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“BEST POSSIBLE” UPPER AND LOWER BOUNDS FOR
THE ZEROS OF THE BESSEL FUNCTION Jν(x)

C. K. QU AND R. WONG

Abstract. Let jν,k denote the k-th positive zero of the Bessel function Jν(x).
In this paper, we prove that for ν > 0 and k = 1, 2, 3, . . . ,

ν − ak

21/3
ν1/3 < jν,k < ν − ak

21/3
ν1/3 +

3

20
a2

k

21/3

ν1/3
.

These bounds coincide with the first few terms of the well-known asymptotic
expansion

jν,k ∼ ν − ak

21/3
ν1/3 +

3

20
a2

k

21/3

ν1/3
+ · · ·

as ν →∞, k being fixed, where ak is the k-th negative zero of the Airy function
Ai(x), and so are “best possible”.

1. Introduction

The k-th positive zero jν,k of the Bessel function Jν(x) has the asymptotic ex-
pansion

jν,k ∼ ν − ak

21/3
ν1/3 +

3
20

a2
k

21/3

ν1/3
+ · · ·(1.1)

as ν → ∞, k being fixed, where ak is the k-th negative zero of the Airy function
Ai(x). Recently, Lorch conjectured that the sum of the first two terms in the
expansion gives a lower bound for jν,k, and that the sum of the first three terms
gives an upper bound for jν,k.

This result has been established by Lorch and Uberti [9] in the cases when
0 < ν ≤ 10 and k = 1, 2, 3, and by Lang and Wong [7] in the cases when 10 ≤ ν < ∞
and k = 1, 2. The purpose of this paper is to show that Lorch’s conjecture is true
for all ν > 0 and k = 1, 2, 3, · · · ; that is, we shall prove

ν − ak

21/3
ν1/3 < jν,k < ν − ak

21/3
ν1/3 +

3
20

a2
k

21/3

ν1/3
.(1.2)

Zeros of Bessel functions occur frequently in eigenvalue problems associated with
the Laplacian with Dirichlet boundary conditions; see, for example, [1] and [13].
The inequalities in (1.2) provide sharp bounds for these eigenvalues. For other
recent results on inequalities for jν,k, see [3] and [8].
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2834 C. K. QU AND R. WONG

During the process of writing up our result, we were informed by Lorch of a
recent paper of Breen [2], in which it is proved that for ν ≥ 1

2 and k = 1, 2, 3, · · · ,

ν − ak−1

21/3
ν1/3 < jν,k(1.3a)

and

jν,k < ν − ak

21/3
ν1/3 +

a2
k

22/3
ν−1/3

(
1 +

ak

21/3

)−1

.(1.3b)

Breen noticed the close resemblance between the bounds in (1.3a) and (1.3b) and
the first three terms in the asymptotic expansion (1.1). However, it is evident that
the bounds in (1.2) are an even closer (in fact, exact) match to the the first three
terms in expansion (1.1).

Our method is based essentially on the argument used by Lang and Wong in [7],
except that here we need to extend the range of validity of a crucial result (Lemma
1) and to deal with the dependence of jν,k on the variable k.

The presentation of the paper is arranged as follows. In § 2, we recall a uniform
asymptotic approximation for the Bessel function Jν(x). In § 3, we present a brief
outline of the argument used in [7]. In §§ 4 and 5, we give some estimates related
to the Airy function and its zeros. Two crucial lemmas are proved in § 6. The
inequalities in (1.2) are established in §§ 7 and 8.

2. A uniform approximation for Jν(νx)

The Bessel function Jν(x) has the well-known uniform asymptotic approximation

Jν(νx) =
1

1 + δ3

ϕ(ζ)
ν1/3

{
Ai(ν2/3ζ)

[
1 +

A1(ζ)
ν2

]
+

Ai′(ν2/3ζ)
ν4/3

B0(ζ) + ε3(ν, ζ)
}

,

(2.1)

valid for ν > 0 and x > 0, where ζ and x are related in a one-to-one manner by the
equations

2
3
ζ3/2 = ln

1 + (1 − x2)1/2

x
− (1 − x2)1/2, 0 < x ≤ 1,(2.2)

2
3
(−ζ)3/2 = (x2 − 1)1/2 − sec−1 x, x ≥ 1,(2.3)

and where

ϕ(ζ) =
(

4ζ

1− x2

)1/4

;(2.4)

see [12, Chapter 11] and also [10, 11]. The coefficients are analytic functions in a
region containing the real axis and can be given explicitly. The error term ε3(ν, ζ)
satisfies a realistic numerical bound. To state the result, we recall from [12, p.395]
the modulus function M(x) and the weight function E(x), defined as follows.

Let x = c be the negative root of the equation Ai(x) = Bi(x) with the smallest
absolute value. Numerical calculation gives c = −0.36605. The function E(x) and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDS FOR THE ZEROS OF THE BESSEL FUNCTION 2835

M(x) are defined by

E(x) =
{

Bi(x)/ Ai(x)
}1/2

, c ≤ x < ∞,(2.5)

E(x) = 1, −∞ < x ≤ c; E−1(x) = 1/E(x),(2.6)

M(x) =
{

E2(x)Ai2(x) + E−2(x) Bi2(x)
}1/2

.(2.7)

The following constants also occur in our later calculations:

λ = sup
(−∞,∞)

{
π|x|1/2M2(x)

}
= 1.04 . . . ,(2.8)

µ = sup
(−∞,c)

{
π|x|1/2M2(x)

}
= 1.(2.9)

The error term satisfies∣∣∣ε3(ν, ζ)
∣∣∣ ≤ 2M(ν2/3ζ)

E(ν2/3ζ)
exp

{
2λ

ν
Vζ,∞(|ζ|1/2B0(ζ))

}Vζ,∞(|ζ|1/2B1(ζ))
ν3

,(2.10)

where Va,b(f) denotes the total variation of a function f on an interval (a, b).
Numerical calculation gives

V−∞,∞
{
|ζ|1/2B0(ζ)

}
= 0.1051,(2.11)

V−∞,∞
{
|ζ|1/2B1(ζ)

}
= 0.0066135;(2.12)

see [10, p.7] and [7]. (Analytical proofs of these results can be provided upon
request.) In order to use the approximation in (2.1), we also need an estimate for
the term δ3, which is given by∣∣δ3

∣∣ ≤ 2eν0/νν−3V−∞,∞
(|ζ|1/2B1(ζ)

)
,(2.13)

where

ν0 = 2λV−∞,∞
(|ζ|1/2B0(ζ)

)
= 0.22 .(2.14)

We shall rewrite (2.1) in a different form. By Taylor’s theorem

Ai
{

v2/3ζ +
B0(ζ)

ν4/3(1 + A1(ζ)/ν2)

}
= Ai(ν2/3ζ) + Ai′(ν2/3ζ)

B0(ζ)
ν4/3(1 + A1(ζ)/ν2)

+
Ai′′(θ1)

2!
B2

0(ζ)
ν8/3(1 + A1(ζ)/ν2)2

,

(2.15)

where θ1 lies between ν2/3ζ and

ν2/3ζ +
B0(ζ)[

ν4/3(1 + A1(ζ)/ν2)
] .

Numerical values of A1(ζ) given in [10, Table 2] indicate that A1(ζ) is a decreasing
function in (−∞, 0), and that

− 1
225

= A1(0) ≤ A1(ζ) < 0, ζ ∈ (−∞, 0].(2.16)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2836 C. K. QU AND R. WONG

This can be confirmed analytically by an argument analogous to that given in [4,
Appendix I]. Thus, as long as ζ < 0 and ν2 > 1/225, then 1 + A1(ζ)ν−2 is positive.
Since ϕ(ζ) does not vanish in (−∞,∞), equation (2.1) can be written as

(1 + δ3)ν1/3

ϕ(ζ)(1 + A1(ζ)/ν2)
Jν(νx) = Ai

{
ν2/3ζ +

B0(ζ)
ν4/3(1 + A1(ζ)/ν2)

}
+ ε(ν, ζ),(2.17)

where

ε(ν, ζ) =
ε3(ν, ζ)

1 + A1(ζ)/ν2
− Ai′′(θ1)

2!
B2

0(ζ)
ν8/3(1 + A1(ζ)/ν2)2

.(2.18)

3. Argument of Lang and Wong

As in [7], we shall make use of the following result of Hethcote [4, p.14].

