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We prove that the double inequality 𝐿𝑝(𝑎, 𝑏) < 𝑈(𝑎, 𝑏) < 𝐿𝑞(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 𝑝0 and 𝑞 ≥ 2 and
find several sharp inequalities involving the trigonometric, hyperbolic, and inverse trigonometric functions, where 𝑝0 = 0.5451 ⋅ ⋅ ⋅

is the unique solution of the equation (𝑝 + 1)
1/𝑝

= √2𝜋/2 on the interval (0,∞),𝑈(𝑎, 𝑏) = (𝑎 − 𝑏)/[√2 arctan((𝑎 − 𝑏)/√2𝑎𝑏)], and
𝐿𝑝(𝑎, 𝑏) = [(𝑎

𝑝+1
− 𝑏
𝑝+1

)/((𝑝 + 1)(𝑎 − 𝑏))]
1/𝑝

(𝑝 ̸= −1, 0), 𝐿−1(𝑎, 𝑏) = (𝑎 − 𝑏)/(log 𝑎 − log 𝑏) and 𝐿0(𝑎, 𝑏) = (𝑎
𝑎
/𝑏
𝑏
)
1/(𝑎−𝑏)

/𝑒 are the
Yang, and 𝑝th generalized logarithmic means of 𝑎 and 𝑏, respectively.

1. Introduction

For 𝑝 ∈ R and 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, the 𝑝th generalized
logarithmic mean 𝐿𝑝(𝑎, 𝑏) is defined by

𝐿𝑝 (𝑎, 𝑏) =

{{{{{{{{

{{{{{{{{

{

[
𝑎
𝑝+1

− 𝑏
𝑝+1

(𝑝 + 1) (𝑎 − 𝑏)
]

1/𝑝

, 𝑝 ̸= 0, −1,

1

𝑒
(
𝑎
𝑎

𝑏𝑏
)

1/(𝑎−𝑏)

, 𝑝 = 0,

𝑎 − 𝑏

log 𝑎 − log 𝑏
, 𝑝 = −1.

(1)

It is well known that 𝐿𝑝(𝑎, 𝑏) is continuous and strictly
increasing with respect to 𝑝 ∈ R for fixed 𝑎, 𝑏 > 0 with
𝑎 ̸= 𝑏. Many classical bivariate means are the special case
of the generalized logarithmic mean. For example, 𝐺(𝑎, 𝑏) =

√𝑎𝑏 = 𝐿−2(𝑎, 𝑏) is the geometric mean, 𝐿(𝑎, 𝑏) = (𝑎 −

𝑏)/(log 𝑎−log 𝑏) = 𝐿−1(𝑎, 𝑏) is the logarithmicmean, 𝐼(𝑎, 𝑏) =
(𝑎
𝑎
/𝑏
𝑏
)
1/(𝑎−𝑏)

/𝑒 = 𝐿0(𝑎, 𝑏) is the identric mean, and𝐴(𝑎, 𝑏) =

(𝑎 + 𝑏)/2 = 𝐿1(𝑎, 𝑏) is the arithmetic mean. Recently,
the generalized logarithmic mean has been the subject of
intensive research.

Stolarsky [1] proved that the inequality

𝐿𝑝 (𝑎, 𝑏) < 𝑀(2+𝑝)/3 (𝑎, 𝑏) (2)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝑝 ∈ (−2, −1/2) ∪ (1,∞),
and inequality (2) is reversed for 𝑝 ∈ (−∞, −2) ∪ (−1/2, 1),
where𝑀𝑟(𝑎, 𝑏) = [(𝑎

𝑟
+𝑏
𝑟
)/2]
1/𝑟

(𝑟 ̸= 0) and𝑀0(𝑎, 𝑏) =
√𝑎𝑏

is the 𝑟th power mean of 𝑎 and 𝑏.
Yang [2] proved that the double inequality

𝐴 (𝑎, 𝑏) < 𝐿𝑝 (𝑎, 𝑏) < 𝑀𝑝 (𝑎, 𝑏) (3)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if 𝑝 > 1, and inequality (3) is
reversed if 𝑝 < 0.

In [3], the authors proved that the inequality

𝐿𝑝 (𝑎, 𝑏) <
𝑎 + 𝑏

(𝑝 + 1)
1/𝑝 (4)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝑝 > 1.
Li et al. [4] proved that the function 𝑝 → 𝐿𝑝(𝑎, 𝑏)/𝐿𝑝(1−

𝑎, 1− 𝑏) is strictly increasing (decreasing) onR if 0 < 𝑎 < 𝑏 ≤

1/2 (1/2 ≤ 𝑎 < 𝑏 < 1). In [5, 6], the authors proved that the
function 𝑞 → 𝐿𝑞(𝑎, 𝑏)/𝐿𝑞(𝑎, 𝑐) is strictly decreasing on R if
0 < 𝑎 < 𝑏 < 𝑐 and the function 𝑟 → 𝐿𝑟(𝑑, 𝑑+ 𝜀)/𝐿𝑟(𝑑+𝛿, 𝑑+

