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Abstract

The long-standing goal of localizing every object in

an image remains elusive. Manually annotating objects

is quite expensive despite crowd engineering innovations.

Current state-of-the-art automatic object detectors can ac-

curately detect at most a few objects per image. This pa-

per brings together the latest advancements in object detec-

tion and in crowd engineering into a principled framework

for accurately and efficiently localizing objects in images.

The input to the system is an image to annotate and a set

of annotation constraints: desired precision, utility and/or

human cost of the labeling. The output is a set of object

annotations, informed by human feedback and computer vi-

sion. Our model seamlessly integrates multiple computer

vision models with multiple sources of human input in a

Markov Decision Process. We empirically validate the ef-

fectiveness of our human-in-the-loop labeling approach on

the ILSVRC2014 object detection dataset.

1. Introduction

The field of large-scale object detection has leaped for-

ward in the past few years [20, 43, 11, 45, 61, 24, 53], with

significant progress both in techniques [20, 43, 53, 45] as

well as scale: hundreds of thousands of object detectors can

now be trained directly from web data [8, 15, 11]. The ob-

ject detection models are commonly evaluated on bench-

mark datasets [43, 16], and achievements such as 1.9x im-

provement in accuracy between year 2013 and 2014 on

the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [43] are very encouraging. However, taking a

step back, we examine the performance of the state-of-the-

art RCNN object detector trained on ILSVRC data [20] on

the image of Figure 1: only the 6 green objects out of the

100 annotated objects have been correctly detected.

The question we set out to address in this paper: what

can be done to efficiently and accurately detect all ob-

jects in an image given the current object detectors? One

option is by utilizing the existing models for total scene
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Figure 1. This cluttered image has 100 annotated objects shown

with green, yellow and pink boxes. The green boxes correspond

to the 6 objects correctly detected by the state-of-the-art RCNN

model [20] trained on the ILSVRC dataset [43]. (The about 500

false positive detections are not shown.) Yellow boxes loosely cor-

respond to objects that are annotated in current object detection

datasets such as ILSVRC. The majority of the objects in the scene

(shown in pink) are largely outside the scope of capabilities of cur-

rent object detectors. We propose a principled human-in-the-loop

framework for efficiently detecting all objects in an image.

understanding [36, 63, 35] or for modeling object con-

text [64, 14, 44, 48]. However, this is still currently not

enough to go from detecting 6 to detecting 100 objects.

Our answer is to put humans in the loop. The field

of crowd engineering has provided lots of insight into

human-machine collaboration for solving difficult problems

in computing such as protein folding [41, 9], disaster relief

distribution [18] and galaxy discovery [38]. In computer vi-

sion with human-in-the-loop approaches, human interven-

tion has ranged from binary question-and-answer [6, 59, 60]

to attribute-based feedback [40, 39, 34] to free-form object

annotation [58]. For understanding all objects in an image,

one important decision is which questions to pose to hu-

mans. Binary questions are not sufficient. Asking humans

to draw bounding boxes is expensive: obtaining an accurate

box around a single object takes between 7 seconds [26] to

42 seconds [50], and with 23 objects in an average indoor

scene [22] the costs quickly add up. Based on insights from

object detection dataset construction [37, 43], it is best to

use a variety of human interventions; however, trading off

accuracy and cost of annotation becomes a challenge.

We develop a principled framework integrating state-of-

the-art scene understanding models [20, 33, 1, 22] with
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state-of-the-art crowd engineering techniques [43, 37, 10,

46, 28] for detecting objects in images. We formulate the

optimization as a Markov Decision Process. Our system:

1. Seamlessly integrates computer and human input,

accounting for the imperfections in both. [6, 26] One

key component, in contrast to prior work, is the in-

corporation of feedback from multiple types of human

input and from multiple computer vision models.

2. Automatically trades off density, precision and cost

of annotation in a principled framework.

3. Is open-world, by integrating novel types of scenes

and objects instead of relying only on information

available in a limited training set.

4. Is light-weight and easily extensible. The framework

is able to continuously incorporate the latest computer

vision and crowd engineering innovations.

