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Abstract 
 

While NoCs are efficient in delivering high 

throughput point-to-point traffic, their multi-hop 

operation is too slow for latency sensitive signals. In 

addition, NoCS are inefficient for multicast operations. 

Consequently, although NoCs outperform busses in 

terms of scalability, they may not facilitate all the 

needs of future SoCs. In this paper, the benefit of 

adding a global, low latency, low power shared bus as 

an integral part of the NoC architecture is explored. 

The Bus-enhanced NoC (BENoC) is equipped with a 

specialized bus that has low and predictable latency 

and performs broadcast and multicast.  We introduce 

and analyze MetaBus, a custom bus optimized for such 

low-latency low power and multicast operations. We 

demonstrate its potential benefits using an analytical 

comparison of latency and energy consumption of a 

BENoC based on MetaBus versus a standard NoC. 

Then, simulation is used to evaluate BENoC in a 

dynamic non-uniform cache access (DNUCA) 

multiprocessor system.
†
   

 

1. Introduction 
 

Novel VLSI literature promotes the use of a multi-

stage Network-on-Chip (NoC) as the main on-chip 

communication infrastructure (e.g.,  [2],  [4],  [6]). NoCs 

are conceived to be more cost effective than buses in 

terms of traffic scalability, area and power in large 

scale systems  [3]. Thus, NoCs are considered to be the 

practical choice for future CMP (Chip Multi-Processor) 

and SoC (System on Chip) system communication.  

The majority of the traffic delivered by the 

interconnect in SoC and CMP systems involves latency 

insensitive, point-to-point, large data transfers such as 

DMA memory replication. However, other kinds of 

communication   should   also   be   facilitated   by   the 

 

 

interconnect.  Examples include L2 cache read 

requests, invalidation commands for cache coherency, 

interrupt signals, cache line search operations, global 

timing and control signals and broadcast or multicast 

valid recourses query. Although the volume of traffic 

of these operations is relatively small, the manner in 

which the interconnect supports them heavily affects 

the performance of the system due to their latency 

sensitive nature. While interconnect architectures 

which solely rely on a network are cost effective in 

delivering large blocks of data, they have significant 

drawbacks when other services are required. Multi-hop 

networks impose inherent multi-cycle packet delivery 

latency on the time-sensitive communication between 

modules. Moreover, advanced communication services 

like broadcast and multicast incur prolonged latency 

and involve additional hardware mechanisms or 

massive duplication of unicast messages.  

Current NoC implementations are largely distributed 

(borrowing concepts from off-chip networks). We 

argue that the on-chip environment provides the 

architect with a new and unique opportunity to use "the 

best of both worlds" from the on-chip and the off-chip 

worlds. In particular, communication schemes that are 

not feasible in large scale networks become practical, 

since on-chip modules are placed in close proximity to 

each other. Consequently, we propose a new 

architecture termed BENoC (Bus-Enhanced Network 

on-Chip) composed of two tightly-integrated parts: a 

low latency, low bandwidth specialized bus, optimized 

for system-wide distribution of control signals, and a 

high performance distributed network that handles 

high-throughput data communication between module 

pairs (e.g., XPipes  [2], QNoC   [4], AEthereal  [6]). We 

also propose an implementation of a BENoC bus 

termed MetaBus, optimized for low latency and 

multicast, that is used throughout the paper. As the bus 

is inherently a single hop, broadcast medium, BENoC 

is shown to be more cost-effective than pure network-

based interconnect. Fig. 1 demonstrates BENoC for a 

cache-in-the-middle CMP. In this example, a grid 

shaped NoC serves point-to-point transactions, while  

______________________________________________________________________________ 
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Figure 1. A BENoC-based CMP system - 16 

processors and 4x4 L2 caches. 
 

global, time critical control messages are sent using the 

bus. 

BENoC's bus (e.g. MetaBus) is a synergetic media 

operating in parallel with the network, improving 

existing functionality and offering new services. In 

previous NoC proposals that include a bus (e.g.,  [10], 

 [11]) the bus typically serves as a local mechanism in 

the interconnect geographical hierarchy. In  [11], each 

cluster of modules uses a shared bus for intra-cluster 

traffic while inter-cluster traffic uses the network. This 

way, the delivery of data to short distances does not 

involve the multi-hop network.  [10] suggests a bus-

NoC hybrid within a uniprocessor system. By replacing 

groups of adjacent links and routers with fast bus 

segments performance is improved. However, the data 

which is delivered over the network is also delivered 

over the bus. In contrast, BENoC's bus is used to send 

messages that are different than those delivered by the 

network, such as control and multicast messages. 