𝜀 + 𝛿) is strictly increasing on R for all 𝑑, 𝜀, 𝛿 > 0.
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Shi and Wu [7] proved that the double inequality

[
(𝜆𝑏 + ((1 − 𝜆) /2) (𝑎 + 𝑏))

𝑝+1
− (𝜆𝑎 + ((1 − 𝜆) /2) (𝑎 + 𝑏))

𝑝+1

𝜆 (𝑝 + 1) (𝑏 − 𝑎)
]

1/𝑝

< 𝐿𝑝 (𝑎, 𝑏) < [
(𝑎 + 𝑏 − 𝑐)

𝑝+1
− 𝑐
𝑝+1

(𝑝 + 1) (𝑎 + 𝑏 − 2𝑐)
]

1/𝑝

(5)

for all 𝑏 > 𝑎 > 𝑐 > 0 and 0 < 𝜆 < 1 if 𝑝 > 1, and inequality
(5) is reversed if 𝑝 ∈ (−1, 0) ∪ (0, 1).

Long and Chu [8] and Matej́ıčka [9] presented the best
possible parameters 𝑝 = 𝑝(𝛼) and 𝑞 = 𝑞(𝛼) such that the
double inequality

𝐿𝑝 (𝑎, 𝑏) < 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼)𝐺 (𝑎, 𝑏) < 𝐿𝑞 (𝑎, 𝑏) (6)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝛼 ∈ (0, 1/2) ∪ (1/2, 1).
In [10], Qian and Long answered the question: what are

the greatest value 𝑝 and the least value 𝑞 such that the double
inequality

𝐿𝑝 (𝑎, 𝑏) < 𝐺
𝛼
(𝑎, 𝑏)𝐻

1−𝛼
(𝑎, 𝑏) < 𝐿𝑞 (𝑎, 𝑏) (7)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝛼 ∈ (0, 1), where
𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏) is the harmonic mean of 𝑎 and 𝑏.

In [11, 12], the authors proved that the double inequalities

𝐿𝑝
1
(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐿𝑞

1
(𝑎, 𝑏) ,

𝐿𝑝
2
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝐿𝑞

2
(𝑎, 𝑏)

(8)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝1 ≤ 𝑝
∗

1
,

𝑞1 ≥ 2, 𝑝2 ≤ 3, 𝑞2 ≥ 𝑞
∗

2
, where 𝑝

∗

1
= 1.843 ⋅ ⋅ ⋅ is the

unique solution of the equation (𝑝 + 1)
1/𝑝

= 2 log(1 + √2)

on the interval (0,∞), 𝑞∗
2

= 3.152 ⋅ ⋅ ⋅ is the unique solution
of the equation (𝑞 + 1)

1/𝑞
= 𝜋/2 on the interval (0,∞),

𝑀(𝑎, 𝑏) = (𝑎 − 𝑏)/[2 sinh−1((𝑎 − 𝑏)/(𝑎 + 𝑏))] is the Neuman-
Sándor mean, and 𝑇(𝑎, 𝑏) = (𝑎−𝑏)/[2 arctan((𝑎−𝑏)/(𝑎+𝑏))]

is the second Seiffert mean.
In [13, 14], the authors presented the best possible param-

eters 𝑝1 = 𝑝1(𝑞), 𝑝2 = 𝑝2(𝑞), 𝜆 = 𝜆(𝛼), and 𝜇 = 𝜇(𝛼) such
that the double inequalities

𝐿𝑝
1
(𝑎, 𝑏) < [𝐿 (𝑎

𝑞
, 𝑏
𝑞
)]
1/𝑞

< 𝐿𝑝
2
(𝑎, 𝑏) ,

𝐿𝜆 (𝑎, 𝑏) < 𝐺
𝛼
(𝑎, 𝑏) [

𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2
]

1−𝛼

< 𝐿𝜇 (𝑎, 𝑏)

(9)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, 𝑞 > 0 with 𝑞 ̸= 1 and 𝛼 ∈

(0, 2/3) ∪ (2/3, 1).
Gao et al. [15] provided the greatest value 𝛼 and the least

value 𝛽 such that the double inequality

𝐿𝛼 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝐿𝛽 (𝑎, 𝑏) (10)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where 𝑃(𝑎, 𝑏) = (𝑎 −

𝑏)/[2 arcsin((𝑎− 𝑏)/(𝑎+𝑏))] is the first Seiffert mean of 𝑎 and
𝑏.

