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Summary. Many types of genetic analyses depend on estimates of allele frequencies. We consider the
problem of allele-frequency estimation based on data from related individuals. The motivation for this
work is data collected on the Hutterites, an isolated founder population, so we focus particularly on the
case in which the relationships among the sampled individuals are specified by a large, complex pedigree
for which maximum likelihood estimation is impractical. For this case, we propose to use the best linear
unbiased estimator (BLUE) of allele frequency. We derive this estimator, which is equivalent to the quasi-
likelihood estimator for this problem, and we describe an efficient algorithm for computing the estimate
and its variance. We show that our estimator has certain desirable small-sample properties in common with
the maximum likelihood estimator (MLE) for this problem. We treat both the case when parental origin
of each allele is known and when it is unknown. The results are extended to prediction of allele frequency
in some set of individuals S based on genotype data collected on a set of individuals R. We compare the
mean-squared error of the BLUE, the commonly used naive estimator (sample frequency) and the MLE
when the latter is feasible to calculate. The results indicate that although the MLE performs the best of
the three, the BLUE is close in performance to the MLE and is substantially easier to calculate, making
it particularly useful for large complex pedigrees in which MLE calculation is impractical or infeasible. We
apply our method to allele-frequency estimation in a Hutterite data set.
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1. Introduction
Chromosomes sampled from different individuals in a popu-
lation typically show DNA sequence variation (i.e., polymor-
phism) at a number of locations (loci) throughout the genome.
Polymorphisms are scientifically important for many reasons,
including their usefulness for genetic mapping studies and for
studies of population history. We refer to the copy of a poly-
morphic locus inherited by an individual from a particular
parent as an allele, and we consider it a random variable.
The m possible observed types for an allele of a locus will be
called allelic types. Genotype data refers to the observation of
the two alleles for each individual in a sample. For a popula-
tion of interest, the frequency distribution of allelic types, a =
(a1, . . . , am)T , where ai > 0 is the frequency of the ith allelic
type,

∑
i
ai = 1, is known as the allele-frequency distribution,

and the ai ’s are known as allele frequencies. Many methods
used in genetic mapping studies and studies of population
history require estimates of allele frequencies. For instance,
methods for genetic linkage analysis or association mapping
often require such estimates, and the analyses may be sensi-
tive to allele-frequency misspecification (e.g., Ott, 1992; see
also Lockwood, Roeder, and Devlin, 2001).

Consider the empirical allele-frequency distribution based
on genotype data from a sample of individuals from a pop-
ulation. This estimator is given by ã = (ã1, . . . , ãm)T , with

ãi = (2n)−1
∑2n

j=1X
(i)
j , where X(i)

j is the indicator of the event
that the jth observed allele is of allelic type i, n is the number
of sampled individuals, and there are 2n alleles because each
sampled individual has two alleles at each locus, one inherited
from his or her mother and one inherited from his or her fa-
ther. We will call ã the naive estimator of the allele-frequency
distribution a. In the case of a simple random sample from an
infinitely large, outbred population, assuming that alleles of
randomly sampled individuals are independent and that the
population is in Hardy–Weinberg equilibrium (i.e., the two
alleles of an individual are independent draws from the allele-
frequency distribution), then the only dependence in the data

arises from the fact that
∑m

i=1X
(i)
j = 1 for each j in 1, . . . , 2n.

In that case, the naive estimator, ã, corresponds to the MLE
of a and has Cov(ãi, ãj) equal to ai (1 − ai )/2n if i = j and
−aiaj /2n otherwise.

Data collection for mapping studies often involves sam-
pling of families, rather than of individuals, in which case
the naive estimator can typically be improved upon by taking
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into account the relatedness of individuals. In the extreme
case of an isolated founder population, all individuals in the
population may be related, and the population itself can of-
ten be thought of as a single extended family. We consider
the problem of allele-frequency estimation based on individu-
als sampled from an isolated founder population. Here, again,
sampling is typically family based rather than simple and ran-
dom, and we perform inference conditional on the pedigree
information. (We assume that the choice of sample is inde-
pendent of the X ’s, conditional on the pedigree, as is the case
in the Hutterite data set we analyze.) Our results apply quite
generally to allele-frequency estimation from data on indi-
viduals of known relationship, not only in isolated founder
populations.

In a population that is so large that its size can be treated
as effectively infinite, the definition of allele frequency may
be relatively straightforward, at least in the absence of major
population substructure. In contrast, in a finite-size popula-
tion in which randomly sampled individuals are detectably
related, genetic drift may have a greater effect, leading to al-
lele frequencies that fluctuate noticeably across generations.
Possible notions of allele frequency that may be of interest in
an isolated founder population include (i) the allele frequency
in the founding population, i.e., the population from which the
founders’ alleles are assumed to be randomly drawn (where
founders are defined to be individuals in the pedigree whose
parents are not in the pedigree); and (ii) the allele frequency
corresponding to choosing an individual at random from the
extant population and then choosing one of the individual’s
two alleles at random. Notion (ii) can be generalized to the
problem of prediction of the allele frequency in a given subset
of the pedigree. Notion (ii) is obviously of interest for, e.g.,
cross-population comparisons of allele frequencies, while link-
age analysis typically requires (i). For use in various types
of linkage disequilibrium studies, (i) is often the most use-
ful, e.g., in the method of Abney, Ober, and McPeek (2002)
for isolated founder populations. The naive estimator is com-
monly used for both the estimation problem in (i) and the
prediction problem in (ii). The naive estimator is, in fact, an
unbiased estimator of (i) and an unbiased predictor of (ii), but
it makes inefficient use of the data (see results in Section 5).