This paper also introduces the benefit of BENoC for 

facilitation cache access, coherency and search in CMP 

systems. In particular the searching for migrating cache 

lines in CMP DNUCA (Dynamic Non-Uniform Cache 

Architecture). More services of the built-in bus include 

NoC subsystem control, multicast, anycast and 

convergecast services.  

The paper is organized as follows: in Section 2, we 

discuss possible usages of the BENoC architecture. In 

section 3 we introduce MetaBus – a BENoC custom 

bus implementation. MetaBus employs a novel 

combination of a tree topology and a power saving 

masking mechanism that disables signal propagation 

toward unused tree leaves. In section 4 we analyze 

MeatBus based BENoC latency and energy 

consumption and show its advantage over conventional 

NoC. Our latency model is confirmed using a layout 

implementation described in this section. In section 5 

we analyze the power saving benefits of the masking 

mechanism. In section 6 we evaluate the proposed 

architecture using network modeler simulation. Section 

7 concludes the paper.  

2. BENoC Service 
 

BENoC is composed of two tightly related parts: a 

packet switched network (e.g., Xpipes[2], QNoC [4], 

AEthereal [6]) for point-to-point massive data 

transfers, and MetaBus that functions as a low latency 

broadcast/multicast/unicast media. MetaBus is used for 

NoC subsystem control, propagation of critical signals 

and special custom services. In this section we describe 

some of the benefits of using BENoC. 

 

2.1 BENoC for latency sensitive signaling 
 

In typical NoC-based systems, packets that traverse 

a path of multiple hops suffer from high latency, due 

the routers switching and routing delays accumulated 

along its way. This latency is often unacceptable for 

short but urgent signaling messages required for the 

timely operation of the system. This is stated many 

times as one of the main obstacles for an early adoption 

of a NoC-based architecture. MetaBus, designed for 

low bandwidth and short latency, offers a valuable 

alternative: urgent messages may be sent over the bus, 

traversing only a single arbitration stage. This enables 

quick delivery of time critical signals between modules. 

 

2.2 BENoC multicast services 
 

BENoC enables efficient implementation of 

advanced communication services. For example, a SoC 

may include multiple specialized resources distributed 

across the chip (e.g., DSP processors, ALUs, 

multipliers, memory banks). A processor may wish to 

send a task to one (or more) of these resources. Hence, 

the processor needs to know which of them are idle. As 

an alternative to extensive probing, BENoC can 

integrate an anycast service where a task is delivered 

obliviously to one of the idle resources. For instance, 

the processor may initiate a bus multicast destined at 

"any idle multiplier". In response, idling multipliers 

may arbitrate for the bus and send back their ID, while 

the data itself is delivered point-to-point over network. 

Even more sophisticated buses may include a 

convergecast mechanism that facilitates the efficient 

collection of acknowledgements or negative responses 

back to the initiator. Finally, the most basic service 

provided by the bus is a multicast (broadcast) 

operation: In order to deliver a message from one 

source to a group of (all) destinations using a basic 

NoC, the sender needs to generate multiple unicast 

messages [5]. While NoCs may include a built-in 

multicast mechanism (e.g., [7]), it will fall behind the 

simplicity and low latency of the proposed bus. 



2.3 BENoC for CMP cache 
 

A broadcast operation is valuable in shared memory 

CMP systems. Typically, each of these processors is 

equipped with a local (L1) cache and they all share a 

distributed L2 cache (Figure 1). In order to facilitate 

cache coherency, the system should provide a 

mechanism that prevents applications from reading 

stale data. More specifically, when a processor issues a 

read exclusive (i.e., read for ownership) command to 

one of the L2 caches, all other processors holding a 

copy of that cache line should invalidate their local 

copy, as it no longer reflects the most updated data. 

Such invalidation signal is best propagated using a 

broadcast/multicast service. As wire latency becomes a 

dominant factor, the L1 miss penalty is heavily affected 

by the distance between the processor and the L2 cache 

bank holding the fetched line. This observation gave 

rise to the DNUCA (Dynamic Non-Uniform Cache 

Architecture) approach: instead of having a few 

statically allocated possible L2 locations, cache lines 

are moved towards processors that access them [8], [9]. 

One of the major difficulties in implementing DNUCA 

is the need to lookup cache lines: whenever a processor 

needs to conduct a line fill transaction (fetch a line into 

its L1 cache), it needs to determine the identity of the 

L2 cache bank/processor storing its updated copy. As 

described above, in a network-based interconnect, the 

line can be looked for using multiple unicast probes. 