We provide insights into seven types of human interventions

tasks using data collected from Amazon Mechanical Turk,

and experimentally verify that our system effectively takes

advantage of multiple sources of input for localizing objects

in images while accurately self monitoring.

2. Related work

Recognition with humans in the loop. Among the most

similar works to ours is the approaches which combine

computer vision with human-in-the-loop collaboration for

tasks such as fine-grained image classification [6, 59, 12,

60], image segmentation [26], attribute-based classifica-

tion [32, 40, 3], image clustering [34], image annota-

tion [54, 55, 47], and human interaction [31] and object an-

notation in videos [58]. Methods such as [6, 59, 12, 60]

jointly model human and computer uncertainty and char-

acterize human time versus annotation accuracy, but only

incorporate a single type of human response. Works such

as [26, 13, 54] use multiple modalities of human feedback,

with varying costs, and accurately model and predict the

success of each modality. However, they do not incorporate

iterative improvement in annotation. We build upon these

approaches to integrate multiple human annotation modali-

ties with state-of-the-art computer vision models in an iter-

ative framework for the challenging object annotation task.

Better object detection. Methods have been developed

for training better object detection models with weakly

supervised data [42, 23, 52, 8, 24, 15]. Active learn-

ing approaches has been developed to improve object de-

tectors with minimal human annotation cost during train-

ing [32, 56]. Some object detection frameworks even

automatically mine the web for object names and exem-

plars [8, 11, 15]. All of these approaches can be plugged

into our framework to reduce the need for human annota-

tion by substituting more accurate automatic detections.

Cheaper manual annotation. Manual annotation is be-

coming cheaper and more effective through the devel-

opment of crowdsourcing techniques such as annotation

games [57, 12, 30], tricks to reduce the annotation search

space [13, 4], more effective user interface design [50, 58],

making use of existing annotations [5], making use of weak

human supervision [26, 7] and accurately computing the

number of required workers [46]. These innovations are im-

portant in our framework for minimizing the cost of human

annotation when it is needed to augment computer vision.

Approaches such as [10, 46, 28, 62] use iterative improve-

ment to perform a task with accuracy per unit of human

cost. We draw upon these works to provide human feed-

back in the most effective way.

3. Problem formulation

We present a policy for efficiently and accurately detect-

ing objects in a given image. The input to the system is

an image to annotate and a set of annotation constraints.

The output is a set of bounding box annotations with ob-

ject names. For the rest of this paper, we distinguish the

requester (the person who wants the image annotated) from

the users (the people doing the human annotation tasks).

The requester may specify up to two of three constraints:

1. Utility. In the simplest case, utility of a labeling corre-

sponds to the number of objects. However, since some

objects in the image may be more important than oth-

ers [49, 25, 2], the requester may optionally specify a

function mapping each image region and class label to

a real value indicating importance. The requester then

specifies the minimum total utility of the labels.

2. Precision. When the system returns N bounding box

annotations with object names, if NC of them are cor-

rect detections, then precision is NC

N
. The requester

can specify the minimum required level of precision.

3. Budget. In our formulation, budget corresponds to

cost of human time although methods such as [58] can

be applied to also incorporate CPU cost.

On one end of the spectrum the requester can set the

maximum budget to zero, and obtain the best automatic an-

notation of the image. On the other end she can set an infi-

nite budget but specify 100% desired precision and 17 an-

notated objects per image, which will produce a policy for

detailed annotation similar to that of the SUN dataset [64].

4. Method

The system uses both computer vision and user input to

annotate objects in images subject to provided constraints



Figure 2. Overview of our system. Given a request for annotating

an image, the system alternates between updating the image an-

notation and soliciting user feedback through human tasks. Upon

satisfying the requester constraints, it terminates and returns a im-

age with a set of bounding box annotations.

(Figure 2. It alternates between getting user feedback and

updating the image probabilities. Section 4.1 formalizes

the requester constraints. Section 4.2 presents the core of

our system: the selection of optimal human questions. Sec-

ton 4.3 describes the probabilistic framework for combin-

ing computer vision with human input, with Section 4.3.1

focusing on the computer vision models.