Theorem. In the interval [ak−ρ, ak+ρ′] where ak is the k-th negative zero of Ai(t)
and ρ, ρ′ are small enough so that m = min |Ai′(t)| > 0, suppose f(t) = Ai(t)+ε(t),
f(t) is continuous, and E = max |ε(t)| < min{|Ai(ak − ρ)|, |Ai(ak + ρ′)|}. Then
there exists a zero tk of f(t) in the interval such that |tk − ak| ≤ E/m.

We apply this theorem to (2.17) with

t = ν2/3ζ +
B0(ζ)

ν4/3(1 + A1(ζ)/ν2)
(3.1)

as the independent variable,

f(t) =
(1 + δ3)ν1/3

ϕ(ζ)(1 + A1(ζ)/ν2)
Jν(νx),(3.2)

and ε(t) = ε(ν, ζ) given in (2.18). The result is that for suitably chosen ρ and ρ′,
there exists tk such that f(tk) = 0. Note that B0(ζ) is increasing and A1(ζ) is
decreasing in (−∞, 0); cf. the last paragraph in § 2. Hence, it is easily seen from
(3.1) that dt/dζ is positive and t is an increasing function of ζ in (−∞, 0). Also
note that the factor on the left-hand side of Jν(νx) does not vanish for ζ < 0 and
ν2 > 1/225. Therefore, corresponding to tk, there exist ζk and, by (2.3), xk such
that Jν(νxk) = 0 and∣∣∣∣ν2/3ζk +

B0(ζk)
ν4/3(1 + A1(ζk)/ν2)

− ak

∣∣∣∣ ≤ E

m
,(3.3)

where E and m are as given in the theorem.
Let

ν2/3ζk +
B0(ζk)

ν4/3(1 + A1(ζk)/ν2)
= ak + ηk(3.4)

and

δk = − B0(ζk)
(1 + A1(ζk)/ν2)

+ ηkν4/3,(3.5)

so that

ζk = (ak + δkν−4/3)ν−2/3.(3.6)

Putting this in the Maclaurin expansion [12, p.421]

x(ζ) = 1− 2−1/3ζ +
3
10

2−2/3ζ2 +
1

700
ζ3 + · · · ,
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we obtain

xk = xk(ζk) = 1− 2−1/3akν−2/3 +
3
20

21/3a2
kν−4/3 − 2−1/3δkν−2

+
3
20

21/3(2akδkν−4/3 + δ2
kν−8/3)ν−4/3 +

x′′′(θ)
3!

(ak + δkν−4/3)3ν−2,

(3.7)

where ζk < θ < 0. Comparing with (1.1), it is evident that νxk = jν,k. Hence, we
may write

jν,k = ν − ak

21/3
ν1/3 +

3
20

a2
k

21/3

ν1/3
+ βν−1(3.8)

with

β = −2−1/3δk +
3
20

21/3δk(2ak + δkν−4/3)ν−2/3 +
x′′′(θ)

6
(ak + δkν−4/3)3.(3.9)

If we can show that β is negative when ν ≥ 2 and k ≥ 3, then we will have
established the upper bound in (1.2) under these conditions.

The above argument is essentially the one used by Lang and Wong in [7] to prove
(1.2) in the case when k = 1, 2 and ν ≥ 10.

4. The choices for ρ and ρ′

First, we must make sure that in the interval [ak−ρ, ak+ρ′] we have |Ai′(t)| > 0.
Therefore, we choose ρ and ρ′ so that

a′k+1 < ak − ρ < ak < ak + ρ′ < a′k.(4.1)

Next, we want to make sure that the error term (2.18) in the asymptotic formula
(2.17) satisfies

max |ε(ν, ζ)| < min
(
|Ai(ak − ρ)|, |Ai(ak + ρ′)|

)
.(4.2)

From [5], we have

ak ≤ −
[
3π

8
(4k − 1)

]2/3

, k ≥ 1.(4.3)

Furthermore, in [4] and [14], it has been shown that

ak = −
[
3π

8
(4k − 1)

]2/3

(1 + σk),(4.4)

where

|σk| ≤ 0.130
[
3π

8
(4k − 1.051)

]−2

(4.5)

for k ≥ 1, and

a′k = −
[
3π

8
(4k − 3)

]2/3

(1 + τk),(4.6)

where

|τk| ≤ 0.165
[
3π

8
(4k − 3.0382)

]−2

(4.7)
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for k ≥ 2. The inequalities in (4.1) suggest that we should choose ρ and ρ′ so that

−
[
3π

8
(4k − 1)

]2/3

< ak + ρ′ < −
[
3π

8
(4k − 3)

]2/3{
1 +

0.165
[ 3π

8 (4k − 3.0382)]2

}(4.8)

and

−
[
3π

8
(4k + 1)

]2/3{
1− 0.165

[ 3π
8 (4k + 0.9618)]2

}
< ak − ρ

< −
[
3π

8
(4k − 1)

]2/3{
1 +

0.130
[ 3π

8 (4k − 1.051)]2

}
.

(4.9)

Put

ak,0 ≡ −
[
3π

8
(4k − 1)

]2/3

,(4.10)

and note that

(4k − 3)2/3 = (4k − 1)2/3

(
1− 2

4k − 1

)2/3

< (4k − 1)2/3

(
1− 4

3
(4k − 1)−1

)
and

1
(4k − 3.0382)2

<
0.137
4k − 1

, for k ≥ 3.

Thus the right-hand side of (4.8) is greater than

ak,0

[
1− 4

3(4k − 1)

][
1 +

0.0163
4k − 1

]
> ak,0

(
1− 1.3

4k − 1

)
for k ≥ 3. For ρ′ to satisfy (4.8), we choose it so that

ak,0 < ak + ρ′ < ak,0

(
1− 1.3

4k − 1

)
.(4.11)

Using a similar argument, it can be shown that the right-hand side of (4.9) is
greater than

ak,0

(
1 +

0.009
4k − 1

)
and the left-hand side of (4.9) is less than

ak,0

(
1 +

1.28
4k − 1

)
for k ≥ 3. For ρ to satisfy (4.9), we choose it so that

ak,0

(
1 +

1.28
4k − 1

)
< ak − ρ < ak,0

(
1 +

0.009
4k − 1

)
.(4.12)

On account of (4.11) and (4.12), we choose ρ and ρ′ so that

ak + ρ′ = ak,0

(
1− 0.01

4k − 1

)
,

ak − ρ = ak,0

(
1 +

0.01
4k − 1

)
;

(4.13)

see the figure below.
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ak

ak,0

a′ka′k+1 ak − ρ ak + ρ′

?

ak,0

(
1 + 0.009

4k−1

)

?

ak,0

(
1− 1.30

4k−1

)

?

ak,0

(
1 + 1.28

4k−1

)

We now will show that with the choice of ρ and ρ′ as given in (4.13), the estimate
in (4.2) holds. By (3.1), if t lies in the interval (ak − ρ, ak + ρ′), then ζ satisfies

ak − ρ− B0(ζ)
ν4/3(1 + A1(ζ)/ν2)

< ν2/3ζ < ak + ρ′ − B0(ζ)
ν4/3(1 + A1(ζ)/ν2)

.(4.14)

Since B0(ζ) > 0 and −1/225 < A1(ζ) < 0 (see (2.16)), we have

ν2/3ζ < ak + ρ′ < c = −0.36605, k = 1, 2, · · · ,(4.15)

as long as ν2 > 1/225. A combination of (2.6), (2.8)–(2.10) then gives

|ε3(ν, ζ)| ≤ 2√
π|ν2/3ζ|1/4

exp
{

2.08
ν
V−∞,∞(|ζ|1/2B0)

}V−∞,∞(|ζ|1/2B1)
ν3

,

which in turn yields

|ε3(ν, ζ)| ≤ 2√
π|ν2/3ζ|1/4

e0.22/ν 0.00662
ν3

(4.16)

on account of (2.11) and (2.12).
Since Ai′′(x) = xAi(x), by (2.7) and (2.9)

|Ai′′(x)| ≤ |x|M(x) ≤ |x|3/4

√
π

(4.17)

if x < −0.36605. Note that θ1 in (2.18) satisfies

θ1 < ν2/3ζ +
B0(ζ)

ν4/3(1 + A1(ζ)/ν2)
< −0.36605;

cf. (4.14) and (4.15). Thus, we can apply (4.17) to (2.18). Furthermore, since

|ζ|1/2B0(ζ) ≤ 0.0109 for −∞ < ζ < 0

(see [10, p. 9], we have from (2.18) and (2.16)

|ε(ν, ζ)| ≤ 1√
πν2|ν2/3ζ|1/4(1− 1/225ν2)

[
0.01324

ν
e0.22/ν +

0.00006
1− 1/225ν2

]
.

