
Best of Both Worlds: A Bus Enhanced NoC (BENoC)

Ran Manevich
1
, Isask'har Walter

1
, Israel Cidon

2
, and Avinoam Kolodny

2

Electrical Engineering Department, Technion – Israel Institute of Technology, Israel
1
{ranman,zigi}@tx.technion.ac.il

2
{cidon,kolodny}@ee.technion.ac.il

Abstract

While NoCs are efficient in delivering high

throughput point-to-point traffic, their multi-hop

operation is too slow for latency sensitive signals. In

addition, NoCS are inefficient for multicast operations.

Consequently, although NoCs outperform busses in

terms of scalability, they may not facilitate all the

needs of future SoCs. In this paper, the benefit of

adding a global, low latency, low power shared bus as

an integral part of the NoC architecture is explored.

The Bus-enhanced NoC (BENoC) is equipped with a

specialized bus that has low and predictable latency

and performs broadcast and multicast. We introduce

and analyze MetaBus, a custom bus optimized for such

low-latency low power and multicast operations. We

demonstrate its potential benefits using an analytical

comparison of latency and energy consumption of a

BENoC based on MetaBus versus a standard NoC.

Then, simulation is used to evaluate BENoC in a

dynamic non-uniform cache access (DNUCA)

multiprocessor system.
†

1. Introduction

Novel VLSI literature promotes the use of a multi-

stage Network-on-Chip (NoC) as the main on-chip

communication infrastructure (e.g., [2], [4], [6]). NoCs

are conceived to be more cost effective than buses in

terms of traffic scalability, area and power in large

scale systems [3]. Thus, NoCs are considered to be the

practical choice for future CMP (Chip Multi-Processor)

and SoC (System on Chip) system communication.

The majority of the traffic delivered by the

interconnect in SoC and CMP systems involves latency

insensitive, point-to-point, large data transfers such as

DMA memory replication. However, other kinds of

communication should also be facilitated by the

interconnect. Examples include L2 cache read

requests, invalidation commands for cache coherency,

interrupt signals, cache line search operations, global

timing and control signals and broadcast or multicast

valid recourses query. Although the volume of traffic

of these operations is relatively small, the manner in

which the interconnect supports them heavily affects

the performance of the system due to their latency

sensitive nature. While interconnect architectures

which solely rely on a network are cost effective in

delivering large blocks of data, they have significant

drawbacks when other services are required. Multi-hop

networks impose inherent multi-cycle packet delivery

latency on the time-sensitive communication between

modules. Moreover, advanced communication services

like broadcast and multicast incur prolonged latency

and involve additional hardware mechanisms or

massive duplication of unicast messages.

Current NoC implementations are largely distributed

(borrowing concepts from off-chip networks). We

argue that the on-chip environment provides the

architect with a new and unique opportunity to use "the

best of both worlds" from the on-chip and the off-chip

worlds. In particular, communication schemes that are

not feasible in large scale networks become practical,

since on-chip modules are placed in close proximity to

each other. Consequently, we propose a new

architecture termed BENoC (Bus-Enhanced Network

on-Chip) composed of two tightly-integrated parts: a

low latency, low bandwidth specialized bus, optimized

for system-wide distribution of control signals, and a

high performance distributed network that handles

high-throughput data communication between module

pairs (e.g., XPipes [2], QNoC [4], AEthereal [6]). We

also propose an implementation of a BENoC bus

termed MetaBus, optimized for low latency and

multicast, that is used throughout the paper. As the bus

is inherently a single hop, broadcast medium, BENoC

is shown to be more cost-effective than pure network-

based interconnect. Fig. 1 demonstrates BENoC for a

cache-in-the-middle CMP. In this example, a grid

shaped NoC serves point-to-point transactions, while

__

†A preliminary concise version of this work was published in IEEE

Computer Architectures Letters, Volume 7, Issue 1, 2008.

Figure 1. A BENoC-based CMP system - 16

processors and 4x4 L2 caches.

global, time critical control messages are sent using the

bus.

BENoC's bus (e.g. MetaBus) is a synergetic media

operating in parallel with the network, improving

existing functionality and offering new services. In

previous NoC proposals that include a bus (e.g., [10],

 [11]) the bus typically serves as a local mechanism in

the interconnect geographical hierarchy. In [11], each

cluster of modules uses a shared bus for intra-cluster

traffic while inter-cluster traffic uses the network. This

way, the delivery of data to short distances does not

involve the multi-hop network. [10] suggests a bus-

NoC hybrid within a uniprocessor system. By replacing

groups of adjacent links and routers with fast bus

segments performance is improved. However, the data

which is delivered over the network is also delivered

over the bus. In contrast, BENoC's bus is used to send

messages that are different than those delivered by the

network, such as control and multicast messages.

This paper also introduces the benefit of BENoC for

facilitation cache access, coherency and search in CMP

systems. In particular the searching for migrating cache

lines in CMP DNUCA (Dynamic Non-Uniform Cache

Architecture). More services of the built-in bus include

NoC subsystem control, multicast, anycast and

convergecast services.