Very recently, Yang [16] introduced the Yang mean

𝑈 (𝑎, 𝑏) =
𝑎 − 𝑏

√2 arctan ((𝑎 − 𝑏) /√2𝑎𝑏)
(11)

of two distinct positive real numbers 𝑎 and 𝑏 and proved that
the inequalities

𝑃 (𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ,

𝐺 (𝑎, 𝑏) 𝑇 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
< 𝑈 (𝑎, 𝑏) <

𝑃 (𝑎, 𝑏) 𝑄 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
,

𝑄
1/2

(𝑎, 𝑏) [
2𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3
]

1/2

< 𝑈 (𝑎, 𝑏)

< 𝑄
2/3

(𝑎, 𝑏) [
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
]

1/3

,

𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
< 𝑈 (𝑎, 𝑏)

< [
2

3
(
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
)

1/2

+
1

3
𝑄
1/2

(𝑎, 𝑏)]

2

(12)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where 𝑄(𝑎, 𝑏) = √(𝑎2 + 𝑏2)/2

is the quadratic mean of 𝑎 and 𝑏.
The Yang mean 𝑈(𝑎, 𝑏) is the special case of the Seiffert

type mean 𝑇𝑀,𝑞(𝑎, 𝑏) = (𝑎− 𝑏)/[𝑞 arctan((𝑎 − 𝑏)/(𝑞𝑀(𝑎, 𝑏)))]

defined by Toader in [17], where 𝑀(𝑎, 𝑏) is a bivariate mean
and 𝑞 is a positive real number. Indeed, 𝑈(𝑎, 𝑏) = 𝑇

𝐺,√2
(𝑎, 𝑏).

In [18, 19], the authors proved that the double inequalities

[
2

3
(
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
)

𝑝

+
1

3
𝑄
𝑝
(𝑎, 𝑏)]

1/𝑝

< 𝑈 (𝑎, 𝑏)

< [
2

3
(
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
)

𝑞

+
1

3
𝑄
𝑞
(𝑎, 𝑏)]

1/𝑞

,

2
1−𝜆

(𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜆
𝑄 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏) 𝑄

𝜆
(𝑎, 𝑏)

21−𝜆 (𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜆
+ 𝑄𝜆 (𝑎, 𝑏)

< 𝑈 (𝑎, 𝑏)

<
2
1−𝜇

(𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜇
𝑄 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏) 𝑄

𝜇
(𝑎, 𝑏)

21−𝜇 (𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜇
+ 𝑄𝜇 (𝑎, 𝑏)

,

𝑀𝛼 (𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) < 𝑀𝛽 (𝑎, 𝑏)

(13)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 𝑝0, 𝑞 ≥ 1/5,
𝜆 ≥ 1/5, 𝜇 ≤ 𝑝1, 𝛼 ≤ 2 log 2/(2 log𝜋 − log 2), and 𝛽 ≥ 4/3,
where 𝑝0 = 0.1941 ⋅ ⋅ ⋅ is the unique solution of the equation
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𝑝 log(2/𝜋)−log(1+2
1−𝑝

)+log 3 = 0 on the interval (1/10,∞),
and 𝑝1 = log(𝜋 − 2)/ log 2 = 0.1910 ⋅ ⋅ ⋅ .

Zhou et al. [20] proved that 𝛼 = 1/2 and 𝛽 = log 3/(1 +

log 2) = 0.6488 ⋅ ⋅ ⋅ are the best possible parameters such that
the double inequality

[
𝑎
𝛼
+ (𝑎𝑏)

𝛼/2
+ 𝑏
𝛼

3
]

1/𝛼

< 𝑈 (𝑎, 𝑏)

< [
𝑎
𝛽
+ (𝑎𝑏)

𝛽/2
+ 𝑏
𝛽

3
]

1/𝛽

(14)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The main purpose of this paper is to present the best

possible parameters 𝑝 and 𝑞 such that the double inequality
𝐿𝑝(𝑎, 𝑏) < 𝑈(𝑎, 𝑏) < 𝐿𝑞(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
As application, we derive several sharp inequalities involving
the trigonometric, hyperbolic, and inverse trigonometric
functions. Some complicated computations are carried out
using Mathematica computer algebra system.

2. Lemmas

In order to prove ourmain result we need two lemmas, which
we present in this section.

Lemma 1. Let 𝑛 ≥ 4, −∞ ≤ 𝑎 < 𝑏 ≤ +∞, 𝑓0, 𝑓𝑖, 𝑓∗𝑖 :

(𝑎, 𝑏) → R be 𝑛-times differentiable functions such that𝑓𝑖(𝑥) =
𝑓
∗

𝑖
(𝑥)𝑓


𝑖−1
(𝑥) and 𝑓

∗

𝑖
(𝑥) > 0 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑥 ∈ (𝑎, 𝑏). If

𝑓𝑛−2 (𝑎
−
) < 0,

𝑓𝑛−2 (𝑏
+
) > 0,

𝑓𝑛−1 (𝑎
−
) ≥ 0,

(15)

𝑓𝑖 (𝑎
−
) ≤ 0,

𝑓𝑖 (𝑏
+
) > 0

(16)

for 0 ≤ 𝑖 ≤ 𝑛 − 3 and

𝑓𝑛 (𝑥) > 0 (17)

for 𝑥 ∈ (𝑎, 𝑏), then there exists 𝑥0 ∈ (𝑎, 𝑏) such that 𝑓0(𝑥) < 0

for 𝑥 ∈ (𝑎, 𝑥0) and 𝑓0(𝑥) > 0 for 𝑥 ∈ (𝑥0, 𝑏).

