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Abstract The application of functional near-infrared spectroscopy (fNIRS) in the neurosciences
has been expanding over the last 40 years. Today, it is addressing a wide range of applications
within different populations and utilizes a great variety of experimental paradigms. With the
rapid growth and the diversification of research methods, some inconsistencies are appearing
in the way in which methods are presented, which can make the interpretation and replication
of studies unnecessarily challenging. The Society for Functional Near-Infrared Spectroscopy has
thus been motivated to organize a representative (but not exhaustive) group of leaders in the field
to build a consensus on the best practices for describing the methods utilized in fNIRS studies.
Our paper has been designed to provide guidelines to help enhance the reliability, repeatability,
and traceability of reported fNIRS studies and encourage best practices throughout the commu-
nity. A checklist is provided to guide authors in the preparation of their manuscripts and to assist
reviewers when evaluating fNIRS papers. © The Authors. Published by SPIE under a Creative

Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part

requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.8.1.012101]

Keywords: functional near-infrared spectroscopy; guidelines; publication best practices.

Paper 20086V received Nov. 25, 2020; accepted for publication Dec. 2, 2020; published online
Jan. 7, 2021; corrected Jan. 13, 2021.

Table of Contents

1 Motivation ........................................................................................................................................................ 3

2 Title, Abstract, and Introduction ..................................................................................................................... 4

2.1 A Good Title and Abstract Structure....................................................................................................... 4

2.1.1 Choosing a good title ........................................................................................................................ 4

2.1.2 Structured abstract: Clarity and consistency ................................................................................... 4

2.2 Introduction Sections in Functional Near-Infrared Spectroscopy (fNIRS) Papers:
Structure and Content.............................................................................................................................. 4

2.2.1 Scope, context, significance, and aim of the work.......................................................................... 4

3 Methods: Making a Study Reproducible........................................................................................................ 5

3.1 Participants............................................................................................................................................... 5

3.1.1 Human participants ........................................................................................................................... 5

3.1.2 Sample size and statistical power analysis ..................................................................................... 6

3.2 Experimental Paradigm and Instructions ................................................................................................ 6

3.2.1 Experimental design (or “study design”) .......................................................................................... 6

3.2.2 Participant instructions, training, and interactions ........................................................................... 7

3.3 System and Acquisition ........................................................................................................................... 7

3.3.1 fNIRS device and acquisition parameters description..................................................................... 7

3.3.2 Optode array design, cap, and targeted brain regions ................................................................... 8

3.3.3 For publications on instrumentation/hardware development ........................................................... 9

3.4 Preprocessing Steps.............................................................................................................................. 11

3.4.1 fNIRS signal quality metrics and channel rejection ....................................................................... 11

3.4.2 Motion artifacts ................................................................................................................................ 11

3.4.3 Modified Beer–Lambert law, parameters and correction............................................................... 12

3.4.4 Impact of confounding systemic signals on fNIRS........................................................................ 12

3.4.5 Strategy for statistical tests and removal of confounding signals................................................. 13

3.4.6 Filtering and drift regression ........................................................................................................... 13

3.5 Physiological Confounds in the fNIRS Signal: Strategies.................................................................... 13

3.5.1 Strategies for enhancing the reliability of brain activity measurements ....................................... 13

3.5.2 Strategy 1: Enhance depth sensitivity through instrumentation and signal processing............... 14

3.5.3 Strategy 2: Signal processing without intrinsic depth sensitive measurements........................... 15

*Address all correspondence to Meryem A. Yücel, mayucel@bu.edu
†Joint first authorship

Yücel et al.: Best practices for fNIRS publications

Neurophotonics 012101-2 Jan–Mar 2021 • Vol. 8(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 07 Feb 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1 Motivation

Functional near-infrared spectroscopy (fNIRS) is a noninvasive, easy-to-use, and portable brain
imaging technology that enables studies of normal brain function and alterations that arise in
disease, both in the laboratory as well as in real-world settings.1–4 In 1977, Jöbsis used the
technique for the first time to noninvasively assess changes in human brain oxygenation due
to hyperventilation.5 Since then, the tool has evolved into an established noninvasive brain
imaging modality and has been applied to a wide range of different populations and research
questions.

The volume of fNIRS research has dramatically increased over the last two decades1 in par-
allel with the growing availability of commercial fNIRS systems. This rapid growth has resulted
in a great diversity in methodological practices, data processing methods, and statistical
analyses.6 While the diversification of research methods is expected and welcomed in such
a fast-growing field, it can present challenges in the interpretation, comparison, and replication
of different fNIRS studies. The lack of standardized pipelines in the analysis of neuroimaging
data and the resulting differences in study results is not unique to fNIRS, with concerns also
being raised by the Functional Magnetic Resonance Imaging (fMRI) community.7 This problem
is exacerbated by poor reporting practices that can considerably hinder or bias the review process
and dramatically reduce a given paper’s impact and subsequent replicability. The purpose of this
paper is to offer researchers guidelines on how to report fNIRS studies in a comprehensive,
transparent, and accessible way. These guidelines are not intended as standards; rather, they are
best practices on how to report an fNIRS study to ensure the full impact of the findings is
achieved.

This paper follows the structure of a typical fNIRS research paper and each section
(Introduction, Methods, etc.) discusses the guidelines relevant to that section. We provide
a comprehensive checklist in the Appendix (Table 1) with references to the relevant sections
in order to facilitate revisiting of the text for more details. It is worth noting that, for the sake
of brevity, instrument-related guidelines presented here focus on continuous wave NIRS
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(CW-NIRS) technology and only briefly refer to the other existing NIRS technologies
[frequency-domain NIRS (FD-NIRS), time-domain NIRS (TD-NIRS), and diffuse correlation
spectroscopy (DCS)].

2 Title, Abstract, and Introduction

2.1 Good Title and Abstract Structure

2.1.1 Choosing a good title

A good title is critical for a scientific paper. It should be both informative and specific, short and
concise, and contain sufficient information about the content and topic of the paper.8 As was
shown by Paiva et al.,9 scientific papers have higher citations and viewing rates when the title is
short, does not include a question mark, a colon, or a hyphen, and is a “results-describing title”
rather than a “methods-describing title.” For example, having the paper title “Using functional
near-infrared neuroimaging to study the neuronal correlates of language development in children
from age 2 to 14: A new study” might well be replaced by “Language development causes age-
dependent changes in cerebral activation in Broca’s area.”

2.1.2 Structured abstract: Clarity and consistency

Abstracts are highly compressed versions of a paper that deliver its core findings and signifi-
cance. The presentation and scientific quality of an abstract are generally good predictors of
these qualities in the rest of the paper. A good abstract is “informative” and “motivating.”
The quality of an abstract is correlated with the number of times the paper is cited10 and guides
the initial decision in the publication process.11

We recommend implicitly or explicitly structuring the abstract similar to the main body of the
paper, i.e., “Introduction,” “Aims,” “Methods,” “Results,” and “Conclusion,” addressing some or
all of these, as appropriate, in a few sentences, unless the journal itself requires a different
abstract structure. The Introduction part provides the objective of the study backed up by the
necessary scientific background and motivated by its significance to the field. The Aims part
itemizes the objectives of the study. In the Methods part, the most relevant aspects of the meth-
odology should be concisely reported such as the experimental design/stimuli, if relevant, the
sample size, brain regions of interest, major data processing, and/or statistical analysis steps.
Papers that introduce a new methodological advancement in fNIRS hardware or data processing
should provide key details such as the validation of the new method. The Results part reports the
main outcomes of the paper including the most relevant numerical results, such as hemodynamic
change in regions of interest and their statistical significance. The data or results included in the
abstract should also be reported in the main body of the manuscript and match with the data/
results therein. The Conclusion part synthesizes the interpretation of the results at hand and their
possible significance/impact in the field.

