s. Both current and voltage

signals were measured for P = 121 periods of the multisine

signal, corresponding to a measurement time T = 6344 s,

at a sampling rate fs = 5 kHz. The input-output spectrum

is shown in Fig. 11. From the decreasing spectrum at the

very low frequencies, one notices that a trend is present. The

methods from this paper are applied with hyper parameters
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Fig. 11. Input-output spectrum of the system. Blue: U(f), red: Y (f), purple:
σ̂2

Ys,even,0
(f), green: σ̂2

Ys,odd,0
(f) and light blue: σ̂2

V (f).

Nq = 5, Np = 10, Na = 10 and dof = 5 in (42) and

(58). This results in a local bandwidth of 2n + 1 = 51
(8mHz). For the noise estimation, the number of nonzero

singular values m varies over the frequency between 11 and

17 while nθ = 36 or 46. The estimates of the even and

odd stationary nonlinear distortions, and the noise level are

shown in Fig. 11. The estimates of the nonlinear distortions

of the three first time-varying branches are shown in Fig. 12.

Even and odd nonlinear distortions are detected, quantified and

classified, and it can be seen that the even ones are the most

dominant for all the branches shown. Still, a minimal signal-

to-nonlinear-distortion ratio of 30 dB is guaranteed on the

time-invariant branch, which increases fastly over frequency.

Hence a linear model could be justifiable. A zoomed version

of the input-output spectrum is shown in Fig. 13. Here it

is clearly visible that skirts are present around all integer

multiples of the fundamental frequency f0 = 19mHz, and,

hence, time-varying nonlinearities are present. Note that the

noise estimate is higher around the excited frequencies. It

can be proven, by increasing Np and Na, that the residuals

become totally white, while the higher noise estimate around

the excited frequencies stays. Thus, this phenomena could not

be explained by undermodeling. Hence, it must be due to

nonlinear process noise – input signal interactions in the pitting

corrosion dynamics. In Fig. 14 the same window is shown, but

identified with the method of [22]. Here, the noise estimate

is higher around the integer multiples of the fundamental

frequency, showing that the method fails in the presence of

time-varying nonlinear distortions.

The LTI transfer function blocks are shown in Fig. 15 together

with their uncertainties due to noise, nonlinear distortions and

both. Finally the time-varying admittance of the corroding

aluminum is shown in Figs. 16 and 17. The uncertainties of the

time-varying admittance are not shown for reasons of clarity.

IX. MEASUREMENT EXAMPLE II

In order to show that the methods detailed in this paper are

applicable to a large class of systems/processes, we apply it

to a second measurement example here.
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-125

-100
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Fig. 12. Estimated nonlinear distortion variances for the three first blocks.

Black: Ĝp(j2πf)U(f), purple: σ2

Ys,even,p
(f), green: σ2

Ys,odd,p
(f). Left: p =

1, middle: p = 2 and right p = 3.
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Fig. 13. Zoomed input-output spectrum of the system. Blue: U(f), red:

Y (f), yellow: Ŷ (f), purple: σ̂2

Ys,even,0
(f), green: σ̂2

Ys,odd,0
(f) and light blue:

σ̂2

V (f).
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Fig. 14. Method from [22] applied to the corrosion measurement. Blue:

U(f), red: Y (f), yellow: Ŷ (f), purple: σ̂2

Ys,even
(f), green: σ̂2
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(f) and
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V (f).
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Fig. 15. Estimated BLA’s of the block schematic with their uncertainties. Full

lines: Ĝp(jω), dots: total variance, crosses: variance due to noise and stars:
variance due to odd nonlinear distortions. Colors for p = 0, 1..., 9: blue, red,
yellow, purple, green, light blue, bordeaux, blue, red and yellow.
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Fig. 16. Magnitude of the estimated time-varying admittance Ĝ(jω, t) of the
pitting corrosion measurement.
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Fig. 17. Phase of the estimated time-varying admittance Ĝ(jω, t) of the
pitting corrosion measurement.

In this measurement example, the electrorefining of copper

is studied. The system consists of a copper rotating disc

working electrode, a calomel reference electrode with K2SO4

salt bridge and a Pt counter electrode. The electrolyte that is

used mimics the conditions in the electrorefining process. It

consists of 0.6M CuSO4, 2M H2SO4, ppm level chlorides and

with thiourea as additive.

A current is applied to the process and the voltage between

working and reference electrode is measured. The excitation

signal is the sum of a constant current of −5.6mA, which is

applied for the electrodeposition of Cu, and an odd random

phase multisine of 0.5mA RMS, exciting 384 frequencies in

the band [5mHz, 15 kHz] and with a period length Tp = 200 s.

Note that the band of interest is as wide as 6 decades.

Both current and voltage signals were measured for P = 29
periods of the multisine, corresponding to a measurement time

T = 5800 s, at a sampling rate fs = 45 kHz. This was done

using an NI PCI-4461 data acquisition card, connected to a

custom-built compact analog potentiostat and with in-house

developed software. The input-output spectrum is shown in

Fig. 18. Note the presence of a trend in the output spectrum.

