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Abstract 

A broad definition is given of balanced data in mixed models. For all 

such models, it is shown that the BLUE (best linear unbiased estimator) of 

an estimable function of the fixed effects is the same as the ordinary 

least squares estimator (OLSE). 

1. INTRODUCTION 

a. Fixed effects models 

Analysis of variance models are traditionally formulated in .terms of 

additive main effects and additive interaction effects. For example, 

suppose yijk is the k'th observation on treatment i of variety j in a 

two-factor experiment concerned with fertilizer treatments and plant 

varieties. Then a usual analysis of variance model is of the form 

(1) 

where v is a general mean, ai is the effect on the response variable due to 

the i'th treatment, aj is the effect due to the j'th variety, rij is the 

interaction effect between treatment i and variety j, and eijk is the 

residual error term defined as eijk • yijk- E(yijk) for 
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where E denotes expectation over repeated sampling. 

Models such as (1), where estimation of (and testing of hypotheses 

about) parameters are the features of interest, are known as fixed effects 

models, and in such models the customary assumptions about variances and 

covariances are that each observation has the same variance and that every 

pair of observations has zero covariance. The dispersion matri~ y of the 

vector of observations l then has the form 

(2) 

I being an identity matrix and a 2 being the variance of every observation. -
An assumption about V more general than (2) is that it is simply a -
symmetric, positive semi-definite matrix; and in many cases that it be not 

just positive semi-definite but positive definite, and hence non-singular. 

b. Mixed -.odels 

Variations of (1) are models where some or all of the ui, aj and yij 

terms are assumed not to be parameters to be estimated, but are modeled as 

being random variables with zero means and some assumed variance-covariance 

structure. For example, suppose in the no-interaction form of (1), with 

one observation yij on treatment i and variety j, namely 

( 3) 

that the aj for j • 1, b, are modeled as random variables with zero 

mean E(aj) • 0 V j. The aj are then called random effects and, along with 

the random error terms eij' usually have the following variance-covariance 

structure attributed to them: 

and 

var(P.) • a2 V j 
1 a 

• a2 V i,j, 
e 

- 0 v J+j' ( 4) 
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Then with p and the ai in (3) being fixed effects and the Pj being random 

effects, (3) is known as a mixed model. And the variances aa and a! of 

(4) are the variance components. The structure of (4) then leads toy 

having elements that are either zero, a 2 + a2 
p e' or aa; in general to 

elements that are either zero, or one of the variance components or a sum ........ 
of them. 

Exa•ple 1 Consider (3) and (4), where the P factor represents blocks 

in a randomized complete blocks experiment. Suppose there are 2 treatments 

and 3 blocks. Then for a zero element of a matrix being shown as a dot, 

Yu a2+a2 
p e 

a2 a 
y12 a2 +a2 a e 

a2 a 
y13 a2+a2 a2 

v a e a = var ... .... 
a2 a2+a2 

Y21 a B e 

Y22 
a2 

p 
a2 +a2 

p e 

y23 a2 a a2 +a2 a e 

c. Esti.ation with balanced data 

Section 3 formulates a set of models that specifies a wide class of 

balanced data. First, though, we appeal to the general understanding that 

balanced data have equal numbers of observations in the subclasses. Model 

equations (1) and (3) are examples, having, for each treatment-variety 

combination, one observation and (with k • 1, 2, ···, n) n observations, 

respectively. In both cases the best linear unbiased estimator (BLUE) of a 

treatment difference is a well known, simple function of means. Thus when 

each of (1) and (3) are fixed effects models, the BLUE of ai- ai' is 

( 5) 

= 
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where y(i) is the mean of all observations on treatment i. Moreover, the 

right-hand side of (5) is also the ordinary least squares estimator of 

ai- ai'' Hence, for these examples 

(6) 