The paper is organized as follows: in Section 2, we

discuss possible usages of the BENoC architecture. In

section 3 we introduce MetaBus – a BENoC custom

bus implementation. MetaBus employs a novel

combination of a tree topology and a power saving

masking mechanism that disables signal propagation

toward unused tree leaves. In section 4 we analyze

MeatBus based BENoC latency and energy

consumption and show its advantage over conventional

NoC. Our latency model is confirmed using a layout

implementation described in this section. In section 5

we analyze the power saving benefits of the masking

mechanism. In section 6 we evaluate the proposed

architecture using network modeler simulation. Section

7 concludes the paper.

2. BENoC Service

BENoC is composed of two tightly related parts: a

packet switched network (e.g., Xpipes[2], QNoC [4],

AEthereal [6]) for point-to-point massive data

transfers, and MetaBus that functions as a low latency

broadcast/multicast/unicast media. MetaBus is used for

NoC subsystem control, propagation of critical signals

and special custom services. In this section we describe

some of the benefits of using BENoC.

2.1 BENoC for latency sensitive signaling

In typical NoC-based systems, packets that traverse

a path of multiple hops suffer from high latency, due

the routers switching and routing delays accumulated

along its way. This latency is often unacceptable for

short but urgent signaling messages required for the

timely operation of the system. This is stated many

times as one of the main obstacles for an early adoption

of a NoC-based architecture. MetaBus, designed for

low bandwidth and short latency, offers a valuable

alternative: urgent messages may be sent over the bus,

traversing only a single arbitration stage. This enables

quick delivery of time critical signals between modules.

2.2 BENoC multicast services

BENoC enables efficient implementation of

advanced communication services. For example, a SoC

may include multiple specialized resources distributed

across the chip (e.g., DSP processors, ALUs,

multipliers, memory banks). A processor may wish to

send a task to one (or more) of these resources. Hence,

the processor needs to know which of them are idle. As

an alternative to extensive probing, BENoC can

integrate an anycast service where a task is delivered

obliviously to one of the idle resources. For instance,

the processor may initiate a bus multicast destined at

"any idle multiplier". In response, idling multipliers

may arbitrate for the bus and send back their ID, while

the data itself is delivered point-to-point over network.

Even more sophisticated buses may include a

convergecast mechanism that facilitates the efficient

collection of acknowledgements or negative responses

back to the initiator. Finally, the most basic service

provided by the bus is a multicast (broadcast)

operation: In order to deliver a message from one

source to a group of (all) destinations using a basic

NoC, the sender needs to generate multiple unicast

messages [5]. While NoCs may include a built-in

multicast mechanism (e.g., [7]), it will fall behind the

simplicity and low latency of the proposed bus.

2.3 BENoC for CMP cache

A broadcast operation is valuable in shared memory

CMP systems. Typically, each of these processors is

equipped with a local (L1) cache and they all share a

distributed L2 cache (Figure 1). In order to facilitate

cache coherency, the system should provide a

mechanism that prevents applications from reading

stale data. More specifically, when a processor issues a

read exclusive (i.e., read for ownership) command to

one of the L2 caches, all other processors holding a

copy of that cache line should invalidate their local

copy, as it no longer reflects the most updated data.

Such invalidation signal is best propagated using a

broadcast/multicast service. As wire latency becomes a

dominant factor, the L1 miss penalty is heavily affected

by the distance between the processor and the L2 cache

bank holding the fetched line. This observation gave

rise to the DNUCA (Dynamic Non-Uniform Cache

Architecture) approach: instead of having a few

statically allocated possible L2 locations, cache lines

are moved towards processors that access them [8], [9].

One of the major difficulties in implementing DNUCA

is the need to lookup cache lines: whenever a processor

needs to conduct a line fill transaction (fetch a line into

its L1 cache), it needs to determine the identity of the

L2 cache bank/processor storing its updated copy. As

described above, in a network-based interconnect, the

line can be looked for using multiple unicast probes.

BENoC offers a more efficient alternative: MetaBus

can be used to broadcast the query to all cache banks.

The particular cache storing the line can acknowledge

the request over the bus and simultaneously send the

line's content over the NoC. As queries include small

meta-data (initiating processor's ID and line's address),

they do not create substantial load on MetaBus.

2.4 BENoC for system management

MetaBus can also facilitate the configuration and

management of the NoC itself. For example, when

changing the system's operation mode ("usecases" in

[12]), the network may need to be configured. Such a

configuration may include updating routing tables,

adjusting link speeds and remapping the system

modules address space. It may also be desirable to shut

off parts of the NoC when they are not used for a long

time in order to save power. Interestingly, although

these operations are not performed during the run-time

of the system, they should be handled with extreme

care, since the configuration of network elements may

interfere. For example, if a configuration packet turns

off a certain link (or a router), other configuration

messages may not be able to reach their destination due

to "broken paths." Similarly, trying to update routing

table while the network is being used to deliver other

configuration messages is problematic. Alternatively,

configuration can be done via MetaBus making the

configuration and management process much simpler.