Proof. From (15) and (17) we clearly see that there exists
𝑥𝑛−2 ∈ (𝑎, 𝑏) such that 𝑓𝑛−2(𝑥) < 0 for 𝑥 ∈ (𝑎, 𝑥𝑛−2) and
𝑓𝑛−2(𝑥) > 0 for 𝑥 ∈ (𝑥𝑛−2, 𝑏), which implies that 𝑓𝑛−3(𝑥)

is strictly decreasing on (𝑎, 𝑥𝑛−2] and strictly increasing on
[𝑥𝑛−2, 𝑏). Then (16) leads to the conclusion that there exists
𝑥𝑛−3 ∈ (𝑎, 𝑏) such that 𝑓𝑛−3(𝑥) < 0 for 𝑥 ∈ (𝑎, 𝑥𝑛−3) and
𝑓𝑛−3(𝑥) > 0 for 𝑥 ∈ (𝑥𝑛−3, 𝑏).

Making use of (16) and the same method as above we
know that for 0 ≤ 𝑖 ≤ 𝑛 − 4 there exists 𝑥𝑖 ∈ (𝑎, 𝑏) such
that 𝑓𝑖(𝑥) < 0 for 𝑥 ∈ (𝑎, 𝑥𝑖) and 𝑓𝑖(𝑥) > 0 for 𝑥 ∈ (𝑥𝑖, 𝑏).

Lemma 2. Let 𝑝 ∈ R, and

𝑓 (𝑥, 𝑝) = 𝑝𝑥
4𝑝+10

− 2 (𝑝 + 1) 𝑥
4𝑝+8

+ 2 (3𝑝 − 1) 𝑥
4𝑝+6

− 2 (𝑝 + 1) 𝑥
4𝑝+4

− (3𝑝 + 2) 𝑥
4𝑝+2

− 𝑝 (2𝑝 + 1) 𝑥
2𝑝+10

+ (2𝑝
2
+ 5𝑝 + 4) 𝑥

2𝑝+8
+ 4 (1 − 𝑝) 𝑥

2𝑝+6

+ 4 (1 − 𝑝) 𝑥
2𝑝+4

+ (2𝑝
2
+ 5𝑝 + 4) 𝑥

2𝑝+2

− 𝑝 (2𝑝 + 1) 𝑥
2𝑝

− (3𝑝 + 2) 𝑥
8

− 2 (𝑝 + 1) 𝑥
6
+ 2 (3𝑝 − 1) 𝑥

4

− 2 (𝑝 + 1) 𝑥
2
+ 𝑝.

(18)

Then the following statements are true:

(1) if 𝑝 = 2, then 𝑓(𝑥, 𝑝) > 0 for all 𝑥 ∈ (1,∞);

(2) if 𝑝0 = 0.5451 ⋅ ⋅ ⋅ is the unique solution of the equation
(𝑝+1)

1/𝑝
= √2𝜋/2 on the interval (0,∞) and 𝑝 = 𝑝0,

then there exists 𝜆 ∈ (1,∞) such that 𝑓(𝑥, 𝑝) < 0 for
𝑥 ∈ (1, 𝜆) and 𝑓(𝑥, 𝑝) > 0 for 𝑥 ∈ (𝜆,∞).

Proof. For part (1), if 𝑝 = 2, then (18) becomes

𝑓 (𝑥, 𝑝) = 2 (𝑥 − 1)
6
(𝑥 + 1)

6
(𝑥
2
+ 1)
3

. (19)

Therefore, part (1) follows from (19).
For part (2), let 𝑝 = 𝑝0 = 0.5451 ⋅ ⋅ ⋅ be the unique

