
Best-Path Planning for Public Transportation Systems
Chao-Lin Liu

Abstract—The author examines methods for a special class of path plan-
ning problems in which the routes are constrained. General search algo-
rithms assume that we can move around in the traffic network freely, so
they extend the partial paths from the very last location to each of its neigh-
bors to form more partial paths. The best partial paths are then selected to
expand, unless the selected partial path happens to be a solution. Without
proper guidance, this strategy may lead to inefficient planning algorithms
when the way one can move around in the networks is constrained. This
scenario could happen in public transportation systems where passengers
cannot order drivers to change the routes of public buses to meet individual
travel needs.

A few recently proposed path-planning algorithms for public trans-
portation systems capture the route constraints by matrices. Although they
work for some applications, they are not perfect for cooperating with tra-
ditional algorithms for best-path planning. Applying special properties of
matrix multiplication, the author also employs matrices for capturing the
route constraints. The author improves previous designs, and come up with
the so-calledQ matricesthat serve well in the A* algorithm for best-path
planning under route constraints.

Keywords—Intelligent Transportation Systems, Advanced Public Trans-
portation Systems, Path Planning under Constraints, Matrix Applications,
A* Algorithm, Search

I. I NTRODUCTION

Standard search algorithms, such as the Dijkstra’s and the A*
algorithms, find the best path by expanding, comparing, and se-
lecting promising partial paths that emerge from the origin to-
ward the destination of the desired trip [1, 5, 13]. We determine
whether a partial path is promising based on the objective func-
tion for the particular application, e.g., the shortest or the fastest
paths for the trips. The literature has seen a wide variety of
planning algorithms for these classes of applications in different
contexts. In this paper, we discuss applications of matrices to
the path planning problems when we are not permitted to move
absolutely freely in a given area.

The standard algorithms search for the best solution by grad-
ually expanding the paths. For instance, in order to find the best
path from the intersectionL5 to another intersectionL9 in Fig-
ure 1, a typical search algorithm will consider five partial paths,
each fromL5 to one of its neighbors. All unselected partial paths
and the newly generated partial paths are put into a pool. Next
the algorithm chooses the best current partial path to expand,
based on the estimations of the merits of the partial paths. The
algorithm iteratively chooses the best partial path to expand, and
stops when the chosen partial path happens to lead the traveler
from the desired origin to the desired destination.

Searching the best path in this style may work well for sit-
uations where we can choose the route freely such as a driv-
ing scenario. This assumption about autonomy does not always
hold however. For example, traveling by the public transporta-
tion systems is clearly a counterexample to such an assumption.
As a passenger, we cannot demand the driver to take the path

This paper appeared in theProceedings of the Fifth International IEEE Con-
ference on Intelligent Transportation Systems, 834-839, Singapore, 3-6 Septem-
ber 2002. Chao-Lin Liu is with the Department of Computer Science of National
Chengchi University, Taiwan. E-mail: chaolin@nccu.edu.tw.

5�

/� /�

/�

/� /�

/�

5� 5�

/�

5�

/�

/�

5�

Fig. 1. A simple grid-style network with five service routes

that best meets our travel purposes. Consider the service routes
in Figure 1. The partial paths fromL5 to eitherL3 or L7 should
not be generated for consideration at all because there is no way
to travel that way by public buses. More importantly, if trans-
ferring will result in significant costs,L5 ! L6 should not be
considered as good asL5 ! L8 because the former would need
three transfers on the way toL9. Introducing a mechanism to
explicitly model the route constraints and predict the need to
transfer will improve the efficiency of the best-path planning al-
gorithms for public transportation systems.

A good mechanism should demonstrate two important char-
acteristics: simple and cooperative. To construct a route-
information service that answers people’s queries, we can col-
lect information about the stops served by each service route,
the service direction, and schedule of each service route in the
public transportation systems. Given such raw data, a good
mechanism should be able to serve, perhaps after some simple
pre-compilation of the raw data. Also, we would like to have a
route-information service that is able to find the best path where
“best” is determined based on multiple decision factors accord-
ing to travelers’ preferences. Therefore, we should be able to
easily integrate the new mechanism for capturing the route con-
straints with existing algorithms for best-path planning.