3. MetaBus implementation

In this section we present MetaBus – a custom bus

for BENoC. The design principles and guidelines are

presented first, followed by bus architecture, control

mechanisms and communication protocol.

3.1 MetaBus Architecture

MetaBus serves as a low-bandwidth complementary

bus aside a high-bandwidth network. Conventional

system busses (e.g. [20], [21], [22]) are too expensive

in terms of area, power and system complexity for the

limited bus tasks in the BENoC architecture. Thus,

MetaBus does not utilize segmentation, spatial reuse,

pipelining, split transactions and other costly

throughput boosting mechanisms. MetaBus should

pose a low, predictable latency communication medium

that outperforms the network in terms of power and

latency for short unicast, broadcast and multicast

transactions.

MetaBus is constructed as a tree (not necessarily

binary or symmetric) with the communicating modules

on its leaves (Fig 2). The bus is comprised of a root

and "bus stations" on the internal vertices of the tree.

Bus access is regulated by the well known Bus Request

(BR) – Bus Grant (BG) interface. For example, if,

module 2 wishes to transmit a metadata packet to

module 9, it issues a bus request that propagates

through the bus stations up to the root. The root

responds with a bus grant that propagates all the way

back. At this stage of the transaction a combinatorial

path between the transmitting module and receiving

modules is built up. When the bus grant is received,

module 2 transmits an address flit that is followed by

data flits. These flits first go up to the root and then are

spread throughout the tree (broadcast) or through

selected branches (unicast or multicast).

A masking mechanism that is mastered by the root

and configured according to the address flit, prevents

the data from reaching unnecessary tree branches and

thus saves power in unicast and multicast transactions.

After the reception of all valid data flits, the receiver

(module 9) releases the bus by an acknowledgement to

the root and a new transaction may take place.

Figure 2. An example of a 9 modules MetaBus.

MetaBus data and its control signals are

synchronized with a bus clock that is connected only to

the root and to the modules in the leaves of the tree.

Bus stations are clocked by a Bus Grant signal from the

level above them.

3.1.1 Arbitration. The proposed bus utilizes a

distributed arbitration mechanism. The BR/BG

interface is used between all bus units including

modules, bus stations and the root. A requesting bus

station, if granted, will pass a BG to one of its

descendant vertices. The arbitration block in the bus

stations (Fig. 3) uses the BG input as a clock for its

edge sensitive arbitration state machine. The proposed

mechanism enables arbitration priorities adjustments by

placing higher priority modules in higher tree levels or

manipulating specific bus stations arbitration logic.

Figure 3. Arbitration and data switch block in a

binary bus station and their connectivity.

3.1.2 Data Path. MetaBus data path is combined of

two parts – from the transmitter to the root and from

the root to the receivers. A combinatorial route

between the data sending module and the root is

established during bus grant and propagates down to

the transmitter by data switches in the bus stations (Fig.

3). From the root down, the data propagates to the

designated recipients and is blocked from arriving to

irrelevant modules by a masking mechanism described

in the next sub-section. Once established, there is a

combinatorial data path between the transmitter and the

receivers. The delay of this path defines the minimum

clock period for the bus.

3.1.3 Masking. In conventional busses, data reach all

the receivers connected to the bus (or to a bus segment)

even in unicast transactions. The masking mechanism's

role is to save power by preventing the data to reach

unnecessary modules.

Figure 4. Masking Concept.

The mask control logic is located in the root and

controls data propagation from the root down using a

dedicated line to every bus station. In Figure 4 module

3 transmits data to modules 1 and 5. Due to masking,

the data do not reach 6 of the 7 non-recipient modules,

saving redundant switching of wires and gates.

3.1.4 Addressing. Unlike conventional system busses,

MetaBus does not include a separate address bus for

simplicity and area reduction. We dedicate the first

word of every transaction for the destination address,

which is consistent with the NoC addressing scheme.

Transactions lengths are either constant or defined by

the sender using an End Of Transaction signal. We

allocate part of the address space to define commonly

used pre-defined multicast sets. For instance if the data

bus width is 8 (K=8) and we have a 64 modules

system, we have 192 possible addresses for pre-defined

multicast sets (one of them is broadcast). This scheme

is similar to the multicast address convention in

Ethernet and IP.

3.1.5 Acknowledge signals. The bus supports two

feedback signals – Ack and Nack. Each module has

active high Ack and Nack outputs that are joined with

AND gates in the bus stations and form a global Ack

and a global Nack that are generated in the root. Since

the bus is acting as a fast, low-bandwidth metadata

transmission medium aside a high bandwidth network,

many of the signals delivered through the bus may

trigger a response through the NoC. The Ack and Nack

may be used to distinguish between the case when the

transmitter is supposed to receive data through the NoC

(Ack) and the case when all the recipients intercepted

the current message and free the bus (Nack).