BENoC offers a more efficient alternative: MetaBus 

can be used to broadcast the query to all cache banks. 

The particular cache storing the line can acknowledge 

the request over the bus and simultaneously send the 

line's content over the NoC. As queries include small 

meta-data (initiating processor's ID and line's address), 

they do not create substantial load on MetaBus. 
 

2.4 BENoC for system management 
 

MetaBus can also facilitate the configuration and 

management of the NoC itself. For example, when 

changing the system's operation mode ("usecases" in 

[12]), the network may need to be configured. Such a 

configuration may include updating routing tables, 

adjusting link speeds and remapping the system 

modules address space. It may also be desirable to shut 

off parts of the NoC when they are not used for a long 

time in order to save power. Interestingly, although 

these operations are not performed during the run-time 

of the system, they should be handled with extreme 

care, since the configuration of network elements may 

interfere. For example, if a configuration packet turns 

off a certain link (or a router), other configuration 

messages may not be able to reach their destination due 

to "broken paths." Similarly, trying to update routing 

table while the network is being used to deliver other 

configuration messages is problematic. Alternatively, 

configuration can be done via MetaBus making the 

configuration and management process much simpler.  

 

3. MetaBus implementation 
 

In this section we present MetaBus – a custom bus 

for BENoC. The design principles and guidelines are 

presented first, followed by bus architecture, control 

mechanisms and communication protocol. 

 

3.1 MetaBus Architecture  
 

MetaBus serves as a low-bandwidth complementary 

bus aside a high-bandwidth network. Conventional 

system busses (e.g. [20], [21], [22]) are too expensive 

in terms of area, power and system complexity for the 

limited bus tasks in the BENoC architecture. Thus, 

MetaBus does not utilize segmentation, spatial reuse, 

pipelining, split transactions and other costly 

throughput boosting mechanisms. MetaBus should 

pose a low, predictable latency communication medium 

that outperforms the network in terms of power and 

latency for short unicast, broadcast and multicast 

transactions.  

MetaBus is constructed as a tree (not necessarily 

binary or symmetric) with the communicating modules 

on its leaves (Fig 2). The bus is comprised of a root 

and "bus stations" on the internal vertices of the tree. 

Bus access is regulated by the well known Bus Request 

(BR) – Bus Grant (BG) interface. For example, if, 

module 2 wishes to transmit a metadata packet to 

module 9, it issues a bus request that propagates 

through the bus stations up to the root. The root 

responds with a bus grant that propagates all the way 

back. At this stage of the transaction a combinatorial 

path between the transmitting module and receiving 

modules is built up. When the bus grant is received, 

module 2 transmits an address flit that is followed by 

data flits. These flits first go up to the root and then are 

spread throughout the tree (broadcast) or through 

selected branches (unicast or multicast).  

A masking mechanism that is mastered by the root 

and configured according to the address flit, prevents 

the data from reaching unnecessary tree branches and 

thus saves power in unicast and multicast transactions. 

After the reception of all valid data flits, the receiver 

(module 9) releases the bus by an acknowledgement to 

the root and a new transaction may take place.   

  



 
Figure 2. An example of a 9 modules MetaBus. 

 

MetaBus data and its control signals are 

synchronized with a bus clock that is connected only to 

the root and to the modules in the leaves of the tree. 

Bus stations are clocked by a Bus Grant signal from the 

level above them. 

 

3.1.1 Arbitration. The proposed bus utilizes a 

distributed arbitration mechanism. The BR/BG 

interface is used between all bus units including 

modules, bus stations and the root. A requesting bus 

station, if granted, will pass a BG to one of its 

descendant vertices. The arbitration block in the bus 

stations (Fig. 3) uses the BG input as a clock for its 

edge sensitive arbitration state machine. The proposed 

mechanism enables arbitration priorities adjustments by 

placing higher priority modules in higher tree levels or 

manipulating specific bus stations arbitration logic.  

 

 
Figure 3. Arbitration and data switch block in a 

binary bus station and their connectivity. 
 
3.1.2 Data Path. MetaBus data path is combined of 

two parts – from the transmitter to the root and from 

the root to the receivers. A combinatorial route 

between the data sending module and the root is 

established during bus grant and propagates down to 

the transmitter by data switches in the bus stations (Fig. 

3). From the root down, the data propagates to the 

designated recipients and is blocked from arriving to 

irrelevant modules by a masking mechanism described 

in the next sub-section. Once established, there is a 

combinatorial data path between the transmitter and the 

receivers. The delay of this path defines the minimum 

clock period for the bus. 