solution of the equation (𝑝 + 1)
1/𝑝

= √2𝜋/2 on the interval
(0,∞), 𝑓1(𝑥, 𝑝) = (1/2𝑥)𝜕𝑓(𝑥, 𝑝)/𝜕𝑥, 𝑓2(𝑥, 𝑝) = (1/

2𝑥)𝜕𝑓1(𝑥, 𝑝)/𝜕𝑥, 𝑓3(𝑥, 𝑝) = (1/2𝑥)𝜕𝑓2(𝑥, 𝑝)/𝜕𝑥, 𝑓4(𝑥, 𝑝) =

(1/2𝑥)𝜕𝑓3(𝑥, 𝑝)/𝜕𝑥, 𝑓5(𝑥, 𝑝) = (𝑥
9−2𝑝

/2𝑝)𝜕𝑓4(𝑥, 𝑝)/𝜕𝑥, 𝑓6(𝑥,
𝑝) = (1/2(𝑝 + 1)𝑥)𝜕𝑓5(𝑥, 𝑝)/𝜕𝑥, 𝑓7(𝑥, 𝑝) = (1/8𝑥)𝜕𝑓6(𝑥,

𝑝)/𝜕𝑥, 𝑓8(𝑥, 𝑝) = (1/2𝑥)𝜕𝑓7(𝑥, 𝑝)/𝜕𝑥, and 𝑓9(𝑥, 𝑝) =

(1/2𝑥)𝜕𝑓8(𝑥, 𝑝)/𝜕𝑥. Then elaborated computations lead to

𝑓 (1
−
, 𝑝) = 0,

lim
𝑥→+∞

𝑓 (𝑥, 𝑝) = +∞,

𝑓1 (1
−
, 𝑝) = 0,

lim
𝑥→+∞

𝑓1 (𝑥, 𝑝) = +∞,

𝑓2 (1
−
, 𝑝) = 0,

lim
𝑥→+∞

𝑓2 (𝑥, 𝑝) = +∞,

𝑓3 (1
−
, 𝑝) = 0,

lim
𝑥→+∞

𝑓3 (𝑥, 𝑝) = +∞,

𝑓4 (1
−
, 𝑝) = −48𝑝

2
(2 − 𝑝) (𝑝 + 1) < 0,
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lim
𝑥→+∞

𝑓4 (𝑥, 𝑝) = +∞,

𝑓5 (1
−
, 𝑝) = −120𝑝 (𝑝 + 1) (2 − 𝑝) (2𝑝 + 1) < 0,

lim
𝑥→+∞

𝑓5 (𝑥, 𝑝) = +∞,

𝑓6 (1
−
, 𝑝) = −80𝑝 (𝑝 + 1) (−7𝑝

2
+ 8𝑝 + 8) < 0,

lim
𝑥→+∞

𝑓6 (𝑥, 𝑝) = +∞,

𝑓7 (1
−
, 𝑝) = 5𝑝 (𝑝 + 1) (44𝑝

3
+ 16𝑝

2
− 47𝑝 − 58)

< 0,

lim
𝑥→+∞

𝑓7 (𝑥, 𝑝) = +∞,

𝑓8 (1
−
, 𝑝) = 𝑝 (288𝑝

5
+ 606𝑝

4
+ 1009𝑝

3
+ 1676𝑝

2

+ 1571𝑝 + 250) > 0,

𝑓9 (𝑥, 𝑝) = (𝑝 + 2)
2
(𝑝 + 3) (𝑝 + 4) (𝑝 + 5) (2𝑝 + 1)

⋅ (2𝑝 + 3) (2𝑝 + 5) 𝑥
2𝑝+2

− 4 (𝑝 + 1)
2
(𝑝 + 2)

2
(𝑝

+ 3) (𝑝 + 4) (2𝑝 + 1) (2𝑝 + 3) 𝑥
2𝑝

+ 2𝑝 (𝑝 + 1) (𝑝

+ 2) (𝑝 + 3) (4𝑝
2
− 1) (2𝑝 + 3) (3𝑝 − 1) 𝑥

2𝑝−2

− 4𝑝 (𝑝
2
− 1)
2

(𝑝 + 2) (4𝑝
2
− 1) 𝑥

2𝑝−4
− 𝑝 (𝑝

− 1)
2
(𝑝 − 2) (2𝑝 − 3) (4𝑝

2
− 1) (3𝑝 + 2) 𝑥

2𝑝−6

− 30 (𝑝 + 2) (𝑝 + 3) (𝑝 + 4) (𝑝 + 5) (2𝑝 + 1) 𝑥
2

+ 6 (𝑝 + 2) (𝑝 + 3) (𝑝 + 4) (2𝑝
2
+ 5𝑝 + 4) > (𝑝

+ 2) (𝑝 + 3) (𝑝 + 4) (2𝑝 + 1) [(𝑝 + 2) (𝑝 + 5)

⋅ (2𝑝 + 3) (2𝑝 + 5) − 4 (𝑝 + 1)
2
(𝑝 + 2) (2𝑝 + 3)

− 30 (𝑝 + 5)] × 𝑥
2𝑝+2

+ [2𝑝 (𝑝 + 1) (𝑝 + 2)

⋅ (𝑝 + 3) (4𝑝
2
− 1) (2𝑝 + 3) (3𝑝 − 1)

− 4𝑝 (𝑝
2
− 1)
2

(𝑝 + 2) (4𝑝
2
− 1) − 𝑝 (𝑝 − 1)

2

⋅ (𝑝 − 2) (2𝑝 − 3) (4𝑝
2
− 1) (3𝑝 + 2) + 6 (𝑝 + 2)

⋅ (𝑝 + 3) (𝑝 + 4) (2𝑝
2
+ 5𝑝 + 4)] 𝑥

2𝑝−4
= (𝑝 + 2)

⋅ (𝑝 + 3) (𝑝 + 4) (2𝑝 + 1) [−4𝑝
4
+ 79𝑝

2
+ 159𝑝

− 24] 𝑥
2𝑝+2

+ (8𝑝
8
+ 428𝑝

7
+ 694𝑝

6
+ 781𝑝

5

+ 100𝑝
4
+ 163𝑝

3
+ 1250𝑝

2
+ 1400𝑝 + 576) 𝑥

2𝑝−4

> 0

(20)

for 𝑥 ∈ (1,∞).