Previously proposed approaches to allele-frequency estima-
tion include maximum likelihood estimation (Fisher, 1940;
Ceppellini, Siniscalco, and Smith, 1955; Boehnke, 1991)
and various types of linear estimation (Cotterman, 1947;
Chakraborty, 1978; Olson, 1994). Finney (1948a,b) proposes
an interactive scoring method. Broman (2001) compares five
different estimators for allele frequency based on sibship data.
In principle, maximum likelihood estimation could be applied
to an isolated founder population, with the entire population
treated as a single large family. This would yield the MLE of
(i), the allele frequency in the founding population. However,
in the Hutterite pedigree we consider, calculation of the MLE,
by either “exact” or Markov-chain Monte Carlo methods, is
impractical due to the computationally intensive nature of
the calculations and the frequency with which they must be
carried out on a routine basis.

Our estimator for problem (i) above and our predictor
for problem (ii) above are the best linear unbiased estima-
tor (BLUE) and best linear unbiased predictor (BLUP), re-

spectively, under the assumption that the founder alleles are
independent draws from a common distribution and that the
loci follow the laws of Mendelian inheritance conditional on
the pedigree. Thus, our estimators are at least as efficient
and usually more efficient than the previously proposed lin-
ear estimators under those assumptions. In the case when
the founding population does not satisfy the assumption of
Hardy–Weinberg equilibrium, our estimators are still unbi-
ased, as are the previously proposed linear estimators for
problem (i). Note that we do not require Hardy–Weinberg
equilibrium within the isolated founder population itself; in-
deed, even with random mating in a sufficiently small isolated
founder population, Hardy–Weinberg equilibrium would not
hold because of inbreeding (in the case when allele frequency is
defined to be the frequency in the founding population). The
effects of the pedigree structure, including inbreeding, are ex-
plicitly taken into account in our estimators. Our methods are
computationally simple and applicable to any type of family
data, including large, complex pedigrees. We apply the meth-
ods to a Hutterite data set involving ∼800 individuals drawn
from a 13-generation, 1623-member pedigree, with virtually
all individuals related through multiple lines of descent.

2. BLUE for Estimation of Frequency
in Founding Population

We first consider problem (i), estimation of the allele-
frequency distribution in the founding population. In Sec-
tion 2.1, we derive the BLUE in the case when, for each allele
of an individual, we have the information of whether it was
inherited from the individual’s mother or the individual’s fa-
ther. In Section 2.2, we treat the case when this additional
information of parent-of-origin for each allele is not available.
Section 3 gives some properties shared by the BLUE and
MLE. Then, in Section 4, we consider problem (ii), predic-
tion of the allele frequency in a given subset of the pedigree,
for which we derive the BLUP.

2.1 BLUE When Parental Origin of Allele Is Observed
For simplicity of presentation, we initially suppose that the
number of allelic types, m, at the locus is two, so that the
parameter of interest is a scalar. To streamline the notation,
we write a in place of a1, Xi in place of X(1)

i , and let X =
(X1, . . . ,X2n)T . Then we have E(Xj ) = a and Var(Xj ) =
a(1 − a) for each j, and there is correlation between the indi-
cators that results from the relationships among the individ-
uals in the pedigree.

A linear estimator of a is an estimator δ of the form δ =
wTX , where w is a known 2n × 1 weight vector. Consider the
class of linear unbiased estimators of a, {δ: δ = wTX with
wT1 = 1}, where 1 is a column vector of 1’s of length 2n.
Let C be the covariance matrix with (i, j)th entry C(i,j) =
Cov(Xi ,Xj ), and assume that C is known up to a constant
multiple and invertible. Then the BLUE, i.e., the estimator
with smallest variance among all unbiased estimators that are
linear in X, is (1TC−11)−11TC−1X =

∑2n
j=1 wjXj , where wj =

(1TC−11)−1(1TC−1)j (e.g., see Lehmann and Casella, 1998,
p. 130). That is, wj is proportional to the sum of the jth row
(equivalently, column) of C−1. (More generally, if E(X) = da,
where d is a known, nonzero 2n × 1 vector, then the BLUE
of a is (dTC−1d)−1dTC−1X.) The naive estimator is obtained
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in the special case in which (1TC−1)j is the same for all j,
e.g., when the indicator random variables are uncorrelated or
when they are correlated but exchangeable or when there is a
group of permutations of the alleles that acts transitively and
that preserves the covariance matrix.

Under the assumptions that the founder alleles are inde-
pendent draws from a common distribution and that the loci
follow the laws of Mendelian inheritance conditional on the
pedigree, the covariance matrix C can be written as a(1 − a)K,
where K is the correlation matrix. K has 1’s on the diagonal
and Ki,j , i �= j, can be described as follows: Suppose that
allele i represents the allele individual k inherited from parent
m and allele j represents the allele individual l inherited from
parent n. Then Ki,j = φm,n, the kinship coefficient between
individuals m and n, where the kinship coefficient between
two individuals is the chance that a randomly chosen pair of
alleles, one from each individual, is identical by descent, i.e., is
an inherited copy of the same founder allele. This value is de-
termined solely from the pedigree graph, without reference to
genotype data. For example, the kinship coefficient between
an outbred parent–offspring or sib pair is 1/4, while that be-
tween an outbred grandparent–grandchild, avuncular, or half-
sib pair is 1/8. Kinship coefficients for all pairs of individuals
in a pedigree can be efficiently computed by a recursive algo-
rithm (Boyce, 1983). We note that if the sampled individuals
are distinct, then K is necessarily nonsingular except in the
case when the sample contains monozygous twins (in which
case we suggest that genotype data on only one twin be used,
leading to a nonsingular K). Then the BLUE can be written
as