3.2 State machine and communication protocol

In this sub-section we present a communication

protocol for a variable length transaction bus with a

data valid line. The proposed bus is clocked at the root

and the modules in the leaves. The bus state machine is

implemented in the arbitration unit in the root and is

presented in figure 5. The events sequence starts from

the "Wait for BR" state. As soon as one of the modules

issues a bus request by setting its BR high, one of root's

BR inputs goes high. Root arbitration unit issues a BG

to one of the children that requested the bus according,

for example, to a round robin principle. Once BG is

issued, the root waits for the first word from the

transmitter. This word includes the address of the

receiver or a multicast set and is marked with a data

valid signal. Then, according to address decoding,

mask lines are activated. Following the masking, data is

transmitted until sender sets data valid bit to "0". Next,

the root de-asserts the mask by masking all the bus

again, waits for Ack or Nack, de-asserts BG timed

according to the received acknowledgement type and

passes again to BR wait state.

We dedicate half of the bus clock cycle for

interactions between the modules and the root (bus

grant propagation, address word decoding,

acknowledgement, masking setting, etc.) and a full

clock cycle for data transmission between

communicating modules. Under these assumptions

each transaction requires 3 clock cycles for arbitration,

addressing, masking and acknowledgement processes.

For each transaction we define the transaction latency

as the number of bus clock cycles required from bus

request of the transmitter until the last data word

clocked by the receiver. In the proposed protocol, a K

data words transaction latency is K+2.5 clock cycles.

Figure 5. Bus state machine. * - BG goes low

according to acknowledge type.

4. Latency and power analysis

For simplicity, the NoC (including the NoC part of

BENoC) is assumed to have a mesh topology, where

system modules are square tiles. The following notation

is used: n is The number of modules in the system,

∆V is the logic voltage swing, C0 and R0 are the

capacitance and resistance of wires per millimeter of

length and P is tile size [mm]. The number of global

wire segments between the modules and the root is

denoted by BD, and LW is the data link width in bits.

The minimal clock period for MetaBus is the sum of

all segment latencies along the data path. The NoC

latency is the number of NoC clock cycles required to

complete a given wormhole transaction. Our power

dissipation analysis takes into account the switching of

global wires and their drivers, for both the NoC and

MetaBus. Local logic power dissipation is neglected.

 We define
inv invR Cτ � as the technology time

constant, where Rinv and Cinv are the input capacitance

and the effective output resistance of an inverter.

Assuming that the load capacitance Cdriver at the end of

each wire segment on the bus is a driver of another

identical segment, we get an upper bound for the bus

segment delay [13],[14]:

()
0.7 0.4

Wire Driver
Wire Driver Wire Wire

Driver

C C
T R C R C

C

τ +
= + + 

 

(1)

If the capacitance driven by the wire is a small gate

such as in a NoC link, the load is negligible, and the

delay becomes:

 0.7 0.4Wire Wire Wire

Driver

T C R C
C

τ
= + (2)

For the latency and energy of transactions in a NoC-

based system, we assume that a broadcast is composed

of multiple unicast messages. Since an average unicast

message has to travel n modules away from the

source, the minimal time to complete the unicast is:

,net uni CiR Nclk Nclk flitsT nN T T N= + (3)

Where TNclk stands for NoC clock period, NCiR for the

router latency in clock cycles and Nflits for the number

of flits per transaction. In Broadcast, we assume that

the first messages are sent to the most distant modules,

and the last ones to the nearest neighbors. We assume

that the source transmits a flit every NoC clock cycle:

,net broad Nclk flitsT n T N≈ ⋅ (4)

Note that the NoC latency approximations used do

not account for network congestion, and thus, may

underestimate the realistic values.

Assuming a NoC link is P millimeters long, its

resistance and capacitance are
0NLR P R= ⋅ and

0NLC P C= ⋅ . We use (2) to find the appropriate NoC

driver strength CND. Therefore, the NoC link delay is

equal to one half of NoC clock cycle under the

assumption that between two routers, data is sent and

received on opposite network clock edges. The input

capacitance of the routers is neglected since this is a

capacitance of a driver that drives an internal logic, and

therefore is small. We get:

 0.7

0.5 0.4

NL
ND

Nclk NL NL

C
C

T R C

τ
=

−

 (5)

In order to calculate the total energy required for

NoC broadcast, the number of packet transmissions is

determined. In a regular mesh, a source node may have

at most 8 modules at a distance of one, 16 modules two

hops away, 24 modules three hops away and so on. In

the energy-wise best case, the broadcasting module is

located exactly in the middle of the mesh. It therefore

has to send 8 messages that would each travel a single

link each, 16 messages that travel two links, and in

general, 8j messages to a distance of j hops, until

transmitting a total of n-1 messages. It can be easily

shown that if n is an integral, odd number, then the

Manhattan distance between the module in the middle

of the mesh and the ones in its perimeter is exactly

()max 1 / 2D n= − . Since a message transmitted to a

destination j hops away has to traverse j router-to-

router links, the minimal number of transmissions

required to complete the broadcast is
max

2
max max

0

8 1 16 2 24 3 ... 8 8
D

j

K D D j
=

= ⋅ + ⋅ + ⋅ + + ⋅ = ∑ (6)