 
3.1.3 Masking. In conventional busses, data reach all 

the receivers connected to the bus (or to a bus segment) 

even in unicast transactions. The masking mechanism's 

role is to save power by preventing the data to reach 

unnecessary modules. 

 

 
Figure 4. Masking Concept. 

 

The mask control logic is located in the root and 

controls data propagation from the root down using a 

dedicated line to every bus station. In Figure 4 module 

3 transmits data to modules 1 and 5. Due to masking, 

the data do not reach 6 of the 7 non-recipient modules, 

saving redundant switching of wires and gates. 

  

3.1.4 Addressing. Unlike conventional system busses, 

MetaBus does not include a separate address bus for 

simplicity and area reduction. We dedicate the first 

word of every transaction for the destination address, 

which is consistent with the NoC addressing scheme. 

Transactions lengths are either constant or defined by 

the sender using an End Of Transaction signal. We 

allocate part of the address space to define commonly 

used pre-defined multicast sets. For instance if the data 

bus width is 8 (K=8) and we have a 64 modules 

system, we have 192 possible addresses for pre-defined 

multicast sets (one of them is broadcast). This scheme 

is similar to the multicast address convention in 

Ethernet and IP. 

 

3.1.5 Acknowledge signals. The bus supports two 

feedback signals – Ack and Nack. Each module has 

active high Ack and Nack outputs that are joined with 

AND gates in the bus stations and form a global Ack 

and a global Nack that are generated in the root. Since 

the bus is acting as a fast, low-bandwidth metadata 

transmission medium aside a high bandwidth network, 

many of the signals delivered through the bus may 

trigger a response through the NoC. The Ack and Nack 



may be used to distinguish between the case when the 

transmitter is supposed to receive data through the NoC 

(Ack) and the case when all the recipients intercepted 

the current message and free the bus (Nack).  

 

3.2 State machine and communication protocol 
 

In this sub-section we present a communication 

protocol for a variable length transaction bus with a 

data valid line. The proposed bus is clocked at the root 

and the modules in the leaves. The bus state machine is 

implemented in the arbitration unit in the root and is 

presented in figure 5. The events sequence starts from 

the "Wait for BR" state. As soon as one of the modules 

issues a bus request by setting its BR high, one of root's 

BR inputs goes high. Root arbitration unit issues a BG 

to one of the children that requested the bus according, 

for example, to a round robin principle. Once BG is 

issued, the root waits for the first word from the 

transmitter. This word includes the address of the 

receiver or a multicast set and is marked with a data 

valid signal. Then, according to address decoding, 

mask lines are activated. Following the masking, data is 

transmitted until sender sets data valid bit to "0". Next, 

the root de-asserts the mask by masking all the bus 

again, waits for Ack or Nack, de-asserts BG timed 

according to the received acknowledgement type and 

passes again to BR wait state.   

We dedicate half of the bus clock cycle for 

interactions between the modules and the root (bus 

grant propagation, address word decoding, 

acknowledgement, masking setting, etc.) and a full 

clock cycle for data transmission between 

communicating modules. Under these assumptions 

each transaction requires 3 clock cycles for arbitration, 

addressing, masking and acknowledgement processes. 

For each transaction we define the  transaction latency 

as the number of bus clock cycles required from bus 

request of the transmitter until the last data word 

clocked  by the receiver. In the proposed protocol, a K 

data words transaction latency is K+2.5 clock cycles.   

 

 
Figure 5. Bus state machine. * - BG goes low 

according to acknowledge type. 

4. Latency and power analysis 
 

For simplicity, the NoC (including the NoC part of 

BENoC) is assumed to have a mesh topology, where 

system modules are square tiles. The following notation 

is used: n  is  The number of modules in the system, 

∆V is the logic voltage swing, C0 and R0 are the 

capacitance and resistance of wires per millimeter of 

length and P is tile size [mm]. The number of global 

wire segments between the modules and the root is 

denoted by BD, and LW is the data link width in bits. 

The minimal clock period for MetaBus is the sum of 

all segment latencies along the data path. The NoC 

latency is the number of NoC clock cycles required to 

complete a given wormhole transaction. Our power 

dissipation analysis takes into account the switching of 

global wires and their drivers, for both the NoC and 

MetaBus. Local logic power dissipation is neglected. 

 We define 
inv invR Cτ �  as the technology time 

constant, where Rinv and Cinv are the input capacitance 

and the effective output resistance of an inverter. 