In this paper we review the algorithms proposed by Liu and
his colleague in the past IEEE ITS conference, discuss why none
of their algorithms conform to the simple and cooperative cri-
teria, and propose one new mechanism that meets the criteria.
Section II formalizes the problem that we will address and the
notation that we will use. Section III discusses an approach that
applies the concept of hierarchical planning to implicitly model
the route constraints. We designate some special locations as
hubs where transferring between routes are convenient. The
planning algorithms attempt to find a satisfactory solution based
on pre-computed paths among pre-selected hubs [10, 11]. For
comparison purpose, Section IV reviews two methods that ex-
plicitly capture the route constraints by matrices in details [11].
Section V examines the previously proposed methods, and ar-
gues that it is not easy to integrate them with standard algorithms
for computing best paths of more complex objective functions.
We then look into a better strategy that also employs matrices.
This new design avoids the difficulties, and we demonstrate its

1



applications to path planning problems using the A* algorithm.
Finally, we wrap up this paper with a brief summary and com-
parison.

II. PROBLEM DEFINITION AND NOTATION

We address the path planning problem in which the travelers,
which could be passengers in public transportation systems or
data packets in computer networks, cannot change their routes
absolutely freely. The purpose is to apply matrices to capture the
constraints so that we conduct path planning more efficiently.

We use a few terms for describing aspects of constrained
routes. First we assume that there is a set of locations to be
served by a set of directed service routes. We assign to each lo-
cation in the area of interest a unique identification number, and
denote this set of numbers byS. Similarly we assign to each
route serving the area a unique identification number, and let
this set of numbers beR. To accommodate the existence of one-
way streets and simplex communication lines, we assume that
all service routes are directed. We can use two separate routes
to model a two-way service route. For the simple grid shown
in Figure 1, we could have assigned 24 unique numbers to the
intersections, and 5 unique numbers to the service routes.

We also assign an ordinal numberK(r; s) to each location,
s, served by a route,r. TheK value of the departure terminal
of each route is1. If a router does not serve a locations, then
K(r; s) = 0. Hence,K(r; s1) > K(r; s2) > 0 implies that
router serves froms2 to s1. Based on theK function, we
define some useful functions.
1. For a locations, the set of service routes that serves is de-
fined as follows.

SR(s) = frjK(r; s) > 0;r 2 Rg

2. The set of common stops served by two routesr1 andr2 is
defined as follows.

CS(r1;r2) = fsjK(r1; s) > 0 andK(r2; s) > 0; s 2 Sg

3. For two locationss andt, the following function returns the
set of direct serviceroutes by which we can travel froms to t
without transfers.

DService(s; t) = frjK(r; t) > K(r; s) > 0;r 2 Rg

The algorithms discussed in this paper employ some of these
three functions. Since these functions depend solely on the route
information, we can compute and save the results in a database
to speed up the path planning algorithms. When the storage
space is a concern, we may also compute these functions on the
fly at the expense of computation time.

III. H UB-BASED PLANNING

In previous work, Liu et al. propose a path planning algo-
rithm that employs pre-selected hubs for path planning under
route constraints [10]. This hub-based planning method smack
of recent interests in speeding up path-query services by pre-
computing partial solutions for the area of interest, e.g., [7].
Hubsare locations where several service routes concentrate, so
they provide very good opportunities for service requesters to
transfer from one route to another.

At the design stage, the system designers collect information
about the service routes, and determine the standards for cate-
gorizing ordinary locations and hubs. Since hubs are typically
served by several routes, it is feasible to employ a simple algo-
rithm to compute and store the best path between any pair of
hubs.

At run time, the planning algorithm attempts to find a direct
route from the origin to the destination first. If not successful,
the algorithm tries to find a one-transfer solution for the desired
trip. If not successful again, the algorithm finds a travel plan
from the origin to a nearby hubH1 and a travel plan from a
hub H2, that is near the destination, to the destination. Since
the system already knows how to travel between two hubs, it
combines the partial solutions to form a complete travel plan for
the desired trip. The skeleton of the algorithm follows.