Recall that ν2/3ζ < ak + ρ′ < 0; cf. (4.15). Hence, by (4.13)

1
|ν2/3ζ|1/4

<
1

|ak + ρ′|1/4
=

1
|ak,0|1/4(1 − 0.01/(4k− 1))1/4

,

and for k ≥ 3

|ε(ν, ζ)| ≤ 1.00023√
πν2|ak,0|1/4(1− 1/225ν2)

[
0.01324

ν
e0.22/ν +

0.00006
1− 1/225ν2

]
.(4.18)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2840 C. K. QU AND R. WONG

We rewrite (4.18) as

|ε(ν, ζ)| ≤ Mν√
πν2|ak,0|1/4

,(4.19)

where

Mν =


0.01663607 if ν ≥ 1,
7.459829728× 10−3 if ν ≥ 2,
4.812652592× 10−3 if ν ≥ 3.

(4.20)

To estimate |Ai(ak−ρ)| and |Ai(ak +ρ′)|, we recall the asymptotic formula [12,
p.394]

Ai(−x) =
1√

πx1/4

[
cos

(
ξ − π

4

)
+ ε1(ξ)

]
,(4.21)

where ξ = 2
3x3/2 and

|ε1(ξ)| ≤ 5
72

ξ−1 +
385

10368
ξ−2.(4.22)

Let x1 = −(ak − ρ) and ξ1 = 2
3x

3/2
1 . Then by (4.13) and (4.10)

ξ1 =
π

4
(4k − 1)

(
1 +

0.01
4k − 1

)3/2

=
(

kπ − π

4

)
+

π

4
(0.01)

∞∑
n=1

(
3/2
n

)(
0.01

4k − 1

)n−1

,

which in turn gives∣∣∣∣cos
(

ξ1 − π

4

)∣∣∣∣ =
∣∣∣∣cos

[
kπ − π

2
+

π

4
(0.01)

∞∑
n=1

(
3/2
n

)(
0.01

4k − 1

)n−1]∣∣∣∣
=

∣∣∣∣sin[
π

4
(0.01)

∞∑
n=1

(
3/2
n

)(
0.01

4k − 1

)n−1]∣∣∣∣.
Since

3
2

+
3
8
x >

(1 + x)3/2 − 1
x

>
3
2

+
3
8
x− 1

16
x2

for x > 0, we have

3
2

+
3
8

(
0.01

4k − 1

)
>

∞∑
n=1

(
3/2
n

)(
0.01

4k − 1

)n−1

>
3
2
− 1

16

(
0.01

4k − 1

)2

.

Hence, for k ≥ 3

0.011780972 <
π

4
(0.01)

∞∑
n=1

(
3/2
n

)(
0.01

4k − 1

)n−1

< 0.01178365

and ∣∣∣∣cos
(

ξ1 − π

4

)∣∣∣∣ > 0.011780699.(4.23)
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From (4.22), we also have

|ε1(ξ1)| ≤ 5
72

1
(3π − π/4)

+
385

10368
1

(3π − π/4)2

= 8.535637057× 10−3.

(4.24)

A combination of (4.21), (4.23) and (4.24) yields

|Ai(ak − ρ)| > 1√
π|ak,0|1/4(1 + 0.01/11)1/4

∣∣∣∣∣∣∣∣cos
(

ξ1 − π

4

)∣∣∣∣− |ε1(ξ1)|
∣∣∣∣

> 3.244324849× 10−3 1√
π|ak,0|1/4

(4.25)

for k ≥ 3.
If x2 = −(ak + ρ′), then by (4.13) and (4.10)

ξ2 =
2
3
x

3/2
2 =

(
kπ − π

4

)(
1− 0.01

4k − 1

)3/2

= kπ − π

4
− π

4
(0.01)

[
3
2
− 3

8
1

(1 + θ2)1/2

0.01
(4k − 1)

]
,

where −0.01/(4k− 1) < θ2 < 0, and∣∣∣∣cos
(

ξ2 − π

4

)∣∣∣∣ =
∣∣∣∣sin{

π

4
(0.01)

[
3
2
− 3

8
1

(1 + θ2)1/2

0.01
(4k − 1)

]}∣∣∣∣.
For k ≥ 3, this gives ∣∣∣∣cos

(
ξ2 − π

4

)∣∣∣∣ ≥ 0.011778021 .(4.26)

From (4.22), it also follows that for k ≥ 3,

|ε1(ξ2)| ≤ 5
72

(
kπ − π

4

)−1(
1− 0.01

4k − 1

)− 3
2

+
385

10368

(
kπ − π

4

)−2(
1− 0.01

4k − 1

)−3

≤ 8.547969921× 10−3.

(4.27)

Combining (4.21), (4.26) and (4.27), we obtain

|Ai(ak + ρ)| > 1√
π
|ak,0|−1/4

∣∣∣∣∣∣∣cos
(
ξ2 − π

4

)∣∣∣− |ε1(ξ2)|
∣∣∣∣

> 3.230051079× 10−3 1√
π
|ak,0|−1/4.

(4.28)

A comparsion of (4.19) with (4.25) and (4.28) yields

E = max |ε(ν, ζ)| < min
(|Ai(ak − ρ)|, |Ai(ak + ρ′)|)(4.29)

for ν ≥ 2 and k ≥ 3, thus establishing (4.2).
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5. Estimation of min |Ai′(x)|
We first estimate |Ai′(ak − ρ)| and |Ai′(ak + ρ′)|. Corresponding to (4.21), we

have from [12, p.392]

Ai′(−x) = π−1/2x1/4

[
sin

(
ξ − π

4

)
+ ε2(ξ)

]
,(5.1)

where ξ = 2
3x3/2 and

|ε2(ξ)| ≤ 7
72

ξ−1 +
455

10368
ξ−2 +

40415375
644972544

ξ−4.(5.2)

Again let x1 = −(ak − ρ) and ξ1 = 2
3x

3/2
1 . By (4.13) and (4.10),

ξ1 =
π

4
(4k − 1)

(
1 +

0.01
4k − 1

)3/2

and

|Ai′(ak − ρ)| = 1√
π
|ak,0|1/4

(
1 +

0.01
4k − 1

)1/4∣∣∣∣sin(
ξ1 − π

4

)
+ ε2(ξ1)

∣∣∣∣.(5.3)

Note that ∣∣∣∣sin(
ξ1 − π

4

)∣∣∣∣ =
∣∣∣∣cos

π

4
(4k − 1)

[(
1 +

0.01
4k − 1

)3/2

− 1
]∣∣∣∣.

Since 1 < (1 + x)3/2 < 1 + 3
2x + 3

8x2 for x > 0, we have

0 <

(
1 +

0.01
4k − 1

)3/2

− 1 <
0.0150034091

4k − 1

for all k ≥ 3. Therefore,∣∣∣∣sin(
ξ1 − π

4

)∣∣∣∣ >

∣∣∣∣cos
π

4
(4k − 1)

0.0150034091
4k − 1

∣∣∣∣ > 0.999930573.(5.4)

From (5.2), it also follows that

|ε2(ξ1)| < 0.011852593(5.5)

for k ≥ 3. Here, use has been made of the fact that 4k− 1 ≥ 11. A combination of
(5.3)–(5.5) gives

|Ai′(ak − ρ)| > 0.98807798√
π

|ak,0|1/4.(5.6)

Similarly, let x2 = −(ak + ρ′) and ξ2 = 3
2x3/2. Then

ξ2 =
π

4
(4k − 1)

(
1− 0.01

4k − 1

)3/2

and

|Ai′(ak + ρ′)| = 1√
π
|ak,0|1/4

(
1− 0.01

4k − 1

)1/4∣∣∣∣sin(
ξ2 − π

4

)
+ ε2(ξ2)

∣∣∣∣.(5.7)

Since 1− 3
2x < (1− x)3/2 < 1 for 0 < x < 1, it follows that

0 < 1−
(

1− 0.01
4k − 1

)3/2

<
3
2

0.01
4k − 1
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and ∣∣∣∣sin(
ξ2 − π

4

)∣∣∣∣ > cos
π

4
(4k − 1)

0.015
4k − 1

> 0.999930605 .(5.8)

For k ≥ 3, we have from (5.2)

|ε2(ξ2)| < 0.01186962354 .(5.9)

Combining (5.7)–(5.9), we obtain

|Ai′(ak + ρ′)| > 0.987836345√
π

|ak,0|1/4.(5.10)

Set

m = min
{
|Ai′(x)| : ak − ρ ≤ x ≤ ak + ρ′

}
.