Assuming that the load capacitance Cdriver at the end of 

each wire segment on the bus is a driver of another 

identical segment, we get an upper bound for the bus 

segment delay   [13],[14]: 

( )
0.7 0.4

Wire Driver
Wire Driver Wire Wire

Driver

C C
T R C R C

C

τ +
= + + 

 

(1) 

If the capacitance driven by the wire is a small gate 

such as in a NoC link, the load is negligible, and the 

delay becomes:  

               0.7 0.4Wire Wire Wire

Driver

T C R C
C

τ
= +                 (2) 

For the latency and energy of transactions in a NoC-

based system, we assume that a broadcast is composed 

of multiple unicast messages. Since an average unicast 

message has to travel n  modules away from the 

source, the minimal time to complete the unicast is: 

                  
,net uni CiR Nclk Nclk flitsT nN T T N= +                   (3)  

Where TNclk stands for NoC clock period, NCiR for the 

router latency in clock cycles and Nflits for the number 

of flits per transaction. In Broadcast, we assume that 

the first messages are sent to the most distant modules, 

and the last ones to the nearest neighbors. We assume 

that the source transmits a flit every NoC clock cycle:  

                 
,net broad Nclk flitsT n T N≈ ⋅                            (4)   

Note that the NoC latency approximations used do 

not account for network congestion, and thus, may 

underestimate the realistic values.   

Assuming a NoC link is P millimeters long, its 

resistance and capacitance are 
0NLR P R= ⋅  and 

0NLC P C= ⋅ . We use (2) to find the appropriate NoC 



driver strength CND. Therefore, the NoC link delay is 

equal to one half of NoC clock cycle under the 

assumption that between two routers, data is sent and 

received on opposite network clock edges.  The input 

capacitance of the routers is neglected since this is a 

capacitance of a driver that drives an internal logic, and 

therefore is small. We get:  

                  0.7

0.5 0.4

NL
ND

Nclk NL NL

C
C

T R C

τ
=

−

                  (5) 

In order to calculate the total energy required for 

NoC broadcast, the number of packet transmissions is 

determined. In a regular mesh, a source node may have 

at most 8 modules at a distance of one, 16 modules two 

hops away, 24 modules three hops away and so on. In 

the energy-wise best case, the broadcasting module is 

located exactly in the middle of the mesh. It therefore 

has to send 8 messages that would each travel a single 

link each, 16 messages that travel two links, and in 

general, 8j messages to a distance of j hops, until 

transmitting a total of n-1 messages. It can be easily 

shown that if n  is an integral, odd number, then the 

Manhattan distance between the module in the middle 

of the mesh and the ones in its perimeter is exactly 

( )max 1 / 2D n= − . Since a message transmitted to a 

destination j hops away has to traverse j router-to-

router links, the minimal number of transmissions 

required to complete the broadcast is 
max

2
max max

0

8 1 16 2 24 3 ... 8 8
D

j

K D D j
=

= ⋅ + ⋅ + ⋅ + + ⋅ = ∑       (6) 

Consequently, the lower bound of the total energy 

consumed by a single broadcast operation would be:              

               ( )2
net flits NL NDE V N K C C= ∆ +              (7) 

An average network unicast transaction would 

comprise of ( )max 1 / 2D n= −  hops, therefore:  

   ( )
( )2

,

1

2
net uni flits W NL ND

n
E V N L C C

 −
 = ∆ +
 
 

       (8) 

Note that (7) and (8) underestimate the NoC energy 

consumption since in-router power is neglected.       

Similarly, we estimate the latency, and energy 

consumption for MetaBus. The data path is comprised 

of two parts – from the transmitter up to the root, and 

from the root down to the receivers. The die size is 

defined as PD=√nP. We assume that the average hop 

distance between the modules and the root is PD/2 and 

that the bus stations are uniformly spread along this 

distance. An average data link segment length between 

two bus units would be PD/2BD.  

The actual structure of the first part of the MetaBus 

data path (from the modules up to the root) is 

illustrated in figure 6. The second part of the data path 

(from the root down) differs with the fan-out of each 

bus station. Moreover, the data switch is replaced with 

a masking gate that drives the same driver, but this 

difference does not change the delay according the 

model we use (1). The model of a driver that drives a 

wire with an identical driver in its end, implies an 

upper delay bound for the second part of the data path 

since the capacitances of the large drivers are loaded 

simultaneously by the input gates of the bus stations.   