4.1. Annotation evaluation

Let Y = (Bi, Ci, pi)}
N
i=1 be the set of N object detec-

tions, each with bounding box Bi, class label ci, and prob-

ability of detection being correct pi. We now explain how

our human-in-the-loop system evaluates Y and outputs the

final annotation according to requester constraints.

The expected precision of any labeling Y ⊆ Y is

E[Precision(Y )] =
E[NumCorrect(Y )]

|Y |
=

∑

i∈Y pi

|Y |
(1)

using the linearity of expectation. Similarly, given the re-

quester provided utility function f : B×C → [0, 1] mapping

the set of bounding boxes with class labels to how much the

requester cares about this label, the expected utility is

E[Utility(Y )] =
∑

i∈Y

pif(Bi, Ci) (2)

The simplest case (used in this paper) is valuing all detec-

tions equally at f(B,C) = 1 ∀B,C, making utility equal

to the number of correct detections.

Annotation given constraints. Given the available set Y ,

the system tries to output a labeling Y that satisfies the re-

quester constraints. Recall that requester specified at most

two of the three constraints of utility, precision and budget.

If both target utility U∗ and precision P ∗ are requested, the

system samples detections from Y into Y in decreasing or-

der of probability while E[Precision(Y )] ≥ P ∗. We define

Precision(∅) = 1 so this is always achievable. Since ex-

pected utility increases with every additional detection, this

will correspond to the highest utility set Y under precision

constraint P ∗. If E[Utility(Y )] ≥ U∗, the constraints are

satisfied. If not, we continue the labeling system.

If target precision P ∗ (or utility U∗) and budget B∗ are

specified, then we run the annotation system of Section 4.2

until budget is depleted, and produce the set Y as above

under the precision constraint P ∗ (or utility constraint U∗).

Approximation of annotation quality. As the annotation

system progresses, it needs to evaluate the quality of anno-

tation set Y . One option is to directly evaluate how closely

Y satisfies requester constraints: for example, by producing

the set Y ⊆ Y which satisfies the requested level of pre-

cision P ∗ and using E[Utility(Y )] as the objective. How-

ever, this measure is discontinuous and difficult to optimize.

Since precision and utility are closely related, we directly

use E[Utility(Y)] as the objective.

4.2. MDP formulation for human task selection

The main component of our approach is automatically

selecting the right human question to best improve the im-

age annotation state. We quantify the tradeoff between cost

and accuracy of annotation by formulating it as a Markov

decision process (MDP). [29, 10, 46, 28, 21] An MDP con-

sists of states S , actions A, conditional transition probabil-

ities P , and expected rewards of actions R.

States. At each time period of the MDP, the environment

is in some state S ∈ S . In our case, a state S is our set

of current beliefs about the image I , computed by combin-

ing computer vision models with user input. For simplicity,

in this work we don’t update the computer vision models

as annotation progresses on a single image, so the only dy-

namic part of S in the user input U .

Actions. In an MDP, the system takes an action a ∈ A
from state s, which causes the environment to transition to

state s′ with probability P(s′|s, a). In our setting, the set

of actions A correspond to the set of human questions that



Human tasks (MDP actions)

Verify-box: is box B tight around an instance of class C?

Verify-image: does the image contain an object of class C?

Verify-cover: are there more instance of class C not covered

by the set of boxes B?

Draw-box: draw a new instance of class C not already in set

of boxes B.

Name-image: Name an object class in the image besides the

known object classes C

Verify-object: is box B tight around some object?

Name-box: If box B is tight around an object other than the

objects in CB , name the object

Table 1. Human annotations tasks. One important property of our

model is that it will automatically find the best question to pose,

so there’s no harm in adding extra tasks.

the system can ask. The types of human tasks are listed in

Table 1. Each question is one of the tasks grounded to the

image: for example, “verify-box: is box at (10, 50, 37, 89)
an instance of class cat?” or “draw-box: draw a box

around another instance of table besides (83, 119, 74, 281)
and (281, 470, 46, 24)”. Figure 3 shows some example UIs.