2.2 Introduction Sections in fNIRS Papers: Structure and Content

2.2.1 Scope, context, significance, and aim of the work

As for all research papers, the introduction of an fNIRS research paper serves to convey the
scope, context, innovation, and significance of the study being reported. It typically (1) outlines
the general research question of the study, (2) reviews the literature that is relevant to the central
research question of the study, highlighting existing knowledge and knowledge gaps, (3) moti-
vates the reported study, (4) describes the specific hypotheses and/or predictions being tested,
(5) provides a brief summary of the methods that will be used to test the hypotheses, and (6) states
the specific aims of the current study. Given that fNIRS now is a known methodology, it is not
necessary to always reference basic validation papers. The Introduction section for technological
and methodological papers should describe how and why the innovative technique/method
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differs from existing ones, what advantages are expected, and how the method has been vali-
dated. For papers dealing with clinical, neurological, or neurocognitive questions, the
Introduction section should focus on how the research question makes an advance in our under-
standing of brain function, brain disease, or neurocognitive mechanisms. Moreover, if relevant,
the rationale for using fNIRS over other neuroimaging modalities should be elucidated. A clear
and succinct statement of the aims of the study at the end of the introduction section helps the
reader build appropriate expectations. These aims should correspond with the conclusions drawn
at the end of the paper.

3 Methods: Making a Study Reproducible

The methods section should enable the reader to understand how the results were achieved and
how to reproduce the results. It should contain information on the participant demographics,
details of the experimental paradigm, the system used, data acquisition details, and the prepro-
cessing steps including the statistical methods used. The section should also include a figure
showing (1) the measurement set up (a high-quality original photograph from a measurement
session or a drawing), (2) the fNIRS optode array/channel configuration on the head, (3) a visu-
alization of the experimental protocol, and optionally (4) a sensitivity analysis to show how well
the fNIRS set up is able to probe the regions-of-interest chosen for the study.12–14 Moreover, if
the signal processing pipeline is complex and involves advanced and/or innovative steps, it is
highly recommended to include a block diagram that depicts all the processing steps along with
input and output signals. It is worth noting that some journals have the method section at the end
as an appendix. In these cases, the introduction and result sections should provide sufficient
methodological information to understand the context without the need to go into methodologi-
cal details.

3.1 Participants

3.1.1 Human participants

The sample of participants is typically described with a set of the most relevant demographics
and, if appropriate, clinical characteristics. These include the number of participants, their mean
age and variation, or age range with a precision that is most useful (e.g., hours for newborns,
months and days for infants), and the gender distribution. The inclusion and exclusion criteria
should be clearly defined (e.g., pathologies, native language, etc.). Other relevant features, such
as handedness, ethnicity, socio-economic status, etc., may also be provided. It is worth noting
that it may be relevant to report the ethnicity distribution, especially if it is different from what
may be expected from the population at the location where the study was conducted. fNIRS
signal quality can be dependent, among other things, on hair properties (color, thickness, and
density). A biased selection of participants may result in the lack of generalizability of the fNIRS
neuroimaging findings. For multiple group studies, the procedure for group assignment should
be described.

For clinical populations, the amount of disease-related information depends on the focus of
the paper. Depending on the study (e.g., clinical populations), it may be advisable to briefly
provide key characteristics in the manuscript and refer to a (supplementary) table for epidemio-
logical details. Typically, a table would list the time since onset, the cause of the brain lesion/
dysfunction (e.g., ischemic cardiogenic left middle cerebral artery stroke), and relevant clinical
findings (e.g., residual aphasia). For specific populations, if applicable and available, it may be
useful to report biomarkers, such as blood markers (e.g., anemia, which can lead to altered or
unexpected results15,16), parameters related to the overall physiological fitness or the specific
pathology assessed. If data from some participants were not included in the final analysis, then
the demographics of the final sample should also be provided along with the data rejection
criteria. To ensure transparency and safeguard against biased rejection, it is also important to
specify at what point during data processing the different rejection criteria were applied and
whether they were applied in batch or on a case-by-case basis. Information regarding ethical
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issues must be provided including the name of the institutional review board (IRB) that assessed
and approved the study protocol, the ethical procedures followed (e.g., obtaining informed con-
sent, minor assent, and/or parental permission) as well as a link to the clinical study registration,
if available.

3.1.2 Sample size and statistical power analysis

An appropriate sample size, or number of participants, is important for any fNIRS experi-
ments, but there is no fixed rule to guarantee statistical validity. One practical approach to
determine the sample size is to perform a power analysis, which estimates the minimum sam-
ple size needed to obtain a certain effect size at a preset power level (1 − β) (which is 1 −

probability of a type II error, conventionally set to 0.8) and α (the probability of a type I error,
conventionally set to 0.05).17 A power analysis report typically contains the sample size (the
necessary sample size for an a priori power analysis and the actual sample size for an a pos-

teriori power analysis), the power (selected power for an a priori power analysis and achieved
power for an a posteriori power analysis), and alpha levels utilized, the effect size chosen
along with its justification (e.g., prior research or pilot study), the relevant statistical tests
for hypothesis testing, and relevant citations for the platform used to perform the power
analysis.

3.2 Experimental Paradigm and Instructions

3.2.1 Experimental design (or “study design”)

Some specifics of the fNIRS signal must be considered when designing the experimental para-
digm. For example, the dominance of physiological confounds in fNIRS signals18 (see Sec. 3.5),
which means that each stimulation condition must almost always be repeated multiple times to
allow the functional response to be resolved. Meanwhile, the temporal characteristics of the
hemodynamic response place limits on the duration of the interval between consecutive stimuli
if the data are to be block averaged. Physiological confounds that are temporally correlated with
the stimulus also need to be considered. For instance, a participant’s breathing pattern may align
with the stimulation blocks if they are presented at regular intervals. This may increase false-
positive responses.19 These issues can be minimized through thoughtful experimental design that
reduces anticipatory effects, for example, by pseudo-randomizing both the order of conditions
and the length of the interstimulus interval. These considerations may be informative to report
when describing the experimental design of the study.

An accurate description of the experimental design is critical both to the reader’s understand-
ing of the results of an fNIRS study and to the reproducibility of the work. Any feature of an
experiment that could feasibly affect the results or their interpretation should be reported in the
methods section. Wherever possible it is recommended to include a schematic of the experimen-
tal paradigm.