The first data path part is identical for both 

broadcast and unicast transactions, data goes through 

BD global wire segments. The energy required for this 

part is given by: 

              ( )2
, ,bus up flits D BL BD upE V N B C C= ∆ +          (9) 

Where CBL stands for MetaBus data segment 

capacitance and equals to C0PD/(2BD) and CBD,up is the 

capacitance of drivers that drive data segments in the 

first part of the data path.    

 

 
Figure 6. MetaBus modules-to-root bus 

segment. BG's are Bus Grant signals to the next 
bus stations. These signals also control the data 

switch. 
 

In the second data path part data spread from the root 

across the whole tree in broadcast and, using masking, 

propagates to a much smaller set of modules that 

includes the recipient of a unicast (from space 

considerations, multicast is not presented). We 

distinguish between data driver strength of the first part 

and the second part since the driver of the second part, 

potentially drives a larger capacitance by a factor BR, 

where BR is the bus tree rank. We define γ  as the 

"wires overlap factor". This factor is 1 if data wires 

from the root down are physically separated, and it 

asymptotically reaches 1/BR if data wires are separated 

only very near to units that share the same upper level 

unit. The role of this factor is illustrated in figure 7. In 

broadcast, the power consumption for the way down is: 
1

2
, , ,

1 1

D DB B
n n

bus broad down flits BL R BD down R

n n

E V N C B C Bγ
−

= =

 
= ∆ +  

 
∑ ∑ (10) 

Where CBD,down is the same as CBD,up but for the second 

part of the data path (from the root down). 

In a unicast, due to masking, only BR links are 

loaded in every tree level, thus: 

( )( )2
, , ,1bus uni down flits R D BL D BD downE V N B B C B Cγ= ∆ + −   (11) 



 
Figure 7. The parameter gamma describes the 
amount of wire sharing in the MetaBus datapath 
from the root to the leaves (gamma=1 means no 

wire sharing, gamma = 1/2 for maximal wire 
sharing in a tree of rank 2). 

 
We deduce bus data path delay by summing the 

delays of global wires segments. Using (1) we get:  

    

( )

, ,

,

,
,

0.7 0.4

BUS UP D link UP

BL BD up

D BL BD up BL BL

BD up

T B T

C C
B R C R C

C

τ

= ⋅ =

  +
  + +
  

  

    (12) 

  
( )

, ,

, ,

,

0.7 0.4

BUS DOWN D link DOWN

R BL BD down BL BD down
D BL BL

BD down

T B T

B C C R C
B R C

C

τ γ

γ

= ⋅ =

  +
  + +

  
  

 (13) 

Where RBL stands for bus data segment resistance 

and equals to R0PD/(2BD). We find the optimal drivers 

sizing CBD,up and CBD,down by finding the minima of the 

functions in (12) and (13) and get:  

,
BL

BD up opt

BL

C
C

R

τ
− =     

2

,
R BL

BD down opt

BL

B C
C

R

τ γ
− =    (14) 

Consequently, using (12) and (13) with the optimal 

driver sizes from (14) we can get the estimation of the 

MetaBus minimum data path delay: 

 ( ) ( ), , , ,MetaBus BUS UP BD up opt BUS DOWN BD down optT T C T C− −= +     (15) 

A bus transaction requires 1.5 clock cycles for 

arbitration and bus access management before data 

transmission and a single clock cycle afterwards for 

acknowledgement (section 3.3). For latency calculation 

we consider only the first 1.5 cycles, thus, Nflits 

transaction latency would be: 

              ( )1.5flits MetaBusBus Latency N T= +                 (16) 

Using (9), (10), (11), and (14) we can deduce the 

total bus energy consumption for Nflits transaction.  

The derived expressions are valuated using typical 

values for 0.18um technology (C0=243e-15F/mm; 

R0=22Ω/mm; τ =7.5ps ; ∆V=1.5V, [15]). We also 

assume a die size PD=10mm, γ=0.3 (a reasonable 

number for a topology where architecturally close bus 

stations and modules are close topologically as well), 

NoC clock frequency 1/TNclk=1Ghz, data link width 

LW=16, and the number of flits Nflits=3 including the 

address flit, for both MetaBus and NoC cases. 

Analytical results of power dissipation vs. number of 

modules for MetaBus and NoC broadcast and unicast 

transactions are presented in figure 8. MetaBus is 

assumed to be a homogeneous tree with a rank of 4, 

and its drivers were speed optimized according to (14). 

The broadcast transactions latencies of the NoC and 

MetaBus are presented in figure 9. Note that the 

MetaBus latency decreases with the number of modules 

which seems counter intuitive. This happens since the 

bus stations are acting as repeaters along the long 

resistive data interconnect. Calculations for a 64 

modules system are presented in table 1 for future use. 
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Figure 8. Bus and NoC unicast and broadcast 

energy per transaction.  
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Figure 9. Bus and NoC broadcast latencies. 

