
Best Practices for Fine-Tuning Visual Classifiers
to New Domains

Brian Chu(B), Vashisht Madhavan(B), Oscar Beijbom, Judy Hoffman,
and Trevor Darrell

University of California, Berkeley, Berkeley, USA
{brian.c,vashisht.madhavan}@berkeley.edu,

{obeijbom,jhoffman,trevor}@eecs.berkeley.edu

Abstract. Recent studies have shown that features from deep convo-
lutional neural networks learned using large labeled datasets, like Ima-
geNet, provide effective representations for a variety of visual recogni-
tion tasks. They achieve strong performance as generic features and are
even more effective when fine-tuned to target datasets. However, details
of the fine-tuning procedure across datasets and with different amount
of labeled data are not well-studied and choosing the best fine-tuning
method is often left to trial and error. In this work we systematically
explore the design-space for fine-tuning and give recommendations based
on two key characteristics of the target dataset: visual distance from
source dataset and the amount of available training data. Through a
comprehensive experimental analysis, we conclude, with a few excep-
tions, that it is best to copy as many layers of a pre-trained network
as possible, and then adjust the level of fine-tuning based on the visual
distance from source.

1 Introduction

One of the key factors which contributes to the impact of convolutional neural
networks (CNNs) is the transferability of their internal deep representations for
a variety of visual recognition tasks. Such deep representations, or ‘features,’ are
empirically superior [1,2] to traditional features when classifying datasets such
as Caltech-101, Caltech-256, and SUN397 [3–5]. Recently, methods of fine-tuning
pre-trained networks towards new target datasets have become very popular, as
they are usually more effective than training deep networks from scratch. With
fine-tuning, the first n layers from a pre-trained network are copied to the target
network, while other layers are randomly initialized and trained towards the
target dataset. One can either choose to adapt, or fine-tune, the copied layers or
leave them unchanged (frozen) during training [6,7]. Past work has even shown

B. Chu and V. Madhavan—These authors contributed equally to this work.

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-49409-8 34) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part III, LNCS 9915, pp. 435–442, 2016.
DOI: 10.1007/978-3-319-49409-8 34

http://dx.doi.org/10.1007/978-3-319-49409-8_34
http://dx.doi.org/10.1007/978-3-319-49409-8_34

436 B. Chu et al.

the superiority of fine-tuning over using generic CNN features for different visual
tasks like detection [7–9].

When faced with a new dataset, however, there is little guidance on how many
layers to copy and whether to fine-tune or freeze these layers. We argue that the
best practice may vary depending upon a few key factors of the transfer setup.
As a result, we choose to analyze the performance of fine-tuning methods across
seven target datasets, comparing these methods among two intrinsic properties
of the datasets: difference from source dataset and the amount of available target
training data. Through our analysis, we uncover the best training methods in
each scenario and use the results to provide two main recommendations:

1. Copy all layers except the classification layer. This is often standard
practice, though we are the first to provide comprehensive evidence across
a variety of datasets and many different operating points of the amount of
labeled data available in the target dataset.

2. Fine-tune the copied layers. We find that even with very few examples,
fine-tuning is possible and beneficial. The exception being if the dataset dis-
tance is small and there is only a small amount of training data. In this case,
freeze the copied layers.

2 Related Work

Although networks have been shown to increase in class and representation speci-
ficity from lower to higher layers [6,8], for many datasets the best performance
of generic AlexNet [10] features occurs at the third-to-last (fc6) [2], or second-
to-last (fc7) fully-connected layer [1]. Moreover, Girshick et al.’s ablation studies
found it is best to copy all layers from a network pre-trained on ImageNet and
fine-tune these layers towards the PASCAL VOC detection task [7].