â = (1TK−11)−11TK−1X, (1)

where K does not depend on a. The variance of â is easily
seen to be

Var(â) = (1TK−11)−1a(1 − a). (2)

In comparison, the variance of the naive estimator ã is
(2n)−2(1TK1)a(1 − a), so the relative efficiency of the BLUE
compared to the naive estimator is (1TK−11)(1TK1)/(2n)2 ≥
1, and the correlation between these two estimators is
2n{(1TK−11)(1TK1)}−1/2. We note that, in the special case
when the sample consists of η independent families hav-
ing indicator vectors Y 1, . . . ,Y η and correlation matrices
K1, . . . ,Kη, then in the formulae above, 1TK−1X reduces to∑η

i=1 1TK−1
i Y i, 1TK−11 reduces to

∑η

i=1 1TK−1
i 1, and 1TK1

reduces to
∑η

i=1 1TKi1.
Now suppose that the number of allelic types m > 2. Let

a = (a1, . . . , am−1)
T and X = (X (1)T , . . . ,X (m−1)T )T , where

X (i)T = (X
(i)
1 , . . . ,X

(i)
2n). An obvious extension of the notion

of a BLUE is that if â = AX with A a known (m − 1) ×
2n(m − 1) matrix, then â is a BLUE of a if and only if cT â
is a BLUE of cTa for every choice of real vector c of length
m − 1. In our case, we have E(X) = D̃a, where D̃ = Im−1 ⊗
12n, Im−1 is the identity matrix of dimension m − 1, 12n is a
column vector of 1’s of length 2n, and ⊗ is Kronecker product.
Let Var(X) = C̃. First suppose that C̃ is a known, invertible
matrix. Then it can be shown that the BLUE â of a is given
by

â = (D̃T C̃−1D̃)−1D̃T C̃−1X. (3)

In fact, in our case C̃ = F ⊗K, where F is an (m − 1) ×
(m − 1) matrix with Fij = ai (1 − ai ) if i = j and −aiaj if
i �= j, so C̃ depends on a. However, by manipulation of equa-
tion (3) with the expressions for D̃ and C̃ plugged in, we find
that

â =
[
Im−1 ⊗

{(
1T

2nK
−112n

)−1
1T

2nK
−1

}]
X

= ((1TK−11)−11TK−1X (1), . . . , (1TK−11)−11TK−1X (m−1)),

(4)

which depends only on X and the pedigree, not on a, and
which can be equivalently expressed as follows: For each i, let
âi be the estimator obtained from equation (1) with X (i) in
place of X (i.e., collapsing the observed alleles into two classes,
i and not-i). Then the BLUE of a is â = (â1, . . . , âm−1)

T , and∑m

i=1 âi = 1. From either equation (3) or (4), the variance of
the BLUE is easily found to be

Var(â) = (1TK−11)−1F. (5)

Remark 1. Equation (3) gives a convenient mathematical
form for â, but it is expressed in terms of the inverse of a
2n(m − 1)-dimensional matrix. Equation (4) shows that this
calculation reduces to (m − 1) calculations, each of which
involves the inverse of the same 2n-dimensional matrix.

Remark 2. Our definition of a multivariate BLUE â of a
(which was that cT â be a BLUE of cTa for every choice of
real vector c of length m − 1) can be shown to be equivalent
to the superficially weaker requirement that each component
of â be a one-dimensional BLUE of the corresponding com-
ponent of a. This equivalence follows from the fact that a
(one-dimensional) linear unbiased estimator is BLUE if and
only if it is uncorrelated with every linear unbiased estimator
of 0 (see Lehmann and Casella, 1998, p. 130). However, this
fact, combined with equation (1), does not directly yield equa-
tion (4). To obtain equation (4) by this reasoning, one would
need the further information that the BLUE for ai based on
X is the same as the BLUE for ai based on X (i).

Remark 3. It can be seen from equations (3) and (4) that
the BLUE is equivalent to the quasi-likelihood estimator
(Wedderburn, 1974; see McCullagh and Nelder, 1989 for de-
tails) for this problem. The quasi-likelihood score function
can generally be written as U(a) = DTV −1(X − µ), where
µ = E(X) is assumed to be a known function of a, D is the
matrix whose (i, j)th element is ∂µi/∂aj , and V is the co-
variance matrix of X, where V is assumed to be a known
function of a (possibly up to an unknown scale factor) and
invertible. In our case, µ = a⊗ 12n,D = D̃, and V = C̃. The
quasi-likelihood estimator for a is the solution of U(a) = 0,
which, in our case, is given by equations (3) and (4).

Remark 4. The variance of the BLUE cT â is
(1TK−11)−1cTFc, while the variance of the naive esti-
mator cT ã is (2n)−2(1TK1)cTFc. Thus, the relative efficiency
of the BLUE cT â compared to the naive estimator cT ã is
again (1TK−11)(1TK1)/(2n)2 ≥ 1, and the correlation be-
tween these two estimators is again 2n{(1TK−11)(1TK1)}−1/2,
just as for the case m = 2, with neither expression depending
on c.
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2.2 BLUE When Parental Origin of Allele Is Not Observed
A difficulty is that we do not actually observe which of an
individual’s two alleles is maternally inherited and which is
paternally inherited, although this can sometimes be inferred
from the data. To construct a linear estimator in that case,
we assume that this information is always unavailable and
that an individual’s two alleles are given an arbitrary label-
ing that is independent of which is maternally and which is
paternally inherited. In that case, the off-diagonal elements
of the correlation matrix K take a different form. If i and j,
i �= j, index the two alleles within a single individual k, then
Ki,j = hk , the inbreeding coefficient of individual k, which
is equal to the kinship coefficient between the parents of k,
or, equivalently, the probability that the two alleles of k are
identical by descent. If i and j index alleles taken from two
different individuals k and l, then Ki,j = φk,l, the kinship co-
efficient between individuals k and l. Except for this change
in K, all the results of the previous subsection still hold.