Transition probabilities. As a result of an action a from

state s, the system moves into a new state s′; in other words,

the current beliefs about the image get updated by the ad-

dition of a new user response ut to U . Transition probabil-

ities correspond to our expectations on the outcome (user

response) of the question a (Section 4.3).

Rewards. After transitioning from state s to s′ through ac-

tion a, the agent in an MDP receives a reward with expected

value Ra(s, s
′). In our case, the states contain object detec-

tion annotations Y(s) and Y(s′) respectively (Section 4.3)

with detection probabilities computed in Section 4.3. Using

the definition of Section 4.1, the reward is

Ra(s, s
′) =

E[Utility(Y(s′))]− E[Utility(Y(s))]

cost(a)
(3)

We treat budget constraint as rigid, so Ra(s, s
′) = − inf if

the cost(a) is less than the remaining budget. The system

terminates once Y(s) satisfies the requester constraints.

Optimization. Given the transition probabilities and ex-

pected rewards, at each step the system chooses the action

a∗(s) that maximizes V (s), computed recursively as

a∗(s) = argmax
a

{

∑

s′

Pa(s, s
′)(Ra(s, s

′) + V (s′))

}

V (s) =
∑

s′

Pa∗(s)(s, s
′)(Ra∗(s)(s, s

′) + V (s′)) (4)

We optimize Equations 4 with 2 steps of lookahead to

choose the next action. [10] This is often sufficient in prac-

tice and dramatically reduces the computational cost.1

1 Doing 1 step of lookahead is not sufficient because some tasks in

Figure 3. Two of the user interfaces for our human annotation

tasks. Other UIs and design details are in supplementary material.

4.3. Human­in­the­loop probabilistic framework

Our system is based on combining computer vision with

human input into one probabilistic framework. Consider

the MDP on image I at time step T , after T − 1 ac-

tions a1 . . . aT−1 were taken and user responses UT−1 =
{ut}

T−1
t=1 obtained. We need to compute two closely related

quantities: MDP transition probabilities and object detec-

tion probabilities for the labeling. We begin by describing

the former, and then show how the latter is a special case.

MDP transition probabilities. The MDP is now in state s

and we set out to compute the transition probabilities to new

states. The next state is uniquely determined by the action

(i.e., question) aT that the system chooses to ask and by the

user response uT . Thus for each aT we need to compute the

probability of each response uT given the image I and user

responses so far UT−1. Let ET
1 . . . ET

K be the set of possible

answers to this question aT . By law of total probability and

Bayes’ rule:

P (uT |I,UT−1) =

K
∑

k=1

P (uT |E
T
k )P (ET

k |I,UT−1) (5)

The first term of Eqn. 5 is P (uT |E
T
k ), which corre-

sponds to the probability of user giving an answer uT if

ET
k were the correct answer to aT .2 We simplified this term

from P (uT |E
T
k , I,UT−1) by making two assumptions fol-

lowing [6]: (1) noise in user responses is independent of

image appearance I if correct answer ET
k is given, and (2)

user responses are independent of each other. To compute

P (uT |E
T
k ) we will use the empirical error rates of Sec-

tion 5.2 for each question type in Table 1.

The second term of Eqn. 5 is P (ET
k |I,UT−1), which

corresponds to the probability of answer ET
k to aT in fact

Table 1 (e.g., name-image) do not directly influence the labeling.
2There are only a few possible answers to each question which allows

us to enumerate them. For example, if the user is asked to perform the

draw-box task at time T , the only possible answers are ET

1
: the user draws

a box, or ET

2
: the user stated that no box can be drawn.



being correct. Applying Bayes’ rule again:

P (ET
k |I,UT−1) ∝ P (ET

k |I)
T−1
∏

t=1

P (ut|E
T
k , I,Ut−1) (6)

Here, P (ET
k |I) is the computer vision model for ET

k (de-

scribed in Section 4.3.1). P (ut|E
T
k , I,Ut−1) is very similar

to the first term in Eqn. 5 with one important exception: it

unifies user response ut to action at at time t with potential

answer ET
k to action aT at time T . We consider two cases.