Algorithm 1 (HPlanning) Let O andD denote the origin and
destination, respectively.
1. Trivial cases: ifO = D, show an appropriate message and
return a null plan.
2. Simple cases: if DService(O;D) is not empty, return any ser-
vice route in the set.
3. One-transfer cases: if9i 2 SR(O), 9j 2 SR(D), and9s 2
CS(i;j) such that both DService(O; s) and DService(s;D) are
not empty, there is a one-transfer solution.
4. Non-trivial cases: Find a travel plan via hubs.

Although it is easy to implement a working system based on
this idea, the approach does have some weaknesses. Using the
pre-computed travel plans between hubs might cause inconve-
nience when part of these plans becomes out of services unex-
pectedly. In this situation, we would have to call the planning
algorithm to find alternative travel plans for affected hubs. Most
of all, the designers must set the standards for what locations
should be treated as hubs. This step makes the approach less
flexible than one may expect, as the standards would depend on
the current services which may change over time. If the services
do change a lot, we would have to redesign the system, which
would require human intervention to determine the standards for
hubs again. This also means that we need to set the standards
every time we need to have a path planning system for a new ap-
plication context. Furthermore, the selection could become very
complicated if we would like to guarantee a solution for any de-
sired trips, considering the idiosyncracy of the actual services.

IV. M ATRICES FOR PATH PLANNING

For both theoretical and practical purposes, we would like to
find an approach that minimizes, if not nullifies, human inter-
vention when we apply the approach to a new context. We dis-
cuss methods that employ matrices for automatic provision of
path-query services in this section.

A. Adjacency matrices

Adjacency matrices are typical examples for representing
graphs with matrices, e.g., [1]. We setA i;j to 1 only if locations
i and j are both adjacent and connected by a common service
route serving fromi to j. Assume that we assigni to Li in Fig-
ure 1. The adjacency matrix forL1, L2, L3, andL4 is shown

2



below.

A =

2
4
0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

3
5 (1)

The powers ofA carry special implications. For instance,
A2

1;4 = 1 implies that we can travel fromL1 to L4 via another
location, althoughL1 andL4 are not adjacent as indicated by
A1;4 = 0. In fact, one can prove thatAn

i;j encodes the informa-
tion about whether we can travel from locationi to j by passing
(n� 1) intermediate locations.

Despite such an interesting property, adjacency matrices are
not directly applicable to the path planning problems. Comput-
ing multiple powers of the adjacency matrix at run time can be
very costly in terms of both computational time and resources,
yet offers little information about the exact travel plans.

B. Connectivity matrices

In stead of using adjacency matrices directly, we can employ
the connectivity matrices for path planning [11]. We designate
an ordinal number to each service route, and set the cellCi;j

in a connectivity matrixC to 1 if one can transfer from routei
to j. By default,Ci;i is set to zero for alli. Like adjacency
matrices, the powers of connectivity matrices encode whether
we can transfer from one service route to another. However, this
application of connectivity matrices requires validity checking.

: ;

< =

5

6 7

5� 5�

5�

5�

Fig. 2. An area with four directed service routes

The following connectivity matrix and its square for the area
shown in Figure 2 illustrate the applications and caveat. In these
matrices, we assign1, 2, 3, and4 to routesR1, R2, R3, andR4,
respectively.

C =

2
4
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

3
5 C2 =

2
4
2 2 0 0
2 2 0 0
0 0 2 2
0 0 2 2

3
5 (2)

For simple cases such as the first and the second cases stated
in Algorithm 1, we do not need to use connectivity matrices.
Otherwise, we use the matrices for connectivity information.
For (S, Z)�, since there is no direct service, the algorithm checks
which routes serve these locations, and finds that bothR1 and
R4 serveS and thatR2 servesZ. Also, the facts thatC1;2 = 0
andC4;2 = 1 suggest that it is possible to go fromS to Z by R4
andR2. This possibility must be verified by checking whether
we can go fromS to a transfer location, in this caseT, and toZ,
and the answer is yes. For (Y;X), althoughC1;3 = 1, we cannot
travel fromY to R and then toX because of the service direction
of R1.