The vast majority of fNIRS paradigms fall into one of the following categories: Block design,
event-related design, and resting-state paradigms for functional connectivity studies. In the case
of resting-state paradigms that do not include explicit stimulation of the participant(s), the para-
digm can be aptly described by the details of the duration of recording; the environment in which
the participant is placed (e.g., lighting conditions, auditory conditions, eyes open/closed, objects
or displays in their visual field, etc.); and by any instructions given to the participant (see
Sec. 3.2.2).

The features that should additionally be reported for both block- and event-related paradigms
include: The stimuli, the number of conditions, the number of blocks or trials per condition, the
order in which the blocks or trials are presented, the duration of each block or trial, and the
duration of interblock or intertrial intervals. A sketch providing timing and examples of
the stimuli (e.g., still images depicting frames of a visual stimulus) can be highly informative.
Figure 1 shows an example.
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3.2.2 Participant instructions, training, and interactions

fNIRS papers should provide a clear description of what instructions about the task were given to
the participants. Instructions can often be crucial for the interpretation of the neural data. For
instance, explicit instructions about learning a stimulus set versus implicit exposure to the same
stimulus set may trigger different attentional, motivational, and learning mechanisms. Therefore,
aspects relevant to how participants conceive of and complete the task need to be mentioned,
e.g., time constraints on responses, explicit or implicit task, description about the objective of the
task, etc. Similarly, feedback given to the participants or other incentives that may change their
attention or motivation to perform the task need to be explained. Experimental conditions that
may have influenced the participant’s performance during data acquisition, such as overly long
set up procedures, acquisition under dim/dark lighting conditions, environmental distractions,
etc., also need to be reported.

3.3 System and Acquisition

3.3.1 fNIRS device and acquisition parameters description

The fNIRS research field has been rapidly expanding both in technological innovations and
neuroscience applications, leading to the development of a variety of commercially available
and custom in-house developed devices.2–4,20,21 Instruments differ not only in their fundamental
mode of hardware operation, but also in the methodological procedures applied to recover chro-
mophores oxy- and deoxyhemoglobin (thus also total hemoglobin), and/or cytochrome-c-
oxidase22 concentration changes or optical signals reflecting them (abbreviated by HbO2,
Hb, tHb, and CCO, respectively). [It is worth noting that other acronyms (e.g., HbO/HbR/
HbT, O2Hb∕HHb∕tHb, or oxy-Hb/deoxy-Hb/total Hb) are also common and acceptable.].
Therefore, accurate reporting of the fundamental aspects of the instrument specifications is man-
datory. While most commercial fNIRS instruments are CW, they do not necessarily use the same
near-infrared (NIR) wavelengths or the same algorithms for recovery of the hemoglobin con-
centrations. In addition, a significant number of custom-built fNIRS instruments tend to imple-
ment technologies such as TD-NIRS,23 FD-NIRS,24 or high-density (HD) technology,25 which
have fundamental differences from current commercial instruments; a fact that is mostly un-
known to the nonexpert user. Accurate reporting of relevant instrument specifications will allow
for better interpretation of the research study and a higher level of transparency for replica-
tion. The publication should clearly report the following information when describing fNIRS

Fig. 1 Experimental paradigm visualization. Sample legend follows. Schematic illustration of the

n-back paradigm. Each experimental run consisted of 30 blocks with an interblock interval of 15 s.

Each block has 15 trials and starts with the task instruction “n-back” displayed for 2 s on the

screen. After the instruction, letters are displayed on the screen, one at a time, for 0.5 s. The

intertrial interval is 1.5 s, during which a fixation cross is displayed on the screen. Participants

were instructed to indicate whether the current letter is identical to the one presented “n” trials

preceding it.
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device specifications: (1) manufacturer and version, (2) mode of operation (CW, FD, and TD),
(3) number and spectrum of wavelengths, (4) irradiance (source power over area of exposure) or
average power or both [care should be taken that the light source exposure complies with the
safety standards such as ANSI (United States) or IEC-60825 (Europe)], (5) sampling rate, num-
ber and type of optodes and resulting channels, and source–detector distances, and (6) method
for the data conversion to chromophore concentration (if automatically done by the instrument’s
software; otherwise this will be reported in the data analysis section). The information can be
given in a brief summarizing sentence, such as “We used an NIRSdev (NIRScomp, country)
CW-NIRS device with 24 active channels (8 laser diode emitters, λ1j2 ¼ 750j850 nm with

average power <1 mW, and 8 avalanche photodiode detectors) sampled at 50 Hz. Data were
converted to concentration changes using the modified Beer–Lambert law (mBLL).” All
assumptions (fixed scattering and water concentration) and parameters for the conversion [such
as extinction coefficients and differential pathlength factors (DPF)] should be reported, including
how changes in DPF are accounted for, e.g., in longitudinal studies of infant development.
References for the chosen parameters may also be reported. If FD or TD devices were used,
the procedures employed to obtain absorption and scattering coefficients should be stated.
More guidance on the use and reporting of mBLL parameters and units is provided in relation
to data analysis in Sec. 3.4.3.

3.3.2 Optode array design, cap, and targeted brain regions

The reproducibility of fNIRS measurements strongly depends on clear documentation of the
design (geometry) and placement of the source–detector array. Although fNIRS technologies
are rapidly evolving, most fNIRS studies still feature a limited field of view and/or channel
density, thus the layout of sources and detectors on the scalp vary from study to study.
Many fNIRS devices are equipped with sets of sources and detectors or “optodes” that can
be arranged flexibly. Others come with predefined pads of sources and detectors, or fixed dis-
tributions that can be freely positioned, but not reorganized. Determining an appropriate position
and arrangement of optodes for a given fNIRS study is, therefore, a necessity.26,27 However, this
process is far from trivial as fNIRS measurements are highly dependent on the position, extent,
source–detector separation(s), and density of the fNIRS source and detector array.28,29 These
factors affect the sensitivity of the measurement to a given cortical region, the relative contri-
butions of the brain and extracerebral tissues to each signal, and the homogeneity of the meas-
urement sensitivity across the field of view. Digital head models (virtual phantoms/simulations)
can be used to understand device-specific NIR light propagation, vital for designing next-
generation optical brain imaging devices and optode arrays. Monte Carlo simulations30,31 pro-
vide a controlled mechanism to characterize and evaluate contributions of diverse fNIRS sensor
configurations and parameters such as optical path length, detector surface area, and source–
detector separation.32–34

When reporting an array design in a publication, we strongly recommend including a dia-
gram of the array that specifies: (1) the total number of source and detector positions; (2) the total
number of channels; and (3) the distribution of source–detector separations. It is also beneficial
to include a photograph, where possible, of the array in position on a participant. This may
provide additional information regarding the physical design and ergonomics of the array.
Figure 2 shows an example.

The process of placement and registration of the array to the head of the participants should
also be accurately described to facilitate reproducibility across participants and across studies.
Source and detector locations (or a subset thereof) should be described in relation to cranial
landmarks such as the nasion, inion, ears (e.g., the preauricular points), and/or electroencepha-
lography (EEG) 10-20, 10-10, and 10-5 landmark points. This can be noted directly (e.g.,
“Source 1 was placed at 10-20 position C3.”) or relatively (e.g., “Source 1 was placed on the
midline 3 cm above the nasion.”).