Of additional importance is the fact that although (5) is true when 

(1) and (3) are fixed effects models, it is also true when (1) and (3) are 

mixed models with as fixed. The generalization of (6) is that for any 

estimable function of fixed effects in a mixed model with balanced data, 

BLUE • OLSE. The utility of this result is that although a BLUE is a 

desirable estimator, its direct derivation generally involves inverting 

y, which can be tedious; in contrast, with balanced data, the OLSE is 

often easily derived as a simple function of observed means. Moreover, the 

equality BLUE c OLSE for balanced data is broad in scope. For example, (S) 

is true for (1) being not only a fixed effects model, but also a mixed 

model with ~s, or rs, or ~s and rs taken as random effects. Furthermore 

(5), as an example of (6) is also true if (1) is extended by the additional 

of other random effects: in the model y.jk• - ~ +a. + a. + 
1 ~m 1 J 

for example, 

rij + 9k + ~,_ + 4jk + eijk/.m' with ~ and as being fixed effects and all 

other effects being random, (5) is still true. 

We proceed to establish (6) for any mixed model with balanced data. 

To do so we first describe a general mixed model and then give a broad 

definition of balanced data. 
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2. A GENERAL MIXED MODEL 

a. Deaeription 

The-~lements of the mixed model (3) are of two kinds: p and ai that 

are fixed effects, and Pi and eij that are random variables. Recognizing 

the dichotomy of fixed and random effects in a mixed model, we write the 

model equation for a vector of observations l as 

(7) 

where ! is a vector of fixed effects and ~ is a vector of random 

effects, including error terms. The matrices and vectors of (7) are 

partitioned thus: 

X • .... 
and 

!! = u • [u' 
"" -I 

~2 

u' 
-2 

z 
"'Q 

u' 
-q 

z 1 -r 

u' 1' 
""'r 

(8) 

Each !!d for d • 1, 2, f has as its element the hd effects correspond-

ing to the hd levels of the d'th fixed effect (main effect or interaction) 

factor, and 2d is the incidence matrix corresponding to !!d· Similarly, 

u (of p elements) and Z for q • 1, 2, • • •, r-1 are defined for the -q q -q 

random effect (main effect or interaction) factors analogously to !!d and 

2d for fixed effect factors. For q • r, we define u • e, the vector 
-r -

of error terms, and accordingly Z • IN where N is the total number of -r ... 

observations, and p • N. 
r 

Exaaple 2 Using (3) and (4) as the model for a randomized complete 

blocks experiment for a treatments in b blocks, p and [a •••a ]'would be 
1 a 

! 1 and ! 2 of (8), respectively, and [a 1 ••• ab1 and the eij-terms of 

(3) would be 21 and 22 of (8), respectively. 

The variance. and covariance propertie~ of (4) generali~ed to~ are 
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var(u ) 
-q 

for q•l,2, ···,r 
and 

for q ~ q' • 1, 2, 

Hence from (7) the variance-covariance matrix of ~ is 

r 
V • var(~) • var(~~) • E a2 Z Z' 

q•1 q ... q-q 

(9) 

' r 

(10) 

Thus (7) through (10) constitute a description of a general mixed model. 

b. Estiaation 

The OLSE estimator of an estimable function ~~~~of the parameters in 

! in the model (7) will be denoted by OLSE(~'~!) and is, as is 

well-known, 

(11) 

where (~'~) is a generalized inverse of~·~ , i.e., (~'~) is any matrix 

satisfying 

Similarly the BLUE of that same estimable~~~~ is 

(12) 

where ~ is assumed to be positive definite. 

In fixed effects models, ~ • a 2 !, as in (2), whereupon (12) very 

simply reduces to (11), as is well known. An extension to 

V • [(1-p)I + pJ)a 2 is given by McElroy (1967) and, in complete ... ... ... 
generality, Zyskind (1967) has shown that these two estimators are equal, 

if and only if 

for some g (13) 
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Graybill (1976, p. 209) also has this result, restricted to~ of full 

column rank. We use (13) to show for a broad definition of balanced data 

that for mixed models of the form (7) through (10) the BLUE of an estimable 

function of the fixed effects parameters is the same as the OLSE. 