�For simplicity, we will use a pair of locations to show the (origin,
destination) pair from now on.

For more complex travels, such as (Y;Z), we can rely on
higher powers of the connectivity matrix. LocationsY andZ
are served solely by routesR1 andR2, respectively. SinceY
andZ are not served by a common route andC 1;2 = 0, we ex-
amine the value ofC2

1;2, and find that it is possible to satisfy the
trip by transferring fromR1 to R2 by two transfers atS andT.

Note that connectivity matrices offer only the possibility of
whether we might transfer from one service route to another.
There are two things that we need to take care of. First, the
powers of connectivity matrices might include misleading in-
formation. For instance, it is not easy to interpret whyC 2

2;1 = 2
in (2). This is due to the facts that we can transfer fromR2 to
R3(andR4) and fromR3(andR4) toR1. Although it seems true
that there are two methods to transfer fromR2 to R1 here, this
information is incorrect and becomes disorienting when we are
working on the path planning problems in the area to the left of
R2. The computation of powers of matrices do not take service
directions into consideration, soC 2

2;1 = 2 does not reflect the
fact that we cannot travel westwards onR3 andR4. Therefore,
when the connectivity matrices show that it is possible to trans-
fer between a pair of routes, we always need to double check the
feasibility.

The other problem is about data maintenance. For in-
stance, thoughC2

1;2 = 2 correctly encodes that there are
two ways to transfer fromR1 to R2, the matrices do not tell
us how to achieve the desired transfer. Thus, the algorithm
needs to compute exactly how one can transfer from one route
to another at system design time. These so-calledconnect-
ing route functions are important ingredients for speeding up
the route-information service system. For instance, we have
CR1(R1;R2) = fR3;R4g for the area shown in Figure 2.
The subscripti to CR indicates the set is for(i + 1)-transfer
cases, e.g.,CR1(r1;r2) = frjr 2 R; 9x 2 CS(r;r1) and
9y 2 CS(r;r2) such thatK(r; x) < K(r; y)g. The path plan-
ning algorithm follows.

Algorithm 2 (CPlanning) Let O andD denote the origin and
destination, respectively. Assume thati 2 SR(O) and j 2
SR(D).
1.-2. Same as those in HPlanning.
3. One transfer: IfCi;j > 0, check if9s 2 CS(i;j) such that
both DService(O; s) and DService(s;D) are not empty. If yes,
there is a one-transfer solution.
4. Two transfers: IfC2

i;j > 0, check if9r 2 CR1(i;j) such
that 9s 2 CS(i;r), 9t 2 CS(r;j), DService(O; s) 6= ;,
DService(s; t) 6= ;, and DService(t;D) 6= ;. If yes, there is
a two-transfer solution.

In principle, this algorithm can be extended to identify travel
plans that require any number, sayn, of transfers. We just need
to prepareCn andCRn�1(i;j) for all i andj. Therefore the
algorithm iscompletein the sense that it can find a travel plan
between any location pairs as long as the solution exists. If the
goal is to find a travel plan that minimizes the number of trans-
fers, this algorithm is alsooptimalbecause it can stop whenever
it identifies a solution at an early step.

Connectivity matrices have connection with the quality of
services. Assume thatX andY are two locations that are not

3



served by a common route. LetMX;Y be the minimaln such
thatCn

i;j 6= 0 for all i 2 SR(X) andj 2 SR(Y). Then, we can
prove that the least number of transfers necessary for traveling
from X to Y is no smaller thanMX;Y [11]. If there exists a pair
of X andY that has a largeMX;Y, we may want to add or mod-
ify the service routes to reduce thisM value for upgrading the
services betweenX andY.

Connectivity matrices are a better tool for path planning un-
der route constraints than hubs and adjacency matrices. Most
importantly, the construction of Algorithm 2 can be fully au-
tomatic. All we need is the routing information for individual
routes. Unlike the approach discussed in Section III, there is
no need for extra human intervention except the data collection
stage. Also, since the number of service routes is intrinsically
much smaller than the number of locations, it is much easier to
compute and store connectivity matrices than adjacency matri-
ces in terms of both computation time and storage space.