It is also highly recommended to report the location of the fNIRS array and the associated
channel sensitivity distributions relative to the underlying cortical macroanatomy. These ana-
tomical locations can then be reported in terms of gyral labels (e.g., inferior frontal gyrus),
Brodmann areas (e.g., BA44), Montreal Neurological Institute coordinate space, Talairach
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coordinate space,35 or via the inclusion of figures depicting the cortical sensitivity map asso-
ciated with the array.36

A description of how these anatomical locations were determined should also be pro-
vided. For example, the simplest registration approach is to position the array relative to
certain 10-5 coordinates and directly determine the underlying anatomy via the 10-5 coor-
dinates of an atlas model.12 However, this assumes the array positioning is identical across
participants, and that the atlas provides an accurate model of the cohort. Alternatively, par-
ticipant-specific registration of the fNIRS array can be performed using information derived
from three-dimensional (3D) positioning systems, neuro-navigation technologies, or via
photogrammetry approaches.26,37,38 In this case, researchers can additionally report the vari-
ance in the optode locations on the scalp and/or the variance in underlying macroanatomy.
Any instrument, software, or processing approach used to achieve spatial registration and
what assumptions those approaches rely upon should be described. If an atlas is used, the
source of the atlas should be provided, and the limitations associated with the use of that atlas
should be acknowledged.

3.3.3 For publications on instrumentation/hardware development

As progress in new fNIRS designs and innovations continues across the globe,39 specific guide-
lines and standardizations are needed to streamline the efforts and accelerate the adoption of the
new technologies. These efforts can be facilitated by first disseminating the use of standard
naming conventions in device specifications (see sample nomenclature in Table 2). While for
older devices, a reference of a paper describing the device may be sufficient, if the focus of the
paper is to present new technology, a description of the new device should include (1) a hard-
ware block diagram, depicting connections and control mechanism, (2) software flowchart,
describing flow of information and the control of hardware components and data acquisition
protocol, (3) the type of light source and detectors, (4) the measures taken to prevent external
contamination and cross-talk across channels (such as time-multiplexing, frequency multiplex-
ing, or a combination of both), and if possible, (5) circuit diagrams of key components and
individual part numbers. If digital head models are used to guide the hardware design, they
should be properly cited.

The type of light source (laser/LED), specific wavelengths, and the emitted power per unit
area (e.g., 0.2 W∕cm2) need to be reported to assess safety level and potential classification of
the device. NIR light exposure to eye and skin (if needed, exposure after protective gear) should
remain within universally accepted safety norms, such as the International Standard for Safety of
Laser Products40 or the International Standard for Photobiological Safety of Lamps and Lamp
Systems.41

Fig. 2 Example of optode array set up with 12/14 source/detectors resulting in 34 channels over

prefrontal cortex with 30-mm separation. Sensitivity profile in log10ðmm−1Þ. Visualization using

AtlasViewer.14
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The type of the light detector (e.g., pin photodiode, avalanche photodiode, photomultiplier
tube, single-photon avalanche detector, etc.), its configuration (e.g., single pixel photodiode,
photodiode array, imaging charge-coupled device, etc.), its light sensitivity profile for specific
wavelengths of interest (gain, noise factors, and noise equivalent power), and skin interface style
(direct contact, use of light-guides or fibers) should be noted.

For developers and manufacturers of fNIRS instrumentation, especially for regulatory approval,
it is essential to be aware of the recently published International Electrotechnical Commission
(IEC)/International Organization for Standardization (ISO) standard for fNIRS equipment (IEC
80601-2-71), a particular standard in the 60601 family of standards for medical electrical equip-
ment.42 As in any electrical instrument, product safety testing should be certified independently
(e.g., Underwriters Laboratories-ULmarking in the United States, Consumer Electronics-CEmark-
ing in EU, Product Safety Electrical Appliance andMaterials-PSE in Japan, and China Compulsory
Certificate-CCC mark in China). For university grown systems, this could be done via local hos-
pital biomedical engineering departments that test the electrical safety of these research devices
before use with humans. For university researchers, use of new optical brain imaging devices
in clinical/research studies only requires local ethics committee approval. For eventual clinical
deployment such as diagnostics or therapeutics, further regulatory approvals are required (e.g.,
FDA in United States, EU MDR in Europe, Pharmaceutical and Medical Device Act-PMDA
in Japan, and National Medical Products Administration-NMPA, formerly CFDA, in China).

To achieve comparability and reliability in clinical studies, standardized performance assess-
ment of fNIRS instrumentation based on dedicated phantoms should be an important part of instru-
mentation development. The aforementioned IEC 80601-2-71 standard also includes several
performance tests on turbid phantoms. The main test relies on an fNIRS phantom with a realistic
overall attenuation and a changeable internal aperture to create a defined attenuation change that
corresponds to a certain change in HbO2 and Hb. Other phantom-based tests described in this
standard include signal stability, response time, signal-to-noise ratio (SNR), and signal cross-talk.

A more comprehensive performance characterization and comparison of diffuse optics
instruments and methods is facilitated by several protocols based on multilaboratory consensus-
building efforts [e.g., Optical Methods for Medical Diagnosis and Monitoring of Diseases
(MEDPHOT) protocol, Basic Instrumental Performance (BIP) protocol, and Noninvasive
Imaging of Brain Function and Disease by Pulsed Near Infrared Light (nEUROPt) proto-
col].43–45 The nEUROPt protocol45 specifically targets fNIRS instrumentation, aiming at char-
acterizing contrast, contrast-to-noise ratio (CNR), lateral resolution, depth sensitivity, and
quantification of absorption changes in the brain. It is implemented by homogeneous turbid
phantoms with small black inclusions, e.g., a solid–solid switchable phantom46 and by two-lay-
ered phantoms. Other fNIRS phantoms have been reported mimicking the temporal change of
HbO2 and Hb concentrations, e.g., by means of electrochromic variable absorbers47 or movable
layers.48,49 Hb-containing phantoms with variable oxygenation for tissue oximeter testing50

should also enable quantitative assessment of fNIRS signals. Creating anatomically realistic
dynamic phantoms can be challenging, but is possible.51–53

Papers describing instrumentation development should report the following data for the spe-
cific phantom tests that were performed: phantom type, its optical and geometrical parameters,
the test arrangement including source–detector separation(s), and results of the test(s). For an
example, see Ref. 54.

Although commercially available fNIRS devices seldom come with an accompanying phan-
tom, developers and manufacturers of fNIRS instrumentation could benefit from the adoption
of established guidelines for phantom-based tests55 for routine quality checks. An overall check
of reproducibility of signal magnitude is useful to identify problems such as fiber breaking
and degradation of light sources or detectors. If phantom-based routine tests are recommended
by the manufacturer, the procedures adopted for the preparation and characterization of the
phantom should be reported.

3.4 Preprocessing Steps

To facilitate the reproduction of scientific findings and to ensure that important processing steps
are not skipped during analysis, the methods section should include a detailed description of all
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the data analysis steps. Figure 3 summarizes the main preprocessing steps in an fNIRS data
analysis pipeline and the following sections present the expected level of detail with which they
should be presented in the methods section.