Consequently, the lower bound of the total energy

consumed by a single broadcast operation would be:

 ()2
net flits NL NDE V N K C C= ∆ + (7)

An average network unicast transaction would

comprise of ()max 1 / 2D n= − hops, therefore:

 ()
()2

,

1

2
net uni flits W NL ND

n
E V N L C C

 −
 = ∆ +
 
 

 (8)

Note that (7) and (8) underestimate the NoC energy

consumption since in-router power is neglected.

Similarly, we estimate the latency, and energy

consumption for MetaBus. The data path is comprised

of two parts – from the transmitter up to the root, and

from the root down to the receivers. The die size is

defined as PD=√nP. We assume that the average hop

distance between the modules and the root is PD/2 and

that the bus stations are uniformly spread along this

distance. An average data link segment length between

two bus units would be PD/2BD.

The actual structure of the first part of the MetaBus

data path (from the modules up to the root) is

illustrated in figure 6. The second part of the data path

(from the root down) differs with the fan-out of each

bus station. Moreover, the data switch is replaced with

a masking gate that drives the same driver, but this

difference does not change the delay according the

model we use (1). The model of a driver that drives a

wire with an identical driver in its end, implies an

upper delay bound for the second part of the data path

since the capacitances of the large drivers are loaded

simultaneously by the input gates of the bus stations.

The first data path part is identical for both

broadcast and unicast transactions, data goes through

BD global wire segments. The energy required for this

part is given by:

 ()2
, ,bus up flits D BL BD upE V N B C C= ∆ + (9)

Where CBL stands for MetaBus data segment

capacitance and equals to C0PD/(2BD) and CBD,up is the

capacitance of drivers that drive data segments in the

first part of the data path.

Figure 6. MetaBus modules-to-root bus

segment. BG's are Bus Grant signals to the next
bus stations. These signals also control the data

switch.

In the second data path part data spread from the root

across the whole tree in broadcast and, using masking,

propagates to a much smaller set of modules that

includes the recipient of a unicast (from space

considerations, multicast is not presented). We

distinguish between data driver strength of the first part

and the second part since the driver of the second part,

potentially drives a larger capacitance by a factor BR,

where BR is the bus tree rank. We define γ as the

"wires overlap factor". This factor is 1 if data wires

from the root down are physically separated, and it

asymptotically reaches 1/BR if data wires are separated

only very near to units that share the same upper level

unit. The role of this factor is illustrated in figure 7. In

broadcast, the power consumption for the way down is:
1

2
, , ,

1 1

D DB B
n n

bus broad down flits BL R BD down R

n n

E V N C B C Bγ
−

= =

 
= ∆ +  

 
∑ ∑ (10)

Where CBD,down is the same as CBD,up but for the second

part of the data path (from the root down).

In a unicast, due to masking, only BR links are

loaded in every tree level, thus:

()()2
, , ,1bus uni down flits R D BL D BD downE V N B B C B Cγ= ∆ + − (11)

Figure 7. The parameter gamma describes the
amount of wire sharing in the MetaBus datapath
from the root to the leaves (gamma=1 means no

wire sharing, gamma = 1/2 for maximal wire
sharing in a tree of rank 2).

We deduce bus data path delay by summing the

delays of global wires segments. Using (1) we get:

()

, ,

,

,
,

0.7 0.4

BUS UP D link UP

BL BD up

D BL BD up BL BL

BD up

T B T

C C
B R C R C

C

τ

= ⋅ =

  +
  + +
  

  

 (12)

()

, ,

, ,

,

0.7 0.4

BUS DOWN D link DOWN

R BL BD down BL BD down
D BL BL

BD down

T B T

B C C R C
B R C

C

τ γ

γ

= ⋅ =

  +
  + +

  
  

 (13)

Where RBL stands for bus data segment resistance

and equals to R0PD/(2BD). We find the optimal drivers

sizing CBD,up and CBD,down by finding the minima of the

functions in (12) and (13) and get:

,
BL

BD up opt

BL

C
C

R

τ
− =

2

,
R BL

BD down opt

BL

B C
C

R

τ γ
− = (14)

Consequently, using (12) and (13) with the optimal

driver sizes from (14) we can get the estimation of the

MetaBus minimum data path delay:

 () (), , , ,MetaBus BUS UP BD up opt BUS DOWN BD down optT T C T C− −= + (15)

A bus transaction requires 1.5 clock cycles for

arbitration and bus access management before data

transmission and a single clock cycle afterwards for

acknowledgement (section 3.3). For latency calculation

we consider only the first 1.5 cycles, thus, Nflits

transaction latency would be:

 ()1.5flits MetaBusBus Latency N T= + (16)

Using (9), (10), (11), and (14) we can deduce the

total bus energy consumption for Nflits transaction.