V. PLANNING WITH TRANSITION MATRICES

Although Algorithm 2 leads to fully automatic realization of
a path planning system, it is not easy to apply the algorithm
to best-path planning where the merits of a path include fac-
tors other than the number of transfers. A common example is
computing the best path whose traveling costs include stochastic
travel times [6, 8, 14].

As one may have noticed, Algorithm 2 biases against paths
that require more transfers. Although paths requiring lesser
transfers are more likely to be faster paths, there could also
be exceptions. To guarantee the optimality of the solution, we
could not afford to blindly ignore paths that require multiple
transfers. On the other hand, we might need connectivity matri-
ces of very high dimensions to determine the potential merits of
not very viable travel plans. Although this is achievable, it could
be very computationally expensive to do so.

Using theM matrix to guide the best-planning algorithm is
more viable than using the connectivity matrices. TheM matrix
contains the lower bounds of the number of transfers necessary
for traveling between two stops. However, as we will see next
that thetransition andQ matricesprovide more exact informa-
tion for best-path planning.

A. Transition matrices

We assign an ordinal number to each location in considera-
tion. Then, we assign the cellT i;j of the transition matrixT to
be the number of direct routes one may commute from location
i to locationj. We setTi;i to 0 by default. TheT shown below is
the transition matrix for locationsL1 throughL6 in Figure 1.

T =

2
6664

0 1 1 1 0 1
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

3
7775 (3)

We can prove, by induction, that thenth power ofTencodes
the number of ways that we can travel from a locationi to an-
other locationj by (n � 1) transfers, forn � 2. By definition,
Tk;j is the number of direct routes that we can travel fromk to j.

Also, the standard definition of thenth power ofT is

Tn
i;j =

X
k

Tn�1
i;k Tk;j : (4)

Using proof by induction, we can assume thatT n�1
i;j is the num-

ber of routes that we can travel fromi to j by (n � 2) transfers,
since this is the case forn = 2. Now, the first term within
the summation in (4),T n�1

i;k , is the number of ways that we can
travel fromi to an intermediate locationk by (n � 2) transfers,
and the second term is the number of direct ways that we can
travel fromk to j. Multiplying these two quantities would give
us the total number of ways for traveling fromi to j and transfer
at a particulark by (n � 1) transfers. Therefore, summing over
all possiblek gives us the total number of ways to travel fromi
to j by (n� 1) transfers.

Similar to connectivity matrices, transition matrices have ap-
plications for service planning. Define the cellQ i;j of theQ
matrix as follows.

Qi;j � the minimaln 2 [1;1) such thatT n
i;j 6= 0

It is easy to see thatQi;j encodes the minimal number, i.e.,
Qi;j � 1, of transfers necessary for traveling fromi to j. There-
fore, if Qi;j is very large for some (i; j) pairs, we probably need
to improve the service for these location pairs. For practical
networks, we can expect thatQi;j will not be a large number.
Therefore computing and updating theQ matrix should not be a
challenging task. Moreover, the calculation of theQ matrix can
be carried out at system design time before we putQ into work.
Qi;j is clearly superior toMX;Y defined in Section IV-B.

MX;Y is a lower bound of the minimal number of transfer neces-
sary for traveling fromX to Y. In contrast,QX;Y unambiguously
pinpoints the minimal number of transfers for the same trip.

/� /� /�/� /�

/�

Fig. 3. Locations served by a common route

For locations served by a common route, the transition ma-
trices may seem to exaggerate the number of ways of traveling
between these locations. Consider the very simple case shown
in Figure 3 where five locations are served by a common route.
The square and cubic of the transitivity matrix for these loca-
tions are shown below.