Since a′k and a′k+1 are two consecutive zeros of Ai′(x), and since ak is a critical
point of Ai′(x) in [a′k+1, a

′
k], the minimum value m is attained at the endpoints

ak − ρ and ak + ρ′. From (5.6) and (5.10), it follows that

m = min
(
|Ai′(ak − ρ)|, |Ai′(ak + ρ′)|

)
>

0.987836345√
π

|ak,0|1/4.
(5.11)

A comparision of (4.19) and (5.11) shows that m > E. Hence, by Hethcote’s
theorem, we have from (3.3) and (3.4)

|ηk| ≤ E

m
<

λk

ν2
(5.12)

for k ≥ 3, where

λk =
Mν

0.987836345
|ak,0|−1/2.(5.13)

6. The function x′′′(ζ) in (3.9)

Let x(ζ) be the inverse function of ζ(x) defined by (2.2)–(2.3). In [4], Hethcote
has shown that x′′(ζ) is a non-decreasing function of ζ for ζ ≤ 0 or x ≥ 1. Here,
we are concerned with the function x′′′(ζ); cf., equation (3.9). The graph of this
function is depicted in Figure 1 below, and it is shown in [7] that x′′′(ζ) is a
decreasing function for −0.526 < ζ < 0 and that

6
700

≤ x′′′(ζ) ≤ 0.03474367 .

In this paper, we shall prove a more global result by using a more direct method.
The precise statement of the result is given in the following lemma.

Lemma 1. In the interval (−∞, 0), x′′′(ζ) has one and only one critical point, and
it is a maximum.

Proof. From [4, p.85], we have

x′′′(ζ) =
x

4(−ζ)3/2(x2 − 1)7/2

{
(x2 − 1)3 + 6(−ζ)

3
2 (x2 − 1)

3
2 − 4(3x2 + 1)(−ζ)3

}
.

(6.1)
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Figure 1. Graph of x′′′(ζ)

For convenience, we put

u ≡
√

x2 − 1 and w ≡ u− arctanu.(6.2)

Direct computation gives

x(4)(ζ) =
27x

8(−ζ)5/2u10

{
u9

9
+

u6w

9
+ (6u5 + 8u3)w2 − (12u4 + 39u2 + 28)w3

}
;

(6.3)

see [7, (A.5)]. Let

G(u) ≡ u9

9
+

u6w

9
+ (6u5 + 8u3)w2 − (12u4 + 39u2 + 28)w3.(6.4)

To prove Lemma 1, we need to show that x(4)(ζ) has one and only one zero ζ0

in (−∞, 0), x(4)(ζ) > 0 in (−∞, ζ0), and x(4)(ζ) < 0 in (ζ0, 0). For ζ ∈ (−∞, 0),
i.e., x > 1, it is clear that the factor outside the curly brackets in (6.3) is positive.
Hence, x(4)(ζ) and G[u(ζ)] have the same zeros and the same signs in (−∞, 0). Note
that u = 0 corresponds to ζ = 0, u = ∞ corresponds to ζ = −∞, and that the
interval 0 < u < ∞ corresponds to the interval −∞ < ζ < 0. As a consequence, we
only need to prove that G(u) has one and only one zero u0 in 0 < u < ∞, G(u) < 0
in (0, u0), and G(u) > 0 in (u0,∞). To achieve this, we consider the derivatives of
G(u). Since dw/du = u2/(1 + u2), after a certain number of differentiations, the
derivatives of G(u) will simply become rational functions of u. From (6.4), it is
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easily seen that G(5)(u) does not contain w3. Note that

d2w

du2
=

2u

(1 + u2)2
.

Since the degree of the numerator of d2w/du2 is smaller than that of the numerator
of dw/du, for simplicity, we differentiate G(u) six times. The result is

G(6)(u) =
16
3

{
175u3 + 2205u5 + 7623u7 + 8375u9 + 8085u11

+ 5220u13 + 1260u15 − w(u)
[
525 + 6930u2

+ 26613u4 + 50406u6 + 48375u8 + 19350u10

+ 3225u12
]
− w2(u)

[
567u + 5454u3

+ 7047u5
]}/

(1 + u2)6.

Since the factor 16/3(1 + u2)6 is always positive and does not effect the zeros or
the signs of G(6)(u), we need consider only the function

H(u) =
[
175u3 + 2205u5 + 7623u7 + 8375u9 + 8085u11

+ 5220u13 + 1260u15
]
− w(u)

[
525 + 6930u2 + 26613u4

+ 50406u6 + 48375u8 + 19350u10 + 3225u12
]

− w2(u)
[
567u + 5454u3 + 7047u5

]
.

Differentiating H(u) six times eliminates w2(u), and we obtain

H(6)(u) = 1728
{
−152352u3− 945447u5 + 714600u7 + 16982800u9

+ 55789200u11 + 93786450u13 + 93249800u15

+ 55568100u17 + 18433800u19 + 2627625u21

− w(u)
[
22423 + 730161u2 + 5481888u4

+ 20403500u6 + 44537250u8 + 61113750u10

+ 53642500u12 + 29347500u14 + 9142875u16

+ 1241625u18
]}/

(1 + u2)6.

(6.5)

Let K(u) denote the quantity inside the curly brackets in (6.5). Then K(u) and
H(6)(u) differ only by a positive factor and, hence, have the same zeros and the
same signs. The term with the highest power of u containing w(u) is u18w(u).
After 19 differentiations, K(u) will become a rational function whose denominator
is positive. Using analysis, we can determine accurately the zeros of K(19)(u) and
the regions where K(19)(u) is positive or negative. By pure luck, it turns out that
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all we need is to differentiate K(u) eight times. The result is

K(8)(u) = 2304
{
980848627u + 87953839791u3

+ 2020254381801u5 + 21069256637762u7

+ 126228135835875u9 + 488255296930125u11

+ 1300787764107625u13 + 2476116094147500u15

+ 3431552631278625u17 + 3479130358559625u19

+ 2558273260417875u21 + 1330056483005250u23

+ 464092433429625u25 + 97597189564875u27

+ 9357169696875u29 + arctanu
[
779401875

+ 54362293125u2 + 871518033750u4

+ 6650914436250u6 + 30158142853125u8

+ 90042909691875u10 + 186876398572500u12

+ 277273313047500u14 + 297153403798125u16

+ 228820451146875u18 + 123705072933750u20

+ 44638119776250u22 + 9665547766875u24

+ 950792968125u26
]}/

(1 + u2)8.

Since K(8)(u) > 0 for 0 < u < ∞, K(7)(u) is monotonically increasing in (0,∞).
Simple calculation shows

lim
u→0+

K(7)(u) = −4888130112, lim
u→∞K(7)(u) = ∞.(6.6)

Therefore, K(7)(u) has one and only one zero uK
7 in (0,∞) such that K(7)(u) < 0 in

(0, uK
7 ) and K(7)(u) > 0 in (uK

7 ,∞). This, in turn, implies that K(6)(u) is strictly
decreasing in (0, uK

7 ) and strictly increasing in (uK
7 ,∞). Since

lim
u→0+

K(6)(u) = 0 and lim
u→∞K(6)(u) = ∞,(6.7)

it follows that K(6)(u) has a unique zero uK
6 which lies in (uK

7 ,∞), i.e., 0 < uK
7 <

uK
6 < ∞. Furthermore, K(6)(u) is negative in (0, uK

6 ) and positive in (uK
6 ,∞). By

the same argument, we obtain the conclusions in Table 1.