 

Note that for a reasonable system size, MetaBus 

significantly outperforms the NoC in terms of latency 

for both unicast and broadcast transactions. Therefore, 

BENoC latency should also outperform a NoC with a 

built in broadcast replication mechanism. Our analysis 

predicts MetaBus to also outperform NoC in energy 

consumption for broadcast transactions. 

 

Table 1. 
Energy [nJ] Latency [ns]  

Broad  Uni Broad Uni 

Speed Opt. 

MetaBus  

4.13 1.26  1.98 1.98 

NoC  5.69 0.13 192 27 



Our latency model was verified by simulations using 

extracted layout parameters of a 0.18um process. First 

we constructed a floor-plan of a balanced 64 modules 

binary tree on a 10mmX10mm die (Figure 10). Then 

automated layout and routing with timing optimization 

was performed. Our tools do not perform repeater 

insertion. In addition, although the MetaBus 

infrastructure occupied less than 0.1% of the die area, 

the layout tool did not perform wire sizing and rarely 

used high metal levels. Despite these limitations, by 

deducing average driver strength, wire capacitance and 

resistance per unit of length (C0=130e-15F/mm, R0~1K 

Ω/mm, CBD,UP~3.7e-15F, CBD,DOWN~5.8e-15F) and 

using τ =7.5ps, we estimated  the data-path delay 

using our model and compared the results to the post-

layout timing simulation results. The bus delay 

according our model was ~8.5ns while the minimum 

post layout simulation data-path delay was ~10ns – 

within 15% from the estimation. 

     

 
Figure 10. A 64 modules binary MetaBus floor-

plan. The bus stations are bounded with 
rectangles that were placed by hand. The blue 
thick lines stand for airlines of data links and 

arbitration interfaces between bus-stations and 
form a tree structure. The thin lines are the 

masking wires that go separately from the root to 
each bus-station. 

 

5.  Masking mechanism benefits 
 

In figure 4, the inputs of modules and bus stations 

that are driven with unmasked bus station are counted 

as "active gates". The power calculations consider the 

active gates and the wires power. We define "power 

ratio" as the ratio between the power consumption of 

data transfer from the root to the modules with and 

without the use of the masking mechanism. The power 

consumption of the first data path part is much smaller 

than that of the second data path part, even with 

masking (by a factor of the tree rank for unicast and by 

a higher ratio for multicast and broadcast). Therefore, 

we disregard the first part in our power ratio 

calculations. In terms of active gates this ratio would 

be: 

                           ( )

( )

Active Gates

Total Gates

AG
PR

TG
=

                          (17) 

We also disregard the contribution of the masking 

mechanism to the power consumption since it only 

drives, once in a transaction, a single global line per 

active bus station. 

 

             
                     (a)                                    (b) 
Figure 11. 3 levels trees with a rank of 4. The 4 

highlighted leaves are the recipients. Blue bus 
stations are not masked (active). 

 

For the sake of simplicity, we assume a balanced 

tree. In multicast transactions, the masking mechanism 

power saving efficiency depends on recipient's 

distribution across the tree leaves. Dispersed multicast 

sets utilize non-adjacent bus-stations across the tree, a 

fact that increases the number of active gates (Fig. 11). 

We deduce an analytical lower bound of the number 

of active gates for a given multicast set size (MN). It is 

obvious that the lowest active gate count is achieved if 

modules are arranged from left to right (or vise versa) 

as in figure 11a. In this example, AG starts from 12 and 

jumps by 4 (R=Tree Rank) every 4 modules, by 8 (2R) 

every 16 modules, by 12 (3R) every 64 modules etc. 

Generally, in tree of depth D: 

          

1

1
( ) ( 1)DATA K

K

MN
AG MN R D

R

∞

=

 − 
= − +    

∑
             (18) 

A simulation of power ratio vs. multicast set size for 

256 modules trees with ranks of 2, 4 and 16 was 

performed. For each rank and multicast set size we 

have deduced the average PR of 10,000 different 

random sets. In figure 12 we present the results 

together with the minimum bound analytical results 

from Eq. 18. As expected, the masking mechanism is 

highly effective for unicast and small multicast sets. 

Moreover, if modules are topologically arranged with 

masking and multicast set awareness such as that 

commonly used sets are concentrated topologically in 

the tree, the masking mechanism stays effective even 

for large multicast sets.  
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Figure 12. Average and analytical minimum 

power ratios. 
 