Therefore, part (2) follows easily from Lemma 1 and (20).

3. Main Result

Theorem 3. The double inequality
𝐿𝑝 (𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) < 𝐿𝑞 (𝑎, 𝑏) (21)

holds for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 𝑝0 and 𝑞 ≥ 2,
where 𝑝0 = 0.5451 ⋅ ⋅ ⋅ is the unique solution of the equation
(𝑝 + 1)

1/𝑝
= √2𝜋/2 on the interval (0,∞).

Proof. Since 𝑈(𝑎, 𝑏) and 𝐿𝑝(𝑎, 𝑏) are symmetric and homo-
geneous of degree one, without loss of generality, we assume
that 𝑎 = 𝑥

2
> 1 and 𝑏 = 1. Let 𝑝 ∈ R and 𝑝 ̸= 0, −1. Then (1)

and (11) lead to

log [𝑈 (𝑎, 𝑏)] − log [𝐿𝑝 (𝑎, 𝑏)] = log [𝑈 (𝑥
2
, 1)]

− log [𝐿𝑝 (𝑥
2
, 1)]

= log[ 𝑥
2
− 1

√2 arctan ((𝑥2 − 1) /√2𝑥)

] −
1

𝑝

⋅ log[ 𝑥
2𝑝+2

− 1

(𝑝 + 1) (𝑥2 − 1)
] š 𝐹 (𝑥, 𝑝) ,

(22)

lim
𝑥→1

𝐹 (𝑥, 𝑝) = 0, (23)

lim
𝑥→∞

𝐹 (𝑥, 𝑝) =
1

𝑝
log (𝑝 + 1) +

1

2
log 2 − log𝜋, (24)

𝜕𝐹 (𝑥, 𝑝)

𝜕𝑥

=

2 (𝑝 + 1) 𝑥 (𝑥
2𝑝

− 1)

𝑝 (𝑥2 − 1) (𝑥2𝑝+2 − 1) arctan ((𝑥2 − 1) /√2𝑥)

⋅ 𝐹1 (𝑥, 𝑝) ,

(25)

where
𝐹1 (𝑥, 𝑝)

= arctan(
𝑥
2
− 1

√2𝑥

)

−

𝑝 (𝑥
4
− 1) (𝑥

2𝑝+2
− 1)

√2 (𝑝 + 1) 𝑥 (𝑥4 + 1) (𝑥2𝑝 − 1)

,

(26)

lim
𝑥→1

𝐹1 (𝑥, 𝑝) = 0, (27)

lim
𝑥→∞

𝐹1 (𝑥, 𝑝) = −∞, (28)

𝜕𝐹1 (𝑥, 𝑝)

𝜕𝑥

= −
√2

2 (𝑝 + 1) 𝑥2 (𝑥4 + 1)
2
(𝑥2𝑝 − 1)

2
𝑓 (𝑥, 𝑝) ,

(29)

where 𝑓(𝑥, 𝑝) is defined by (15).
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We divide the proof into four cases.

Case 1 (𝑝 = 2). Then from Lemma 2(1) and (29) we clearly
see that the function 𝑥 → 𝐹1(𝑥, 𝑝) is strictly decreasing on
(1,∞). Then (27) leads to the conclusion that

𝐹1 (𝑥, 𝑝) < 0 (30)

for all 𝑥 ∈ (1,∞). Therefore,

𝑈 (𝑎, 𝑏) < 𝐿2 (𝑎, 𝑏) (31)

follows easily from (22), (23), (25), and (30).

Case 2 (𝑝 = 𝑝0). Then from Lemma 2(2) and (29) we know
that there exists 𝜆 ∈ (1,∞) such that the function 𝑥 →

𝐹1(𝑥, 𝑝) is strictly increasing on (1, 𝜆] and strictly decreasing
on [𝜆,∞).

It follows from (25)–(28) and the piecewise monotonicity
of the function 𝑥 → 𝐹1(𝑥, 𝑝) that there exists 𝜆

∗
∈ (1,∞)

such that the function 𝑥 → 𝐹(𝑥, 𝑝) is strictly increasing on
(1, 𝜆
∗
] and strictly decreasing on [𝜆

∗
,∞).