Case 1: The correct response to question at at time t

can be inferred from ET
k at time T . For example, sup-

pose at is “is there an object of class ci in the image?”

and ET
k is “box Bi is tight around an instance of class ci.”

Then the correct response “yes” to at can be inferred from

ET
k . The supplementary material provides a complete list of

these relationships. Let the inferred correct answer be Et
m.

In this case, we again apply the model of [6] to simplify

P (ut|E
T
k , I,Ut−1) = P (ut|E

t
m) as above.

Case 2: The correct response to question at at time t is

independent of ET
k at time T . For example, suppose at is as

above “is there an object of class ci in the image?” but ET
k

is “box Bj is tight around an instance of class cj .” Since ET
k

does not provide any information regarding the correct re-

sponse to at, we know P (ut|E, I,Ut−1) = P (ut|I,Ut−1).
3

To compute this we apply Eqn. 5.

This concludes the transition probability computation for

every action aT and every possible user response uT . New

actions can seamlessly be added to the MDP framework as-

suming the set of possible answers E1, . . . Ek, the computer

vision probabilities P (Ek|I) and the user error probabilities

P (u|Ek) can be computed for each new action type.

Object detection probabilities. In addition to transition

probabilities, we also need to compute the object detection

probabilities to be used in the image labeling. For a detec-

tion with bounding box B and class label c, let Ê be “B is a

tight box around an instance of class c.” The probability of

the detection being correct given the information available

at time T is P (Ê|I,UT−1). This is computed directly with

Eqn. 6, with P (Ê|I) from an object detector.

One extra consideration is that (B, c) can be automat-

ically proposed by the object detector or manually by the

users.4 If the box B was manually drawn at some previous

time T̂ in response to the draw-box task, then we omit the

computer vision model and modify Eqn. 6 slightly to

P (Ê|I,UT−1) ∝ P (Ê|u
T̂
)
∏

t

P (ut|Ê, I,Ut−1) (7)

with the product ranging over t ∈ {1, . . . , T − 1} − T̂ .

3Alternatively, our model can be extended to include object-object co-

occurrence information here.
4We use the same reasoning for name-image and name-box tasks.

P (Ê|u
T̂
) is the empirical user accuracy rate for the drawn

bounding box to actually be correct (Section 5.2).

4.3.1 Computer vision input

We incorporate multiple computer vision models into our

system to compute the above transition probabilities for all

actions of Table 1:

(1) Detection. Computing transition probabilities corre-

sponding to the verify-box action with box B and class C

requires computing P (det(B,C)|I): the probability that B

is tight around an instance of class C on image I . Standard

object detectors can be used here e.g., [20, 17, 24].

(2) Classification. Similarly, the verify-image action for

object class C require computing P (cls(C)|I) that C is

present in the image. Models such as [33, 51] can be used.

(3) Another instance. Computing transition probabilities

for verify-cover and draw-box actions for class C and set

of boxes B require computing P (more(B, C)|I) that there

are other instances of C in the image beyond those con-

tained in B. We compute this probability using an em-

pirical distribution on number of object instances in im-

ages. It provides the probability P (more|n) of there be-

ing more instances of an object class given the image is

known to contain at least n instances of this class. Let

nc(B, C) be the number of boxes B that are correct for class

C, then E[nc(B, C)] =
∑

B∈B
P (det(B,C)|I). Rounding

n := E[nc(B, C)] to the nearest integer, we compute

P (more(B, C)|I) =

{

P (cls(C)|I) if n = 0
P (more|n) else

(8)

(4) Another class. Similarly, a name-image action re-

quires computing P (morecls(C|I)) that another object class

is present in the image beyond the classes C. An empirical

distribution on number of object classes is used as above.

(5) Objectness. A verify-object action requires computing

P (obj(B) that bounding box B is tight around some object.

Models such as [1] can be used.