The derived expressions are valuated using typical

values for 0.18um technology (C0=243e-15F/mm;

R0=22Ω/mm; τ =7.5ps ; ∆V=1.5V, [15]). We also

assume a die size PD=10mm, γ=0.3 (a reasonable

number for a topology where architecturally close bus

stations and modules are close topologically as well),

NoC clock frequency 1/TNclk=1Ghz, data link width

LW=16, and the number of flits Nflits=3 including the

address flit, for both MetaBus and NoC cases.

Analytical results of power dissipation vs. number of

modules for MetaBus and NoC broadcast and unicast

transactions are presented in figure 8. MetaBus is

assumed to be a homogeneous tree with a rank of 4,

and its drivers were speed optimized according to (14).

The broadcast transactions latencies of the NoC and

MetaBus are presented in figure 9. Note that the

MetaBus latency decreases with the number of modules

which seems counter intuitive. This happens since the

bus stations are acting as repeaters along the long

resistive data interconnect. Calculations for a 64

modules system are presented in table 1 for future use.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

Number of Modules

E
n

e
rg

y
 p

e
r

tr
a

n
s
a

c
ti
o

n
 [

n
J
]

MetaBus Broadcast

Network Broadcast

MetaBus Unicast

Network Unicast

Figure 8. Bus and NoC unicast and broadcast

energy per transaction.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

Number of Modules

L
a
te

n
c

y
 [

n
s

]

MetaBus

Network Broadcast

Network Unicast

Figure 9. Bus and NoC broadcast latencies.

Note that for a reasonable system size, MetaBus

significantly outperforms the NoC in terms of latency

for both unicast and broadcast transactions. Therefore,

BENoC latency should also outperform a NoC with a

built in broadcast replication mechanism. Our analysis

predicts MetaBus to also outperform NoC in energy

consumption for broadcast transactions.

Table 1.
Energy [nJ] Latency [ns]

Broad Uni Broad Uni

Speed Opt.

MetaBus

4.13 1.26 1.98 1.98

NoC 5.69 0.13 192 27

Our latency model was verified by simulations using

extracted layout parameters of a 0.18um process. First

we constructed a floor-plan of a balanced 64 modules

binary tree on a 10mmX10mm die (Figure 10). Then

automated layout and routing with timing optimization

was performed. Our tools do not perform repeater

insertion. In addition, although the MetaBus

infrastructure occupied less than 0.1% of the die area,

the layout tool did not perform wire sizing and rarely

used high metal levels. Despite these limitations, by

deducing average driver strength, wire capacitance and

resistance per unit of length (C0=130e-15F/mm, R0~1K

Ω/mm, CBD,UP~3.7e-15F, CBD,DOWN~5.8e-15F) and

using τ =7.5ps, we estimated the data-path delay

using our model and compared the results to the post-

layout timing simulation results. The bus delay

according our model was ~8.5ns while the minimum

post layout simulation data-path delay was ~10ns –

within 15% from the estimation.

Figure 10. A 64 modules binary MetaBus floor-

plan. The bus stations are bounded with
rectangles that were placed by hand. The blue
thick lines stand for airlines of data links and

arbitration interfaces between bus-stations and
form a tree structure. The thin lines are the

masking wires that go separately from the root to
each bus-station.

5. Masking mechanism benefits

In figure 4, the inputs of modules and bus stations

that are driven with unmasked bus station are counted

as "active gates". The power calculations consider the

active gates and the wires power. We define "power

ratio" as the ratio between the power consumption of

data transfer from the root to the modules with and

without the use of the masking mechanism. The power

consumption of the first data path part is much smaller

than that of the second data path part, even with

masking (by a factor of the tree rank for unicast and by

a higher ratio for multicast and broadcast). Therefore,

we disregard the first part in our power ratio

calculations. In terms of active gates this ratio would

be:

 ()

()

Active Gates

Total Gates

AG
PR

TG
=

 (17)

We also disregard the contribution of the masking

mechanism to the power consumption since it only

drives, once in a transaction, a single global line per

active bus station.

 (a) (b)
Figure 11. 3 levels trees with a rank of 4. The 4

highlighted leaves are the recipients. Blue bus
stations are not masked (active).

For the sake of simplicity, we assume a balanced

tree. In multicast transactions, the masking mechanism

power saving efficiency depends on recipient's

distribution across the tree leaves. Dispersed multicast

sets utilize non-adjacent bus-stations across the tree, a

fact that increases the number of active gates (Fig. 11).