We now briefly describe the computational issues involved
in obtaining the BLUE and show that when parental origin of
allele is not observed, the calculations can be simplified, re-
sulting in faster and less memory-intensive computations. To
obtain the BLUE, we need to calculate (1TK−11)−11TK−1X (i)

for i = 1, . . . ,m − 1, where X (i) = (X
(i)
1 , . . . ,X

(i)
2n)T . We effi-

ciently compute the BLUE by taking the Cholesky decompo-
sition of K, i.e., finding upper triangular B such that BTB =
K, using an algorithm that simultaneously computes b0 =
B−T 1 and bi = B−TX (i), i = 1, . . . ,m − 1 at little extra cost
(Graybill, 1976). Then we can take âi = (bT0 bi)/(b

T
0 b0), and

the BLUE is â = (â1, . . . , âm−1)
T . Note that with a sample of

n individuals, the matrix K is 2n × 2n. For instance, in one
of the Hutterite samples we consider, n = 806, so K is 1612 ×
1612. Thus, the Cholesky decomposition step can be slow.
Typically, the calculation would be performed for each of a
large number of loci throughout the genome. At different loci,
different individuals may have missing genotype data, and the
estimation at each locus is based only on the nonmissing data
for that locus. Thus, K typically differs from locus to locus,
and the Cholesky decomposition must be recomputed at each
locus. We are able to obtain an improvement in efficiency and
reduction in needed dynamic memory by using the following
result:

Notation. Recall that the BLUE is given by â =
(â1, . . . , âm−1)

T , with âi = (1T
2nK

−112n)−11T
2nK

−1X (i), where
12n is 2n × 1, K is 2n × 2n, and X (i) is 2n × 1. Let L be
the n × n matrix with (i, j)th element equal to 1 + hi if i =

j and 2φij if i �= j, let Z(i) = (Z
(i)
1 , . . . ,Z

(i)
n )T , where Z

(i)
j = 1

2
(the number of copies [0, 1, or 2] of allele i held by individual
j), and let 1n be n × 1.

Proposition 1: We have âi = (1T
nL

−11n)−11T
nL

−1Z(i).

Proof. See the Appendix.

Remark 1. This proposition allows us to perform our
Cholesky decomposition on an n × n matrix, L, instead of
a 2n × 2n matrix, K, in the case when parental origin of
allele is not observed.

Remark 2. The variance of â can also be more efficiently
computed using this simplification. As a consequence of the
proposition, we have Var(â) = 1

2 (1
T
nL

−11n)−1F .

3. Some Properties Shared by the BLUE and MLE
Suppose one or more pedigrees are sampled, and it is desired
to estimate the allele frequency in the founding population.
In the case when the set of genotyped individuals includes all
founders of the pedigree(s), it is natural to take as the estima-
tor the observed frequency in the founders, because the data
from succeeding generations do not add additional informa-
tion on allele frequency in the founding population. It turns
out that both the MLE and the BLUE result in the natural
estimator in this case. A related result, which also holds for
both the MLE and BLUE, is that if an entire subpedigree
within a pedigree is genotyped, then only the founders of the
subpedigree need be considered. In the case of the BLUE,
these results follow from the following more general result:

Notation. Let Xk×1 be random with E(X) = Da and
Var(X) = Σ, where ar×1 is unknown, Dk×r is known, and
Σk×k is known up to a constant multiple. Write X = (XT

1 ,
XT

2 )T , where X1 is k1 × 1 and X2 is (k − k1) × 1, write D =
(DT

1 , DT
2 )T , where D1 is k1 × r and D2 is (k − k1) × r, and

write

Σ =

[
Σ11 Σ12

ΣT
12 Σ22

]
,

where Σ11 is k1 × k1, Σ12 is k1 × (k − k1), and Σ22 is (k − k1) ×
(k − k1). Here, E(Xi ) = Dia, Var(Xi ) = Σii for i = 1, 2, and
Cov(X1, X2) = Σ12.

Proposition 2: If Σ11 is invertible, rank (D1)= r, and

ΣT
12Σ

−1
11 D1 = D2, (6)

then the BLUE of a depends only on X1 and is given by
(DT

1 Σ−1
11 D1)

−1DT
1 Σ−1

11 X1.

Proof. See the Appendix.

Remark. For our problem, if we let X1 represent the geno-
type data of certain individuals, then equation (6) is equiv-

alent to KT
12K

−1
11 1 = 1, where K11 = Corr(X

(i)
1 ) and K12 =

Corr(X
(i)
1 , X

(i)
2 ).

Let âA be the BLUE of allele frequency based on all the
genotyped individuals. Now consider the following recursive
algorithm for pruning the data set: For each individual i who
does not have any genotyped descendants in the data set, if
i’s parents are both genotyped, then remove i from the data
set. This algorithm can be started at the bottom of a pedigree
and can be applied recursively up the pedigree. Let âB be the
BLUE of allele frequency based on the data remaining after
pruning. Then we have the following corollary.

Corollary to Proposition 2: (i) âA = âB , i.e., the
BLUE for the pruned data set is the same as the BLUE for
the original data set. (ii) When the set of genotyped individuals
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includes all the founders of the sampled pedigrees, the BLUE is
the observed frequency in the founders.

Proof. See the Appendix.

Remark 1. These results apply both in the case when the
information of which allele is maternal and which is pater-
nal is available and in the case when this information is not
available.