The algorithms of Sections III and IV are applied with hyper

parameters Nq = 5, Np = 7, Na = 8 and dof = 5 in (42)

and (58). This results in a local bandwidth of 2n + 1 = 49
(8.4mHz). For the noise estimation, the number of nonzero

singular values m varies over frequency between 9 and 20
while nθ = 28 or 35. The estimates of the even and odd

stationary nonlinear distortions, and the noise level are shown

in Fig. 18. Note the peak in the noise estimate around the

European mains frequency of 50Hz. The estimates of the

time-varying nonlinear distortions are not shown for the sake

of clarity. Even and odd nonlinear distortions are detected,

quantified and classified. Also in this measurement, the even

nonlinear distortions are the strongest ones. A zoomed version

of the input-output spectrum is shown in Fig. 19. Here, it is

also clearly visible that skirts are present around all integer

multiples of the fundamental frequency f0 = 5mHz, and,

hence, time-varying nonlinearities are present. Note that the

noise estimate is higher around the excited frequencies, which

can be explained by nonlinear process noise – input signal

interactions in the copper electrorefining dynamics.

The LTI transfer function blocks are shown in Fig. 20 together

with their uncertainties due to noise, nonlinear distortions and

both. Finally the time-varying impedance of the electrorefining

process is shown in Figs. 21 and 22. The uncertainties of the

time-varying impedance are not shown for reasons of clarity.

X. CONCLUSIONS

In this paper a method has been detailed for obtaining

linear models for nonlinear time-varying systems. This under

the form of a time-varying transfer function. A linear model

for a nonlinear system is only justifiable when the nonlinear

distortions are not too strong with regard to the linear part of

the system for a given application. Hence, in the measurement,

the time-varying nonlinear distortions must be detected and

quantified. Moreover, nonlinear distortions could be classi-

fied between even and odd ones, giving more insight about
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Fig. 18. Input-output spectrum of the copper electrorefining process mea-
surement. Blue: U(f), red: Y (f), purple: σ̂2

Ys,even,0
(f), green: σ̂2

Ys,odd,0
(f)

and light blue: σ̂2

V (f).
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Fig. 19. Zoomed input-output spectrum of the copper electrorefining process

measurement. Blue: U(f), red: Y (f), yellow: Ŷ (f), purple: σ̂2

Ys,even,0
(f),

green: σ̂2

Ys,odd,0
(f) and light blue: σ̂2

V (f).
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Fig. 20. Estimated BLA’s of the block schematic with their uncertainties

for the copper electrorefining process measurement. Full lines: Ĝp(jω), dots:
total variance, crosses: variance due to noise and stars: variance due to odd
nonlinear distortions. Colors for p = 0, 1..., 7: blue, red, yellow, purple, green,
light blue, bordeaux and blue.
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Fig. 21. Magnitude of the estimated time-varying impedance Ẑ(jω, t) of the
copper electrorefining process measurement.
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Fig. 22. Phase of the estimated time-varying impedance Ẑ(jω, t) of the
copper electrorefining process measurement.

the system. Also uncertainty bounds were computed on the

nonparametric values of the TV-FRF, this due to nonlinear

distortions, noise and both. The identification technique of

this paper is applicable to a large class of systems, where

the method of [22] would fail. Additionally, trends and noise

are allowed in the measurements. Furthermore, very large

frequency bands of interest can be studied.

For making the identification technique more accessible, algo-

rithms were developed were the user only has to choose upper

bounds on a number of hyper parameters defining the model

structure.

The algorithms have been validated on a Monte-Carlo simu-

lation and applied to measurements of two real-life examples.

APPENDIX

For linear time-varying systems, a trend can only be intro-

duced when the excitation signal has a non-zero mean. For

the time-invariant branch, a trend is caused when the transfer

function G0(s) has one or more poles at the origin. For the

time-varying branches, however, it is sufficient that Gp(s),
p > 1, has a non-zero DC gain, as the output of this dynamical

system is multiplied by the basis function bp(t). Hence, for

LTV systems, the sufficient conditions for a trend are that the
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input signal has a non-zero mean and that the time-invariant

transfer function has one or more poles at the origin, or at least

one of the time-varying branches has a non-zero DC gain.

For the class of systems considered, see Definition 2 and

Fig. 2, a trend can be present even if the system is excited by a

zero-mean input signal. This trend can be formed in different

ways. For instance, assuming that the blocks NLp are Wiener-

Hammerstein systems, see Fig. 7, an even nonlinear part of the

function f1
p (x) introduces a DC value in the signal that is fed

to Hp(s). Hence if Hp(s) has one or more poles at the origin

for p = 0 or has a finite non-zero DC gain for p > 1, a trend

can be present. Hence in this case the necessary conditions

are that (i) an even nonlinearity is present in one or more

branches, and (ii) in these branches Hp(s) has poles at the

origin for p = 0 or has a non-zero DC gain for p > 1.

The term ytrend(t) in (17) stands for the trend created by all this

mechanisms, as nonparametric models of the transfer functions

Gp(s) cannot contain the information about the trend.
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