Note that (24) becomes

lim
𝑥→∞

𝐹 (𝑥, 𝑝) = 0. (32)

Therefore,

𝑈 (𝑎, 𝑏) > 𝐿𝑝
0
(𝑎, 𝑏) (33)

follows easily from (22), (23), and (32) together with the
piecewise monotonicity of the function 𝑥 → 𝐹(𝑥, 𝑝).

Case 3 (𝑝 < 2). Let 𝑥 > 0 and 𝑥 → 0; then making use of
Taylor expansion we get

𝑈 (1 + 𝑥, 1) − 𝐿𝑝 (1 + 𝑥, 1)

=
𝑥

√2 arctan (𝑥/√2 (1 + 𝑥))

− [
(1 + 𝑥)

𝑝+1
− 1

(𝑝 + 1) 𝑥
]

1/𝑝

=
2 − 𝑝

24
𝑥
2
+ 𝑜 (𝑥

2
) .

(34)

Equation (34) implies that there exists small enough 𝛿 ∈

(0, 1) such that

𝑈 (1 + 𝑥, 1) > 𝐿𝑝 (1 + 𝑥, 1) (35)

for all 𝑥 ∈ (0, 𝛿).

Case 4 (𝑝 > 𝑝0).Then from (24) and the fact that the function
𝑝 → log(𝑝 + 1)/𝑝 is strictly decreasing on (0,∞) we get

lim
𝑥→∞

𝐹 (𝑥, 𝑝) <
1

𝑝0

log (1 + 𝑝0) +
1

2
log 2 − log𝜋 = 0. (36)

Equation (22) and inequality (36) imply that there exists
large enough𝑋 > 1 such that

𝑈(𝑥
2
, 1) < 𝐿𝑝 (𝑥

2
, 1) (37)

for all 𝑥 ∈ (𝑋,∞).

4. Applications

As applications of Theorem 3 in engineering problems, we
present several sharp inequalities involving the trigonomet-
ric, hyperbolic, and inverse trigonometric functions in this
section.

From (1) and (11) together with Theorem 3 we get
Theorem 4 immediately.

Theorem 4. Let 𝑝0 = 0.5451 ⋅ ⋅ ⋅ be the unique solution of the
equation (𝑝 + 1)

1/𝑝
= √2𝜋/2 on the interval (0,∞). Then the

double inequality

√6 (𝑎 − 𝑏)

2√𝑎2 + 𝑎𝑏 + 𝑏2
< arctan(

𝑎 − 𝑏

√2𝑎𝑏

)

<
𝜋 (𝑎 − 𝑏)

1+1/𝑝
0

2 (𝑎𝑝0+1 − 𝑏𝑝0+1)
1/𝑝
0

(38)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

Let 𝑡 > 0, 𝑏 = 1, and 𝑎 = 𝑡
2
+𝑡√𝑡2 + 2+1.ThenTheorem 4

leads to the following.

Theorem 5. Let 𝑝0 = 0.5451 ⋅ ⋅ ⋅ be the unique solution of the
equation (𝑝 + 1)

1/𝑝
= √2𝜋/2 on the interval (0,∞). Then the

double inequality

√6 (𝑡
2
+ 𝑡√𝑡2 + 2)

2√2𝑡4 + 5𝑡2 + (2𝑡3 + 3𝑡)√𝑡2 + 2 + 3

< arctan (𝑡)

<

𝜋 (𝑡
2
+ 𝑡√𝑡2 + 2)

1+1/𝑝
0

2 [(𝑡2 + 𝑡√𝑡2 + 2)
1+𝑝
0

− 1]

1/𝑝
0

(39)

holds for all 𝑡 > 0.

Let 𝑎 > 𝑏 > 0, 𝑥 = log√𝑎/𝑏 ∈ (0,∞). Then (1) and (11)
lead to

𝐿𝑝 (𝑎, 𝑏)

√𝑎𝑏

= [
sinh (𝑝 + 1) 𝑥

(𝑝 + 1) sinh𝑥
]

1/𝑝

,

𝑈 (𝑎, 𝑏)

√𝑎𝑏

=
√2 sinh𝑥

arctan (√2 sinh𝑥)

.

(40)

It follows from Theorem 3 and (40) that one has the
following theorem.

Theorem 6. Let 𝑝0 = 0.5451 ⋅ ⋅ ⋅ be the unique solution of the
equation (𝑝 + 1)

1/𝑝
= √2𝜋/2 on the interval (0,∞). Then the

double inequality

√6 sinh𝑥

√3 + 4 sinh2𝑥
< arctan (√2 sinh𝑥)

< 𝜋(
sinh𝑥

sinh (𝑝0 + 1) 𝑥
)

1/𝑝
0

(41)

holds for all 𝑥 > 0.
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Let 𝑎 > 𝑏 > 0, 𝑥 = arcsin[(𝑎 − 𝑏)/(𝑎 + 𝑏)] ∈ (0, 𝜋/2). Then
(1) and (11) lead to

𝐿𝑝 (𝑎, 𝑏)

√𝑎𝑏

= [
((1 + sin𝑥) / cos𝑥)𝑝+1 − (cos𝑥/ (1 + sin𝑥))

𝑝+1

2 (𝑝 + 1) tan𝑥
]

1/𝑝

,

𝑈 (𝑎, 𝑏)

√𝑎𝑏

=
√2 tan𝑥

arctan (√2 tan𝑥)

.