Remark 2. The MLE also has these properties (see the Ap-
pendix). It is obvious that the naive estimator does not.

Remark 3. Result (i) still holds when the pruning algo-
rithm is generalized to remove from the data set any allele
i such that every directed path in the pedigree from any
founder allele to i passes through at least one genotyped allele
besides i.

4. BLUP for Estimation of Frequency in a Given
Subset of Individuals

Let Q be the set of individuals on whom pedigree information
is available, and let R ∈ Q be the subset of individuals for
whom genotype data are available. Suppose we wish to predict
the allele frequency in a target set of individuals S ∈ Q, where
S might intersect with R.

Notation. Let |R|= r, |S| = s, |R ∩ S| = u. For i= 1, . . . ,m,

let X
(i)
R\S be the 2(r − u)-vector of indicators for allele i

among the (ordered) individuals in R\S. Similarly, let X(i)
R∩S

and X(i)
S\R be the 2u-vector and 2(s − u)-vector indicators for

allele i among the individuals in R ∩ S and S\R, respectively.

Define X = (X (1)T , . . . ,X (m−1)T )T , where X (i) = (X
(i)T
R\S ,

X
(i)T
R∩S , X

(i)T
S\R)T . Define XR = (X

(1)T
R , . . . ,X

(m−1)T
R )T and XS =

(X
(1)T
S , . . . ,X

(m−1)T
S )T , where X

(i)
R = (X

(i)T
R\S , X

(i)T
R∩S)T and

X
(i)
S = (X

(i)T
R∩S , X

(i)T
S\R)T . For any integer k, define D̃k = Im−1 ⊗

1k.
Let Y = (2s)−1D̃T

2sXS be the quantity we wish to predict,
i.e., Y is just the vector of length m − 1 with ith component
equal to the sample average, over all individuals in S, of the
indicators for allele i. We observe the quantity XR, and we
propose to predict Y by finding the BLUP, i.e., the linear
combination of XR, AXR, that minimizes E[{cT (Y − AXR)}2],
for all (m − 1)-vectors c, subject to E(AXR) = E(Y ). We
apply the following result:

Notation. Let X, D, Σ, and a be defined as in Proposi-
tion 2. Suppose W = GX is observed where Gp×k is known,
and it is desired to predict BX, where Bs×k is known. Con-
sider linear predictors AW of BX, where A is s × p. Let
Γ = {A: E(AW − BX ) = 0}. Find A∗ ∈ Γ that minimizes
E[{cT (AW − BX)}2] for all real r-vectors c.

Proposition 3: If GΣGT and DTGT (GΣGT )−1GD are
invertible, then there is a unique minimizer A∗, and the re-
sulting predictor is A∗W = B{Dâ+ ΣX,WΣ−1

W (W −GDâ)},
where â=(DTGT (GΣGT )−1GD)−1DTGT (GΣGT )−1W,ΣW =
GΣGT , and ΣX,W = ΣGT .

Proof. See the Appendix.

In our case, D = D̃2(r+s−u), G = Im−1 ⊗ (I2r, 02r×2(s−u))
where (I2r, 02r×2(s−u)) is a 2r × 2(r + s − u) matrix whose
first 2r columns are the identity matrix I2r and whose last
2(s − u) columns are 0, B = (2s)−1[Im−1 ⊗ (0T

2(r−u), 1T
2s)],

where (0T
2(r−u), 1T

2s) is a row vector with first 2(r − u) ele-
ments equal to 0 and last 2s elements equal to 1, and Σ =
F ⊗ K, where F is as before and K is the correlation matrix
of X (i) which can be written as

K =

[
KR,R KR,S\R

KS\R,R KS\R,S\R

]
,

where, e.g., KR,R = Corr(X
(i)
R ) and KR,S\R = Corr(X

(i)
R ,

X
(i)
S\R).

Corollary to Proposition 3: For our problem, we ob-
tain the following BLUP for Y:

AXR = (2s)−1
[
D̃T

2uXR∩S + 2(s− u)â

+
{
Im−1 ⊗

(
1T

2(s−u)KS\R,RK
−1
R,R

)}
(XR − D̃2râ)

]
,

where â = (1T
2rK

−1
R,R12r)

−1{Im−1 ⊗ (1T
2rK

−1
R,R)}XR is the BLUE

for a in terms of XR (see equation [4]).

Remark 1. The ith component of AXR predicts the sam-
ple average of the indicator of allele i in population S and
is equal to (2s)−1{1T

2uX
(i)
R∩S + 2(s− u)âi + 1T

2(s−u)KS\R,RK
−1
R,R

(X
(i)
R − 12râi)}, where 1T

2uX
(i)
R∩S is just the sum of indicators

for the individuals in R ∩ S, and the remaining part of the
expression comes from the generalized regression of X(i)

S\R on

X(i)
R .

Remark 2. The standard error of prediction of the BLUP
is given by

s.d.
(
cT (AXR − Y )

)
= (2s)−1(cTFc)1/2

×
[
1TKR\S,R\S1 + 2

(
1TKR\S,S\R1

)
+1TKS\R,S\R1 + 4(s− u)2α− γ

+αβ2 − 4(s− u)αβ
]1/2

,

where α = (1TK−1
R,R1)−1, β = 1TK−1

R,RKR,S\R1, and γ =

1TKS\R,RK
−1
R,RKR,S\R1.

Remark 3. For comparison, we can define the naive predic-
tor of Y by (2s)−1(1T

2uXR∩S + 2(s− u)X̄R), which is also an
unbiased predictor, with standard error of prediction equal
to (2s)−1(cTFc)1/2[−1TKR∩S,R∩S1 + ((s− u)2/r2)1TKR,R1 +
1TKS,S1 − 2(1TKR∩S,S\R1) − (2(s− u)/r)1TKR,S\R1]1/2.