T 2 =

2
6664

0 0 1 2 3 0
0 0 0 1 2 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0

3
7775 T 3 =

2
6664

0 0 0 1 3 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 2 3 0

3
7775 (5)

The fact thatT 2

1;5 = 3 may seem weird at first. This is because
that, at least in principal, we can get on and off the same bus
at L2 for traveling fromL1 to L5. Similarly, one can do such
“transfers” atL3 andL4. Hence,T 2

1;5 = 3 indicates that there
are three different one-transfer ways to travel fromL 1 to L5. The
facts thatT 3

1;5 = 3 andT 3

6;5 = 3 have analogous interpretations.

4



This property will not affect the usefulness of theQmatrix. It
is easy to see and show that, whenT k

i;j is an exaggerated value,
there must be a� < k such thatT �

i;j 6= 0. For instance,T 2

1;5 = 3
is an exaggerated value, but we haveT1;5 = 1, soQ1;5 = 1.

B. Planning under route constraints

SinceQi;j encodes the minimal number of transfers neces-
sary for traveling from locationi to j, we can apply theQ matrix
to design a path planning algorithm as follows. Notice that there
is no need to check feasibility of travel plans as one may need in
CPlanningbecause theQ matrix provides decisive connection
information.

Algorithm 3 (TPlanning) Let o andd denote the numbers as-
signed to the origin and destination, respectively.
1. Trivial cases: ifo = d, show an appropriate message and
return a null plan.
2. Direct: if Qo;d = 1, return any service in DService(o; d).
3. One transfer: ifQo;d = 2, there must be a locationm
such thatQo;m = 1 andQm;d = 1. Combine any route in
DService(o;m) and any route in DService(m; d) to obtain a
one-transfer plan.
4. Two transfers: ifQo;d = 3, there must be different loca-
tions m1 and m2 such thatQo;m1 = 1, Qm1;m2 = 1, and
Qm2;d = 1. Combine one route from each of DService(o;m1),
DService(m1;m2), and DService(m2; d) to obtain a two-
transfer plan.

Similar to Algorithms 1 and 2, the leading two steps take care
of trivial and simple cases. At step 3, we check whether or not
Qo;d = 2. If true, there is at least one intermediate locationm
where we can transfer from the route that serveso to the route
that servesd. We check forQo;m = 1 andQm;d = 1 because
we are sure that there cannot be any direct service from the ori-
gin to the destination whenQo;d = 2, so we can satisfy the
desired trip only by combining one leg of the trip from each
of DService(o;m) andDService(m; d). Following this design
principle, we can add more steps, such as the fourth step, to
cope with cases in which two or more transfers are necessary.
Therefore, this algorithm is complete and optimal in the sense
that it will always find the travel plan that requires the least trans-
fers. ThisTPlanningalgorithm is better thanCPlanningbecause
TPlanningrequires less checking at run time.

C. Integration with fastest-path algorithms

TheQmatrix is not just useful for searching paths that require
the least number of transfers. It works with traditional search
algorithms naturally. We demonstrate the applicability of theQ

matrices to fastest-path planning problems by integrating them
into the A* algorithm. In the standard A* algorithm, we employ
a heuristic function to estimate the merits of search nodes [13].
In particular, this heuristic function should not overestimate the
actual cost from the state being evaluated to the goal state. Such
heuristic functions are calledadmissible, and they lead to the
optimality of the A* algorithm.

Applying the A* algorithm to path planning problems, we
need to select a heuristic function for estimating the traveling
cost from a location to the destination. The preferences depend

well upon the applications and individual travelers. For public
transportation systems, individuals may consider such factors as
fare, seat availability, easiness and times of transfers, and so on
[2]. Among these factors, the necessity of transferring is directly
related to the route constraints.

Therefore, we need to forecast the need to transfer when we
compare the goodness of an intermediate location, even when
this need will not take effect at the current location. We can rely
on theQ matrices for this capability. LetO andD respectively
denote the origin and destination of the desired trip, andL i be
any intermediate location. Assume that the current partial path
is O ! L1 ! � � � ! Ln. The evaluation function for this par-
tial path isf(n) = g(n) + h(n), whereg(n) is total costs for
traveling fromO to Ln, andh(n) is the heuristic estimation for
future costs if this partial path is extended to reach the actual
destination. Henceh(n) is the part of the evaluation function
that must consider the transfers that must occur in the future.
Let n andd be the ordinal number assigned toLn andD, re-
spectively. The quantityQn;d will encode the minimal number
of transfers necessary for traveling fromLn to the destination,
thereby providing a perfect basis for determining the effects of
route constraints on the heuristic estimationh(n).