(6) New object. Finally, transition probabilities for a name-

box action requires P (new(B, C)|I) for a bounding box B

as the probability that there is an object in this box which

has not yet been named in the current set of classes C. As-

suming independence (and implicitly conditioning on I):

P (new(B, C)) = P (obj(B))
∏

C∈C

(1− P (det(B,C))) (9)

The supplementary material provides additional details.

Adding new human tasks in Table 1 would likely require the

addition of new computer vision models.



Human task TP TN Cost

Verify-image: class C in image? 0.87 0.98 5.34s

Verify-box: class C in box B? 0.77 0.93 5.89s

Verify-cover: more boxes of C? 0.75 0.74 7.57s

Draw-box: draw new box for C 0.72 0.84 10.21s

Verify-object: B some object? 0.71 0.96 5.71s

Name-object: name object in B 0.75 0.92 9.67s

Name-image: name object in img 0.98 0.88 9.46s

Table 2. Human annotations tasks with the corresponding accuracy

rates and costs. Detailed explanations of each task are in Table 1.

TP column is the true positive probability of user answering “yes”

(or drawing a box, or writing a name) when the answer should in

fact be “yes.” For the open-ended tasks we also need to estimate

the probabilities of the given answer being correct: these prob-

ability are draw-box 0.71, name-object 0.94, name-image 0.95.

TN column is the true negative probability of the user correctly

answering “no.” Cost is median human time in seconds.

5. Experiments

We evaluate both the accuracy and cost of our proposed

object annotation system that combines multiple computer

vision models with multiple types of human input in a prin-

cipled framework. We begin by describing the experimental

setup (Section 5.1), then discuss the challenges of design-

ing the variety of human tasks and collecting accurate error

rates (Section 5.2), showcase the quality of annotation ob-

tained by our system (Section 5.3) and conclude by proving

that our system is capable of self-monitoring (Section 5.4).

5.1. Setup

We perform experiments on the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) detection

dataset [43]. The dataset consists of 400K training images,

20K validation images and 40K test images. The validation

and test images are fully annotated with all instances of 200

object classes ranging from accordion to zebra. Since test

set annotations are kept hidden by the challenge organiz-

ers, we split the validation set into two sets (val1 and val2)

and evaluate on val2 following [19]. We use 2216 images

of val2 that contain at least 4 ground truth object instances.

The average number of instances per image is 7.0 compared

to 7.7 of COCO [37], and the average object size is 9.8% of

image area compared to 10.5% in SUN [64].

Computer vision input. We use publicly available code

and models as computer vision input. The object detectors

are pre-trained RCNN models released by [19]. Image clas-

sifiers are convolutional neural network (CNN) classifiers

trained with Caffe [27] on ILSVRC2013 detection train-

ing set (full images, no bounding box labels) [24]. De-

tections and classifications with probability less than 0.1
are discarded.5 We use non-maximum suppression on the

5Details about probability calibration are in supplementary material.
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Figure 4. Bounding boxes with increasing intersection over union

(IOU) with the optimal tight box. Training human annotators to

make binary decision on whether or not a bounding box is a good

detection is quite difficult; this the primary contributor to human

error rates. Guidance such as “the object occupies more than half

the bounding box” is confusing since objects like corkscrews (bot-

tom row) occupy a small area even at perfect IOU.

output of detectors to (1) avoid multiple detections around

the same instance, and (2) reduce the computational burden.

The probability distribution for P (more|n inst) is computed

empirically for all classes jointly on the val1 set. The prob-

ability P (morecls|n classes) is from [22].

Human-computer interaction. Setting up a system that

integrates computer vision knowledge with human input re-

quires finding common ground between the two. One nec-

essary decision is what bounding box is considered a correct

detection. In object detection, a bounding box is commonly

considered correct if its intersection over union (IOU) with

a ground truth box is greater than 0.5. [43, 16] However,

training humans to visually inspect a bounding box with

IOU of 0.3 and distinguish it from one with IOU 0.5 is sur-

prisingly difficult (Figure 4). In our experiments we choose

0.7 as the target IOU as the halfway point between the tar-

gets of object detection and human annotation.6

The higher IOU further reduces the accuracy of auto-

mated object detection, from 34.1% mAP with IOU of 0.5
and non-maximum suppression (nms) of 0.3 as in [19] to

18.7% mAP with IOU of 0.7 and nms of 0.5.