We deduce an analytical lower bound of the number

of active gates for a given multicast set size (MN). It is

obvious that the lowest active gate count is achieved if

modules are arranged from left to right (or vise versa)

as in figure 11a. In this example, AG starts from 12 and

jumps by 4 (R=Tree Rank) every 4 modules, by 8 (2R)

every 16 modules, by 12 (3R) every 64 modules etc.

Generally, in tree of depth D:

1

1
() (1)DATA K

K

MN
AG MN R D

R

∞

=

 − 
= − +    

∑
 (18)

A simulation of power ratio vs. multicast set size for

256 modules trees with ranks of 2, 4 and 16 was

performed. For each rank and multicast set size we

have deduced the average PR of 10,000 different

random sets. In figure 12 we present the results

together with the minimum bound analytical results

from Eq. 18. As expected, the masking mechanism is

highly effective for unicast and small multicast sets.

Moreover, if modules are topologically arranged with

masking and multicast set awareness such as that

commonly used sets are concentrated topologically in

the tree, the masking mechanism stays effective even

for large multicast sets.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Relative multicast set size

P
o

w
e

r
ra

ti
o

R=2, Average

R=4, Average

R=16, Average

R=2, Min

R=16, Min

Figure 12. Average and analytical minimum

power ratios.

6. Experimental results

In this section, we evaluate the performance of a

large scale chip multi-processor (CMP) using dynamic

non-uniform cache access (DNUCA) for the on-chip

shared cache memory. The cache is comprised of

multiple banks, as illustrated in Figure 1. We compare

a classic NoC and a MetaBus based BENoC

infrastructure. We use the 0.18um technology

parameters from section 3. Two time-critical operations

are addressed. The first is a basic line-fill ("read")

transaction, performed by a processor that reads a line

into its L1 cache. If an L2 cache has a valid copy of the

line, it must provide its content to the reading

processor. If the most updated copy resides in a L1

cache of another processor, it is asked to "writeback"

the line. Else, the line is fetched from a lower memory

hierarchy level (L3 cache or memory). The second

transaction being addressed is the read-for-ownership

("read-exclusive") transaction. While similar to the

basic line-fill operation, it also implies that the reading

processor wishes to own the single valid copy of that

line for updating its content. In order to complete the

transaction, all other L1 copies of the line (held by an

owning processor or by sharers) must be invalidated.

In a classic DNUCA implementation, the processor

has to lookup the line prior to the read/read exclusive

operation. When a regular NoC is used, the line is

sought using multiple unicast messages, while in

BENoC the search is conducted over MetaBus. In this

work, a distributed directory model is assumed: each

L2 cache line includes some extra (directory) bits to

keep track of the current sharers/owner of the line [1].

As explained in Section 2, a static directory would

render the DNUCA policy useless; hence these bits

migrate together with the line. The simulated system

consists of 16 processors and 64 L2 cache tiles (80

modules in total). The modules are arranged as

depicted in Fig 1, while the 4x4 cache array is replaced

by an 8x8 array of banks. The network link is set at

16Gbits/s (reflecting 1Ghz network clock and 16 bits

wide links). MetaBus is 16 bits wide with transaction

latency of 4ns (twice the optimal number from table 1).

In order to evaluate the proposed technique, a

combination of two simulators is used. The BENoC

architecture is simulated using OPNET [16]. The

model accounts for all network layer components,

including wormhole flow control, virtual channels,

routing, buffers and link capacities. In addition, it

simulates the bus arbitration and propagation latencies.

The DNUCA system is modeled using the Simics [17]

simulator running SPLASH-2 and PARSEC

benchmarks [18] [19].

0

100

200

300

400

500

600

700

NoC BENoC

T
ra
n
s
a
c
ti
o
n
 L
a
te
n
c
y
 [
n
s
]

APACHE
BARNES

CANNEAL
FACESIM
OCEAN
SPECJBB

WATER
Average

0

20

40

60

80

100

120

140

160

NoC BENoC

M
e
g
a
 t
ra
n
s
a
c
ti
o
n
s
 /
 s
e
c

 Figure 13. Performance improvement in

BENoC compared to a NoC-based CMP for 7
different applications. Upper (a): average read
transaction latency [ns]. Lower (b): application

speed [trans./sec].

Fig. 13 presents the improvement achieved by the

BENoC architecture compared to a classic NoC in

terms of average transaction latency and application

speedup. Average transaction latency is 3-4 times

lower in BENoC (Fig. 13a). Fig. 13b depicts

application execution speed in terms of read

transactions/sec. On average, BENoC introduced an

execution speedup around 300%. The FACESIM

benchmark was accelerated only by 3% since it

produces relatively little coherency traffic.