Table 1. Behavior of K(u)

j K(j)(u) K(j)(0+) K(j)(∞) ↘ ↗ zero − +

7 K(7)(u) −48881 ∞ (0,∞) uK
7 > 0 (0, uK

7 ) (uK
7 ,∞)

6 K(6)(u) 0 ∞ (0, uK
7 ) (uK

7 ,∞) uK
6 > uK

7 (0, uK
6 ) (uK

6 ,∞)

5 K(5)(u) −14212 ∞ (0, uK
6 ) (uK

6 ,∞) uK
5 > uK

6 (0, uK
5 ) (uK

5 ,∞)

4 K(4)(u) 0 ∞ (0, uK
5 ) (uK

5 ,∞) uK
4 > uK

5 (0, uK
4 ) (uK

4 ,∞)

3 K(3)(u) −95895 ∞ (0, uK
4 ) (uK

4 ,∞) uK
3 > uK

4 (0, uK
3 ) (uK

3 ,∞)

2 K(2)(u) 0 ∞ (0, uK
3 ) (uK

3 ,∞) uK
2 > uK

3 (0, uK
2 ) (uK

2 ,∞)

1 K(1)(u) 0 ∞ (0, uK
2 ) (uK

2 ,∞) uK
1 > uK

2 (0, uK
1 ) (uK

1 ,∞)

0 K(0)(u) 0 ∞ (0, uK
1 ) (uK

1 ,∞) uK
0 > uK

1 (0, uK
0 ) (uK

0 ,∞)
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Since H(6)(u) and K(u) have the same zeros and the same signs, H(6)(u) < 0 in
(0, uK

0 ), H(6)(uK
0 ) = 0, and H(6)(u) > 0 in (uK

0 ,∞). Using the same argument, we
come to the conclusions in Table 2.

Table 2. Behavior of H(u)

j H(j)(u) H(j)(0+) H(j)(∞) ↘ ↗ zero − +

6 H(6)(u) 0 +∞ uH
6 = uK

0 (0, uH
6 ) (uH

6 ,∞)

5 H(5)(u) 0 +∞ (0, uH
6 ) (uH

6 ,∞) uH
5 > uH

6 (0, uH
5 ) (uH

5 ,∞)

4 H(4)(u) 0 +∞ (0, uH
5 ) (uH

5 ,∞) uH
4 > uH

5 (0, uH
4 ) (uH

4 ,∞)

3 H(3)(u) 0 +∞ (0, uH
4 ) (uH

4 ,∞) uH
3 > uH

4 (0, uH
3 ) (uH

3 ,∞)

2 H(2)(u) 0 +∞ (0, uH
3 ) (uH

3 ,∞) uH
2 > uH

3 (0, uH
2 ) (uH

2 ,∞)

1 H(1)(u) 0 +∞ (0, uH
2 ) (uH

2 ,∞) uH
1 > uH

2 (0, uH
1 ) (uH

1 ,∞)

0 H(0)(u) 0 +∞ (0, uH
1 ) (uH

1 ,∞) uH
0 > uH

1 (0, uH
0 ) (uH

0 ,∞)

Since G(6)(u) and H(u) have the same zeros and the same signs, we conclude
that G(6)(uH

0 ) = 0, G(6)(u) < 0 in (0, uH
0 ), and G(6)(u) > 0 in (uH

0 ,∞). Put
uG

6 ≡ uH
0 . Then, again by the same argument, we obtain the results in Table 3.

Table 3. Behavior of G(u)

j G(j)(u) G(j)(0+) G(j)(∞) ↘ ↗ zero − +

6 G(6)(u) 0 +∞ uG
6 = uH

0 (0, uG
6 ) (uG

6 ,∞)

5 G(5)(u) 0 +∞ (0, uG
6 ) (uG

6 ,∞) uG
5 > uG

6 (0, uG
5 ) (uG

5 ,∞)

4 G(4)(u) 0 +∞ (0, uG
5 ) (uG

5 ,∞) uG
4 > uG

5 (0, uG
4 ) (uG

4 ,∞)

3 G(3)(u) 0 +∞ (0, uG
4 ) (uG

4 ,∞) uG
3 > uG

4 (0, uG
3 ) (uG

3 ,∞)

2 G(2)(u) 0 +∞ (0, uG
3 ) (uG

3 ,∞) uG
2 > uG

3 (0, uG
2 ) (uG

2 ,∞)

1 G(1)(u) 0 +∞ (0, uG
2 ) (uG

2 ,∞) uG
1 > uG

2 (0, uG
1 ) (uG

1 ,∞)

From (6.4) and the properties of G′(u) in Table 3, it follows that G(0) = 0,
G(∞) = ∞, and G(u) has one and only one zero, say at u = u0, in the interval
(uG

1 ,∞). Furthermore, G(u) is negative in (0, u0) and positive in (u0,∞). This
completes the proof of Lemma 1.

For the convenience of the reader, a computer print-out of the Maple commands
is provided in Table 4.

Since G(u) has only one zero in (0,∞), the value of its zero u0 can be accurately
calculated using Newton’s method. The result is

u0 = 2.086469208 .(6.8)

The corresponding zero ζ0 of x(4)(ζ) is

ζ0 = −1.277497301 .(6.9)

Numerical computation also gives

max
−∞<ζ<0

x′′′(ζ) = x′′′(ζ0) = 0.0440358004 .(6.10)

Since x′′′(−∞) = 0 and x′′′(0−) = 3/350, we obtain

0 < x′′′(ζ) < 0.045, −∞ < ζ < 0.(6.11)
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Table 4. Maple commands

>G:=u^9/9+u^6*w(u)/9+(6*u^5+8*u^3)*w(u)^2-(12*u^4+39*u^2+28)*w(u)^3;

>W:=u-arctan(u);

>w1:=diff(W,u);

>g6:=diff(G,u$6);

>G6:=simplify(subs(diff(w(u),u)=w1,g6));

>H:=sort(collect(G6*(1+u^2)^6/(16/3),w(u)));

>h6:=diff(H,u$6);

>H6:=simplify(subs(diff(w(u),u)=w1,h6));

>K:=sort(collect(H6*(1+u^2)^6/1728,w(u)));

>k8:=diff(K,u$8);

>K8:=simplify(subs(w(u)=W,k8));

>x3:=x*((x^2-1)^3+6*(-Z)^(3/2)*(x^2-1)^(3/2)-4*(3*x^2+1)*(-Z)^3)/(4*(-Z)^(3

>/2)*(x^2-1)^(7/2));

>z:=-((3/2)*(u-arctan(u)))^(2/3);

>X3:=subs(Z=z,x=(u^2+1)^(1/2),x3);

>limit(X3,u=0,right);

>limit(X3,u=infinity);

>g:=subs(w(u)=W,G);

>u0:=fsolve(g=0,u=1..5);

>‘max{X3}‘:=evalf(subs(u=u0,X3));

>z0:=evalf(subs(u=u0,z));

From (6.11), it is clear that 0 is a lower bound for x′′′(ζ) in (−∞, 0). But, in
order to prove Lorch’s conjecture, we need a more precise estimate for x′′′(ζ) when
−∞ < ζ < ζ0.

Returning to (3.7), we note that the quantity θ in x′′′(θ) lies in between ζk and
0. From (4.14), we have[

ak − ρ− B0(ζk)
ν4/3(1 + A1(ζk)/ν2)

]
ν−2/3 < ζk < (ak + ρ′)ν−2/3 < 0.(6.12)

What we need is a lower bound of x′′′(ζ) in (ζ∗k , 0), where

ζ∗k =
(

ak − ρ− B0(ζk)
ν4/3(1 + A1(ζk)/ν2)

)
ν−2/3.(6.13)

By Lemma 1, there is a unique ζ1 ∈ (−∞, ζ0) such that

x′′′(ζ1) = x′′′(0) =
3

350
;

see Figure 1. From (6.1), it is found by numerical computation that

ζ1 = −9.253401702 .(6.14)

Lower bounds of x′′′(ζ) in (ζ∗k , 0) can be obtained by considering two separate cases:
(i) ζ∗k ≥ ζ1 and (ii) ζ∗k < ζ1.

Lemma 2. Let ζ∗k be defined as in (6.13). For all ν ≥ 2 and k ≥ 3,

ζ∗k ≥
1.0014
ν2/3

ak,0.(6.15)

Furthermore, if ζ∗k ≥ ζ1, then

x′′′(ζ) ≥ 3
350

for ζ∗k < ζ < 0,(6.16)
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and if ζ∗k < ζ1, then

x′′′(ζ) ≥ 0.142ν

|ak,0|3/2
for ζ∗k < ζ < ζ1.(6.17)

Proof. We first recall (2.16) and the estimate |ζ|1/2B0(ζ) ≤ 0.0109 for ζ ∈ (−∞, 0).
By (6.12) and (4.13), we have

B0(ζk)
ν4/3(1 + A1(ζk)/ν2)

≤ 0.0109
ν|ak,0|1/2(1− 0.01/(4k− 1))1/2(1− 1/225ν2)

.

The definition of ζ∗k in (6.13) then gives

ζ∗k ≥
[
ak,0

(
1 +

0.01
11

)
− 0.0109

2|ak,0|1/2(1− 0.01/11)1/2(1− 1/(225× 4))

]
ν−2/3

≥ ak,0ν
−2/3

[(
1 +

0.01
11

)
+

0.0109
2|ak,0|3/2(1− 0.01/11)1/2(1− 1/(225× 4))

]
for ν ≥ 2 and k ≥ 3. Here again use has been made of (4.13). In view of (4.10),
the result in (6.15) now follows.

The lower bound in (6.16) is obtained immediately from Lemma 1. By that
lemma, we also have x′′′(ζ) > x′′′(ζ∗k ) for ζ∗k < ζ < ζ1. Hence, it suffices to show
that (6.17) holds when ζ = ζ∗k . Let uk be defined by

2
3
(−ζ∗k

)3/2 = uk − arctanuk .(6.18)

Since ζ∗k < ζ1 and uk > 0, by (6.14) we have uk > 1. Furthermore, since
1
u

+ arctanu >
π

2
for 1 < u < ∞,(6.19)

it follows that
2
3
(−ζ∗k

)3/2
<

2
3
(−ζ∗k

)3/2 +
π

2
− 1

uk
< uk <

2
3
(−ζ∗k

)3/2 +
π

2
.(6.20)

Expressing (6.1) in terms of u and applying (6.19), we obtain

x′′′(ζ∗k ) =

√
u2

k + 1
4(−ζ∗k)3/2u7

k

[
u6

k + 6(−ζ∗k)3/2u3
k − 4(3u2

k + 4)(−ζ∗k)3
]

>
2
3 (−ζ∗k )3/2

[
1 + 9

4 (−ζ∗k )−3
]1/2

4(−ζ∗k)3/2
(

2
3

)7(−ζ∗k)21/2
[
1 + 3π

4 (−ζ∗k)−3/2
]7 (

2
3

)6(−ζ∗k
)9

F (ζ∗k ),

(6.21)

where

F (ζ∗k ) =
1

(2
3 )6(−ζ∗k)9

{[
2
3
(−ζ∗k )3/2 + m

]6

+ 6(−ζ∗k)3/2

[
2
3
(−ζ∗k )3/2 + m

]3

−
(

12
[
2
3
(−ζ∗k )3/2 +

π

2

]2

+ 16
)(−ζ∗k

)3
}

and m = π/2−1/uk. Since ζ∗k < ζ1, by (6.14) and (6.19) we have m > 1.517507135.
Applying this to (6.21) gives

F (ζ∗k) > 1 + 13.65756422(−ζ∗k)−3/2 + 37.22044179(−ζ∗k)−3

+ 87.8878569(−ζ∗k)−9/2 + 197.9527061(−ζ∗k)−6

+ 605.4892582(−ζ∗k)−15/2 + 139.1015613(−ζ∗k)−9 > 1.
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Therefore, by virtue of (6.21),

x′′′(ζ∗k ) >

[
1 + 9

4 (−ζ∗k)−3
]1/2

4(−ζ∗k)3/2
[
1 + 3π

4 (−ζ∗k )−3/2
]7

>
1

4(−ζ∗k)3/2
[
1 + 3π

4 (−ζ1)−3/2
]7 .

Replacing ζ1 by its value in (6.14) yields

x′′′(ζ∗k ) > 0.1424(−ζ∗k)−3/2.(6.22)

The desired result (6.17) now follows from (6.15) and (6.22).

From (6.15), it is evident that ζ∗k > ζ1 if

ν2/3 ≥ 1.0014(−ak,0)
−ζ1

.

By (4.10) and (6.14), this inequality holds as long as

ν ≥ 0.042(4k − 1), k ≥ 3.(6.23)

Therefore, we may use (6.16) whenever ν and k satisfy (6.23). If (6.23) fails to
hold, then either ζ∗k ≥ ζ1 or ζ∗k < ζ1. In either case, we can use (6.17) since

3
350

>
0.142ν

|ak,0|3/2
when ν < 0.042(4k− 1).

7. Proof of (1.2): The upper bound

Since Lorch and Uberti [9] already have established the upper bound in (1.2)
when 0 < ν ≤ 10 and k = 1, 2, 3, and since Lang and Wong [7] have already proved
its validity when 10 ≤ ν < ∞ and k = 1, 2, it suffices to consider just the case
k ≥ 3. In view of the remark at the end of the previous section, our discussion may
be divided into four distinct cases:

(i) 2 ≤ ν < ∞, k ≥ 3, ν ≥ 0.042(4k− 1),
(ii) 2 ≤ ν < ∞, k ≥ 3, ν < 0.042(4k− 1),
(iii) 0 < ν < 2, k ≥ 12,
(iv) 0 < ν < 2, k = 4, 5, 6, 7, 8, 9, 10, 11.

Case (i): 2 ≤ ν < ∞, k ≥ 3, ν ≥ 0.042(4k− 1). From (3.5) and (5.12), we have

− B0(ζk)
(1 + A1(ζk)/ν2)

− λk

ν2/3
≤ δk ≤ − B0(ζk)

(1 + A1(ζk)/ν2)
+

λk

ν2/3
.(7.1)

A combination of (5.13), (4.10) and (4.20) gives

λk ≤ 0.0075516859[
3π
8 (4k − 1)

]1/3
(7.2)

for ν ≥ 2. Since B0(ζ) is increasing and A1(ζ) is decreasing in (−∞, 0), it follows
that

0 < B0(ζ1) < B0(ζk) < B0(0) =
24/3

140
and

− 1
225

= A1(0) < A1(ζk) < 0
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for ζ1 < ζ∗k < ζk; see [7, (2.20)–(2.21)] and also equation (2.16) in § 2. The
inequalities in (7.1) then give

− B0(0)
1 + A1(0)/ν2

− λk

ν2/3
< δk < −B0(ζ1) +

λk

ν2/3
.

By (7.2), we have

0 < λk ≤ 0.0032150370(7.3)

for k ≥ 3. Since

B0(0) =
24/3

140
and B0(ζ1) = 0.0008171994,

we obtain

−0.0200442396 < δk < 0.0012081470 .(7.4)

In the following, we shall use δk,l and δk,r to denote the lower and upper bounds of
δk in (7.4), respectively.

For convenience, let us put

β1 = −2−1/3 δk

a3
k

, β2 =
3
20

21/3δk

(
2
a2

k

+
δk

a3
k

ν−4/3

)
ν−2/3,

and

β3 =
x′′′(θ)

6

(
1 +

δkν−4/3

ak

)3

,

so that (3.9) becomes

β = a3
k

(
β1 + β2 + β3

)
.(7.5)

From (4.3), (4.4) and (4.5), we have

ak,0

{
1 +

0.130[
3π
8 (4k − 1.051)

]2 }
≤ ak ≤ ak,0.

In view of (4.10), the above lower bound can be replaced by

ak,l = −1.116331775(4k− 1)2/3,

and we obtain

ak,l < ak ≤ ak,0 ≤ a3,0 < 0(7.6)

for k ≥ 3. This, coupled with (7.4), yields

−2−1/3δk,l

a3
3,0

< β1 < −2−1/3δk,r

a3
3,0

since δk,l is negative. Computation gives

−9.473241352× 10−5 < β1 < 5.709903868× 10−6(7.7)

on account of (4.10) and (7.4). Again, since δk,l is negative, we also have

δk,l2−4/3 < δkν−4/3 < δk,r2−4/3

and

0 < 2 +
δk,r2−4/3

a3,0
< 2 +

δkν−4/3

ak
< 2 +

δk,l2−4/3

a3,0
.
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Therefore,

0 <
1
a2

k

(
2 +

δkν−4/3

ak

)
ν−2/3 <

1
a2
3,0

(
2 +

δk,l2−4/3

a3,0

)
2−2/3

and
3
20

21/3 δk,l

a2
3,0

(
2 +

δk,l2−4/3

a3,0

)
2−2/3 < β2 <

3
20

21/3 δk,r

a2
3,0

(
2 +

δk,l2−4/3

a3,0

)
2−2/3.

Computation gives

−0.0001569093082 < β2 < 0.9457555572× 10−5.(7.8)

By virtue of the remark at the end of § 6, in the present case, we have ζ∗k > ζ1.
Hence,

3
350

≤ x′′′(ζ) ≤ 0.045

on account of (6.11) and (6.16), which in turn gives

1
700

(
1 +

δk,r2−4/3

a3,0

)3

< β3 <
0.045

6

(
1 +

δk,l2−4/3

a3,0

)3

and

0.001428199024 < β3 < 0.007532486957 .(7.9)

A combination of (7.7)–(7.9) yields

0.007547654416a3
k < β < 0.001176557302a3

k .(7.10)

Therefore, β is negative, and it follows from (3.8) that the second inequality in (1.2)
holds.

Case (ii): 2 ≤ ν < ∞, k ≥ 3, ν < 0.042(4k − 1). Since B0(ζ) is increasing in
(−∞, 0) and ζk < 0, we have

0 < B0(ζk) < B0(0) =
24/3

140
.(7.11)

Coupling this with (7.1) gives

− B0(0)
1 + A1(0)/ν2

− λk

ν2/3
< δk <

λk

ν2/3
.(7.12)

Using the estimates of λk in (7.3), we get

−0.0200442396 < δk < 0.002025346396(7.13)

for k ≥ 3 and ν ≥ 2. Let δ∗k,l and δ∗k,r denote the lower and upper bound of δk in
(7.13), respectively, so that

δ∗k,l < δk < δ∗k,r .

By (6.11) and the remark following Lemma 2,
0.142ν

|ak,0|3/2
< x′′′(θ) < 0.045 .(7.14)

Put

β∗1 =
2−1/3δk

|ak|3/2ν
, β∗2 =

3
20

21/3 δk

|ak|1/2

(
2 +

δkν−4/3

ak

)
ν−5/3,
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and

β∗3 =
x′′′(θ)

6
|ak|3/2

ν

(
1 +

δkν−4/3

ak

)3

.

Equation (3.9) now can be written as

β = −|ak|3/2ν
(
β∗1 + β∗2 + β∗3

)
.(7.15)

By (7.6) and (7.13),

2−1/3δ∗k,l

|a3,0|3/22
< β∗1 <

2−1/3δ∗k,r

|a3,0|3/22

for ν ≥ 2. Numerical computation gives

−0.0006138219745 < β∗1 < 0.00006202291276 .(7.16)

As to β∗2 , the argument is similar to that for β2 in Case (i), and we have

3
20

21/3
δ∗k,l

|a3,0|1/2

(
2 +

δ∗k,l2
−4/3

a3,0

)
2−5/3 < β∗2

<
3
20

21/3
δ∗k,r

|a3,0|1/2

(
2 +

δ∗k,l2
−4/3

a3,0

)
2−5/3.

Direct computation yields

−0.001016699330 < β∗2 < 0.000102731177 .(7.17)

By using (7.14), we get

1
6

0.142ν

|ak,0|3/2

|ak|3/2

ν

(
1 +

δ∗k,r2
−4/3

a3,0

)3

< β∗3 <
0.045

6
|ak|3/2

ν

(
1 +

δ∗k,l2
−4/3

a3,0

)3

.

From (7.6), it follows that

1
6

0.142ν

|ak,0|3/2

|ak,0|3/2

ν

(
1 +

δ∗k,r2
−4/3

a3,0

)3

< β∗3 <
0.045

6
|ak,l|3/2

ν

(
1 +

δ∗k,l2
−4/3

a3,0

)3

.

By direct computation, we obtain

0.02365632468 < β∗3 < 0.01776880880k− 0.004442202199 .(7.18)

A combination of (7.16)–(7.18) gives

−(0.01776880880k− 0.004277448109)|ak|3/2ν < β < −0.02202580338|ak|3/2ν;
(7.19)

thus, β is negative.

Case (iii): 0 < ν < 2, k ≥ 12. In [4], Hethcote has shown that∣∣∣∣jν,k −
(

k +
ν

2
− 1

4

)
π − 4ν2 − 1

8π(k + ν/2− 1/4)

∣∣∣∣
≤ 0.0246|4ν2 − 1||4ν2 − 9|+ 0.0288|4ν2 − 1|

(k + ν/2− 1/2)2
+

0.00016|4ν2 − 1|3
(k + ν/2− 1/4)3

(7.20)

for k ≥ 1
2 − ν

2 + max{3.2, 0.76|4ν2 − 1|}. Since 0 < ν ≤ 2, it follows that 1
2 −

ν
2 + max{3.2, 0.76|4ν2 − 1|} ≤ 11.9, i.e., (7.20) automatically holds in the present
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case. Furthermore, since the right-hand side of (7.20) is easily shown to be less
than 0.024, (7.20) gives

jν,k <

(
k +

ν

2
− 1

4

)
π +

4ν2 − 1
8π(k + ν/2− 1/4)

+ 0.024(7.21)

for k ≥ 12 and 0 < ν < 2. Recall that ak < ak,0 < 0, cf. (7.6). Thus,

ν −
(

ν

2

)1/3

ak +
3
20

(
2
ν

)1/3

a2
k > ν −

(
ν

2

)1/3

ak,0 +
3
20

(
2
ν

)1/3

a2
k,0

= ν +
(

ν

2

)1/3(3π

8

)2/3

(4k − 1)2/3 +
3
20

(
2
ν

)1/3(3π

8

)4/3

(4k − 1)4/3.

(7.22)

Denote the right-hand sides of (7.21) and (7.22) by Z(ν, k) and U(ν, k), respectively.
To establish the second inequality in (1.2), it suffices to show that U(ν, k) > Z(ν, k)
for (ν, k) in D = {(ν, k) : 0 < ν ≤ 2, k ≥ 12}. Put

F (ν, k) = U(ν, k)− Z(ν, k) .(7.23)

Clearly,

∂F

∂k
=

(
ν

2

)1/3(3π

8

)2/3 8
3
(4k − 1)−1/3 +

ν2

2π(k + ν/2− 1/4)2

+
4
5

(
2
ν

)1/3(3π

8

)4/3

(4k − 1)1/3

{
1− 5

4

(
ν

2

)1/3( 8
3π

)4/3

× (4k − 1)−1/3

[
π +

1
8π(k + ν/2− 1/4)2

]}
.

The quantity inside the curly brackets is greater than 0.1253675546, and hence
∂F/∂k > 0 for (ν, k) ∈ D. Similarly,

∂F

∂ν
= −21/3

20

(
3π

8

)4/3

(4k − 1)4/3 1
ν4/3

{
1− 20

22/3

(
8
3π

)2/3 1
3

ν2/3

(4k − 1)2/3

−
[
1 +

4ν2 − 1
16π(k + ν/2− 1/4)2

]
20

21/3

(
8
3π

)4/3
ν4/3

(4k − 1)4/3

}
− π

2

− ν

π(k + ν/2− 1/4)
,

and the quantity inside the curly brackets is greater than 0.3511510032. Hence,
∂F/∂ν < 0 in D. From these, we conclude that the minimum of F (ν, k) in D
occurs at k = 12 and ν = 2, and that its value is F (2, 12) = 8.057746222. Therefore,
F (ν, k) > 0 and U(ν, k) > Z(ν, k).

Case (iv): 0 < ν < 2, k = 4, 5, 6, 7, 8, 9, 10, 11. By differentiating with respect
to ν, it can be shown easily that for each fixed k, U(ν, k) has a minimum ν0(k) in
(0,∞), and its value is ν0(k) = 0.06942430471(4k− 1). For 8 ≤ k ≤ 11, we have
ν0(k) > 2. Table 5 lists the values of U(2, k) and j2,k for k = 8, 9, 10, 11. Since
jν,k is increasing in ν (see [12, p.246]), and U(ν, k) is decreasing in 0 < ν ≤ 2, it
follows that

jν,k < j2,k < U(2, k) < U(ν, k) < ν − ak

21/3
ν1/3 +

3
20

21/3a2
kν−1/3

for 0 < ν ≤ 2 and 8 ≤ k ≤ 11. When 4 ≤ k ≤ 7, we have ν0(k) < 2.
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Table 5

k 8 9 10 11
U(2, k) 31.18297036 35.30293870 39.51233654 43.80718300

j2,k 27.42057355 30.56920450 33.71651951 36.86285651

Values of ν0(k), U(ν0(k), k) and j2,k for k = 4, 5, 6 and 7 are given in Table
6. Since jν,k is increasing in ν and the minimal value of U(ν, k) is U(ν0(k), k), we
infer from Table 6 that

jν,k < j2,k < U(ν0(k), k) < U(ν, k)

for 4 ≤ k ≤ 7 and 0 < ν ≤ 2.

Table 6

k 4 5 6 7
ν0(k) 1.041364571 1.319061787 1.596759004 1.874456225

U(ν0(k), k) 15.08160077 19.10336098 23.12512117 27.14688139
j2,k 14.79595178 17.95981950 21.11699705 24.27011231

This completes the proof of the second inequality in (1.2).

8. Proof of (1.2): The lower bound

In a similar manner, we shall show in the following that the first two terms in
the asymptotic expansion (1.1) form a lower bound for jν,k, i.e.,

jν,k > ν − ak

21/3
ν1/3(8.1)

for all ν > 0 and all k = 1, 2, . . . . When k = 1, this has already been established
in [4] for ν > 1 and extended by Laforgia and Muldoon in [6] for all ν > 0. When
k = 2, a proof of (8.1) can be found in [7] and [9]. What remain to be proved are
the three cases:

(i) ν ≥ 2 and k ≥ 3,
(ii) 0 < ν ≤ 2 and k ≥ 12,
(iii) 0 < ν ≤ 2 and 3 ≤ k ≤ 11.

Case (i): ν ≥ 2 and k ≥ 3. Taking the first two terms in the Maclaurin expansion
of x(ζ), we have

xk = x(ζk) = 1− 2−1/3ζk +
1
2!

x′′(θ∗)ζ2
k

= 1− 2−1/3akν−2/3 − 2−1/3δkν−2 +
1
2!

x′′(θ∗)
(
ak + δkν−4/3

)2
ν−4/3,

where ζk < θ∗ < 0; cf. (3.7). Since jν,k = νxk, we may write

jν,k = ν − ak

21/3
ν1/3 + αν−1/3(8.2)

with

α = −2−1/3δkν−2/3 +
1
2
x′′(θ∗)

(
ak + δkν−4/3

)2
.(8.3)
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Recall from (6.11) that x′′′(ζ) > 0 for ζ ∈ (−∞, 0). Here, x′′(ζ) is an increasing
function in (−∞, 0). Also, it is easily computed that

lim
ζ→0−

x′′(ζ) =
3
10

21/3 = 0.377976315(8.4)

and

lim
ζ→−∞

x′′(ζ) = 0 .(8.5)

Let ζ∗k be defined as in (6.13). Since ζ∗k < ζk < 0, by monotonicity,

x′′(ζ∗k ) < x′′(θ∗) < x′′(0).(8.6)

To estimate x′′(ζ∗k ), we let u =
√

x2 − 1. From [4], we have

x′′(ζ) =
√

u2 + 1
2(−ζ)1/2u4

[
u3 − 3(u− arctanu)

]
=

√
1 + 1/u2

2(−ζ)1/2

[
1− 3(u− arctanu)

u3

]
.

(8.7)

It can be shown that the function inside the square brackets in (8.7) is increasing
for u > 1, and that it attains the value 1

2 at u = ū = 1.374077402. Hence, for
u > ū, the value of this function is greater than 1

2 . From (8.7), it then follows that

x′′(ζ∗k ) >
1

4(−ζ∗k)1/2
(8.8)

for ζ∗k < ζ̄, where

ζ̄ = −0.7492884996

is the value of ζ corresponding to ū; see (2.3). Coupling (6.15) and (8.8) gives

x′′(ζ∗k ) >
0.24ν1/3

|ak,0|1/2
.(8.9)

If ζ∗k ≥ ζ̄, then by monotonicity,

x′′(ζ∗k ) ≥ x′′(ζ̄) = 0.3571984309 .(8.10)

We now are ready to derive bounds for the quantity α in (8.3). First, we consider
the case ν ≥ 1.8202(4k− 1). On account of (6.15), this implies ζ∗k > ζ̄. Hence, we
can use the result in (8.10). Write α in the form

α = a2
k

[
− δk

a2
k21/3ν2/3

+
1
2
x′′(θ∗)

(
1 +

δk

akν4/3

)2]
.

A combination of (7.4), (7.6), (8.3) and (8.10) gives

0.178548334a2
k < α < 0.189862763a2

k .(8.11)

If ν < 1.8202(4k − 1), there are still two possibilities, namely, ζ∗k < ζ̄ and ζ∗k ≥ ζ̄.
In the case ζ∗k < ζ̄, we can use (8.9). In the case ζ∗k ≥ ζ̄, since

0.24ν1/3

|ak,0|1/2
<

0.24[1.8202(4k− 1)]1/3

[3π(4k − 1)/8]1/3
< 0.2774537282,
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we also can use (8.9) by virtue of (8.10). Write α as

α = |ak|3/2

[
− δk

|ak|3/221/3ν2/3
+

x′′(θ∗)
2

|ak|1/2

(
1 +

δk

akν4/3

)2]
.

Then, from (7.13), (7.6), (8.6) and (8.9), it follows that

0.151068333 < α|ak|−3/2 <
[
0.0007733672265+ 0.2002546693(4k− 1)1/3

]
.(8.12)

(Note that δk,l = δ∗k,l and δk,r < δ∗k,r.) Coupling (8.11) and (8.12) together estab-
lishes (8.1) for ν ≥ 2 and k ≥ 3.

Case (ii): 0 < ν ≤ 2 and k ≥ 12. By the argument leading to (7.21), we have
from (7.20)

jν,k >

(
k +

ν

2
− 1

4

)
π +

4ν2 − 1
8π(k + ν/2− 1/4)

− 0.024(8.13)

for 0 < ν ≤ 2 and k ≥ 12. From (4.4) and (4.5), we also have

ak > ak,0

{
1 +

0.130
[3π(4k − 1.051)/8]2

}
.

When k ≥ 3, the last inequality gives

ak > 1.0008ak,0.

Hence,

ν − ak

21/3
ν1/3 < ν − 1.0008

21/3
ak,0ν

1/3

= ν +
1.0008
21/3

(
3π

8

)2/3

(4k − 1)2/3ν1/3

(8.14)

for k ≥ 3. Let J(ν, k) and V (ν, k) denote, respectively, the right-hand side of the
inequalities (8.13) and (8.14). To establish (8.1) in the present case, it suffices to
show that the function

Q(ν, k) ≡ J(ν, k)− V (ν, k)

is positive in D = {(ν, k) : 0 < ν ≤ 2 and k ≥ 12}. By straightforward differentia-
tion, we obtain

∂Q

∂k
= π

[
1− 4ν2

8π2(k + ν/2− 1/4)2
− 1.0008

21/3

(
3π

8

)2/3 8
3

ν1/3

π(4k − 1)1/3

]
+

1
8π(k + ν/2− 1/4)2

.

The quantity inside the square brackets is greater than 0.7359566840 for (ν, k) ∈ D.
Hence, ∂Q/∂k > 0 in D. Similarly, we have

∂Q

∂ν
= − (4k − 1)2/3

ν2/3

{
1.0008
21/3

(
3π

8

)2/3 1
3
− ν2/3

(4k − 1)2/3

[
π

2
+

ν

π(k + ν/2− 1/4)

+
1

16π(k + ν/2− 1/4)2

]}
− 1− 4ν2

16π(k + ν/2− 1/4)2
.

The quantity inside the curly brackets is greater than 0.09726998. Hence, ∂Q/∂ν <
0 in D. From these, one easily deduces that Q(ν, k) attains its minimum in D at
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ν = 2 and k = 12. Since Q(2, 12) = 23.53915816, we conclude that Q(ν, k) > 0 in
D, i.e.,

jν,k > J(ν, k) > V (ν, k) > ν − ak

21/3
ν1/3

for 0 < ν ≤ 2 and k ≥ 12.

Case (iii): 0 < ν ≤ 2 and 3 ≤ k ≤ 11. Since for each fixed k both V (ν, k) and
jν,k are increasing in 0 < ν < ∞, it is evident from the values of j0,k and V (2, k)
in Table 7 that

jν,k > j0,k > V (2, k) > V (ν, k)

for 0 < ν ≤ 2 and 3 ≤ k ≤ 11. The inequality in (8.1) now follows from (8.14).

Table 7

k j0,k V (2, k)
3 8.653727913 7.521577602
4 11.79153444 8.789882045
5 14.93091771 9.948840651
6 18.07106397 11.02859033
7 21.21163663 12.04717345
8 24.35247153 13.01647161
9 27.49347913 13.94483312
10 30.63460647 14.83840667
11 33.77582021 15.70188635
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