5. Application to Allele-Frequency Estimation
in the Hutterites

5.1 Data Analysis
The data are from a Hutterite population, with the approxi-
mately 800 sampled individuals virtually all related through
multiple lines of descent. Their relationships are character-
ized by a known, 13-generation, 1623-person pedigree (Abney,
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Table 1
Allele-frequency estimates for five SNPs in the Hutterites. Naive estimate and BLUE are estimates of founder allele frequency,

while naive prediction and BLUP are predictions of frequency in full sample of size 858 based on genotyped subsample.

SNP Subsample size Naive estimate (s.e.1) BLUE (s.e.1) Naive prediction (s.e.2) BLUP (s.e.2)

TLR4+896 755 0.04 (0.04) 0.05 (0.04) 0.036 (0.002) 0.034 (0.002)
IL13-110 734 0.17 (0.08) 0.12 (0.06) 0.170 (0.005) 0.167 (0.003)
IFNG-1616 729 0.19 (0.08) 0.19 (0.07) 0.195 (0.006) 0.199 (0.003)
IL4R-3223 383 0.33 (0.10) 0.30 (0.09) 0.328 (0.014) 0.322 (0.009)
IL10-1117 736 0.43 (0.10) 0.40 (0.09) 0.425 (0.007) 0.431 (0.004)

Note: s.e.1 is standard error of estimate of founder allele frequency, s.e.2 is standard error of prediction (equal to root mean-squared error of
prediction) of frequency in full sample.

Table 2
Allele-frequency estimates and standard errors for four STRPs in the Hutterites. BLUE of founder allele frequency is compared

to naive estimate.

D17S928 D1S468 D14S1426 D10S1225

Naive BLUE Naive BLUE Naive BLUE Naive BLUE

0.25 (0.09) 0.21 (0.08) 0.33 (0.10) 0.34 (0.09) 0.42 (0.10) 0.35 (0.09) 0.38 (0.10) 0.42 (0.09)
0.21 (0.08) 0.22 (0.08) 0.20 (0.08) 0.20 (0.08) 0.29 (0.09) 0.35 (0.09) 0.28 (0.09) 0.24 (0.08)
0.20 (0.08) 0.27 (0.08) 0.15 (0.07) 0.16 (0.07) 0.12 (0.07) 0.12 (0.06) 0.21 (0.08) 0.21 (0.08)
0.11 (0.07) 0.10 (0.06) 0.14 (0.07) 0.13 (0.06) 0.09 (0.06) 0.11 (0.06) 0.11 (0.07) 0.10 (0.06)
0.11 (0.06) 0.12 (0.06) 0.13 (0.07) 0.11 (0.06) 0.08 (0.06) 0.06 (0.04) 0.02 (0.03) 0.02 (0.03)
0.07 (0.05) 0.04 (0.04) 0.04 (0.04) 0.06 (0.04) 0.003 (0.01) 0.01 (0.02) – –
0.02 (0.03) 0.01 (0.02) 0.002 (0.01) 0.002 (0.01) – – – –
0.02 (0.03) 0.01 (0.02) 0.002 (0.01) 0.004 (0.01) – – – –
0.01 (0.02) 0.01 (0.02) – – – – – –

McPeek, and Ober, 2000). All the individuals in this highly
complex, inbred pedigree are descended from 64 founders.
Genotype data, as well as data on a variety of qualitative and
quantitative traits, were collected for the purpose of mapping
loci predisposing to these traits (Ober, Abney, and McPeek,
2001). For many mapping methods, estimates of allele fre-
quencies for a large number of loci must first be obtained,
and this is the problem that we address here.

Table 1 gives results of allele-frequency estimation for five
single-nucleotide polymorphisms (SNPs) located in candidate
genes for asthma and other inflammatory diseases. Table 2
gives similar results for four short tandem repeat polymor-
phisms (STRPs) that are used for mapping but that do not
correspond to any particular candidate genes. Table 2 com-
pares naive estimates and BLUEs, which estimate the fre-
quency in the founding population. Table 1 also compares
naive predictions and BLUPs, which predict the frequency in
a set of 858 individuals, based on the genotyped subset. The
differences in the estimates are nontrivial in many cases, and
the reduction in standard error from the naive estimator to
the BLUE is consistent with the theoretical calculations that
we describe next.

5.2 Analytical and Simulation-Based Comparison
of Estimators

Note that for any given pedigree or set of pedigrees, we can
directly calculate the sampling variances of the naive estima-
tor and BLUE as a function of allele frequency, to compare
their efficiencies. This is an analytical result that is not based
on simulation or data. We would like to compare the MLE

as well. Unlike the naive estimator and the BLUE, the MLE
is biased, so we compare its mean-squared error (MSE) to
the variances of the other estimators. For the MLE, calcu-
lation of MSE is based on simulation. In the Hutterites, it
is not currently feasible to calculate the MLE at all, so we
compare only the naive estimator and the BLUE in 806 in-
dividuals from that population. To compare all three estima-
tors, we consider a family-based sample of individuals drawn
from an outbred population. This sample is composed of 85
two-, three-, and four-generation outbred pedigrees consisting
of 996 individuals. We assume that data are missing for 190
individuals from the top two generations. Analytical variance
calculations for the naive estimator and BLUE are made based
on the pedigrees. To approximate the MSE for the MLE in the
outbred pedigrees, we performed 5000 simulations at each of
five allele frequencies (given in Table 3), in which founder

Table 3
Ratios of MSE in the outbred pedigrees (obtained
analytically for naive estimator and BLUE and by

simulation for MLE)