(42)

Theorem 3 and (42) lead to the following.

Theorem 7. Let 𝑝0 = 0.5451 ⋅ ⋅ ⋅ be the unique solution of the
equation (𝑝 + 1)

1/𝑝
= √2𝜋/2 on the interval (0,∞). Then the

double inequality

√6 sin𝑥

√3 + sin2𝑥
< arctan (√2 tan𝑥)

<
2
1/𝑝
0𝜋 sin1+1/𝑝0𝑥

[(1 + sin𝑥)
1+𝑝
0 − (1 − sin𝑥)

1+𝑝
0]
1/𝑝
0

(43)

holds for all 𝑥 ∈ (0, 𝜋/2).

Let 𝑎 > 𝑏 > 0, 𝑥 = arctan((𝑎 − 𝑏)/(𝑎 + 𝑏)) ∈ (0, 𝜋/4),
𝑦 = sinh−1((𝑎 − 𝑏)/(𝑎 + 𝑏)) ∈ (0, log(1 + √2)). Then from (1)
and (11) we have

𝐿𝑝 (𝑎, 𝑏)

√𝑎𝑏

= (
1

2 (𝑝 + 1)
)

1/𝑝

⋅
1

√cos (2𝑥)
[
(cos𝑥 + sin𝑥)

𝑝+1
− (cos𝑥 − sin𝑥)

𝑝+1

sin𝑥
]

1/𝑝

= (
1

2 (𝑝 + 1)
)

1/𝑝

⋅
1

√1 − sinh2 (𝑦)
[
(1 + sinh𝑦)

𝑝+1
− (1 − sinh𝑦)

𝑝+1

sinh𝑦
]

1/𝑝

,

(44)

𝑈 (𝑎, 𝑏)

√𝑎𝑏

=
√2 sin𝑥/√cos (2𝑥)

arctan (√2 sin𝑥/√cos (2𝑥))

=

√2 sinh𝑦/√1 − sinh2𝑦

arctan(√2 sinh𝑦/√1 − sinh2𝑦)
.

(45)

From (44), (45), andTheorem 3 one has the following.

Theorem 8. Let 𝑝0 = 0.5451 ⋅ ⋅ ⋅ be the unique solution of the
equation (𝑝 + 1)

1/𝑝
= √2𝜋/2 on the interval (0,∞). Then the

double inequalities

√6 sin𝑥

√2 + cos (2𝑥)
< arctan(

√2 sin𝑥

√cos (2𝑥)
)

<
2
1/𝑝
0𝜋 sin1+1/𝑝0𝑥

[(cos𝑥 + sin𝑥)
1+1/𝑝

0 − (cos𝑥 − sin𝑥)
1+1/𝑝

0]
1/𝑝
0

,

√6 sinh𝑦

√3 + sinh2𝑦
< arctan(

2 sinh𝑦

√3 − cosh (2𝑦)

)

<
2
1/𝑝
0𝜋 sinh1+1/𝑝0𝑦

[(1 + sinh𝑦)
1+1/𝑝

0

− (1 − sinh𝑦)
1+1/𝑝

0

]

1/𝑝
0

(46)

hold for all 𝑥 ∈ (0, 𝜋/4) and 𝑦 ∈ (0, log(1 + √2)).
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pp. 37–38, 1997 (Chinese).

[4] X. Li, C.-P. Chen, and F.Qi, “Monotonicity result for generalized
logarithmic means,” Tamkang Journal of Mathematics, vol. 38,
no. 2, pp. 177–181, 2007.

[5] F. Qi, S.-X. Chen, and C.-P. Chen, “Monotonicity of ratio
between the generalized logarithmic means,” Mathematical
Inequalities & Applications, vol. 10, no. 3, pp. 559–564, 2007.

[6] C.-P. Chen, “Themonotonicity of the ratio between generalized
logarithmic means,” Journal of Mathematical Analysis and
Applications, vol. 345, no. 1, pp. 86–89, 2008.

[7] H.-N. Shi and S.-H. Wu, “Refinement of an inequality for the
generalized logarithmic mean,” Chinese Quarterly Journal of
Mathematics, vol. 23, no. 4, pp. 594–599, 2008.

[8] B.-Y. Long and Y.-M. Chu, “Optimal inequalities for general-
ized logarithmic, arithmetic, and geometric means,” Journal of
Inequalities and Applications, vol. 2010, Article ID 806825, 10
pages, 2010.
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