5.2. Learning human accuracy rates

To compute the expected output of an action (Sec-

tion 4.2) we need to collect user accuracy rates for each

human task of Table 1. We assume that user error is depen-

dent only on the type of task (for example, on the clarity of

instructions or the effectiveness of filtering spam workers)

and not on the exact question: i.e., a user is equally likely

to misclassify a cat as she is to misclassify a hammer. We

generated positive and negative sets of examples for each

task from ILSVRC val1 annotations,7 and showed them to

AMT workers. Quality control was done with a few “gold

6When human annotators are used to collect object detection datasets,

the average difference in bounding boxes for the same instance between

two annotators is about 5 pixels on each side. [43] For an 200x200 pixel

object, this corresponds to approximately 0.90 intersection over union.
7Details about generating these sets are in supplementary material.



standard” questions.

The accuracy rates and costs (in median human

time [13]) are reported in Table 2. By far the biggest source

of error is getting users to make binary decisions on tasks

with a bounding box: the average accuracy is 0.92 for

image-level tasks (verify-image and name-image) and 0.81
for the box-level tasks. For the open-ended tasks (draw-box,

name-object, name-image) we needed to compute both the

probability that the user answers the question affirmatively

(i.e., attempts to draw a box) as well as as the probability

that the user is correct. For name-object and name-image

we manually verified the responses on 100 images each.

Some common mistakes were misclassifications (calling a

sheep “goat” or a cello “violin”) and annotations that were

too general (e.g., “food”) despite instructions.

5.3. Evaluating labeling quality

We evaluate our proposed annotation system in simula-

tion using the human accuracy rates collected in Section 5.2

to simulate the real-world labeling scenario. Figure 5 shows

the average number of objects labeled as a function of bud-

get (human labeling time). For the purposes of simulation,

since only the 200 object category names in the image are

known, we omit the verify-object and name-object tasks.

We reach several conclusions based on these results:

Computer vision and human input are mutually benefi-

cial. The object detectors (CV only in Figure 5) are able

to label on average 0.95 objects per image at zero cost.

Human-only annotation (H only) starts at zero labeled ob-

jects but improves over time. After 30 seconds of anno-

tation, our joint method (CV+H) labels 1.5x more objects

than the computer vision-only method and 2.8x more ob-

jects than the human-only method (Figure 5 left). This

means that given 30 seconds of human time per image,

adding in computer vision input can almost triple the ac-

curacy of the human labeling.8

An MDP is an effective model for selecting human tasks.

Figure 5 (right) shows that selecting questions at random

is a surprisingly effective strategy that can label 3.9 ± 0.4
objects on average after 600 seconds of labeling (CV+H:

rand). Our MDP approach significantly outperforms this

baseline, labeling 6.0± 0.3 objects after 600 seconds.

Complex human tasks are necessary for effective anno-

tation. We demonstrate that simple binary tasks are inef-

fective in our setting, by considering an MDP with just the

verify-image and verify-box tasks (CV+H: vi,vb in Figure 5

(right). It labels 1.5x more objects than the CV-only base-

line after 4.5 minutes of labeling and then plateaus. Our full

8Given a large labeling budget (Figure 5 right), human feedback con-

tributes more than computer vision to the labeling. In fact, the human-only

method even slightly outperforms the joint method in this case, partially

due to the fact that it’s difficult to perfectly calibrate object detectors to

estimate their level of uncertainty (this is where e.g., [65] may be useful).

Figure 5. Our computer vision+human model (CV+H) compares

favorably with others. The number of labeled objects (y-axis) is

computed by averaging across multiple levels of precision on each

image and then across all test images. Error bars correspond to one

standard deviation across simulation runs. Left. The joint model

handily outperforms the human-only (H only) and vision-only (CV

only) baselines at low budget. Right. Our principled MDP is sig-

nificantly better than choosing questions at random (rand). Vari-

ety of human interventions is critical; using only verify-image and

verify-box human tasks is insufficient (CV+H:vi,vb). Our model

also outperforms the ILSVRC-DET annotation baseline of [43].

system with all human tasks (CV+H: all tasks) achieves this

improvement after just 1 minute, and then further improve

to label 6.3x more objects than CV-only.