Yosinski et al. [6] varied the number of pre-trained layers copied and exam-
ined the target dataset accuracy for networks that were fine-tuned and frozen
(unchanged). With the source dataset as one half of ImageNet’s classes and the
target dataset as the remaining half, Yosinski et al. found that fine-tuning was
the optimal technique, with performance slightly improving as more layers were
copied. When layers were frozen, they saw performance degrade as more layers
were copied. However, Yosinski et al.’s work studied a target dataset that was
virtually identical to the source dataset and had an extremely large number of
samples (approximately 645,000). This directly motivates our broader analysis
of target datasets of varying distances to the source dataset, and datasets with
scarce and plentiful training data.

The need to characterize distance between source and target is further moti-
vated by Azizpour et al. and Zhou et al., who both demonstrated substantial
variation in the performance of generic features depending on the source dataset
and qualitative characteristics of the target dataset [9,11]. Zhou et al. specifi-
cally demonstrated that a CNN pre-trained on a scene dataset is superior to an
ImageNet model when fine-tuned towards other scene datasets.

Best Practices for Fine-Tuning Visual Classifiers to New Domains 437

3 Experiments

We follow the experimental setup used by Yosinski et al. [6]. Specifically we
use the 8-layer Caffe implementation of AlexNet (CaffeNet), pre-trained on the
entire ImageNet training set [12].

We evaluate the performance of fine-tuning and freezing when adapting the
pre-trained model to 6 target datasets. For each dataset, we define 3–4 dataset
splits with a varying number of images per class, for a total of 23 dataset splits.
We also define fixed validation and test sets which, due to different amounts of
training data, differ in size between datasets. The splits are outlined in Table 1.

For each dataset split, we randomly initialize the top 1, 3, or 5 layers in
the pre-trained model while copying the rest of the layers. Additionally, we
either freeze the copied layers, setting the learning rate to 0, or fine-tune them,
setting the learning rate to 0.2 times that of random initialization. We follow
this procedure for all target datasets, resulting in 138 experiments. For notation,
T(a-b) denotes that layers a-b are copied and fine-tuned, whereas F(a-b) denotes
that layers a-b are copied and frozen. R(a-b) denotes that layers a-b are randomly
initialized. For example, T(1-7)R(8) denotes the experiment where we copy and
fine-tune layers 1–7 and randomly initialize the final fully-connected layer, fc8.

Table 1. Properties of datasets and dataset splits. ∗ indicates we used the dataset’s
provided validation or test set as our test set.

Dataset # categories Classification task # Images per class

Val Test Train

Caltech256 256 Object 2 25 1, 10, 25, 53

SUN397 397 Scene 2 25 1, 10, 50, 70

MITIndoor 67 Scene 2 ∗ 1, 10, 25, 75

CUB-200 200 Object (fine-grained) 2 ∗ 5, 20, 35

Coral 9 Coral 50 300 10, 50, 200, 450

Plankton 103 Plankton 50 85 1, 10, 300, 550

Yosinski 500 Object 20 ∗ 1, 10, 25, 53, 120

We evaluated our experiments on 6 datasets: Caltech256, SUN397, MIT
Indoor Scene Recognition (MITIndoor) [13], Caltech-UCSD-Birds-200 (CUB)
[14], Moorea Labeled Corals (Coral) [15], and Imaging Flow Cytobot Data
Plankton (Plankton) [16]. Properties of these datasets are summarized in Table 1.
We only used 8 of the Coral categories and 34 of the Plankton categories in our
experiments due to insufficient training data per class.

In addition to these 138 experiments, we chose to include an additional arti-
ficial dataset from Yosinksi et al. [6], denoted as Yosinski in Table 1. In their
experiments, ImageNet is randomly split into two disjoint 500-category datasets
(dataset 500 A and dataset 500B) of roughly equal size (approximately 645,000

438 B. Chu et al.

images). CaffeNet is pre-trained on dataset 500A, with the target as dataset
500B. We use this setup to analyze the case when datasets are essentially iden-
tical and also compare our results to theirs. We use the same experiment setups
as before for an additional 40 experiments.