3.4.1 fNIRS signal quality metrics and channel rejection

An important preprocessing step in fNIRS data analysis is the signal quality check of the raw
signal for each channel. The noise in fNIRS signal may originate either from the measurement
system (e.g., due to light source instability, electronic noise, and shot noise), which we call
merely “noise,” or of physiological origin or head/body motion which we call “confounding
signals” throughout the paper.

The fNIRS signal quality check on noise can be tested either by a simple SNR check or by
obtaining cardiac power at each channel using spectral analysis. When the sampling rate is rea-
sonably high (e.g., 10 Hz), the heartbeat is a good indicator of optode-scalp coupling and thus a
good quality control metric for the fNIRS signal. The Methods section may thus include an
indication of the SNR threshold (e.g., >20 dB) and cardiac power threshold56 utilized to reject
data channels from further analysis. As it is likely that different measurement channels will fail
the criteria for different participants, one should also report the number of participants remaining
for each channel to avoid any misinterpretation of the results.

Especially in fNIRS, due to the various types of confounding signals and noise, it is important
to be aware of the conceptual differences between the metrics SNR, CNR, and contrast-to-back-
ground ratio (CBR) and to use these terms unambiguously. The term SNR should be used to
quantify the signal quality of an instrument’s fNIRS channel. It is calculated from the measured
raw light intensity within a fixed time window and is expressed as SNR ¼ 20 log10ð

μ

σ
Þ, where μ

corresponds to the signal’s intensity offset (dc component) and σ corresponds to the signal’s
variance (ac component). Contrast metrics (CBR/CNR) are used when the strength of an
extracted hemodynamic response is to be related to background confounding signals or meas-
urement noise and thus depend on the specific preprocessing of the signal. For more details on
these metrics, refer to Ref. 57.

3.4.2 Motion artifacts

The fNIRS signal may contain motion artifacts in the form of spikes or baseline shifts, especially
in data collected from noncompliant populations, such as infants (see Sec. 3.6.7) or during exper-
imental tasks that require motion (walking or speaking). In such cases, either the motion artifacts
can be identified and adjacent trials can be removed from analysis or one of the many motion
artifact correction algorithms in the literature can be used.58 In either case, handling and cor-
rection of motion artifacts and related parameters should be reported (e.g., the thresholds for

Fig. 3 Overview of elemental fNIRS preprocessing steps. Light blue circular arrow indicates con-

ventional processing order. It is worth noting note that, depending on the analysis, not all steps are

always present or necessary.
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identifying motion, the specific parameters of the correction method). Moreover, as the former
method (i.e., identifying and removing trials that overlap with motion artifacts) will lead to a
reduction of the number of trials within a run, the number of remaining trials should be reported.
Finally, the output of the motion artifact removal algorithm needs to be verified via theoretical
and empirical methods for assessing the performance of the algorithms (see an example on how
to verify a new algorithm59).

3.4.3 Modified Beer–Lambert law, parameters and corrections

Changes in optical densities or absorbance are converted into changes in hemoglobin species
HbO2 and Hb by applying the mBLL.60 In CW-NIRS, the mean pathlength traveled by the
detected photons, however, is not known. In a highly scattering medium, the pathlength of
trajectories is longer than the source–detector separation. One can estimate the pathlength
within the whole sampling region by multiplying the source–detector distance with a DPF
that was experimentally obtained with FD-NIRS or TD-NIRS.61–64 Thus, when reporting, one
option is to use a DPF (taken from the literature) and report the results in changes in chromo-
phore concentration in molar concentration units, e.g., μM. This option takes into account the
wavelength and source–detector distance dependence of the pathlengths and is, therefore,
more appropriate when comparing information from channels of different separations.
When DPF data are not available, researchers may rely on another option, which is not
to use a mean pathlength to extract concentration changes from the Beer–Lambert law.65

In this case, the signal changes are presented as the products of concentration changes and
mean pathlength, in units of (molar concentration × distance), e.g., μMcm or μMmm. The
latter approach may be appropriate when a single separation is used, but has limitations for
multiple separations.

It is worth noting that the changes in chromophore concentration may vary dramatically
depending on the processing method and whether a correction is applied, and if so, which cor-
rection method is applied. As an example, for the same measurement channel, the resultantHbO2

concentration change can be reported as: 40 μMmmwithout any correction and 0.22 μMwhen a
pathlength correction is applied with a differential pathlength correction factor of 6 and a source–
detector distance of 30 mm. In all cases, the method of choice and relevant parameters (e.g.,
DPF) should be stated and citations should be provided. The units should be clearly labeled
when presenting the concentration changes results.

3.4.4 Impact of confounding systemic signals on fNIRS

The NIR light traveling from source to detector interrogates the cerebral cortex, but to a larger
extent also the extracerebral tissue layers. Changes in blood flow and oxygenation in the extrac-
erebral tissues (in particular in the scalp) affect the fNIRS signals and result in potential mis-
interpretation of the signals measured.4,19 In addition, systemic physiological changes also affect
cerebral hemodynamics. The main sources of physiological confounds are (1) changes in partial
pressure of CO2 (PaCO2),

66 systemic blood pressure,67 changes in heart rate and vascular tone
both in the extracerebral as well as the cerebral tissues due to the interplay between the auto-
nomic nervous system and the sympathetic nervous system68 and (2) changes in blood flow and
oxygenation due to head movements, teeth clenching, or eyebrow raising.69–71

Neglecting physiological confounding effects may result in both false positives, i.e., wrongly
assigning a detected hemodynamic change to functional brain activity, or false negatives, i.e.,
masking brain activity when it is present.19,72 Therefore, it is recommended to employ a systemic
physiology augmented fNIRS approach, where these systemic parameters are measured
simultaneously.73 On the other hand, recognizing and isolating these changes in systemic
physiology provides innovative insights into the complex regulation of brain hemodynamics
involving, for example, networks that react particularly to neuronal activity or to systemic
physiological changes.74 Most of the effort in fNIRS (pre-) processing focuses on separating
or rejecting confounding signals and there are various strategies that can be employed, the most
prominent being the general linear model (GLM). This topic is discussed again in more detail
in Sec. 3.5.
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3.4.5 Strategy for statistical tests and removal of confounding signals

The aim of an fNIRS study typically falls into one of these categories for statistical testing:
(1) comparison of brain responses to task versus baseline, (2) comparison of brain responses
during different tasks, and (3) correlations between hemodynamic signals within a brain or
across brains. These test results are highly affected by the particular noise structure of the
fNIRS data. Noise in fNIRS data is frequency-dependent (colored) and correlated, due to strong
physiological components (cardiac, respiration, and variations in blood pressure). As these fea-
tures violate the main assumption in the GLM that the noise is not frequency-dependent (white)
and is uncorrelated,75 it is necessary before employing a GLM analysis to either (1) prefilter the
data to remove confounding signals such as physiological confounds and motion artifacts, and/or
to (2) prewhiten the signal,76,77 and/or to (3) precolor the signal.78,79 As an example of prewhit-
ening methods77 intrinsic temporal correlation of fNIRS data can be estimated using autoregres-
sive models. Inversion of the temporal correlation estimates is then employed in generalized least
squares to obtain unbiased and efficient estimates of GLM parameters. On the other hand, this
inversion in the prewhitening method is sensitive to the correct estimation of temporal corre-
lation. Therefore, as an alternative method, one can use the temporal filter (smoothing) matrix to
estimate the temporal correlation of fNIRS data. This precoloring method is valid when the low-
pass filter with sufficiently large kernel width is applied to fNIRS data. Then, least squares can be
applied to the temporally smoothed data with the GLM extended to include the filter matrix.80

This process yields unbiased parameter estimates, but does not retain their maximal efficiency.
In all cases, the method chosen and the prefiltering steps should be clearly stated.