(a)

(b)

7. Summary

The BENoC architecture, described in this paper,

combines a customized bus with a NoC for getting the

best of two worlds: the low latency and broadcast

capability inherent in the bus, together with the spatial

reuse and high throughput of the network. The

customized bus can circumvent most weaknesses of the

NoC, since critical signals which require low latency

are typically comprised of just a few bits. Similarly, the

complexity and cost of broadcast operations in the NoC

can be avoided by using the bus, because only short

metadata messages are usually transmitted in broadcast

mode.. Operations requiring global knowledge or

central control can be readily implemented on the bus,

and typically do not involve massive data transfer. The

bus can also support specialized operations and

services, such as broadcast, anycast and convergecast,

which are important for common operations such as

cache line search and cache invalidation. BENoC is

superior to a classical NoC in terms of delay and

power. In addition to the BENoC concept, a

customized and power/latency optimized bus termed

MetaBus was presented. Our analysis shows that a

BENoC using a MetaBus is more advantageous than a

traditional NoC even for a relatively small system size

of 10-20 modules, and the advantage becomes very

significant as system size grows. Consequently,

BENoC type architectures introduce a lower risk and a

faster migration path for future CMP and SoC designs.

8. References

[1] B. M. Beckmann and D. A. Wood, “Managing wire delay in

large chip multiprocessor caches”, IEEE MICRO 37, pp.

319-330, 2004

[2] D. Bertozzi and L. Benini, "Xpipes: A Network-on-Chip

Architecture for Gigascale Systems-on-Chip", IEEE Circuits

and Systems Magazine, Vol. 4, Issue 2, pp. 18-31, 2004

[3] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "Cost

Considerations in Network on Chip", Integration - the VLSI

Journal, Vol. 38, pp. 19-42, 2004

[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "QNoC:

QoS Architecture and Design Process for Network on Chip",

Journal of Systems Architecture, Vol. 50, pp. 105-128, 2004

[5] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny,

"The Power of Priority: NoC based Distributed Cache

Coherency", Proc. First Int. Symposium on Networks-on-

Chip (NOCS), pp. 117-126, 2007

[6] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal

Network on Chip: Concepts, Architectures, and

Implementations", IEEE Design and Test of Computers, pp.

414-421, 2005

[7] Y. Jin, E. J. Kim, and K. H. Yum, "A Domain-Specific On-

Chip Network Design for Large Scale Cache Systems", Proc.

13th Int. Symp. on High-Performance Computer Architecture,

pp. 318-327, 2007

[8] C. Kim, D. Burger, and S.W. Keckler, "An Adaptive, Non-

Uniform Cache Structure for Wire-Delay Dominated On-Chip

Caches", 10th International Conference on Architectural

Support for Programming Languages and Operating Systems,

pp. 211-222, 2002

[9] C. Kim, D. Burger, and S.W. Keckler, "Nonuniform Cache

Architectures for Wire Delay Dominated on-Chip Caches",

IEEE Micro, 23:6, pp. 99-107, 2003

[10] N. Muralimanohar and R. Balasubramonian, "Interconnect

design considerations for large NUCA caches", Proc. 34th

annual International Symposium on Computer architecture,

pp. 369-380, 2007

[11] T.D. Richardson, C. Nicopoulos, D. Park, V. Narayanan, Y.

Xie, C. Das, V. Degalahal, "A Hybrid SoC Interconnect with

Dynamic TDMA-Based Transaction-Less Buses and On-Chip

Networks", Proc. 19th International Conference on VLSI

Design, pp. 657-664, 2006

[12] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and

G. De Micheli, "A Methodology for Mapping Multiple

Use-Cases onto Networks on Chips", Proc. Design,

Automation and Test in Europe (DATE) 2006

[13] I. Sutherland, R.F. Sproull, and D. Harris, "Logical Effort:

Designing Fast CMOS Circuits", The Morgan Kaufmann

Series in Computer Architecture and Design, ISBN: 978-1-

55860-557-2

[14] H.B. Bakoglu, Circuits, Interconnections and

Packaging for VLSI, Adison-Wesley, pp. 194-219, 1990

[15] ITRS – International Technology Roadmap for

Semiconductors, http://www.itrs.net

[16] OPNET Modeler, http://www.opnet.com

[17] P. S. Magnusson, M. Christensson, J. Eskilson, D.

Forsgren, and G. Hallberg, "Simics: A full system

simulation platform", IEEE Computer, 35(2):50–58,

2002

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.

Gupta., "The SPLASH-2 Programs: Characterization

and Methodological Considerations", In Proceedings of

the 22nd Annual International Symposium on Computer

Architecture, pages 24–37, 1995

[19] C. Bienia, S. Kumar, J. P. Singh and K. Li, “The

PARSEC Benchmark Suite: Characterization and

Architectural Implications”, Proc. of the 17th

International Conference on Parallel Architectures and

Compilation Techniques, 2008

[20] K. K. Ryu, E. Shin, and V. J. Moony, "A Comparison of

Five Different Multiprocessor SoC Bus Architectures",

Euromicro, 2001

[21] AMBA System Architecture,

http://www.arm.com/products/solutions/AMBAHomePa

ge.html

[22] CoreConnect Bus Architecture, http://www-

01.ibm.com/chips/techlib/techlib.nsf/productfamilies/Co

reConnect_Bus_Architecture