Consider the example in Figure 1 again, where we assigni to
Li. We assume that it is possible to travel between any location
by public buses in the area had we drawn the whole area, and
thatQxy is very large if it appears that we cannot go fromx to
y in the grid. Furthermore, for this illustration, we assume that
one would like to travel fromL1 to L9, and that transferring is
very costly. AtL1, we would see thatQ2;9 = 1 andQ3;9 = 3,
so L1 ! L2 is preferable toL1 ! L3 in terms of number of
transfers. Next,without the guidance of theQ matrix, a search
algorithm might consider thatL1 ! L2 ! L4 is better than
L1 ! L2 ! L5 because the latter requires an immediate trans-
fer. However, withQ5;9 = 1 and a largeQ4;9, the search algo-
rithm will evaluate these alternatives more correctly. Also, the
facts thatQ8;9 = 1 andQ6;9 = 3 will be helpful for appropriate
comparison betweenL1 ! L2 ! L5 ! L8 andL1 ! L3 ! L6.

In addition to using theQ matrix to support the compari-
son among partial paths, we use theK values to support the
task of partial path generation. Take the task of expanding
L1 ! L2 ! L5 for example. One could have generated five new
partial paths, each fromL5 to one of its neighbors. Using the
facts thatK(R2; 5) > K(R2; 2) andK(R3; 5) > K(R3; 7),
the algorithm will not generate two invalid paths fromL5 to L2
andL7.

Notice that the information provided by theQ matrices is su-
perior to that provided by theM matrices which we discussed
at the end of Section IV-B. TheM matrices provide a lower
bound of the number of needed transfers, so they can be useful
for defining an admissible heuristic. TheQmatrices, in contrast,
provide the exact minimum number of needed transfers, so they
are superior for defining a tighter admissible heuristic.

Computing the fastest path is not an easy task. It is well
known that, when the link travel times are time dependent, tra-
ditional search algorithms cannot be applied directly [6]. Kauf-
man and Smith find that the Dijkstra’s algorithm remains appli-
cable if the transportation network demonstrates the feature that
leaving an origin later will not make one arrive at the destination

5



earlier [8]. Wellman et al. extend the applicability of the A* al-
gorithm to transportation networks in which leaving an origin
later will not increase the probability of arriving the destination
at an earlier time [14]. Liu and Wellman further extend this work
to situations where we only afford to compare the goodness of
paths roughly by bounds of the distribution of travel times [12].
Bander and White develop an interruptible A* algorithm that
employs more heuristic information for path planning, and this
algorithm is applicable under time constraints [3]. TheQ ma-
trices presented here can be used to guild these algorithms for
fastest-path planning when the routes are constrained.

VI. RELATED WORK

Researchers have noticed that the needs of transferring among
routes require special care for computing cost functions of can-
didate travel plans. If not carefully taken care of, transferring
costs may make standard search algorithms unable to find the
best travel plans. Dial discusses the necessity and methods for
inclusion of transfer penaltyin the computation of route costs
[4]. Knocz et al. employ matrices for representing connectivity
among routes in [9] where the matrices are calledTransit Route
Connectivity Matrices. Despite the similarity between the TRC
matrices and our transition matrices, we apply the matrices in
different ways. Our algorithm explicitly computes powers of
the transition matrices and other related data for better utiliza-
tion of the static route information, thereby achieving a more
efficient planning algorithm. In principle, theTPlanningalgo-
rithm can easily find travel plans that demand several transfers
in complex service networks. As a result, we believe that it is
relatively easier for us to integrate our algorithm with the A*
algorithm for path planning in time-dependent stochastic trans-
portation networks. The TRC matrices are more general than
the transition matrices, however, in that routes are considered
“connected” if stops served by two routes are within a prese-
lected walking distance. In general, walking can be treated as
a service route with special transfer costs and potentially longer
link travel times, and our algorithms can take walking as an al-
ternative accordingly.