3.1 Difference from Source

To measure the difference between the source and target datasets, we compute
the cosine distance, 1− µT

s µt

||µs||2||µt||2 , between the mean fc7 responses of the source,
µs, and target, µt, datasets. Although not a formal distance measure due to its
violation of the triangle inequality, cosine distance effectively measures the simi-
larity of two vectors, which in our case measures the similarity of two datasets. In
Table 2, we compare the cosine distance to other metrics such as MMD between
source and target dataset in fc7 feature space which, when using a linear kernel,
is equivalent to the Euclidean distance between the means of the fc7 responses.
We also consider the accuracy of two classifiers trained to distinguish between
datasets: a linear SVM in fc7 feature space and a small CNN model used by
Krizhevsky for CIFAR-10 classification in pixel space [17]. This approach was
recently used to minimize domain difference for adaptation [18–20]. When gen-
erating fc7 responses, we use CaffeNet pre-trained on the source dataset: this
source dataset is ImageNet for all datasets setups except Yosinski, where source
is 500A.

Table 2. Distance between source and target dataset. For Yosinski, source is dataset
500 A and target is dataset 500 B. For others, source is ImageNet and target is listed.

Dataset Cosine distance MMD Linear SVM CNN

Yosinski 0.003 2.3 57.3 % 51.0 %

Caltech-256 0.071 10.6 71.4 % 69.0 %

SUN397 0.194 17.8 81.5 % 76.4 %

MIT-Indoor 0.307 23.9 90.0 % 84.5 %

CUB-200 0.358 37.2 92.9 % 86.5 %

Coral 0.455 38.7 97.3 % 99.4 %

Plankton 0.534 39.1 97.2 % 99.7 %

Although these metrics differ in the distances between entries, they yield the
same ordering. This suggests that the other metrics are viable substitutes for
cosine distance, yet we settle on cosine distance because its computation does
not require training a classifier and because it is bounded between 0 and 1.

4 Results

In this analysis we will refer to a low source-target distance as a cosine distance
of between 0–0.2, a medium distance as 0.2–0.4, and a high distance as 0.4–1.

Best Practices for Fine-Tuning Visual Classifiers to New Domains 439

Fig. 1. Top: Ratio between accuracy for R(8) and accuracy for R(6-8). Bottom:
Ratio between R(8) and R(4-8). Each point represents a pair of experiments with other
conditions fixed. At Left are fine-tune (T) experiments only, at Right are freeze (F)
experiments only. Values above 1.0 imply copying is better than random initialization.
Values below 1.0 imply copying is worse. Trend lines are averages.

We will refer to a low amount of target data as 1–20 images per class, a medium
amount as 21–99 images per class, and a large amount as 100 or more images
per class. All raw experimental results can be found in Fig. 3 in the Appendix.

We begin by studying whether random initialization or initializing with
copied parameters yields higher performance across a variety of dataset shifts.
To do this, we hold all parameters of a particular experiment fixed except for
whether certain layers are randomly initialized or copied. The results across all
experiments are shown in Fig. 1, where the ratio of performance between copy-
ing and randomly initializing layers is indicated. Here, we found that randomly
initializing layers beyond the necessary fc8 layer almost always degrades perfor-
mance (all numbers across experiments are >1). The notable exception being
when source and target datasets have high difference and there are a large num-
ber of labeled target examples available for fine-tuning. In this setting randomly
initializing offers a stronger benefit when the lowest layers are frozen during the
final training step, but marginal or no improvement over copying when all layers
are fine-tuned. Therefore, we conclude that copying all but the last layer of the
network is generally the best practice for fine-tuning to a new dataset.

Our finding of copying all but the last layer is in direct contrast with Yosinski
et al., who showed that copying fewer layers is better when freezing [6]. The
contrasting results are easily explained by the much larger amounts of data used
in that study, whereas we seek to analyze scenarios in which large amounts of
data are not available: the largest amount of data we use for the Yosinski target
dataset is 120 images/class (60,000 images). Clearly, there is an inflection point
between 60,000 and approximately 645,000 training examples where it no longer
becomes beneficial to copy more layers when freezing. For the remainder of our

440 B. Chu et al.

Table 3. Best practices for adapting pre-trained networks where all but the last layer
are copied. We compare freezing (F(1-7)R(8)) against fine-tuning (T(1-7)R(8)).