Allele Naive estimator
frequency vs. MLE BLUE vs. MLE

0.50 1.41 1.01
0.30 1.43 1.02
0.20 1.44 1.03
0.15 1.45 1.04
0.10 1.45 1.04
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Figure 1. MSE versus allele frequency in Hutterite and outbred samples. Upper solid line represents variance of naive
estimator in Hutterite sample, upper dotted line represents variance of BLUE in Hutterite sample, lower solid line represents
variance of naive estimator in outbred sample, lower dotted line represents variance of BLUE in outbred sample, where all
variances are obtained analytically, and points represent MSE of MLE obtained by simulation in outbred sample.

alleles were chosen at random with replacement, and al-
leles were dropped down the pedigree. The USERM13 mod-
ule of MENDEL (Lange, Weeks, and Boehnke, 1988; Boehnke,
1991), was used to calculate the MLE in each simulated real-
ization. In the simulations, the bias in the MLE is too small
to be detected above the sampling variability based on 5000
realizations.

Figure 1 shows the MSE for each estimator in each sample,
while Figure 2 magnifies the results for the outbred sample. A
striking feature of Figure 1 is how much larger the variances
of the naive estimator and BLUE are in the Hutterite sample
than in the outbred sample, although the apparent sample
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Figure 2. MSE versus allele frequency in an outbred sample, a rescaling of the bottom portion of Figure 1. Solid line
represents variance of naive estimator, dotted line represents variance of BLUE, where both variances are obtained analytically,
and points represent MSE of MLE obtained by simulation.

sizes are the same (both 806). Recall that the Hutterite sam-
ple descends from only 64 founders, so even with all 1623
members typed, the effective sample size would be only 128
alleles. Furthermore, in the 13-generation Hutterite pedigree,
the genotyped individuals lie in the last few generations, and
much of the variance in the estimator is caused by genetic
drift, i.e., random variation in the numbers of alleles of each
type transmitted to succeeding generations, which, in effect,
leads to noisier data. The outbred pedigrees are much shal-
lower (i.e., smaller numbers of generations), so the effects of
genetic drift are much less, leading to the ability to estimate
more precisely the allele frequency in the founding population.
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In the Hutterite pedigree, the efficiency of the BLUE rela-
tive to the naive estimator is 1.20, while in the outbred pedi-
gree it is 1.40. The smaller ratio for the Hutterites is likely
due to the fact that, as mentioned above, the data are in-
herently noisier, so improving the estimator does not reduce
the variance by as high a percentage as in the outbred case,
although in absolute value the reduction in variance is much
greater for the Hutterites than for the outbred population.
Table 3 shows that in the outbred population, based on the
simulations, the ratio of the MSE of the naive estimator to
the MSE of the MLE is between 1.41 and 1.45, while the ratio
of the MSE of the BLUE to the MSE of the MLE is between
1.01 and 1.04. Thus, the additional improvement of the MLE
over the BLUE is small compared to the improvement of the
BLUE over the naive estimator. This simulation suggests that
much of the advantage of the MLE can be obtained by the
use of the computationally much simpler BLUE.

6. Discussion
We consider the problem of allele-frequency estimation from
data on related individuals, with particular attention to the
case when the relationships among the individuals are spec-
ified by a large, complex pedigree. For the problem of esti-
mating the allele frequency in the founding population, we
derive the BLUE and show how this may be efficiently com-
puted in a large, complex pedigree. Both the case in which
parental origin of allele is known and the case in which it is
unknown are treated. We show that when all founders of the
pedigree(s) are genotyped, the BLUE coincides with the MLE,
which is just the frequency in the founders, and we derive a
related result that applies, for example, when all individuals
in a subpedigree of the original pedigree are genotyped. We
extend our results to address the problem of prediction of al-
lele frequency in some subset S of individuals in the pedigree,
based on genotype data from some subset R of individuals in
the pedigree, for which we derive the BLUP.

We compare the performances of the BLUE and the naive
estimator (sample frequency) in a Hutterite pedigree, us-
ing both data analysis and analytical results, and we use
both simulations and analytical results to compare the MLE,
BLUE, and naive estimator in an outbred sample. Our results
suggest that the BLUE provides substantial improvement over
the naive estimator and performs very similarly to the MLE.
In large complex pedigrees such as the Hutterites, the MLE
may be infeasible to compute, especially as one may need to
repeat this computation for hundreds or thousands of loci,
e.g., for a genome screen. In contrast, the BLUE may be very
efficiently computed even in large complex pedigrees.

The methods presented are for codominant, autosomal loci,
but can be extended to X-linked loci by suitable modification
of the indicator vector X and recalculation of the covariance
matrix, which would then be singular in general. This can
be remedied by the use of an appropriate generalized inverse
or by removing redundant entries of X. The extension to Y-
linked or mitochondrial loci is trivial because the pedigree
specifies the IBD relationships.

We have approached the problem of allele-frequency esti-
mation by taking into account only the first and second mo-
ments of the allele-frequency indicator vector. This was done
because the full-likelihood calculation quickly becomes infea-
sible in large, complex pedigrees. More broadly, one can think

of taking a similar approach to solve other related inference
problems in large, complex pedigrees. For instance, the prob-
lem of detecting association between a binary trait and a locus
and the problem of detecting deviation from Hardy–Weinberg
can both be formulated as hypothesis tests involving allele fre-
quencies. As we noted above, the BLUE for the problem of
allele-frequency estimation is the same as the quasi-likelihood
estimator. As a result, the framework of quasi-likelihood could
be used to extend our results on allele-frequency estimation
to create quasi-likelihood score tests for the problems of case-
control association testing (Bourgain et al., 2003) and Hardy–
Weinberg testing (work in preparation).