Our annotation strategy is more effective than the

ILSVRC-DET system [43]. The ILSVRC detection sys-

tem consists of two steps: (1) determining what object

classes are present in the images, followed by (2) asking

users to draw bounding boxes. (1) is described in [13,

43]. Using their annotation times, hierarchical annotation

method and optimistically assuming just 2.5 workers per la-

bel, determining the presence/absence of all 200 object cat-

egories with 95% accuracy would take 446.9 seconds per

image. [50] describes Step 2 and reports time per bound-

ing box (including quality control) as 42.4 seconds. This

baseline is shown in green in Figure 5 (right), and labels 3.6
objects after 600 seconds, on par with our random baseline

(CV+H: rand) and significantly below our joint model.9

Figure 6 shows qualitative results of our labeling system.

5.4. Satisfying requester constraints

One of the key aspects of our system is the ability to

allow the requester to provide constraints on the desired an-

notation (Section 3). After the annotation process (600 sec-

onds), we queried the system for image annotations at 0.5
precision; 0.519 of the returned objects were indeed correct

detections. We repeated the process at 0.1 intervals up to 0.9
precision; the model returned detections with an average of

0.041 higher precision than queried. Thus, the system is

well-calibrated and we can do requester queries.

Figure 7(a) plots requested budget (x-axis) and requested

precision (colored lines) versus the utility of returned label-

9One important difference to note is that the ILSVRC-DET system was

optimized for annotating the desired 200 object classes while our system

allows users to freely name new object classes.
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Figure 6. Some example results from our system integrating computer vision with multiple types of user feedback to annotate objects.
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Figure 7. Quality of returned labeling as a function of requester

constraints; details in Section 5.4.

ing. We observe that, given the same budget, requesting a

higher level of precision causes the system to be more cau-

tious about returned detections and thus results in lower-

utility labelings. After incorporating 5 minutes of human

input and requesting a labeling at 0.9 precision the system

will return on average 4 correctly labeled objects.

Instead of specifying the desired budget and precision,

the requester can also specify the desired budget and utility.

However, this may not be feasible in all cases, as shown in

Figure 7(b). For example, obtaining a utility of 3 objects

labeled after 60 seconds of labeling is feasible in only 50%
of the images. For the images where it is feasible, however,

we can refer to Figure 7(c) to get the expected precision of

the labeling. In this case, the expected precision is 21.2%.

Providing this detailed analysis of the tradeoff between

precision, utility and budget can help requesters interested

in obtaining a dense labeling of objects in an image a-priori

estimate the quality of the labeling given the scope of their

problem and their constraints.

6. Conclusions

We presented a principled approach to unifying multi-

ple inputs from both computer vision and humans to label

objects in images. We conclude with several take-home

messages. First, from the computer vision perspective,

current object detectors are far from perfect and can only

detect a couple of objects in an average image. Further,

accuracy drops rapidly when a tighter bounding box (with

IOU higher than 0.5) is required. Our work can be used for

collecting large-scale datasets with minimal supervision to

improve the current state-of-the-art object detectors; in turn,

the improved models will make our system more effective.

From a crowd engineering perspective, we demon-

strated that it is worthwhile to combine multiple tasks in

a principled framework. One interesting observation is that

the verify-cover task (asking if all instances of an object

class are already labeled in the image) inspired by ILSVRC

data collection process [43] turned out in practice to have al-

most no impact on the labeling accuracy as it was selected

by the model less than 0.1% of the time. This confirmed

more of the intuitions of the later COCO [37] dataset that

asking slightly more complex human tasks (such as immed-

itately asking users to put a dot on the object rather than

merely asking if the object appears) may be more efficient.

Finally, from an application developer perspective, we

show that even though computer vision is not yet ready to

detect all objects, we have a principled way of labeling all

objects in a scene, trading off precision, utility and budget.
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