3.4.6 Filtering and drift regression

High-frequency components in the signal such as instrument noise and cardiac pulsations are
often removed using a low-pass filter (e.g., Butterworth filter or Chebyshev filter). The low-pass
filter threshold, if too low, can also remove the brain response of interest and thus should be
chosen carefully (typically 0.5 Hz or higher). On the other hand, much lower frequency com-
ponents in the signal can be removed using a high-pass filter. Using a value too high as a thresh-
old can remove the actual desired brain signal, especially if the duration of the experimental task
block is comparable to the high-pass threshold (e.g., 0.05-Hz high-pass filter versus 20 s of
stimulus duration). The type of filtering applied, the order of the filter, if any, and the cut-off
frequency should be stated (e.g., a third-order zero-phase Butterworth bandpass filter with cutoff
frequencies of 0.01 to 0.5 Hz). It is critical to understand the phase response, as filters with
nonlinear phase response would distort the signal. Finite impulse response (FIR) filters have
linear phase responses and can be applied safely both offline and online (during data collection)
unlike infinite impulse response (IIR) filters (e.g., Butterworth), which require zero-phase
correction and can only be applied offline as the correction requires the entire signal at once.
An alternative approach to filtering is to add a drift factor into the GLM as a regressor to model
the low-frequency oscillations in the data (e.g., third-order polynomial drift). The respiration and
Mayer wave oscillations, on the other hand, fall into the same frequency range as the hemo-
dynamic response and cannot simply be removed by bandpass filtering.81

3.5 Physiological Confounds in the fNIRS Signal: Strategies

3.5.1 Strategies for enhancing the reliability of brain activity measurements

Due to the presence of physiological confounds in fNIRS signals, it is not recommended to
report results based on signals measured only with long-separation channels and without dedi-
cated signal processing which takes into account possible confounding systemic physiological
changes, particularly in adult participants with thicker overlying extracerebral tissues. The rela-
tionship between the fNIRS instrumentation (with respect to the source–detector arrangements
used) and the likelihood of measuring real hemodynamic changes in the brain (cerebral cortex) is
illustrated in Fig. 4. This chart applies, in particular, when CW-NIRS devices are employed. The
likelihood of detecting brain-activity related changes is high when (1) significant changes in
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systemic physiology can be excluded, (2) a depth-sensitive multidistance fNIRS approach is
used and the data are processed in such a way that the interference from changes in the
extra-cerebral layer is filtered, or (3) a CW-NIRS set up is used with only long source–detector
separations for each channel, but specific signal-processing is applied to the signals to reduce the
confounding influence of the extracerebral tissues. In the absence of short-separation channel
measurements, a large number of channels or additional measurements of systemic physiology
can help in cleaning the signal. The following sections summarize established approaches for
these strategies.

3.5.2 Strategy 1: Enhance depth sensitivity through instrumentation and
signal processing

This approach requires the extension of the fNIRS measurement set up so that the measurements
are depth sensitive, i.e., being able to differentiate between changes in the extracerebral and
cerebral layers. To achieve depth sensitivity, the fNIRS set up should contain optical channels
with source–detector separations of different lengths and with short ones in particular (Fig. 4).
A short-separation channel (<15 mm, optimum distance ∼8 mm for adults and ∼4 to 5 mm for
infants82) is mostly sensitive to blood perfusion and oxygenation changes in the extracerebral
tissue layer. With CW-NIRS, the parallel usage of short- and long-separation channels maxi-
mizes sensitivity to the cerebral cortex while minimizing the sensitivity to the extracerebral
layers. Such measurements made with short-separation channels enable to regress out the signal
changes in the extracerebral layer from the long-separation channel, an approach commonly
termed “short-separation regression” and pioneered by Saager and Berger.83 Several methods
have been developed to perform the regression, including least-squares algorithms and diverse
types of adaptive or Kalman filtering.4 A recent promising development is the innovative com-
bination of the GLM approach with temporally embedded canonical correlation analysis for the
analysis of fNIRS data.84 Previous work proved that short-separation regression decreases the
trial-to-trial variability of the hemodynamic response85 and reduces the impact of strong hemo-
dynamic changes happening in the extracerebral layer.86

Other depth-sensitive instrumentations involve: (1) multidistance measurements, which
use diffusion theory and the signal slope from multiple source–detector separations,87–90

(2) diffuse optical tomography (DOT) {other acronyms [e.g., diffuse optical spectroscopy
(DOS), near-infrared imaging (NIRI), diffuse optical imaging (DOI), near-infrared optical

(a) (b)

Fig. 4 The likelihood of measuring real hemodynamic changes in the cerebral cortex is

determined by the depth-sensitivity of the fNIRS measurements and the impact of confound-

ing systemic physiological signals. Checklist for estimating the likelihood of obtaining cerebral

signals (a), methodological factors that affect the likelihood of obtaining signals of cerebral

origin (b).
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tomography (NIROT), and high-density tomography (HD-tomography)] are also acceptable},
which provides depth-resolved measurements using a very large number of channels,91–95 and
(3) TD-NIRS systems, which measure the time of flight of photons: The depth is encoded in
the arrival time of the photons since late photons have traveled deeper.23,96

3.5.3 Strategy 2: Signal processing without intrinsic depth sensitive
measurements

In the case of a subideal measurement (i.e., only long-separation channels available), one should
strive to decompose the data into brain activity and physiological confounds (Fig. 4). One
approach is to approximate systemic changes with the global component from the mean (or
median) of all channels and to filter it from each channel.97 Alternative approaches are data-
driven signal processing methods that decompose the fNIRS signals into its brain and systemic
components (blind source separation methods, e.g., independent component analysis and prin-
cipal component analysis).4

3.5.4 Strategy 3: Incorporating measurements of changes in systemic
physiology in the fNIRS signal processing

When additional systemic physiological signals are available (e.g., heart rate, respiration rate,
respiration volume, arterial CO2 concentration, blood pressure, and skin conductance), they en-
able to (1) regress out these influence from the fNIRS signals and/or (2) investigate in detail the
relationships of these signals with the fNIRS signals. This can be done, for example, with a GLM
approach that uses the systemic physiological signals or linear time-lagged mixtures of these
signals as additional regressors.84 The details of the processing and generation of such regressors
should be reported (e.g., the signals included and the phase/time lag used). It is worth noting that
both strategies 2 and 3 have the risk of removing brain activity or failing to properly remove
systemic physiological components due to the heterogeneity of the vasculature within the
scalp.98