Images per class

L (1–20) M (21–99) H (≥100)

Cosine distance L (0.0–0.2) Freeze Try Freeze or Tune Tune

M (0.2–0.4) Try Freeze or Tune Tune Tune

H (0.4–1.0) Try Freeze or Tune Tune Tune

Fig. 2. Ratio between accuracy when fine-tuning and accuracy when freezing, measured
across pairs of experiments with other conditions fixed. Only showing R(8) experi-
ments. Values above 1.0 imply fine-tuning is better. Values below 1.0 imply freezing
is better. Left examines the effect of data on this ratio. The dotted line denotes large
amounts of data. Right examines the effect of source-target distance on this ratio.
Trend lines are averages.

analysis, we follow our first finding to copy all parameters from the initial source
network and therefore choose between F(1-7)R(8) and T(1-7)R(8). We present
our recommendations in Table 3 and discuss evidence from our experiments next.

Figure 2 (left) shows that with a large amount of target data, fine-tuning is
always best, fitting our intuition that more data reduces overfitting. But Fig. 2
(right) shows that when there is a low or medium amount of training data,
the distance between source and target plays a more important role. Broadly,
as distance increases, fine-tuning improves relative to freezing, supporting the
notion that learned features are less transferable to distant datasets. At one end,
in the low data and low distance setting, freezing outperforms fine-tuning. At the
other end, in the medium data and medium-to-high distance setting, fine-tuning
outperforms freezing.

The inflection point occurs in settings where (1) target data is low and dis-
tance is medium or high, or (2) target data is moderate and distance is low. Here
there is no consistent winner between fine-tuning and freezing. In these situa-
tions we recommend trying both fine-tuned and frozen networks. An additional
consideration, though not shown in the figure, is that fine-tuned models gener-
ally take more time to train - one might choose a preferred training technique
based on preference towards training speed or accuracy.

Best Practices for Fine-Tuning Visual Classifiers to New Domains 441

References

1. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8693, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1 53

2. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
DeCAF: a deep convolutional activation feature for generic visual recognition. In:
International Conference in Machine Learning (ICML) (2014)

3. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental Bayesian approach tested on 101 object cate-
gories. Comput. Vis. Image Underst. (2007)

4. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical
report 7694, California Institute of Technology (2007)

5. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale
scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2010)

6. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep
neural networks? In: Advances in Neural Information Processing Systems (NIPS)
(2014)

7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

8. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural
networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 329–344. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10584-0 22

9. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Advances in Neural Information
Processing Systems (NIPS) (2014)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(NIPS) (2012)

11. Azizpour, H., Razavian, A., Sullivan, J., Maki, A., Carlsson, S.: Factors of trans-
ferability for a generic convnet representation. IEEE Trans. Pattern Anal. Mach.
Intell. (2015)

12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
arXiv preprint (2014). arXiv:1408.5093

13. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

14. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute
of Technology (2011)

15. Beijbom, O., Edmunds, P.J., Kline, D.I., Mitchell, B.G., Kriegman, D.: Automated
annotation of coral reef survey images. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2012)

16. Orenstein, E.C., Beijbom, O., Peacock, E.E., Sosik, H.M.: Whoi-Plankton- a large
scale fine grained visual recognition benchmark dataset for Plankton classification.
CoRR abs/1510.00745 (2015)

http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1007/978-3-319-10584-0_22
http://arxiv.org/abs/1408.5093

442 B. Chu et al.

17. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report (2009)

18. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
domains and tasks. In: International Conference in Computer Vision (ICCV) (2015)

19. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: ICML (2015)

20. Long, M., Wang, J.: Learning transferable features with deep adaptation networks.
In: ICML (2015)

	Best Practices for Fine-Tuning Visual Classifiers to New Domains
	1 Introduction
	2 Related Work
	3 Experiments
	3.1 Difference from Source

	4 Results
	References