3. BALANCED DATA 

We deal with data categorized by a number.of factors, each of which is 

either a main effects factor (including the possibility of nested main 

effects factors), or an interaction factor representing the interaction of 

two or more main effects factors. Suppose there are m main effects 

factors, with the t'th one having Nt levels, fort • 1, 2, ···, m. Then 

the k'th observation in the "cell" defined by the it'th level (for 

it • 1, ···, Nt) of the t'th main effect fort • 1, ···, m, where there 

are ni i ···i •••i 
1 2 t m 

such observations, is 

ni i •••i ···i . On defining! • [i1 
1 2 t m 

y for i i •• ·i •• ·i k 
1 2 t m 

k .. 1, 2, 

i 2 im]' a typical observa-

tion can then be denoted as yik fork • 1, 2, Furthermore, -
the total number of observations is 

N = p .. 
r 

for N' 

(1' is a row vector of m unities.) 
-m 

... "" [N 1 N • • • N • • • N ) 2 t m 

A tight, rigorous, formal and complete definition of balanced data is 

elusive. Development of such a definition would, as Cornfield and Tukey 

(1956) write, involve"··· systematic algebra {which] can take us deep into 

the forest of notation. But the detailed manipulation will, sooner or 

later, blot out any understanding we may have started with." Nevertheless, 

one formulation of a model that yields a wide class of balanced data 

situations is as follows. It is similar to that used by Smith and Hocking 
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(1978), Searle and Henderson (1979), Seifert (1979), Khuri (1981) and 

Anderson e~ a1. (1984). 

The balanced data models we consider are those that have 

• n Y i. - They also have each ~d and each ~q of (8) being a 

Kronecker product (KP, for brevity) of m + 1 matrices, each of which is 

either an !-matrix or a !-vector; i.e., 

each ~d and each ~q is a KP of m+1 matrices that are each! or ! • (14) 

The occurrence of the !-matrices and !-vectors in these KPs is as - .... 
follows. First, corresponding to the scalar parameter~ in the model is 

~~ which is !N' and so every matrix in its KP is a != 

where * represents the operation of Kronecker multiplication. Second, 

corresponding to u = e is ZN, and so each of the m + 1 matrices in """r ,.., ,.., 

the KP that is Z c IN is an !-matrix: .,_,r ,.., ~ 

* I -n 

Finally, in the KP for each ~d and Z (other than x1 and Z ), the - -q ..., -r 

t'th matrix corresponds to the t'th main effects factor and is !N when 
t 

that factor is part of the definition of the factor corresponding to ~d 

or Z ; otherwise it is !.N . This is for t • 1, • • ·, m. And for all 
-q t 

~d and Z , other than Z , the (m+l)'th matrix in the KP is 1 . 
·- -q -r "'n 

The phrase "part of the definition" demands explanation. It is 

exemplified in the 2-factor model (1), wherein the two main effects factors 

are each part of the definition of the interaction factor. Similarly, if 

nested within an a-factor there is a a-factor then the a-factor is part of 
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the definition of that P-factor. {See also, comments B and C which follow 

··-the examples.} 

Each hd and pq (number of levels in the d'th fixed factor and the q'th 

random factor, respectively) in the balanced data we have defined is the 

product of the numbers of columns in the ! and ! terms in the KP (14) 

that is ~d and ~q· Hence hd is the product of the Nt values for the 

main effects factors that are part of the definition of the d'th fixed 

effect factor; p is a similar product for the q'th random effects 
q 

factor. 

Exawples We give four examples that are each in terms of those of the 

following vectors that are appropriate: 

I! ... [13l,···,ab]' or!!.+ - [au···alb a2l···f32b···llal···aab]', z· 
(yl1 ···r1b r 21 ···r2b···yal ···rab]', and 2• the vector of error terms, 

the same order as ~· Determination of which KPs are X-matrices and -
which are ~-matrices is governed by which factors are defined as fixed 

effects and which are random. This is illustrated for only example (iii). 

(i) One-way classification: yij = p + ai + eij with i•l,···,a and 

j•l,···,n. 

v • (1 * 1 )p + (I * 1 )a + (I * I )e 
~ ~a ~n ~a -n ~a -n (15) 

{ii) Two-way crossed classification, no interaction, and one observation 

per cell: yij - p + ai + aj + eij for i•1,···,a and j•l,···,b. 