3.6 Analysis and Statistical Methods

3.6.1 Hemodynamic response function estimation: Block averaging versus
general linear model

Calculating hemoglobin concentration changes using the mBLL is generally followed by the
estimation of hemodynamic response function (HRF) by simple block averaging, convolution,
or linear estimation models. The GLM represents measured data as a linear combination of func-
tionally distinct components. While block averaging avoids a priori assumptions about the shape
of the HRF, the GLM allows modeling different confounding factors in the fNIRS signal along
with the hemodynamic response to the stimulus. The GLM enables simultaneous estimation of
the contribution of the fNIRS components and thus provides a less biased estimate of the HRF.
GLM reports should include all regressors modeled along with their parameters as well as the
method used to estimate the weight of the regressors (e.g., “The HRF was modeled using
Gaussian functions with a standard deviation of 0.5 s and their means separated by 0.5 s.
The weights of the regressors were obtained using an ordinary least squares fit.”). The report
should also include the number of trials included in the final analysis, if the total number is
reduced from the number reported in the experimental protocol due to various reasons (e.g.,
motion artifact contamination).

3.6.2 HRF estimation: Selection of the HRF regressor in GLM approaches

The HRF is typically modeled either by a fixed canonical shape (e.g., a gamma function variant)
or by more flexible models such as a linear combination of multiple basis functions, e.g.,
Gaussians. To increase the statistical power, fixed canonical shapes are advantageous provided
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that the shape of the HRF is known a priori.99,100 The methods of the paper should include the
model and its parameters as well as a justification for the model preference in cases where a fixed
shape is chosen. However, if the shape of the HRF is not known (in different populations, exper-
imental paradigms, brain regions, etc.), using a fixed model can result in a loss in statistical
power and bias the results. In such cases, flexible models are preferred as they allow capturing
the true temporal characteristics of the HRF.

3.6.3 Statistical analysis: General remarks

Claims formulated in a paper should be supported by statistical analysis. All statistical analyses
are linked to the experimental design and the underlying hypotheses, and thus, there is no single
standardized way of describing the statistical analysis. If part of this information is missing, the
accuracy of the statistical methods cannot be verified and results cannot be compared across
studies or future replications. Reporting effect size and confidence intervals is strongly recom-
mended, as each is a sample-size-free statistic, and thus enables a more convenient comparison
across different studies. Using tables and figures to present statistical results improves readability.

3.6.4 Statistical analysis of GLM results

The weights of the GLM regressors at each channel are typically estimated using a least squares
method that minimizes the sum of the squared differences between the actual and fitted values. In
terms of the type of least square methods, ordinary least squares is based on the model
assumption that errors are uncorrelated between observations. Therefore, when there is a degree
of temporal correlation between the residuals in a regression model, one can use a generalized
least squares approach either with prewhitening or with precoloring.80 Statistical inference is
then performed by testing the null hypothesis, i.e., that estimated coefficients are not signifi-
cantly different from zero. Rejection of the null hypothesis indicates that there is a response
to the stimulus. Generally, hypothesis testing of single contrasts (i.e., a linear combination
of effects) is executed using a t-statistic, whereas multiple contrasts are simultaneously tested
using an F-statistic. Therefore, when reporting the GLM analysis results, it is important to
describe which regressors were included in the contrast and to address the specific statistical
tests applied. In the second-level GLM analysis, population effects can be estimated using
fixed-effects, random-effects, or mixed-effects analysis.101,102 In contrast to the fixed-effects, the
random-effects models take into account both sources of variation (within-subject and between-
subject variability), and thus allows making inferences about the population from which the
sample is drawn. In either case, it is essential that authors clearly describe the method used for
the second-level analysis in their paper. Finally, statistical significance of channel-specific effects
is assessed by thresholding a test statistic Z (e.g., t- or F-statistic) at a height z. Multichannel
fNIRS systems come with the cost of a high risk of type I error (false positive) due to the large
number of concurrent statistical tests for each channel, thus, type I error control is essential. This
so-called “multiple comparisons problem” will be discussed in the following section.

3.6.5 Statistical analysis: Multiple comparisons problem

When a single channel or region of interest is analyzed based on a priori knowledge, statistical
inference can be made based on an uncorrected p-value. However, if statistical analysis is per-
formed on multiple channels, regions, or network components, a statistical inference should be
adjusted to reduce the risk of the type I error (false positive) by correcting for multiple compar-
isons. Multiple comparisons should be corrected or controlled by appropriate methods including
Bonferroni correction,103 Holm correction, false discovery rate control,104 effective multiplicity
correction, random field theory, or permutation tests.79,94,102,104,105 Random field theory is suit-
able for interpolated fNIRS topographic maps. An appropriate method should be selected for
relevant statistical inference with the research purpose. Authors are encouraged to clearly
describe their specific approach of correction and report p-values labeled according to the type
of correction. Also, when cluster-based inference is used, the threshold for the cluster size should
be reported with an adjusted p-value.
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3.6.6 Specific guidelines for data processing in clinical populations

While processing steps are largely identical to other populations, pathology leads to some cav-
eats. Since clinical studies often aim to detect a sign of pathology in the individual rather than at
the group level, demonstrating differences between neurotypical controls and a cohort of patients
may uncover a pathology related trait, but often does not allow for diagnostic or therapeutic
guidance. The potentially complex interaction between changes in behavior (i.e., the effect
of the neurological deficit) and a disease-related alteration in brain function is another challenge
to be dealt with in the analysis. Alterations in brain function may relate to neuronal signaling
(e.g., epilepsy), to the vascular response (e.g., stroke/ cerebrovascular disease), and an alteration
of neurovascular coupling (e.g., in dementia106,107). Moreover, pathology may alter optical prop-
erties of the sampled tissue including changes in the thickness of different layers [e.g., atrophy
increases cerebrospinal fluid (CSF) space] or in their absorption and scattering properties (e.g.,
blood in CSF due to subarachnoid hemorrhage108).

Other considerations regarding data processing in clinical populations are as follows.
(1) Variability in behavior: Lesser performance may result in lesser activation irrespective of
pathology. Conversely, recruitment of additional brain areas to achieve near-normal task perfor-
mance is potentially an indicator of brain pathology. It is, therefore, advisable to include per-
formance/behavior into the analysis and/or report it in the publication. Since typical fNIRS
approaches sample from a quite limited part of the brain surface, performance should be cor-
egistered with precision. This allows for factoring out or correlating fNIRS data with metrics of
task performance, offering a way to disentangle general and task-specific aspects of the fNIRS
results. (2) Integration of clinical data: In addition to disease severity, site of the lesion, comor-
bidity, and premorbid performance range all contribute to variability across clinical participants
and should, therefore, be reported. If clinical data are available, it is highly advisable to integrate
these data into the analysis. (3) Integration of coregistered data: In clinical populations, conflict-
ing results from large arrays of data in different modalities (e.g., fNIRS/EEG data) are often
interpreted to signal pathological alteration. It should be kept in mind, however, that method-
ologies differ with regard to the areas or physiological signals sampled, as well as the response
dynamics, and that this is convolved with the impact of pathology. Reference data from non-
affected brain areas within the same participants may increase sensitivity and should thus be
reported whenever appropriate. The reliability of the results is enhanced if responses in a patho-
logical brain area or functional system are compared to a reference system, which is shown to be
unaffected.