VII. C ONCLUSIONS

The transition andQmatrices clearly dominate the hub-based
and the other matrix-based approaches for path planning un-
der route constraints.HPlanningembraces the concept of hubs
for implicitly modeling the route constraints.CPlanningand
TPlanning, on the other hand, employ matrices for explicitly
capturing the route constraints. They embrace, respectively, the
connectivity matrices that model the connectivity among service
routes and the transition matrices that model the connectivity
among locations. In addition to their applications for path plan-
ning problems, we can apply the connectivity and transition ma-
trices to service planning problems. We identify matrices,M

andQ respectively, that help us to gauge the quality of service
in the network.

Both CPlanningand TPlanningare better thanHPlanning
partially because they do not need extra human intervention for
implementing a path-query service.TPlanningis considered to
be even better thanCPlanning. The former requires less amount
of feasibility checking at run time, although both are good for

computing travel plans that require the least transfers. TheQ

matrices are better than theM matrices for best-path planning.
TheQ matrices provides the tightest lower bound on the trans-
fer costs. Therefore, theQ matrices offer a very good solution
to path planning with route constraints using the A* algorithm.

Finally, although we have presented the planning algorithms
for public transportation systems, the basic ideas can be ap-
plied to any routing problems where the service routes are con-
strained.

ACKNOWLEDGEMENTS

The author would like to thank the anonymous reviewers for
invaluable comments on this paper. This work was supported in
part by Grants NSC-89-2213-E-004-007 and NSC-89-2515-S-
019-001 from the National Science Council of Taiwan.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] S. Bae. An advanced public transportation systems application: Feasi-
bility study of bus passenger information systems operational test in the
town of Blacksburg. InProceedings of the Sixth Vehicle Navigation and
Information Systems Conference, 408–413, 1995.

[3] J. L. Bander and C. C. White, III. A new route optimization algorithm for
rapid decision support. InProceedings of the Second Vehicle Navigation
and Information System Conference, 709–728, 1991.

[4] R. B. Dial. Transit pathfinder algorithm.Highway Research Records,
205:67–85, 1967.

[5] E. W. Dijkstra. A note on two problems in connextion with graphs.Nu-
merische Mathematik, 1:269–271, 1959.

[6] R. W. Hall. The fastest path through a network with random time-
dependent travel times.Transportation Science, 20(3):182–188, 1986.

[7] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchical encoded
path views for path query processing: An optimal model and its perfor-
mance evaluation.IEEE Transaction on Knowledge and Data Engineer-
ing, 10(3):409–432, 1998.

[8] D. E. Kaufman and R. L. Smith. Fastest paths in time-dependent net-
works for intelligent vehicle-highway systems applications.IVHS Journal,
1(1):1–11, 1993.

[9] N. Koncz, J. Greenfeld, and K. Mouskos. A strategy for solving static
multiple-optimal-path transit network problems.ASCE Journal of Trans-
portation Engineering, 122(3):218–225, 1996.

[10] C.-L. Liu, T.-W. Pai, and C.-T. Chang. IRIS: Integrated route informa-
tion service for multimodal public transportation systems. InProceedings
of Taiwan’s International Conference & Exhibition on Intelligent Trans-
portation Systems 2000, 186–196, 2000.

[11] C.-L. Liu, T.-W. Pai, C.-T. Chang, and C.-M. Hsieh. Path-planning algo-
rithms for public transportation systems. InProceedings of the Fourth
International IEEE Conference on Intelligent Transportation Systems,
1061–1066, 2001.

[12] C.-L. Liu and M. P. Wellman. Using stochastic-dominance relationships
for bounding travel times in stochastic networks. InProceedings of the
Second International IEEE Conference on Intelligent Transportation Sys-
tems, 55–60, 1999.

[13] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[14] M. P. Wellman, M. Ford, and K. Larson. Path planning under time-
dependent uncertainty. InProceedings of the Eleventh Conference on Un-
certainty in Artificial Intelligence, 532–539, 1995.

6