(16) 

{iii) Two-way crossed classification, with interaction and n observations 

per cell: yijk. p + ai + aj + yij + eijk with i•l,···,a, jal,···,b and 

k•l, • · · , n. 

v • {1 * 1 * 1 )p + (I * 1 * 1 )a + (1 * I *1 )A 
~ -a -b -n -a -b - -n ... -a· ~b -n ::; -

-- (1 7) 
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Suppose in (17) that elements of ! and z were taken to be random 

effects. Then the terms of (8) for the general mixed model would have the 

following values: 

m•3, f•2 with h1 • N • 1 and ~1 • 1 * !b * 1 for !1 • 11 
1 -a -n 

and h2 • N2 • a and ~2 • I * !b * 1 for !2 • a 
-a "'n ... 

r•3 with p1 • N3 • b and ~1 - 1 * I * 1 for 21 • a 
-a .... b -n ... 

p2 • N2N3 • ab and z - I * I * 1 for 22 - l -2 -a -b -n 

and p3 • N2N3n • abn and z - I * I * I for 23 • e .... 3 -a ... b -n ... 

(iv) Two-way nested classification: yij - 11 + ai + aij + eijk for 

i•1,···,a, j•1, • • •, b and k•l,··•,n. 

l .. (1 * 1 * 1 )J.l + (I * !b * 1 )a + (I * I * 1 >a -a -b ... n -a '""n ... "'a .... b -n -+ 
(18) 

+ (!a * !b * I )e "'n ..... 

co .. ents on the examples. Several comments are in order. (A) In 

every case ~ 1 for J.l is l• a KP of !-vectors; and ~r for! is !• a 

KP of !-matrices. (B) In every case the KP that is the coefficient of ~ 

has only one !-matrix in it, namely I • This is so because, obviously, 
·- "'a 

the definition of ~ involves only ~· The same is true of the coefficient 

of a in (16) and (17). .... (C) In contrast, the KP that is the coefficient 

of a in (18) has two !-matrices, I and Ib. This is because ... a+ 
~+ ~ ~a ~ 

bas elements that represent the nesting of the a-factor within the a-

factor. Thus the a-factor is involved in the definition of a and so the 
-+ 

coefficient of !+ contains !a and !b· Thus the coefficient of a 
-+ 

in (18) is the same as that of z, the interaction term, in (17). Judged 

solely by their coefficients, a and y would therefore appear to be the "'+ I.. 

same. What makes l an interaction term is that both main effect factors 
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that go into defining it are also present on their own in (17), but with 

a ' only one factor that goes into defining it is present on its own in ..... + 

(18), and so e represents nesting. In other words, a factor that looks 
-+ 

like an interaction factor is such when all of its associated main effects 

factors are present in the model; otherwise it is a nested factor. (D) 

Equation (16) is a special case of (17) with z omitted and n•l and hence, 

for example, !a* !b * !n • !a * !b * 1 • !a * !b· 

r 
A final observation concerns V • r a2 Z Z' of (10), based on the 

... q•l q-q-q 

general result that (A* ~)(P ... * g) • ... AP * ... ~Q, ~!ven the necessary con-

formability requirements. Thus, for 1 1' • J being a square matrix of 
"'D""n ""n 

order n with every element unity, we have from (14) that every Z Z' is a KP 
-q-q 

of ! and l matrices. Hence we rewrite (10) as 
r 

V a E a 2 (the KP of I and J matrices that is Z Z') 
q=l q ... - -q-q 

4. ESTIMATION FROM BALANCED DATA 

(19) 

We now show for mixed models as specified in (7)- (10), with balanced 

data as defined in the preceding section, that the BLUE of (12) equals the 

OLSE of (11). We do this by showing that (13) is satisfied for V of (19) ... 
and X • {2d}, d • 1,···,f of (14) with 2d being a KP of !-matrices 

and 1-vectors • ... 
Writing W for Z Z' of (19) we have 

-q -q-q 

W "' Z Z' • (W * W * · · · * W * · · · * W ) • -q -q-q "'q1 -q2 -qt -q,m+l 

m+l 

* w -qt 
t•1 

(20) 

where, from (19) each W is either an I or a J matrix. Similarly, -qt ... ... 