6. Experimental results 
 

In this section, we evaluate the performance of a 

large scale chip multi-processor (CMP) using dynamic 

non-uniform cache access (DNUCA) for the on-chip 

shared cache memory. The cache is comprised of 

multiple banks, as illustrated in Figure 1. We compare 

a classic NoC and a MetaBus based BENoC 

infrastructure. We use the 0.18um technology 

parameters from section 3. Two time-critical operations 

are addressed. The first is a basic line-fill ("read") 

transaction, performed by a processor that reads a line 

into its L1 cache. If an L2 cache has a valid copy of the 

line, it must provide its content to the reading 

processor. If the most updated copy resides in a L1 

cache of another processor, it is asked to "writeback" 

the line. Else, the line is fetched from a lower memory 

hierarchy level (L3 cache or memory). The second 

transaction being addressed is the read-for-ownership 

("read-exclusive") transaction. While similar to the 

basic line-fill operation, it also implies that the reading 

processor wishes to own the single valid copy of that 

line for updating its content. In order to complete the 

transaction, all other L1 copies of the line (held by an 

owning processor or by sharers) must be invalidated. 

In a classic DNUCA implementation, the processor 

has to lookup the line prior to the read/read exclusive 

operation. When a regular NoC is used, the line is 

sought using multiple unicast messages, while in 

BENoC the search is conducted over MetaBus. In this 

work, a distributed directory model is assumed: each 

L2 cache line includes some extra (directory) bits to 

keep track of the current sharers/owner of the line   [1]. 

As explained in Section 2, a static directory would 

render the DNUCA policy useless; hence these bits 

migrate together with the line. The simulated system 

consists of 16 processors and 64 L2 cache tiles (80 

modules in total). The modules are arranged as 

depicted in Fig 1, while the 4x4 cache array is replaced 

by an 8x8 array of banks. The network link is set at 

16Gbits/s (reflecting 1Ghz network clock and 16 bits 

wide links). MetaBus is 16 bits wide with transaction 

latency of 4ns (twice the optimal number from table 1). 

In order to evaluate the proposed technique, a 

combination of two simulators is used. The BENoC 

architecture is simulated using OPNET [16]. The 

model accounts for all network layer components, 

including wormhole flow control, virtual channels, 

routing, buffers and link capacities. In addition, it 

simulates the bus arbitration and propagation latencies. 

The DNUCA system is modeled using the Simics [17] 

simulator running SPLASH-2 and PARSEC 

benchmarks [18] [19].   
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      Figure 13. Performance improvement in 

BENoC compared to a NoC-based CMP for 7 
different applications. Upper (a): average read 
transaction latency [ns]. Lower (b): application 

speed [trans./sec]. 
 

Fig. 13 presents the improvement achieved by the 

BENoC architecture compared to a classic NoC in 

terms of average transaction latency and application 

speedup. Average transaction latency is 3-4 times 

lower in BENoC (Fig. 13a). Fig. 13b depicts 

application execution speed in terms of read 

transactions/sec. On average, BENoC introduced an 

execution speedup around 300%. The FACESIM 

benchmark was accelerated only by 3% since it 

produces relatively little coherency traffic.    

(a) 

(b) 



7. Summary 
 

The BENoC architecture, described in this paper, 

combines a customized bus with a NoC for getting the 

best of two worlds: the low latency and broadcast 

capability inherent in the bus, together with the spatial 

reuse and high throughput of the network. The 

customized bus can circumvent most weaknesses of the 

NoC, since critical signals which require low latency 

are typically comprised of just a few bits. Similarly, the 

complexity and cost of broadcast operations in the NoC 

can be avoided by using the bus, because only short 

metadata messages are usually transmitted in broadcast 

mode.. Operations requiring global knowledge or 

central control can be readily implemented on the bus, 

and typically do not involve massive data transfer. The 

bus can also support specialized operations and 

services, such as broadcast, anycast and convergecast, 

which are important for common operations such as 

cache line search and cache invalidation. BENoC is 

superior to a classical NoC in terms of delay and 

power. In addition to the BENoC concept, a 

customized and power/latency optimized bus termed 

MetaBus was presented. Our analysis shows that a 

BENoC using a MetaBus is more advantageous than a 

traditional NoC even for a relatively small system size 

of 10-20 modules, and the advantage becomes very 

significant as system size grows. Consequently, 

BENoC type architectures introduce a lower risk and a 

faster migration path for future CMP and SoC designs. 
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