Related software is incorporated into the CC-QLS pack-
age available at http://galton.uchicago.edu/∼mcpeek/
software.
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Résumé

De nombreux types d’études génétiques reposent sur
l’estimation des fréquences alléliques. Nous considérons le
problème de l’estimation des fréquences alléliques à par-
tir de données sur des individus apparentés. La motiva-
tion de ce travail est l’analyse de données dans la pop-
ulation Huttérites, une population fondatrice isolée, et en
conséquence nous nous intéresserons plus particulièrement
au cas où les relations entre les différents individus de
l’échantillon sont spécifiées par un arbre généalogique étendu
et complexe pour lequel l’estimation par maximisation de la
vraisemblance n’est pas réalisable. Dans ce cas, nous pro-
posons d’utiliser le meilleur estimateur linéaire non biaisé
(BLUE) de la fréquence allélique. Nous dérivons cet estima-
teur, qui dans ce problème est équivalent à l’estimateur de
quasi-vraisemblance, et nous décrivons un algorithme efficace
pour calculer cet estimateur et sa variance. Nous montrons
que cet estimateur à certaines propriétés désirables en com-
mun avec l’estimateur du maximum de vraisemblance (MLE)
pour ce type ce problème. Nous traitons les deux cas où
l’origine parentale de chaque allèle est connue ou non. Les
résultats sont étendus à la prédiction de fréquence allélique
dans certains ensembles d’individus S à partir de données
collectées sur un ensemble d’individus R. Nous comparons
l’erreur quadratique moyenne du BLUE, de l’estimateur näıf
communément utilisé (fréquence de l’échantillon) et du MLE
lorsqu’il est possible de le calculer. Les résultats indiquent
que bien que le MLE présente les meilleures performances, le
BLUE en est très proche tout en en étant substantiellement
plus facile à calculer, ce qui le rend particulièrement utile pour
l’analyse des grandes généalogies complexes où le MLE est in-
calculable. Finalement, nous appliquons notre méthode pour
estimer les fréquences alléliques chez les Huttérites.
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Appendix

Proof of Proposition 1. We show that the BLUE gives the
same weight to both alleles of an individual when information
on parental origin of allele is unavailable. The proposition
then follows from the standard result on calculation of the
BLUE. Fix an individual in the sample. Let P be the 2n × 2n
permutation matrix that interchanges the rows corresponding
to the two alleles of the given individual. Then when infor-
mation on parental origin of allele is unavailable, we have
PKPT = K. For any permutation matrix P, we also have
(1T (PKPT )−11)−11T (PKPT )−1P = (1TK−11)−11TK−1. Com-
bining these gives (1TK−11)−11TK−1P = (1TK−11)−11TK−1,
which shows that the BLUE gives the same weight to both
alleles of the individual. �

Proof of Proposition 2. Let T 1 = (DT
1 Σ−1

11 D1)
−1DT

1 Σ−1
11 X1.

Any LUE AX of a can be written as AX = T 1 + T 2, where
T 2 = WX and WD = 0. Cov(T 1, T 2) = (DT

1 Σ−1
11 D1)

−1(DT
1 ,

DT
1 Σ−1

11 Σ12)W T , which = 0 if equation (6) is satisfied. In that
case, Var(AX ) ≥ Var(T 1). �

Proof of Corollary to Proposition 2. (i) First suppose m =
2. Suppose individual i has no genotyped descendants and has
both parents genotyped. Consider the case in which maternal
and paternal alleles can be distinguished and are listed in
that order for each individual. Reorder the vector X, so that
X2 represents individual i’s data, and X1 represents all other
data. In X1, let α and α + 1 index the two alleles of i’s mother
and β and β + 1 index the two alleles of i’s father. Then, from
standard recursive formulae for kinship coefficients, we have
that the first column of Σ12 is the average of the αth and α +
1st columns of Σ11 and the second column of Σ12 is the av-
erage of the βth and β + 1st columns of Σ11. Thus, ΣT

12Σ
−1
11

has entries (1, α), (1, α + 1), (2, β), and (2, β + 1) equal to
1/2 and all others 0. Equation (6) follows. This argument is
applied recursively to prove the Corollary. The case m > 2 fol-
lows from equation (4). The proof for the case when parental
origin of allele cannot be distinguished is similar. For (ii), note
Σ11 = I and use the fact that every allele is IBD with exactly
one founder allele. That these properties hold for the MLE
follows in each case by decomposing the likelihood into two
factors L1 and L2, where L1 is the likelihood for X1, L2 is the
conditional likelihood for X2 given X1, and L2 does not de-
pend on the allele-frequency parameter. For part (i), apply
this argument recursively. �

Proof of Proposition 3. Any A ∈ Γ can be written as
A = A∗ + A0 with A0GD = 0. First consider the case
Σ = I. Let H = GT (GGT )−1G. Note that Cov(A∗W −
BX ,A0W ) = 0 can be obtained by using the decomposition
A∗W − BX = B(H − I)X + (A∗W − BHX ) to break the
covariance into two terms, plugging in the expression for A∗

and using A0GD = 0. Thus, E[{cT (AW − BX )}2] = E{(cTA∗

W − cTBX )2} + E{(cTA0W )2}, which is minimized when
E{(cTA0W )2} = 0, which holds for all c iff A0G = 0. This
proves the result for the case Σ = I. More generally, suppose
Σ = JTJ is invertible. Let X̃ = J−TX, D̃ = J−TD, G̃ = GJT ,
and B̃ = BJT . Then W̃ = G̃X̃ = W, B̃X̃ = BX,E(X̃) = D̃a,
and Var(X̃) = I. The proposition follows by application of the
previous case. �


