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REVIEW Open Access

Best practices for bioinformatic
characterization of neoantigens for clinical
utility
Megan M. Richters1,2†, Huiming Xia1,2†, Katie M. Campbell3, William E. Gillanders4,5, Obi L. Griffith1,2,5,6* and
Malachi Griffith1,2,5,6*

Abstract

Neoantigens are newly formed peptides created from somatic mutations that are capable of inducing tumor-
specific T cell recognition. Recently, researchers and clinicians have leveraged next generation sequencing
technologies to identify neoantigens and to create personalized immunotherapies for cancer treatment. To create a
personalized cancer vaccine, neoantigens must be computationally predicted from matched tumor–normal
sequencing data, and then ranked according to their predicted capability in stimulating a T cell response. This
candidate neoantigen prediction process involves multiple steps, including somatic mutation identification, HLA
typing, peptide processing, and peptide-MHC binding prediction. The general workflow has been utilized for many
preclinical and clinical trials, but there is no current consensus approach and few established best practices. In this
article, we review recent discoveries, summarize the available computational tools, and provide analysis
considerations for each step, including neoantigen prediction, prioritization, delivery, and validation methods. In
addition to reviewing the current state of neoantigen analysis, we provide practical guidance, specific
recommendations, and extensive discussion of critical concepts and points of confusion in the practice of
neoantigen characterization for clinical use. Finally, we outline necessary areas of development, including the need
to improve HLA class II typing accuracy, to expand software support for diverse neoantigen sources, and to
incorporate clinical response data to improve neoantigen prediction algorithms. The ultimate goal of neoantigen
characterization workflows is to create personalized vaccines that improve patient outcomes in diverse cancer
types.

Background
The adaptive immune system has inherent antitumor

properties that are capable of inducing tumor-specific

cell death [1, 2]. CD8+ and CD4+ T cells, two immune

cell types that are critical to this process, recognize anti-

gens bound by class I and II major histocompatibility

complexes (MHC) on the cell surface, respectively. After

antigen recognition, T cells have the ability to signal

growth arrest and cell death to tumor cells displaying

the antigen, and also release paracrine signals to propa-

gate an antitumor response. Neoantigens are specifically

defined here as peptides derived from somatic mutations

that provide an avenue for tumor-specific immune cell rec-

ognition and that are important targets for cancer immuno-

therapies [3–5]. Studies have shown that, in addition to

tumor mutational burden (TMB), high neoantigen burden

can be a predictor of response to immune checkpoint block-

ade (ICB) therapy [6, 7]. This treatment strategy targets the

signaling pathways that suppress antitumor immune re-

sponses, allowing the activation of neoantigen-specific T

cells and promoting immune-mediated tumor cell death.

Therefore, accurate neoantigen prediction is vital for the

success of personalized vaccines and for the prioritization of

candidates underlying the mechanism of response to ICB.

These approaches have great therapeutic potential because

neoantigen-specific T cells should not be susceptible to cen-

tral tolerance.
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With the advent of next generation sequencing (NGS),

researchers can now rapidly sequence a patient’s DNA and

RNA before analyzing these sequencing data to predict

neoantigens computationally. This process requires several

steps, each involving the use of bioinformatics tools and

complex analytical pipelines (Fig. 1; Table 1). Matched

tumor–normal DNA sequencing data are processed and

analyzed to call somatic mutations of various types. Human

leukocyte antigen (HLA) haplotyping is performed to deter-

mine a patient’s HLA alleles and the corresponding MHC

complexes. Finally, RNA sequencing (RNA-seq) data are

used to quantify gene and transcript expression, and can

verify variant expression prior to neoantigen prediction.

Multiple pipelines exist to identify candidate neoantigens

that have high binding affinities to MHC class I or II. Add-

itional steps are subsequently required to prioritize them

for clinical use in personalized vaccines and to address

manufacturing and delivery issues [8, 9].

The general concept of neoantigens and their role in per-

sonalized immunotherapies have been extensively reviewed

elsewhere [10–12]. Although experimental methods exist to

assess neoantigens (e.g., mass spectrometry (MS)), the focus

of this review is a comprehensive survey of computational

approaches (tools, databases, and pipelines) for neoantigen

characterization. The ultimate goal is to discover neoepi-

topes, the part of the neoantigen that is recognized and

bound by T cells, but current workflows are largely focused

on predicting MHC-binding antigens with limited predic-

tion of recognition by T cells or therapeutic potential. We

have been particularly inspired by the use of computational

approaches in human clinical trials involving personalized

neoantigen vaccines alone or in combination with ICB. A

rapid expansion of the number and diversity of these trials

has occurred over the past few years, but there is limited

community consensus on approaches for neoantigen

characterization. Adoption of standards for the accurate

Fig. 1 Overview of the bioinformatic characterization of neoantigens. Major analysis steps in a comprehensive workflow for neoantigen
characterization are depicted in a simplified form. For each component, critical concepts and analysis considerations are indicated. Specific
exemplar bioinformatics tools for each step are indicated in italics. Starting at the top left, patient sequences are analyzed to determine human
leukocyte antigen (HLA) types and to predict the corresponding major histocompatibility complexes (MHC) for each tumor. Somatic variants of
various types, including single nucleotide variants (SNVs; blue), deletions (red), insertions (green), and fusions (pink), are detected and the
corresponding peptide sequences are analyzed with respect to their predicted expression, processing, and ability to bind the patient’s MHC
complexes. Candidates are then selected for vaccine design and additional analyses are performed to assess the T cell response. Abbreviations:
CDR3 complementarity-determining region 3, FFPE formalin-fixed paraffin-embedded, IEDB Immune Epitope Database, TCR T cell receptor
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identification of neoantigens and for the reporting of their

features will be critical for the interpretation of results from

early-stage trials and for the optimization of future trials.

This review is focused on human clinical data; nevertheless,

neoantigen characterization work involving model organ-

isms (such as mice) will be critical to advance the field, and

many of the tools and approaches described herein may be

applied to these model systems with appropriate modifica-

tions. In addition to describing emerging best practices, we

highlight the current limitations and critical areas for the

improvement of the computational approaches needed to

understand the immunogenicity of neoantigens.

Neoantigen identification
Two types of antigens that can induce an antitumor re-

sponse are tumor-specific antigens (or neoantigens) and

tumor-associated antigens (TAA). Neoantigens contain

altered amino-acid sequences that result from non-silent

somatic mutations, whereas TAAs, which may originate

from endogenous proteins or retroviruses, are selectively

expressed or overexpressed by tumor cells but may also

be expressed by non-tumor cell populations [13]. This re-

view focuses on the detection and selection of neoanti-

gens, but many analytical steps that are used can apply to

other antigen types. Considerations such as sample type

(fresh frozen, formalin-fixed paraffin-embedded (FFPE)

tissue or circulating tumor DNA (ctDNA)), tumor type

(solid or blood), biopsy site, and sequencing approach

(DNA, RNA, or targeted sequencing) can impact somatic

variant detection and interpretation, and should be taken

into account during data processing and downstream ana-

lysis [13–16]. In addition, tumors that exhibit high intratu-

moral heterogeneity can require alternative methods, such

as collecting multiple biopsies per tumor [17].

Somatic variant callers identify single nucleotide variants

(SNVs) from tumor and matched non-tumor DNA se-

quence data, such as whole genome, or more commonly,

whole exome sequencing (WES) data [18]. Three common

Table 1 Tool categories, a brief description of their roles and a list of exemplar tools

Tool categories Function and examples

Alignment DNA: Bwa-mem [161]
RNA: STAR [162], HISAT2 [163]

Sequence data QC Picard (http://broadinstitute.github.io/picard/), FastQC (https://github.com/s-andrews/FastQC), RSeQC [164], MultiQC
(https://github.com/ewels/MultiQC) (note that MultiQC supports an extensive list of additional QC tools)

Variant callers SNV/Indel: Mutect [19], Strelka [20], VarScan2 [21], SomaticSniper [22], Shimmer [165], VarDict [166], deepSNV [167],
EBCall [40]
Structural variants: Pindel [43], Manta [168], Lumpy [169]
Fusions: STAR-Fusion [48], Pizzly [47], SOAPfuse [170], JAFFA [49], ChimPipe [171], GFusion [50], INTEGRATE [51]

Variant call format (VCF)
manipulation

Vt decompose (https://github.com/atks/vt), GATK (https://github.com/broadinstitute/gatk) (e.g., SelectVariants,
CombineVariants, LeftAlignAndTrimVariants)

Variant annotation Variant Effect Predictor (VEP) (https://github.com/Ensembl/ensembl-vep) (SNV/Indel), AGFusion [172] (RNA fusions),
bam-readcount (https://github.com/genome/bam-readcount), VAtools (https://github.com/griffithlab/VAtools)

Gene or transcript abundance
estimation

StringTie [173], Kallisto [174]

HLA typing Class I: Optitype [69], Polysolver [70]
Class I and II: Athlates [70, 175], HLAreporter [176], HLAminer [176, 177], HLAscan [72, 178], HLA-VBSeq [72], PHLAT [71],
seq2HLA [73], xHLA [74]

Peptide processing Proteasome cleavage: NetChop20S [89], NetChopCterm [89], ProteaSMM [89, 90], PAProC [179] (Class I),
PepCleaveCD4 [91] (Class II)
TAP transport efficiency: [90] (no specific tool name)

MHC binding predictors Class I predictors: SMM [111], SMMPMBEC [112], Pickpocket [113], NetMHC [114], NetMHCpan [87], NetMHCcons
[180], MHCflurry [102], MHCnuggets [181], MHCSeqNet [103], EDGE [104]
Class II predictors: SMMAlign [111], NNAlign [182], ProPred [183], NetMHCII(2.3) and NetMHCIIpan(3.2) [116],
TEPITOPE [184], TEPITOPEpan [185], RANKPEP [186], MultiRTA [187], OWA-PSSM [188]

Neoantigen prioritization
pipelines

pVACtools [8], Vaxrank [9], MuPeXI [119], TIminer [120], Neoepiscope [189], TSNAD [190], EpiToolKit [123],
NeoepitopePred [122], TepiTool (IEDB) [191], ScanNeo [192], CloudNeo [193], NeoPredPipe [118]

Peptide creation and delivery pVACtools [8] (pVACvector), Vaxrank [9] (manufacturability)

TCR repertoire profiling LymAnalyzer [194], MiXCR [147], MIGEC [148], pRESTO [195], TRUST [196], TraCeR [145], VDJtools [197], VDJviz [198],
ImmunoSEQ [199], GLIPH [151]

Immune cell profiling CIBERSORT [152], TIMER [153], quanTIseq [200], immunophenogram [201], MCPcounter [202], SSGSEA [203]

This table compiles the current state of tools, databases, and other resources that are used in neoantigen pipelines. Although many of the steps that are outlined

may involve the integration of multiple tools for comparable predictions (e.g., using multiple somatic variant callers or MHC-binding-affinity predictors), this table

summarizes more options than are needed in a single workflow. For an example of the specific combination of tools, parameter settings, and order of operations

used in a real end-to-end workflow that is based on our own practices, please refer to our online tutorial for precision medicine bioinformatics (https://pmbio.org/

). TAP Transporter associated with antigen processing
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limitations to SNV calling—low frequency variant detec-

tion, distinguishing germline variants from tumor in normal

contamination, and removing sequencing artifacts—have

been addressed by the variant callers discussed below.

MuTect2 [19] and Strelka [20] have high sensitivity in de-

tecting SNVs at low allele fractions, enabling accurate sub-

clonal variant detection. VarScan2 [21] and SomaticSniper

[22] require higher allele fractions for recognizing variants

but can improve performance in cases of tumor in normal

contamination [23, 24]. MuTect2 can further exclude se-

quencing or alignment artifacts by implementing a panel-

of-normals file, containing false positives detected across

normal samples. Running multiple variant calling algo-

rithms simultaneously is recommended and can result in

higher detection accuracy. For example, Callari et al. [25]

achieved 17.1% higher sensitivity without increasing the

false-positive rate by intersecting a single variant caller’s re-

sults from multiple alignment pipelines and then combin-

ing the intersected results from two callers, MuTect2 and

Strelka, to achieve a final consensus. The list of variant cal-

lers mentioned here is not exhaustive (see Table 1 for add-

itional options) and high-quality pipelines using different

combinations are certainly possible. Regardless of the com-

bination of callers used, manual review of matched

tumor–normal samples in Integrative Genomics Viewer

(IGV) [26], with a documented standard operating pro-

cedure, is recommended to further reduce false positives

[27]. In addition to IGV, targeted sequencing approaches

such as custom capture reagents can be utilized for further

variant validation.

Recently, neoantigen vaccine trials for melanoma demon-

strated that SNV-derived neoantigens can expand T cell

populations [28] and induce disease regression [29, 30].

However, recent studies have also increased appreciation

for diverse neoantigen sources beyond simple SNVs, in-

cluding short insertions and deletions (indels) [31], fusions

[32, 33], intron retentions [34], non-coding expressed re-

gions [35], exon–exon junction epitopes [36], B cell recep-

tor (BCR) and T cell receptor (TCR) sequences for B and T

cell malignancies, respectively [37], and more [38].

Frameshift mutations resulting from insertions and dele-

tions create alternative open reading frames (ORFs) with

novel tumor-specific sequences that are completely distinct

from those that encode wild-type antigens. A pan-cancer

analysis of 19 cancer types from The Cancer Genome Atlas

demonstrated that frameshift-derived neoantigens were

present in every cancer type [31]. This mutation type also

occurs frequently in microsatellite instability high (MSI-H)

colon and other cancers and correlates with higher CD8+

T cell infiltrate in the tumors [31, 39]. For calling indels, in

addition to Strelka, EBCall [40] demonstrates the least sen-

sitivity to coverage variability [41, 42]. Pindel [43] special-

izes in calling larger indels, from 0.50–10 kilobases in

length, and structural variants. Though these are popular

indel callers, they are only a subset of the available tools

(see Table 1 for additional options).

Translocations may result in tumor-specific fusion

genes, which can alter the reading frame and provide

novel junction sequences. Researchers recently investi-

gated the presence of translocations in osteosarcoma,

characterized by high genomic instability [44], and dis-

covered multiple fusion-derived junction-spanning

neoantigens [45]. The identification of novel sequences

resulting from inter- and intrachromosomal rearrange-

ments in mesothelioma also resulted in the prediction of

multiple neoantigens for each patient [46]. Many tools

have been developed to predict fusion genes from RNA-

seq and/or whole genome sequencing (WGS) data; recent

tools include pizzly [47], STAR-fusion [48], JAFFA [49],

GFusion [50], and INTEGRATE [51] (refer to Table 1).

The main limitation of these fusion callers is the low level

of overlap between tools; they largely achieve high sensi-

tivity at the cost of low specificity. The presence of many

false positives makes accurate detection difficult, but this

can be mitigated by using multiple tools [52] and by re-

quiring predictions to be supported by multiple callers

and/or data types (e.g., WGS and RNA-seq).

In addition to mutation-derived neoantigens from

known protein-coding genes, noncoding regions have im-

munogenic potential. Noncoding transcripts can be cre-

ated from noncoding exons, introns, and untranslated

regions (UTRs), as well as from non-canonical reading

frames in the coding region [53]. Laumont et al. [35] in-

vestigated traditionally noncoding sequences using liquid

chromatography tandem-MS (LC-MS/MS) and RNA se-

quencing (RNA-seq) in leukemia and lung cancer patients

and found an abundance of antigens, both mutated and

unmutated, from noncoding regions.

Recent publications have shown that aberrant tumor-

specific splicing patterns can create neoantigens. Smart

et al. [54] found an approximately 70% increase in total

predicted neoantigens after including retained intron se-

quences along with SNVs in the prediction pipeline. Novel

junctions created by exon skipping events, or neojunc-

tions, have been shown to create neoantigens [36].

Tumor-specific splicing patterns can also cause distinct al-

ternative 3′ or 5′ splice sites, known as splice-site-creating

mutations, and these mutations are predicted to create an

average of 2.0–2.5 neoantigens per mutation [55].

In addition to the neoantigen sources discussed above,

many alternative sources can create neoantigens. For ex-

ample, V(D) J recombination and somatic hypermutation

generate immunoglobulin (Ig) variable region diversity in

B and T lymphocytes, and the resulting unique receptor

sequences can function as neoantigens in heme malignan-

cies [37, 56]. Further, researchers have demonstrated that

peptides with post translational modifications, including

phosphorylation and O-GlcNAcylation, in primary
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leukemia samples can serve as MHC-I restricted neoanti-

gens [57, 58]. Alternative translation events resulting from

non-AUG start codons and viral sequences that are associ-

ated with tumors (e.g., human papilloma virus (HPV)) are

also a source of neoantigens [59–63]. Overall, neoantigen

identification requires a sensitive, accurate, and comprehen-

sive somatic variant calling pipeline that is capable of ro-

bustly detecting all of the variant classes that are relevant for

a tumor type (Table 2).

HLA typing, expression, and mutation analysis
T cell priming depends in part on neoantigen presentation

on the surface of dendritic cells, a type of professional

antigen presenting cells (APCs). Dendritic cells engulf

extracellular proteins, process the peptides, and present

the neoantigens on MHC I or II molecules. MHC in

humans is encoded by the HLA gene complex, which is

located on chromosome 6p21.3. This locus is highly poly-

morphic, with over 12,000 established alleles and more in

discovery [64]. Because HLA genes are extensively individ-

ualized, precise HLA haplotyping is essential for accurate

neoantigen prediction. The gold standard for this process

is clinical HLA typing using sequence-specific PCR ampli-

fication [65]. More recently, NGS platforms such as Illu-

mina MiSeq and PacBio RSII have been combined with

PCR amplification to sequence the HLA locus [66]. How-

ever, clinical typing can be laborious and expensive, so a

common alternative approach is computational HLA typ-

ing using the patient’s WGS, WES, and/or RNA-seq data-

sets, which are typically created from a peripheral blood

sample, except in heme malignancies, where a skin sample

is often used (Table 2).

HLA class I typing algorithms (Table 1) have reached

up to 99% prediction accuracy when compared to curated

clinical typing results [67, 68]. Although many class I typ-

ing algorithms exist, OptiType [69], Polysolver [70], and

PHLAT [71] currently have the highest reported accuracies

[67, 68, 70]. Despite the high precision of class I tools, class

II HLA typing algorithms remain less reliable and require

additional development to improve their prediction accur-

acy. Few benchmarking studies that consider class II algo-

rithm accuracy have been performed, but a combined class

I and II comparison demonstrated that PHLAT [71], HLA-

VBSeq [72], and seq2HLA [73] performed well with WES

and RNA-seq data [67]. Additional HLA typing algorithms,

xHLA [74] and HLA-HD [75], have recently been pub-

lished and show comparable accuracies to those of the tools

described above.

Tumor-specific T cell recognition relies on efficient

antigen presentation by tumor cells, so one mechanism of

resistance to immunotherapies is the loss or attenuated

expression of the HLA gene loci. Recently, researchers

have identified transcriptional HLA repression in a patient

with Merkel cell carcinoma (MCC) following treatment

with autologous T cell therapy and ICB [76]. The authors

found that the transcriptional silencing can be reversed in

ex vivo cultures by treatment with 5-aza and other hypo-

methylating agents, indicating that reversing the epigen-

etic silencing of the HLA genes could sensitize tumors

that exhibit HLA downregulation in response to immuno-

therapies [77].

Genetic changes at the HLA locus can be determined by

Polysolver [70], an algorithm that detects HLA-specific

somatic mutations from computational HLA typing and

variant calling of the tumor HLA locus. Somatic mutation

analysis of head and neck squamous cell carcinoma

(HNSCC), lung cancer, and gastric adenocarcinoma co-

horts demonstrated that HLA mutations are prevalent in

all three cancer types [78–80]. In addition, HLA mutations

(particularly frameshifts, nonsense, and splicing mutations)

are enriched towards the beginning of the genes or within

functional domains, where they would be expected to result

in a loss-of-function phenotype [70]. Another tool,

LOHHLA, can identify copy number variations in the HLA

locus that result in loss of heterozygosity [81].

Additional components of the antigen presenting ma-

chinery, including B2M and TAP (Transporter associated

with antigen processing), have been shown to accrue

mutations and to exhibit altered expression patterns in tu-

mors. In lung cancer and MSI-CRC, mutations or biallelic

loss of B2M causes lack of class I HLA presentation [82,

83]. Downregulation of B2M, TAP1, and TAP2 expression

has also been shown to inhibit tumor antigen presentation

[84, 85] and correlate with metastatic breast cancer pheno-

types [86]. Identifying and characterizing altered HLA and

associated presentation genes will allow clinicians to

prioritize neoantigens that bind to expressed and unmu-

tated alleles.

Predicting peptide processing
Recognition of a peptide-MHC (pMHC) complex by the

T cell is a complex process with many steps and require-

ments. Most of the attention in the field has been focused

on predicting the binding affinity between the patient’s

MHC molecule and a given peptide sequence, as this is

believed to provide much of the specificity of the overall

recognition [87]. However, even if a peptide has strong

MHC binding prediction, the prediction may be meaning-

less if upstream processing prevents the actual loading of

that peptide. In general, pipelines generate k-mer peptides

using a sliding window that is applied to the mutant pro-

tein sequence, and these peptide sequences are subse-

quently fed into algorithms that predict the affinity of the

peptide to the corresponding MHC. However, not all of

the k-mers can be generated in vivo due to the limitations

of the immune proteasome. In addition, only a subset of

generated peptides will be transported into the appropri-

ate cellular compartments and will interact with MHC
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Table 2 Key analysis considerations and practical guidance for clinical neoantigen workflows

Analysis area Guidance

Reference genome sequences The choice of human reference genome sequences can have important implications for
various analysis steps throughout neoantigen characterization workflows. A consistent
build or assembly (e.g., GRCh38 or GRCh37) of the genome should be used throughout
the analysis. Even if two resources provide annotations that are based on the same
assembly, they may organize or name sequences differently and might follow different
conventions for representing ambiguous or repetitive sequences. They may also drop
some sequences (e.g., alternative contigs) or add sequences that are not part of the
official assembly (e.g., ‘decoy’ sequences). The use of reference files from multiple
sources for different tools is difficult to avoid but should be pursued cautiously. For
example, the naming of chromosomes and contigs used for DNA read alignment and
variant calling should be compatible (identical) to those used in transcript annotations.
Otherwise, this may prevent correct prediction of the protein sequences of neoantigens

Use of alternative contigs in the reference genome The inclusion or exclusion of alternative contigs from the latest human reference
genome build can have important implications for HLA typing tools such as xHLA [74].
In particular, if a tool assumes that all relevant reads for HLA typing can be extracted
from an existing alignment (rather than performing de novo re-alignment of all reads), it
matters whether some of these reads may have been placed on alternative contigs for
the HLA locus of chromosome 6. Some HLA typing approaches avoid this issue by
aligning all reads directly to a database of known HLA gene sequences (e.g., from the
IPD-IMGT/HLA resource). This has the disadvantage that without competitive alignment
of each read to the whole genome, some reads may be misaligned to the known HLA
sequences and this may affect accuracy during HLA typing. A reference genome
alignment approach, in which the diversity of HLA loci is properly represented in the
reference, avoids this concern and has the potential to leverage alignments that may
have already been produced for variant calling. For example, all reads aligning to the
HLA loci of chromosome 6, the corresponding alternative contigs (if present in the
reference), and unaligned reads could be extracted from a BAM file and used for HLA
typing

Transcript annotation build versions Transcript annotation resources (e.g., Ensembl, RefSeq, GENCODE, and Havana) update
their transcript sequences and associated annotations more frequently than new
reference genome sequence builds/assemblies are released. For example, Ensembl is
currently on version 96, the 21st update since the latest release of the human reference
genome, build GRCh38. As with reference genome builds, it is highly desirable to use a
consistent set of transcript annotations across the steps of a neoantigen characterization
workflow. For example, the transcripts used to annotate somatic variants should be the
same as those used to estimate transcript and gene abundance from RNA data

Variant detection sensitivity Correct neoantigen identification and prioritization rely on somatic and germline variant
detection (for proximal variant analysis) and variant expression analysis. QC analysis of
both DNA and RNA data should be performed to assess the potential for a high false-
negative rate in detecting somatic variants that might lead to neoantigens, to identify
germline variants in phase with somatic variants that influence the peptide sequence
bound by MHC, or to assess the expression of these variants. Tumor samples vary
significantly in their level of purity and genetic heterogeneity. Common strategies to
achieve high sensitivity in variant detection involve increasing the average sequencing
depth and combining results from multiple variant callers

Combining variants from multiple callers The majority of somatic variant callers now use the widely adopted variant call format
(VCF). Furthermore, many toolkits now exist for the manipulation of these files, including
merging. However, because of the complexity and flexibility of the VCF specification
(https://samtools.github.io/hts-specs/VCFv4.2.pdf), the existence of multiple versions of
the specification, and the varying interpretations of VCF rules observed in the output of
somatic variant callers, great care must be taken when combining multiple VCFs and
using these merged results. Important considerations include: (i) variant justification and
parsimony such as left aligning or trimming variants to harmonize those that can be
correctly represented at multiple positions without changing the resulting sequence
(e.g., GATK LeftAlignAndTrimVariants); (ii) normalization of multi-allelic variants by
separating multiple variant alleles that occur at a single position into multiple lines in a
VCF (e.g., vt decompose); (iii) harmonization of sequence depths, allele depth, and allele
fraction values that may be calculated inconsistently by different variant callers through
the use of an independent counting tool, such as bam-readcount (https://github.com/
genome/bam-readcount); (iv) determining the final status for each variant (PASS or
filters failed; e.g., GATK SelectVariants); and (v) choosing the variant INFO and FORMAT
fields to represent in the final merged VCF

Variant refinement (‘manual review’) Somatic variant calling pipelines remain subject to high rates of false positives,
particularly in cases of low tumor purities or of insufficient depth of sequencing of
tumor (or matched normal) samples or sub-clones. Prior to final neoantigen selection, all
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somatic variants should be carefully reviewed for possible alignment artifacts, systematic
sequencing errors, nearby in-phase proximal variants, and other issues using a standard
operating procedure for variant refinement, such as that outlined by Barnell et al. [27]

Choosing RNA and DNA variant allele fraction
(VAF) cutoffs

It is impossible to define universal VAF recommendations because of the varying
distribution of VAFs observed for tumor samples with different sequencing depths,
tumor purity/cellularity, genetic heterogeneity, and degree of aneuploidy. The
interpretation of each individual candidate may be influenced by one or more of these
factors. In general, however, neoantigens corresponding to somatic variants with higher
VAFs (in both DNA and RNA) will be considered with higher priority. Estimating the
overall purity of the DNA sample by VAF distribution and distinguishing founding
clones from sub-clones requires accurate assignment of each variant to a copy number
estimate. Accepting or rejecting candidates on the basis of VAF requires a nuanced
approach that takes the characteristic of each tumor into account. For example, a variant
with a relatively low DNA VAF may be accepted in some cases if sequencing depth at
the variant position was marginal, leading to a less accurate VAF estimate. A variant with
a relatively high DNA VAF may be rejected if RNA-seq analysis shows strong evidence of
allele-specific expression (of the wild-type allele)

Interpretations that depend on RNA quality
assessment

Attempting to define expressed and unexpressed variants by RNA-seq analysis is a
common feature of many neoantigen characterization workflows. Applying hard filters
in this area should be pursued with great caution. All interpretation of RNA-seq should
be accompanied by comprehensive QC analysis of the data [204]. A lack of evidence for
expression in RNA-seq data may not be definitive evidence of non-expression of a
variant because not all genes can be robustly profiled by RNA-seq (for example, very
small genes may be poorly detected by standard RNA-seq libraries [205]). Tumor
samples that are obtained in clinical workflows, particularly those involving FFPE, may
frequently result in poor-quality RNA samples. In these cases, the requirements for
expression support may be relaxed when nominating neoantigen candidates.
Furthermore, some variants occur within a region of a gene that is difficult to align
reads to. In these cases, robust apparent expression of the gene may still be used to
nominate a neoantigen even in the absence of evidence supporting the expression of
the variant allele itself. Use of spike-in control reagents and routine profiling of reference
samples can be helpful in determining consistent expression value cutoffs (e.g., FPKM or
TPM values) across samples. In the absence of reliable gene or variant expression
readout for an individual tumor, robust expression of the gene in tumors of the same
type may be used to prioritize neoantigens

Assessing variant clonality A major consideration in the interpretation of DNA VAFs of variants is the assessment of
tumor clonality. Neoantigens corresponding to variants that reside in the founding
clone are inherently more valuable therapeutically than those residing in tumor sub-clones,
because the former have the potential to target the elimination of all tumor cells. In
personalized cancer vaccine designs, after correcting for ploidy and tumor purity, VAFs
should be interpreted to prioritize neoantigens that correspond to founding clones

Variant types and agretopicity Calculation of ‘agretopicity’ (also known as ‘differential agretopicity index’ [121], or ‘wild-
type/mutant binding affinity fold change’) refers to an attempt to estimate the degree
to which a neoantigen’s ability to bind to MHC differs from that of its corresponding
wild-type sequence. This calculation thus depends on the ability to define a wild-type
counterpart for each neoantigen sequence. For non-synonymous SNVs, the wild-type
counterpart sequence is assumed to be a peptide of the same length without the
amino acid substitution. For many other variant types, defining a counterpart wild-type
sequence is much less obvious because the variant may lead to a sequence that is
entirely novel and shares little or no homology with the wild-type sequences encoded
from the region of the variant. These include frameshift mutations caused by deletions or
insertions, translocations that lead to in-frame or frame-shifted RNA fusions, alternative
isoforms caused by aberrant RNA splicing that lead to partial or complete intron retention,
novel exon junctions, and so on. In these cases, agretopicity values are typically not calculated
and may be reported as not applicable. This should be taken into consideration when
prioritizing variants of mixed type using these values. Interpretation of agretopicity is primarily
relevant when the mutant amino acid(s) involve anchor residues of the MHC [206]

HLA naming conventions Neoantigen characterization workflows should consistently adopt the widely used
standards and definitions for the communication of histocompatibility typing information
[207]. Briefly, HLA alleles are named using an HLA prefix followed by a hyphen, gene
designation, asterix separator, and four fields of digits delimited by colons (e.g., HLA-A*02:
101:01:02 N). The four fields (typically of two or three digits each) represent the allele group,
specific HLA protein, synonymous changes in the coding region, and non-coding
differences, respectively. Several popular HLA typing bioinformatics tools only report two
field HLA types. The first two fields are generally sufficient for pMHC binding affinity
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Analysis area Guidance

predictions because they describe any polymorphisms that influence the protein sequence
of MHC. However, three-field typing might be desirable for patient-specific assessment of
expression, because even silent variations in the DNA sequence of the HLA locus may
influence read assignments to specific alleles

HLA typing (class I vs II typing) Accurate HLA typing is critical to neoantigen characterization workflows. Without
accurate knowledge of the HLA alleles of an individual, it is not possible to predict
pMHC binding and presentation on tumor cells or cross presentation by APCs. Many
clinical- or research-grade HLA typing assays are available, and they rely on PCR
amplification or, more recently, NGS data. HLA typing results from a CAP/CLIA-regulated
assay are expected to be robust and remain the gold standard. In addition to clinical
HLA typing, there are now several bioinformatics tools and pipelines available for HLA
typing from whole genome, exome, or RNA-seq data (Table 1). Several groups have
now conducted comparisons between the results of these tools and clinical assay results
and have reported high concordance, particularly for class I typing. Class II typing
remains challenging, with fewer tools available and poorer consistency between the
results of these tools and clinical assays. Use of clinical-typing results remains advisable
for class II. As in other areas of neoantigen analysis, the use of a consensus approach
involving multiple tools has become a common strategy to increase confidence in HLA
typing results [208]

HLA typing (selection of data type and samples) Several options are available for input data when performing HLA typing from NGS data,
including DNA (WES or WGS) or RNA-seq data. RNA-seq data often exhibit highly variable
coverage across the HLA loci, potentially leading to variable accuracy in typing for each.
Coverage data from exome data may vary depending on the exome reagent’s design (probes
selected against HLA regions) and capture efficiency. Care should be taken to evaluate
sufficient read coverage for each HLA locus when assessing HLA-typing confidence. WGS data
may exhibit comprehensive breadth of coverage, but generally at the expense of overall
depth of coverage (again coverage achieved for the HLA loci specifically should be
evaluated).
In addition to data type, there is also the choice of whether to perform HLA typing using
data from the tumor itself or a reference normal sample. The normal sample has the
advantage that it should represent the germline HLA alleles present in both the initiating
cells of the tumor and the antigen presenting cells of the immune system (relevant for
cross-presentation). In many clinical and research workflows, the quality of genomic DNA
may be higher in the normal sample than in the tumor (often a FFPE-preserved sample).
The genomic DNA of the tumor may also be complicated by aneuploidy that affects the
HLA loci (which is important to observe and has the potential to interfere with HLA typing).
HLA typing using the tumor DNA data has the advantage that it may more accurately
reflect the MHC binding and presentation of neoantigens on the surface of the targeted
tumor cells. However, it is important to note that HLA-typing tools are, for the most part,
not designed for de novo HLA typing; instead, they seek to determine which of a list of
known alleles best explain the sequence reads of a given data set. HLA-typing tools also
generally do a poor job of reporting HLA-typing confidence. At present, identification of
the loss of expression or a somatic mutation of an HLA allele in a tumor is perhaps best
treated as a separate exercise from HLA typing. One strategy for choice of data for HLA
typing is to use all of the datasets available (DNA and RNA, normal and tumor), to note any
discrepancies, and to investigate them

HLA expression and mutation Loss of expression of MHC molecules by HLA deletion (or downregulation) and somatic
mutation of HLA loci have both been identified as possible resistance mechanisms for
immunotherapies [76]. It is therefore desirable for neoantigen characterization workflows to
incorporate examination of HLA expression and somatic mutation in the tumor.
Unfortunately, very few tools and best practices exist for these examinations. Given the
sequence diversity of the HLA loci across individuals, when estimating the expression of
HLA transcripts in a tumor, it is desirable to customize the reference transcripts used (e.g.,
from the IPD-IMGT/HLA resource) for each individual’s HLA type by using the results of HLA
genotyping to select the matching transcript sequences (three-field matched) for
expression abundance estimation (for example, with Kallisto)

Class I versus class II allele specification for binding
prediction algorithms

Class I HLA alleles are typically supplied to binding affinity prediction algorithms using a
standard two-field format (e.g., HLA-A*02:01). However, class II alleles are often supplied
as a pair using valid two-field pairing combinations (e.g., DQA1*01:01-DQB1*06:02) to
reflect the functional dimers of class II MHC. Peptide MHC prediction tools will typically
document the syntax and list the valid pairings for which binding-affinity predictions are
supported

Proximal variation Neoantigen selection pipelines often focus entirely on one variant or position at a time,
and consider it to be independent of all nearby variations. It is important to examine
candidates carefully to determine whether nearby variation exists that is both in phase
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(on the same allele) and close enough to influence the peptide sequence and therefore
the MHC binding predictions [117]

Peptide-length considerations Many human class I pMHC binding affinity prediction tools support a range of peptide
lengths for each individual HLA allele (e.g., IEDB supports lengths of 8–14 amino acids for
class I for HLA-A*01:01). Typically, although multiple lengths are supported, the peptides
that are found to have strong binding will be highly biased towards the lengths actually
favored by the allele (for example, many human HLA alleles strongly favor nonamers).
The open binding groove of MHC class II is thought to support a greater range of peptide
lengths. This is reflected in some class II binding prediction tools, although it should be
noted that the IEDB API and web resource currently enforce a length of 15 amino acids
only

Relationship between genomic variants and short
peptides

There is a complex relationship between genomic variants and the short peptide
neoantigen candidates that they might represent. Though rare, it is possible for multiple
distinct somatic variations to result in the same amino acid change (for example, several
single nucleotide substitutions affecting a single triplet codon) and therefore they might
lead to identical neoantigens. If these variations were to occur on opposite alleles, it
might be important to analyze them separately because they could differ in expression
level and/or their proximal variants, giving rise to distinct peptides. Other ways in which
a single genomic variant can give rise to distinct short peptides for pMHC binding
prediction include: (i) a homozygous somatic variant representing two distinct alleles; if
these alleles are in phase with one or more nearby heterozygous proximal variants,
distinct peptide sequences may result; (ii) SNVs expressed in different RNA transcripts or
isoforms that differ in their reading frame at the position of the variant, in the inclusion
or exclusion of nearby alternative exons, or in the nearby use of alternative RNA splicing
donor or acceptor sites; and (iii) multiple short peptides that result simply from shifting
the ‘register’ of the somatic variant in a short sequence or from the use of multiple
peptide lengths (e.g., 8–11-mers) during the prediction of pMHC binding affinity.
In some ways, mostly similar peptide sequences do not matter in peptide vaccine
design because a longer peptide will ultimately incorporate several of them into a
single peptide sequence. However, pMHC binding prediction algorithms require that
you supply a short sequence, of a specific length with the variant in a particular register,
and each of these lead to different predicted binding affinity values. Making decisions
about how to summarize, collapse, filter, and select representatives is one of the
complexities that are addressed by pipelines such as pVACtools

Importance of transcript annotation quality and
choice to select a single transcript variant
annotation

Peptides that are considered as potential neoantigens are generally derived from the
anticipated open reading frame of a known or predicted transcript sequence. A
common consideration in variant effect annotation is whether to allow annotations for
each variant against multiple transcripts or whether a single representative transcript
should be selected. If choosing a single transcript for each gene, multiple strategies
exist including the following: (i) use of a pre-selected automatically determined or
manually curated choice of ‘canonical’ transcript for each gene; or (ii) considering all
transcripts but selecting the single transcript that results in the most confident and/or
consequential predicted functional impact. The latter is the basic intent of the ‘--pick’ option
of the Ensembl Variant Effect Predictor (VEP), which chooses one block of
annotations for each variant using an ordered set of criteria (refer to the VEP documentation
for extensive details). The benefit of choosing a single transcript for the annotation of each
variant is simplicity, and in many cases, it will result in the selection of a suitable peptide
sequence for neoantigen analysis. However, the downside is that distinct peptides may not
be considered and the peptide corresponding to the selected annotation is not guaranteed
to be the best.
Note that a single variant may be assigned annotations for: multiple genes, multiple
transcripts of the same gene, and multiple effects for the same transcripts. For example,
a single variant can be annotated as splicing-relevant (near the edge of an exon causing
exon skipping) and also as missense (causing a single amino acid substitution). The
same variant could be silent for a different transcript of the same gene and have a
regulatory impact on a transcript of another gene. Making sensible automated choices
about how to choose and report neoantigen candidates that correspond to these
variants is a complexity that neoantigen characterization workflows seek to address

Importance of transcript annotation quality When using VEP, it can be important to consider the Transcript Support Level assigned
by Ensembl. As described above, this classification is one of many factors that are
considered in choosing a single ‘best’ transcript for the annotation of variants.
Occasionally, a variant annotation will be reported with a dramatic effect (e.g.,
nonsense) but on further inspection, it is found that this effect is only true for a
transcript that is poorly supported by sequence evidence, and another more reliable
transcript would lead to different candidate neoantigen sequences

Richters et al. Genome Medicine           (2019) 11:56 Page 9 of 21



molecules. These aspects of peptide processing, specific-

ally immune proteasome processing and peptide cleavage,

must be considered and several tools have been developed

to address this component specifically [88].

For both the MHC class I and II pathways, an important

upstream step prior to pMHC interaction is proteolysis,

which refers to the degradation of proteins into peptides,

particularly by the immunoproteasome. Multiple tools are

now available to capture the specificity of proteasomes

and to predict the cleavage sites that are targeted by differ-

ent proteases. These tools include NetChop20S [89],

NetChopCterm [89], and ProteaSMM [89, 90] for MHC

class I antigens, and the more recent PepCleaveCD4 and

MHC NP II for MHC class II antigens [91, 92]. Algo-

rithms that have been developed in this area are generally

trained on two different types of data, in vitro proteasome

digestion data or in vivo MHC-I and -II ligand elution

data. The neural network-based prediction method

NetChop-3.0 Cterm has been shown to have the best per-

formance in predicting in vivo proteolysis that provides

peptide sources for MHC class I antigen presentation [88].

Cleavage site predictions for MHC class II epitopes show

promise, but have yet to be validated for predicting im-

munogenicity [88, 92].

For MHC class I antigen processing, peptide fragments

are generated from proteins that are present in the

Table 2 Key analysis considerations and practical guidance for clinical neoantigen workflows (Continued)

Analysis area Guidance

Selection of pMHC binding affinity prediction
cutoff(s)

Many pMHC binding prediction tools report binding strength as an IC50 value in
nanomolar (nM) units. Peptides that have a binding affinity of less than 500 nM are
commonly selected as putative strong binding peptides. However, the widespread use
of this common binding strength metric may provide a false sense of consistency.
Trusting a simple cutoff of 500 nM from a single algorithm should be avoided, but
combining scores from multiple algorithms should also be pursued very cautiously. The
range, median, and even shape of distribution of IC50 scores varies dramatically across
algorithms, even when applied to exactly the same peptides [8]. Further complicating
the selection process, the accuracy of the IC50 estimates varies across HLA alleles
(reflecting the biased and variable strength of experimental evidence used to train
generalized predictive models). Partially addressing this concern, the IEDB now provides
recommended ‘per allele’ binding-score thresholds for the selection of strong binders

Interpretation of binding affinity from multiple
binding prediction algorithms

Given the variability in IC50 predictions across binding prediction algorithms, some
neoantigen workflows involve the use of multiple binding prediction tools and attempt
to calculate or infer a consensus. Best practices for determining such a consensus are
poorly articulated, and limited gold-standard independent validation data sets exist to
evaluate the accuracy of divergent predictions. Unsophisticated but pragmatic
approaches currently involve reporting the best score observed, calculating the median
score, determining average rank values, or manually visualizing the range of predictions
across algorithms for promising candidates, before making a qualitative assessment

Neoantigen candidate reporting, visualization, and
final prioritization

Prior to the final review of candidates, the automated filtering of variants and peptides
that do not meet basic criteria (VAFs, binding affinity, and so on) is performed to
provide a more interpretable result. As discussed above, a single genomic variant can
lead to many candidate peptide sequences (resulting from alternative reading frames,
peptide lengths, registers, and so on). At the time of final candidate review and
selection, a common strategy is to use a pipeline that will automatically choose a single
representative (best) peptide for each variant in a filtered result. Similarly, a condensed
report may be generated to present only the most important information about each
candidate. Final assessment of a candidate neoantigen can easily involve the
consideration of 20–50 specific data fields. Review of this data in spreadsheet form can
be time-consuming and inefficient, and can make it difficult to consider some data in
the context of a cohort of comparators (for example, expression values are often best
interpreted relative to reference samples). Tools such as pVACviz are now emerging to
facilitate more efficient visual interfaces for neoantigen candidate review

Vaccine manufacturing strategy In the case of personalized cancer vaccine trials, the method of vaccine delivery can
influence bioinformatics tool selection and other analysis considerations. For example, if
candidates are to be encoded in a DNA vector, a tool such as pVACvector may be used
to determine the optimal ordering of the peptide candidates. Owing to the
combinatorial nature of candidate peptide sequence ordering, and the need to examine
all pairs for junctional epitopes, this is currently one of the most computationally
expensive and time-consuming steps of these workflows. Similarly, if peptides are to be
synthesized for a peptide vaccine, there is a need to predict possible problems with
synthesizing each peptide (for example, by calculating ‘manufacturability’ scores)

A detailed summary of analysis and interpretation best practices and nuances that should be considered when implementing a neoantigen identification

workflow. Topics are covered in an order that corresponds to the flow of major steps discussed in the main body and depicted in Fig. 1. For further nuanced

details on how to put the following guidance into practice, please refer to our tutorial on precision medicine bioinformatics (https://pmbio.org/). Abbreviations:

CAP College of American Pathologists, CLIA The Clinical Laboratory Improvement Amendments, FPKM fragments per kilobase of exon model per million reads

mapped, TPM transcripts per million
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cytoplasm and transported by the TAP protein into the

endoplasmic reticulum (ER), where the peptide is loaded

onto an MHC molecule. Thus, in addition to tools fo-

cusing on the process of proteolysis, other tools have

also been developed to predict the efficiency of peptide

transportation on the basis of affinity to TAP proteins.

Different methods have been employed in an attempt to

determine which peptides have high affinity for TAP bind-

ing, including simple/cascade support vector machine

(SVM) models [93, 94] and weight matrix models [95]. To

address the entirety of this process, the Immune Epitope

Database (IEDB) has also developed a predictor for the

combination of these processes (proteasomal cleavage/

TAP transport/MHC class I) [90, 96].

In the MHC class II pathway, the peptides are mostly

exogenous and enter the endosome of APCs through

endocytosis. As endosomes mature into late endosomal

compartments, acidity levels increase and serine, aspar-

tic, and cysteine proteases are activated. Proteins, upon

exposure to a series of proteases, are degraded into po-

tential antigens for presentation. MHC class II molecules

are assembled in the ER and transported to these high

acidity late endosomes, also known as MHC-II compart-

ments (MIIC). Here, peptides can bind to class II mole-

cules and are protected from destructive processing [97,

98]. In contrast to the protein denaturation in the MHC

class I processing pathway, cleavage in the MHC class II

pathway occurs on folded proteins. Predictors for class

II peptide preprocessing prior to MHC binding show the

important role that secondary structures play in such re-

actions, as multiple measures related to secondary struc-

tures were found to be highly correlated with the

predicted cleavage score [91]. Consideration of secondary

structure will be critical to the future development of tools

predicting class II processed peptides. However, although

the class I antigen processing pathway has been studied

extensively, researchers have only recently started to focus

on class-II-specific neoantigens as promising results have

been shown in cancer immunotherapies [99–101]. There

remains a great need to develop supporting tools and al-

gorithms to characterize class-II-specific neoantigens.

For the purposes of neoantigen prioritization, it is im-

portant to take into account processing steps such as pep-

tide cleavage and TAP transport when using binding

prediction algorithms that were trained on in vitro binding

data. Recently, published binding prediction algorithms

have been transitioning to training on data generated

in vivo, in which case the processing steps are accounted

for intrinsically.

MHC binding prediction
Neoantigen characterization pipelines have been estab-

lished specifically to predict the binding of neoantigens

to the patient’s specific class I and II MHC molecules

(based on HLA typing). Algorithmic development and

the refinement of reference data sets are very active in

this area. Here, we describe the current state of the art

with respect to algorithmic innovation and refinement of

the major classes of data that are used to train these al-

gorithms (largely from in vitro binding assays involving

specific MHCs and peptide libraries or from MS-based

approaches) [87, 102–104].

Peptides bind MHC molecules at a membrane-distal

groove that is formed by two antiparallel α-helices overlay-

ing an eight-strand β-sheet [97]. The peptide-binding re-

gion of the MHC protein is encoded by exons 2 and 3 of

the corresponding HLA gene [105]. High allelic polymorph-

ism allows the binding pocket of MHC molecules to

recognize a range of different peptides sequences, and the

positions that are involved in anchoring the peptide to the

MHC molecule in particular vary for each HLA allele. The

algorithms and training datasets for predicting pMHC

binding remain an active area of development. Various

methods have been employed in an attempt to capture the

characteristics of peptide and MHC molecules that have a

high probability of binding (Table 1).

Early algorithms have mostly focused on training using

in vitro pMHC binding affinity measurement datasets.

MHC peptide binding is thought to be the most selective

step in the antigen presentation process, but sole consid-

eration of peptide binding predictions still results in high

rates of false-positive predictions of neoantigens for appli-

cations in personalized immunotherapy [28, 29]. This in-

sufficiency probably results from the influence of other

factors including the preprocessing of peptides, the stability

of the pMHC complex [106, 107], and peptide immuno-

genicity [108]. Recently published MHC binding algorithms

use either only peptidome data, generated from in vivo im-

munoprecipitation of pMHC complexes followed by MS

characterization, or an integration of MS and binding-

affinity data [87, 102, 104]. By directly examining ligands

that are eluted from pMHC complexes identified in vivo,

predictive models can capture features unique to peptides

that have undergone the entire processing pathway. Over

150 HLA alleles have corresponding binding-affinity datasets

available in IEDB (with highly variable amounts of data for

each allele) [96]. By contrast, MS peptidome datasets are

available for only approximately 55 HLA alleles [87], prob-

ably because of the lack of high-throughput characterization

assays. However, continuous development in MS profiling

techniques [109] may soon close the gap between the two

types of data. Zhao and Sher [110] recently performed sys-

tematic benchmarking for 12 of the most popular pMHC

class I binding predictors, with NetMHCpan4 and

MHCflurry determined to have the highest accuracy in

binding versus non-binding classifications. The analysis also

revealed that the incorporation of peptide elution data from

MS experiments has indeed improved the accuracy of recent
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predictors when evaluated using high-quality naturally pre-

sented peptides [110].

Different types of algorithmic approaches have been

used to model and make predictions for the binding affin-

ity of MHC class I molecules. Initially, predictors relied on

linear regression algorithms and more specifically on sta-

bilized matrix methods, such as SMM [111],

SMMPMBEC [112], and Pickpocket [113]. However, re-

cently published or updated predictors almost exclusively

employ variations of neural networks [87, 102, 104, 114],

as shown in Table 3. Linear regression assumes a linear

contribution of individual residues to the overall binding

affinity; however, while artificial neural networks require

more training data, they are able to capture the nonlinear

relationship between the peptide sequence and the bind-

ing affinity for the corresponding MHC molecules

through hidden layers in their network architecture. Given

the growing number of available training datasets, applica-

tions of artificial neural networks have been able to

achieve higher accuracy than that provided by linear re-

gression predictive methods [110].

While prediction algorithms for MHC class I molecules

are well developed, algorithms for MHC class II are fewer,

less recently developed, and trained with smaller datasets.

Unlike MHC class I molecules, class II molecules are

heterodimeric glycoproteins that include an ɑ-chain and a

β-chain; thus, MHC II molecules are more variable than

MHC I molecules as a result of the dimerization of highly

polymorphic alpha and beta chains. The binding pocket

for class II molecules is open on both ends, which allows a

larger range of peptides to bind. The most frequently ob-

served lengths of peptides that bind to class II MHCs are

between 13 and 25 amino acids [115], whereas those for

class I typically fall between 8 and 15 amino acids [87].

Nevertheless, for any one particular MHC allele, the pre-

ferred number of amino acids may be much more con-

strained to one or two lengths. Algorithms built for class

II predictions generally rely on matrix-based methods and

ensembles of artificial networks. A selection of popular

MHC class II binding prediction algorithms are summa-

rized in Table 1 [116].

There is an extensive list of MHC binding prediction

tools for both class I and class II molecules, but there re-

mains a need not only to expand the training data for a lar-

ger range of HLA alleles but also to refine the type of

training data being used in these algorithms. Although

in vivo MS data capture the features of peptides that are

naturally presented by MHC molecules, they cannot con-

firm whether such peptides are able to induce an immune

response. Algorithms should ideally incorporate experimen-

tally and clinically validated immunogenic peptides in their

training and validation datasets. As ongoing neoantigen

clinical trials produce more of such data, tool development

and refinement in this area will also become possible.

Neoantigen prioritization and vaccine design
pipelines
Owing to the numerous factors that are involved in the

process of antigen generation, processing, binding, and rec-

ognition, a number of bioinformatic pipelines have emerged

with the goal of assembling the available tools in order to

streamline the neoantigen identification process for differ-

ent clinical purposes (such as predicting the response to

ICB, designing peptide- or vector-based vaccines, and so

on). Table 1 includes a selection of these pipelines and

Table 2 provides extensive practical guidance for their use

in clinical studies. These pipelines address multiple factors

that should be given careful consideration when attempting

to predict neoantigens for effective cancer treatments.

These considerations include: the use of multiple binding

prediction algorithms (variability among binding predic-

tions); the integration of both DNA and RNA data (expres-

sion of neoantigen candidate genes or transcripts and

expression of variant alleles); the phasing of variants (prox-

imal variants detected on the same allele will influence

neoantigen sequences) [32, 117]; the interpretation of vari-

ants in the context of clonality or heterogeneity [118]; the

HLA expression and somatic mutations of patient tumors;

and the prediction of tumor immunogenicity [119, 120].

These pipelines are able to provide a comprehensive sum-

mary of critical information for each neoantigen prediction,

including: variant identity (genomic coordinates, ClinGen

allele registry ID, and Human Genome Variation Society

(HGVS) variant name); predicted consequence of the vari-

ant on the amino acid sequence; corresponding gene and

transcript identifiers; peptide sequence; position of the vari-

ant within the candidate neoantigen peptide; binding affin-

ity predictions for mutant peptides and the corresponding

wild-type peptide sequences; agretopicity value (mutant

versus wild-type peptide binding affinity) [121]; DNA vari-

ant allele frequency (VAF); RNA VAF; and gene expression

values for the gene harboring the variant. Additional data

on whether peptides are generated from oncogenic genes,

peptide stability, peptide processing and cleavage, and pep-

tide manufacturability should also be considered for final

assessment of neoantigens (Table 2).

Several pipelines attempt to integrate DNA and RNA

sequencing data by evaluating the VAFs and the gene or

transcript expression values of the mutations. Most pipe-

lines currently take into account SNVs and indels, with

only a subset considering gene fusion events [8, 32, 122].

Consistent use of the same build or assembly of the gen-

ome throughout analysis pipelines, as well as an emphasis

on quality control (QC) when performing variant detec-

tion and expression analysis, is important for ensuring

high confidence in the variants that are detected (Table 2).

Once the mutations are confirmed to exist and be

expressed, the pipelines then generate a list of neoantigen

candidates and consider the probability of cleavage, the
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location of cleavage, and the TAP transport efficiency

of each candidate [8, 123, 124]. The binding affinities of

the peptides to the patient-specific MHC molecules are

subsequently predicted by using one or more algo-

rithms (Table 1). However, binding-affinity predictions

that are made by multiple prediction algorithms vary,

and best practices for determining a consensus are

poorly articulated at this time. Furthermore, the gold-

standard independent validation datasets that exist to

evaluate the accuracy of divergent predictions are lim-

ited. It remains to be determined whether combining

multiple prediction algorithms increases the true posi-

tive rate of neoantigen predictions. Some pipelines also

consider: (i) manufacturability by measuring peptide

characteristics [9]; (ii) immunogenicity by comparing

either self-antigens defined by the reference or by the

wild-type proteome or known epitopes from viruses

and bacteria provided by IEDB [119]; and (iii) pMHC

stability [8, 107].

Pipelines vary in their choices of how to rank neoanti-

gens and which specific type of algorithm to use when

performing such calculations. Thus, a major challenge

lies in how each component should be weighted to cre-

ate an overall ranking of neoantigens in terms of their

potential effectiveness. Kim et al. [125] have attempted

to capture the contributions of nine immunogenicity fea-

tures through the training of machine-learning-based

classifiers. Nevertheless, high-quality and experimentally

validated neoantigens for training such models remain ex-

tremely sparse. In other words, there is no consensus on

the features of a ‘good’ neoantigen that would be capable

of inducing T cell responses in patients. Furthermore,

Table 3 MHC class I binding algorithm comparison

Features/
software

Algorithm
type used

Type of data used for
training

Number of HLA alleles
used for training

HLA alleles and peptide length
that can be predicted

Output information

Pickpocket
(2009)

Position-
specific
weight
matrices

In vitro quantitative
binding data (> 150,
000 data points)

More than 150 different
MHC molecules

HLA-A, −B, −C, −E and -G alleles,
also for non-human primates,
mice, cattle and pigs. Peptides
of 8–12 in length

Prediction values are given in nM
IC50 values

NetMHCcons
(2012)

Integration
of NetMHC
3.4,
NetMHCpan
2.8 and
PickPocket
1.1

In vitro binding
affinity data

NetMHC 3.4 (94 MHC
class I alleles),
NetMHCpan 2.8 (> 120
different MHC
molecules), PickPocket
1.1 (94 different MHC
alleles)

Can predict peptides to any
MHC molecule of known
sequence. Peptides of 8–15
amino acids in length

Prediction values are given in nM
IC50 values and as %rank to a set
of 200,000 random natural peptides

NetMHC 4.0
(2016)

Artificial
neural
networks

In vitro binding
affinity data

81 different human
MHC alleles (HLA-A, −B,
−C, and -E) and 41
animal alleles

81 different human MHC alleles
(HLA-A, −B, −C, and -E) and 41
animal alleles. Any length but
recommends 9 and discourages
above 11 amino acids

Core position for binding within
the peptide, interaction core
sequence, affinity in nM, rank of
prediction compared with 400,000
random natural peptides (strong
binders %rank < 0.5), and so on

NetMHCpan
4.0 (2017)

Artificial
neural
networks

Binding affinity (>
180,000 data points)
and eluted ligand
(MS) data

172 human and other
animal MHC molecules

Can predict peptides to any
MHC molecule of known
sequence

Core position for binding within
peptide, interaction core sequence,
affinity in nM, rank of the predicted
affinity compared to a set of
random natural peptides (strong
binders %rank < 0.5), and so on

MHCnuggets
(2017)

Gated
recurrent
neural
networks

IC50 values from
immuno-fluorescent
binding experiments
for pMHC Class I
pairs (137,654 data
points)

106 unique MHC alleles Any MHC alleles, more reliable
for alleles that are present in
IEDB. Any peptide length is
valid

IC50 binding affinity prediction

MHCflurry
(2018)

Allele-
specific feed
forward
neural
networks

Binding affinity and
eluted ligand (MS)
data (> 230,735 data
points)

Across 130 alleles from
IEDB combined with
benchmark dataset
from Kim et al. [209]

112 alleles showed performance
sufficient for their inclusion
in predictor. Peptide lengths of
8–15 are supported

Affinity given in nM, percentile
predictions across the models,
and quantile of affinity prediction
among large number of random
peptides tested

EDGE
(2019)

Deep neural
network

Peptide sequences
from HLA
immunoprecipitation
followed by MS
characterization

Not explicitly specified 53 HLA alleles, 8–15-mer
(inclusive)

Not explicitly specified

A direct comparison of a subset of popular MHC class I binding predictors showing their variability in algorithmic structure, training data, supported HLA alleles

and valid peptide lengths
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clinicians may need to consider customized filtering and

ranking criteria for individual patient cases, tumor types,

or clinical trial designs, details that are not well supported

by the existing pipelines. For these reasons, clinical trial ef-

forts should establish an interdisciplinary team of experts

analogous to a molecular tumor board for formal quanti-

tative and qualitative review of each patient’s neoantigens.

Pipelines such as pVACtools and Vaxrank are designed to

support such groups, but there are many important areas

in current pipelines that could be improved upon, includ-

ing: i) consideration of whether the mutation is located

within anchor residues for each HLA allele; ii) somatic

mutation and expression of patient-specific HLA alleles;

iii) the expression level of important cofactors such as

genes that are involved in processing, binding, and presen-

tation; and iv) additional factors that influence the manu-

facturing and delivery of the predicted neoantigens.

Peptide creation, delivery mechanisms, and
related analysis considerations for vaccine design
Once neoantigen prioritization is complete, personalized

vaccines are designed from predicted immunogenic candi-

date sequences. Multiple delivery mechanisms exist for use

in clinical trials; these include synthetic peptides, DNA,

mRNA, viral vectors, and ex-vivo-loaded dendritic cell vac-

cines [126, 127]. Cancer vaccine delivery is an extensive

topic beyond the scope of this review, but other reviews dis-

cuss this topic in detail [126–128]. Once a mechanism is

chosen and the vaccine is delivered to the patient, profes-

sional APCs endocytose the neoantigen sequences. Then,

they are processed to generate class-I- and II-restricted

MHC peptides for presentation and T cell activation. To

design a successful delivery vector, additional analysis steps

are necessary to assess peptide manufacturability and to

avoid potential incidental DNA vector junctional epitope

sequences, or junctions spanning neoantigen sequences

that create unintended immunogenic epitopes [8, 129].

Synthetic long peptides (SLPs) are an effective neoantigen

delivery mechanism in personalized immunotherapy pre-

clinical studies and clinical trials [30, 101, 130, 131]. These

peptides are created from sequences of 15–30 amino acids

that contain a core predicted neoantigen. SLPs have greater

efficacy than short synthetic peptides, of 8–11 amino acids,

because longer peptides require internalization and pro-

cessing by professional APCs, whereas short peptides can

induce immunological tolerance by binding directly to

MHC-I on non-professional APCs [132–134]. One limita-

tion of SLPs is manufacturability. Certain chemical proper-

ties of the amino acid sequence can make peptides difficult

to synthesize, and longer peptides can encounter solubility

problems (i.e., they become insoluble). Vaxrank [9] aims to

address these concerns by incorporating a manufacturabil-

ity prediction step in the neoantigen prioritization pipeline.

This step measures nine properties that contribute to

manufacturing difficulty, including the presence of hydro-

phobic sequences, cysteine residues, and asparagine-proline

bonds. The algorithm then uses this information to choose

an ideal window surrounding the somatic mutation for

optimum synthesis.

DNA vectors have also delivered neoantigens successfully

in a recent preclinical study [135], and DNA neoantigen

vaccine clinical trials are currently ongoing in pancreatic

and triple-negative breast cancer [136]. Neoantigen encod-

ing DNA sequences can be either directly injected via plas-

mid vectors using electroporation or incorporated into viral

vectors for delivery into patient cells. Adenovirus and vac-

cinia are the most common viral vectors for personalized

vaccines; both are double-stranded DNA (dsDNA) viruses

that can incorporate foreign DNA [137]. To maximize

neoantigen effectiveness for both vectors, researchers must

design sequences with effective junctions and/or spacers.

This ensures correct cleavage of the combined sequence by

the proteasome as well as the avoidance of inadvertent im-

munogenic junction antigens. Multiple methods exist to ad-

dress these challenges.

Furin is a peptidase in the trans-Golgi network that

cleaves immature proteins at sequence-specific motifs [138].

Recently, furin-sensitive cleavage sequences were incorpo-

rated into a neoantigen DNA vaccine to cleave the sequence

into functional neoantigens [135]. EpiToolKit [123] ad-

dresses incorrect peptide cleavage in its pipeline by incorp-

orating NetChop [89]. This tool predicts the proteasomal

cleavage sites for each neoantigen and can be used to ex-

clude candidates that would undergo inappropriate cleavage.

pVACvector, an algorithm included in pVACtools [8], opti-

mizes neoantigen sequence order by running pVACseq on

the junction sequences and prioritizing those with low im-

munogenicity. If high junction immunogenicity cannot be

avoided, spacer sequences are included to decrease the po-

tential for inadvertent neoantigens. Taking such analytical

considerations into account during personalized vaccine de-

sign ensures maximum treatment efficacy in patients.

T cell recognition, TCR profiling, and immune cell
profiling to evaluate response
The ultimate objective of introducing a neoantigen-

derived vaccine is to elicit and/or expand a tumor-specific

T cell response. This can be evaluated by experimental

methods that measure T cell activation and activity, or by

computational methods that characterize the patient’s

TCR repertoire prior to and after immunotherapy. Stand-

ard methods such as IFN-γ ELISPOT assays [139] or

MHC multimer assays [140] are beyond the scope of this

review, but have been used widely for neoantigen valid-

ation purposes [28, 141]. T cells individually undergo

complex combinatorial rearrangements in the T cell re-

ceptor gene loci in order to create unique clonotypes that

are responsible for recognizing antigens. This process
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occurs within the V(D) J region of the gene, particularly

the complementarity-determining region 3 (CDR3), which

encodes a region of the TCR that is important for recog-

nizing the pMHC complex. Thus, attempts to characterize

the TCR repertoire focus on the identification and

characterization of CDR3 sequences, which are represen-

tative of the unique T cell clones. This process, termed

TCR clonotyping, has been used to identify clonal T cell

responses to neoantigens following vaccination with a per-

sonalized cancer vaccine or after checkpoint blockade

therapy [28]. Researchers have also established an associ-

ation between the size and diversity of a patient’s TCR rep-

ertoire and their response to cancer immunotherapies

[142]. Changes in the clonality and diversity of the TCR

repertoire, observed from either peripheral blood or tumor-

infiltrating lymphocytes (TIL), suggest that an antitumor T

cell response is occurring, but they are global metrics that

do not successfully identify the T cell clonotypes respon-

sible for tumor rejection.

A variety of available technologies and tools allow se-

quencing and subsequent analysis of the TCR repertoire.

Commercial services such as Adaptive, ClonTech, and

iRepertoire differ in a number of aspects, including the re-

quired starting material, their library preparation methods,

the targeted TCR chains and/or CDR regions for sequen-

cing, the supported organisms, and the sequencing plat-

forms used [143]. Several tools exist to identify TCR

CDR3 sequences using various types of data, such as out-

put data from focused assays (e.g., Adaptive, ClonTech or

CapTCR), bulk tumor RNA-seq [144], and single cell

RNA-seq [144, 145], particularly from the TCR alpha and

beta genes (TRA, TRB). Challenges associated with TCR

profiling include the diversity of the repertoire itself,

correctly determining the pairing of TRA and TRB clono-

types, and the subsequent analysis or validation necessary

to pair T cell clones with their target neoantigens. Studies

have quantified or predicted the T cell richness, or total

number of T cell clones, in the peripheral blood of a

healthy individual as up to 1019 cells [146]. Thus, there is a

sampling bias—based upon the blood draw that was taken,

the sample used for sequencing, and the input material for

library preparation—that prevents complete evaluation of

the global T cell repertoire.

TCR profiling requires the alignment of sequencing

reads to the reference TCR genes and the assembly of the

rearranged clonotypes. MixCR has been used for TCR

alignment and assembly in both bulk and single-cell

methods [144, 147]. MIGEC [148] is utilized for methods

involving the use of unique molecular identifiers, whereas

TraCeR is designed specifically for single-cell methods

[145]. MiXCR recovers TCR sequences from raw data

through alignment and subsequent clustering, which al-

lows the grouping of identical sequences into clonotypes.

If sequences are generated from bulk material (e.g., whole

blood or bulk TIL), TRA and TRB sequences cannot be

paired to define the T cell clonotypes specifically. They

may be inferred on the basis of frequency, but due to the

very high diversity of the T cell repertoire, there are often

many clonotypes at similar or low frequencies that make

deconvolution of TRA–TRB pairs difficult. With the

advent of single-cell sequencing data, tools such as

TraCeR are now able to identify paired alpha–beta se-

quences within individual cells that have the same recep-

tor sequences and thus have been derived from the same

clonally expanded cells [145].

The identification of clonally expanded neoantigen-

specific TCRs complements neoantigen prediction and

characterization by indicating whether an active T cell re-

sponse has been stimulated by an immunotherapeutic inter-

vention. Lu et al. [149] recently developed a single cell

RNA-seq approach that identifies neoantigen-specific TCRs

by culturing TILs with tandem minigene (TMG)-transfected

or peptide-pulsed autologous APCs. Experimental validation

data for individual neoantigens can then be utilized to train

and improve current neoantigen prioritization strategies.

The clonality of the TCR repertoire can be further eval-

uated to identify T cell clones that may recognize the

same neoantigen. Studies have identified oligoclonal T cell

populations that converge, with consistent CDR3 motif se-

quences, to recognize the same neoantigen [150]. Taking

into account the diversity of the repertoire, these findings

suggest that oligoclonal events are more likely than mono-

clonal events, and that there is not likely to be one-to-one

mapping between T cell clones and neoantigens. Oligoclo-

nal events and the convergence of the T cell repertoire

can be better studied with tools such as GLIPH, which

was developed to identify consistent CDR3 motifs across

[151] T cells in bulk TCR sequencing.

Antitumor T cell responses have been correlated with

changes in the infiltrating immune microenvironment.

Methods such as CIBERSORT have been developed to

characterize cell compositions on the basis of gene ex-

pression profiles from tumor samples [152]. Association

between immune cell infiltrates and various factors, in-

cluding somatic mutation, copy number variation, and

gene expression, can be explored interactively through

TIMER [153]. This topic has been reviewed in more

depth elsewhere [154]. A larger selection of available

tools related to T cell and immune cell profiling are

listed in Table 1. Overall, few studies have focused on

the integration of T cell profiling with neoantigen detec-

tion, with the exception of that reported in Li et al.

[155], in which TCR clones that were identified from

RNAseq samples across Cancer Genome Atlas samples

were compared to the mutational profiles of tumors,

successfully identifying several public neoantigens that

are shared across individuals. Owing to the limited avail-

ability of peripheral blood samples and TCR sequencing
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data with matched tumor DNA or RNA sequencing, one

major area for development in the field remains the aggre-

gation of these data and the introduction of an appropriate

supervised approach to identify TCR–neoantigen pairs.

Such progress would leverage the available data to enhance

the identification of neoantigens and to optimize personal-

ized medicine approaches for cancer immunotherapy.

Conclusions and future directions
Great strides have been made in developing pipelines for

neoantigen identification, but there is significant room for

improvement. Tools for the rational integration of the

myriad complex factors described above are needed. In

some cases, useful tools exist but have not been incorpo-

rated into analysis workflows. In other cases, factors we

believe are important are not being considered because of

a lack of tools.

Variant types beyond SNVs and indels have been con-

firmed as neoantigen sources, but there remains little sup-

port for them in current pipelines. Fusions have recently

been incorporated into pipelines such as pVACfuse (a tool

within pVACtools [8]), INTEGRATE-neo [32], and Neoe-

pitopePred [122]. However, additional genomic variant

types that lead to alternative isoforms and to the expres-

sion of normally non-coding genomic regions remain un-

supported, despite preliminary analyses suggesting their

importance. An additional orthogonal, but poorly sup-

ported, neoantigen source is the proteasome, which was

found to be capable of creating novel antigens by splicing

peptides from diverse proteins to create a single antigen

[156]. Several computational tools exist to predict post-

translational modifications and alternative translation events

from sequencing data, such as GPS [157] and KinasePhos

[158] for phosphorylation events and altORFev [159] for al-

ternative ORFs. To determine the immunogenicity of these

alternative peptides, any tumor-specific predicted sequences

could be input into neoantigen prediction software.

The low accuracy of class II HLA typing algorithms

has impeded extensive class II neoantigen prediction.

When clinical class II HLA typing data are available,

they should be used in place of computational HLA pre-

dictions in pipelines to improve prediction reliability. In

addition, although somatic alterations in HLA gene loci

and in the antigen presentation machinery have been

implicated in immunotherapeutic resistance, these prop-

erties have not been leveraged in predicting neoantigen

candidates. HLA gene expression is more often summa-

rized at the gene rather than the allele level. Further-

more, HLA expression is commonly determined from

bulk tumor RNAseq data, which are derived from nor-

mal, stromal, and infiltrating immune cells, all of which

may express HLA genes. The relationship between the

present HLA alleles and a predicted neoantigen profile

has not been studied, and it remains to be seen whether

neoantigens that are restricted to absent or mutant HLA

alleles should be specifically filtered out.

For the neoantigen prediction step, mutation positions in

the neoantigen should be carefully considered if they occur

in anchor residues, since the core sequence of these pep-

tides would be unaffected and identical to that of the wild-

type protein. There is also a bias towards class I neoantigen

prediction because there are fewer binding-affinity training

data and fewer algorithms for class II neoantigens because

of their increased MHC binding complexity. Studies have

also shown low consensus across MHC binding predictors

[8]. pVACtools [8] addresses this challenge by running

multiple algorithms simultaneously and reporting the low-

est or median score, but a more definitive method for

obtaining a binding-affinity consensus remains to be devel-

oped. Neoantigen prediction pipelines could also benefit

from the inclusion of information on the proposed delivery

mechanism to improve prioritization and to streamline vac-

cine creation.

Although TCR sequences have been recognized to be

highly polymorphic, TCRs from T cells that recognize

the same pMHC epitope may share conserved sequence

features. Researchers have started to quantify these pre-

dictive features with the hope of modeling epitope–TCR

specificity [160]. Multiple tools (such as TCRex,

NetTCR, Repitope) now attempt to predict epitope–

TCR binding when given specific TCR sequences. By

taking into account the binding specificity of the pa-

tient’s existing TCR sequences, neoantigen candidates

can be further prioritized according to their immuno-

genicity. A major advance in optimizing treatment strat-

egies may require the integration of pipelines that perform

all of the steps necessary for the generation and processing

of neoantigens and for the identification of T cell clones

that efficiently recognize them.

Implementing a set of best practices to predict high-

quality immunogenic neoantigens can lead to improved

personalized patient care in the clinic. Predicting and

prioritizing neoantigens is, however, a complicated

process that involves many computational steps, each

with individualized, adjustable parameters (we provide a

specific end-to-end workflow based on our current prac-

tices at https://pmbio.org/). Given this complexity, the

review of candidates by an immunogenomics tumor

board with diverse expertise is highly recommended. We

have outlined each step in the neoantigen workflow with

human clinical trials in mind, but further research is

needed in model organisms to facilitate the development

of immunotherapies for human use. Improving neoanti-

gen characterization tools to support the in silico model-

ing of immune response, model organism systems,

human derived samples, and human patient trials is an

essential step for improving patient response rates across

cancer types.
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