from (8), 

with X • 
-d 

where each ~dt is either fN _ or !N . Then from (19) 
t t 

m+l 
*X 

-dt 
t-=1 

(21) 
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r d•f 
VX • { E a2 Z Z'X } 
~ q-q-q-d 

q•l d•l 

where, by the curly braces notation, we mean that Y! is partitioned into~,_a 

row of f sub-matrices. Thus 

VX• -- (22) 

( 23) 

Now in (20), W is either I or J, and in (21) each Xd is either -qt ... - .... t 

r or L· all of order ~t· Therefore the four possible values of the 

product W X together with the definition of a matrix M d such 
-qtctt' -q t 

that ~qt~dt = ~dt~qdt in each case, are as follows: 

w 
-gt ~dt W X 

-gt-dt 
=X M 

-dt-gdt 
M 
-gdt 

I I I .. II I .... .... -- .... 

I 1 1 "' 11 1 .... .... - -
J I J = IJ J .... .... - -- .... 

J 1 Nt! = IN Nt .... .... t 

Therefore from (23) 

( 24) 

( 25) 

for 

M •M *M *···*M *"·*M -qd -qd1 -qd2 -qdt -q,d,m+l (26) 

Derivation both of (23) from (22) and of (25) from (24) is based both on 

Xd and M each being a KP, and on the product rule for KP quoted 
- -q 

earlier. 
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The conformability requirements of the.regular products in (24) might 

seem to be lacking because, from the preceding table, two forms of ~qdt 

are scalars. However, both regular and Kronecker products of matrices do 

exist when one or more of the matrices is a scalar; e.g., for scalar 9, 

both ~8 and (~ * J!H e * !!) • ~9 * !!!! exist. Therefore (25) 

exists. Hence, on writing 

r d•f 
g • diag{ E a2 ~ d} 

q•l q q d•l 

r 
the block diagonal matrix of matrices E a~~qd' we get from (25) 

q•l 

0 -

0 ... 

(27) 

Thus Zyskind's condition of (13) is satisfied. Hence, with balanced data 

as here defined, the BLUE of an estimable function of the fixed effects in 

any mixed model is the same as the OLSE. 
r 

A final note: each sum E a2 M in (27) does exist because, as a re­
q•l q-qd 

sult of (26), the order of M dis the product of the orders of M d for -q -q t 

t • 1, ···, m+l; and (from the Table) each M is square of order either -qdt 

Nt or 1. Furthermore, that order is Nt only when ~dt • !; and this is 

so only when the t'th main effects factor is involved in defining the d'th 

fixed effects factor. Hence the order of M is the product of such Nt -qd 
r 

values, and this is hd; thus M has order hd for all q and so E a 2 M 
-qd q•l q-qd 

exists. 



-14-

Exaaple Suppose in (1) and (17) that the tis and ys are random 

effects. Then 

and 

V • a 2 (J *I * J ) + a 2 (I *I * J ) + a 2 (I *I *I ) - a -a -b -n y -a -b -n e -a -b -n 
Hence in VX the first sub-matrix is --
V(1 * 1 * 1 ) • a 2(a1 * 1 * n1 ) + a 2(1 * 1 * n1 ) + a2(I * 1 * 1 ) 
- -a -b -n a -a -b -n y -a -b -n e -a -b -n 

• (1 * 1 * 1 )[a2 (a * 1 * n) + a 2 (1 * 1 * n) + a 2 (1 * 1 * 1)] (28) -a -b -n a y e 

Similarly, the second sub-matrix of VX is 

V(I * 1 * 1 ) a a 2 (J * 1 * n1 ) + a 2 (I * 1 * n1 ) + a 2 (I * 1 * 1 ) 
- -a -b -n a -a -b -n y -a -b -n e -a -b -n 

• (I * 1 * 1 )[a2 (J * 1 * n) + a 2 (I * 1 * n) + a 2 (I * 1 * 1)] . (29) -a -b -n a -a y -a e -a 

Hence 

vx c [1 * 1 * 1 ~~ ~a ~b ~n :,] [~1 .,. X 
- 0 .... 

for ~1 and ~2 being the matrices in square braces in (28) and (29), 

respectively, namely 

and 
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