3.6.7 Specific guidelines for data processing in neurodevelopmental
studies

Analysis and testing of data from developmental populations is largely identical to that of
adults. However, data are often of smaller quantity and/or noisier in quality. A lack of under-
standing or compliance with instructions, lower motor control, and a shorter attention span in
infants and young children lead to fewer numbers of trials in a study and/or larger number of
motion-related artifacts.109 In adults, corrupted data segments are often corrected or replaced
using central tendencies of the surrounding data or the entire dataset (e.g., by interpolation),
which, to work, requires sufficient volume and quality. In developmental data, this method
may not always work. Nevertheless, correction methods should also be used with develop-
mental data,110 provided that the data used for correction are of sufficient quality. Alternatively,
data rejection may be used. The rejection procedure needs to be well documented in the manu-
script to avoid biasing the results (details of the rejection criteria, the amount of data rejected,
whether rejection was manual or automatic, etc., need to be reported). The higher noise and
artifact levels of developmental data may also increase variability and reduce statistical sig-
nificance. Despite these challenges, fNIRS data acquisition and analysis are quite successful
in infants, since infants’ smaller head sizes and thinner skulls and tissues allow for a deeper
penetration and better visibility into the cortex. Age-appropriate experimental designs and
adequate attention getters can also prevent some of the motion artifacts and attentional
limitations.
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3.6.8 Connectivity analysis

Functional connectivity is defined by the temporal correlations between time courses of hemo-
dynamic changes of two distinct brain regions.111 Using signals measured at two fNIRS chan-
nels, the relationship between two regions can be evaluated by calculating Spearman’s
correlation, the lagged correlation, mutual information, entropy, the phase locking index, wavelet
transform coherence, and so forth, typically in a low-frequency range (e.g., 0.009 to 0.10 Hz).112

While reporting a connectivity analysis, one should include the calculation method, the fre-
quency band of interest, the preprocessing methods113 applied in the analysis, whether the cor-
relation analysis was performed on the raw signal or HbO2∕Hb time series, and whether it was
intrahemispheric or interhemispheric, or if region of interest (ROI)-based, whether it was within
ROI or between ROIs. A sensitivity analysis showing how the results change when selecting a
different frequency band is also helpful and provides additional insights into the underlying
physiology of the connectivity measures. For dynamic resting-state functional connectivity
analysis, one should also report the duration of the time window and step size (e.g., “A Pearson
correlation coefficient was calculated between any two measurement channels using a sliding
window correlation approach with a time window of 100 s and a step size of 5 s.”). Trans-
formations before statistical testing (e.g., Fisher z-transform), the statistical thresholds, and the
method of correction for multiple comparisons should also be reported.114

Although functional connectivity determined by fNIRS signals measured from appropriate
source–detector distances mostly reflects cerebral hemodynamic changes rather than superficial
contamination for infants,115 this may not be the case for adults. This is quite critical as the
symmetrical vasculature anatomy on scalp may strongly contribute to the resultant high corre-
lations in long-separation channels. While partial correlations among multiple channels may
reduce the effects of superficial and global signals,116 the most reliable approach is to use a
depth-resolved instrumentation such as DOT or TD-NIRS. The paper should report the specific
procedure for dealing with physiological confounds from scalp and how this issue can signifi-
cantly bias the results. The discussion should also include the fact that fNIRS does not measure
signal changes in deep cortical regions, thus the interpretation of the results is always limited to
the measured cortical surfaces. It is important to keep in mind that two close fNIRS channels
might also reflect some spurious connectivity just because they are partly sensitive to the same
underlying cortical brain region through the fNIRS forward model.

3.6.9 Image reconstruction

DOT provides a mapping from source–detector measurements y, on the head surface, to local
hemodynamic changes within the head volume x via a differential model A called the sensitivity
matrix (or the Jacobian) by solving the linear equation y ¼ Ax. Image reconstruction provides
greater anatomical specificity of the optical data, facilitates anatomy referenced subject averag-
ing, and within-/cross-group- and cross-modal comparisons. Reports should include sufficient
details on methods, software, and parameter selection for each of the following five major steps
in the pipeline for fNIRS-based image reconstruction. (1) The head anatomy is ideally provided
by participant-specific anatomical magnetic resonance imaging (MRI) volume,117–119 though
atlas-based approaches can also work quite well when the atlas is a good match for registration
to the participants.120–123 The model has three essential pieces of information: The size and shape
of the head, the internal distribution of optical properties, and the location of the optical array
elements on the surface. (2) The selected head anatomy is segmented into a set of putative tis-
sues. These parameters as well as the segmentation method need to be reported. (3) Head mesh
generation: for any model, the number of labeled tissue regions and their optical properties
should be reported. (4) The optical array is localized on the meshed anatomy via methods such
as electromagnetic localization37,120,124 or referencing to EEG-standards such as the 10-20.125

Accurate coregistration of the optical elements to their true location on the head surface is essen-
tial as mismatches lead directly to spurious results pointing to inappropriate brain areas. (5) Once
the array is localized on the tissue, sensitivity profiles (A) of the source–detector measurements
are generated by modeling the light transport in tissue using Monte Carlo simulations (e.g., using
TOAST++126 or MCX127) or the diffusion approximation (e.g., using NIRFAST128). The model
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of choice needs to be stated. (6) The sensitivity matrix, A, is then inverted using appropriate
regularization (e.g., Tikhonov, spatially variant, total variation, or elastic net). Multiple software
suites exist that support image reconstruction pipelines (e.g., NeuroDOT,129 AtlasViewer,12

NIRS-SPM,49 and NIRSTORM13) with direct tunable interaction for optimization and process-
ing. All the applied processes/methods must be clearly documented to enable unambiguous
reproduction of the results.

3.6.10 Single trial analysis and machine learning

Domains such as brain–computer interfaces, neuroergonomics, and neurofeedback focus on sin-
gle-trial and/or real-time decoding of fNIRS signals and increasingly incorporate machine learn-
ing. Machine learning may provide powerful tools for analysis and classification of brain signals,
but requires the user to consciously avoid common mistakes and to document how good practice
in data science was ensured.

Classification methods exploit any discriminable evoked changes and artifacts in the signal.
Consequently, non-neuronal signal components induced by emotional or physical activity, such
as scalp blood flow, may lead to false positives and improved discriminability in the experiment,
but dramatically reduce the decoding performance outside of the constrained paradigm. This
pitfall re-emphasizes the importance of appropriate separation of confounding signals and brain
signals, as discussed in Sec. 3.5. Efforts to classify brain signals only and to interpret the clas-
sifier weights physiologically should be clearly reported.

The strict separation of the analyzed data into training and test sets is crucial to avoid over-
fitting and reporting flawed performance results. It is important to ensure that any statistical
inference from the data during learning must be limited to the training set. This does not only
include model selection/training of classifiers, but also data-based channel or feature selection or
the training of regressors or filters for processing. If the dataset is too small to split it into separate
training and testing partitions, cross-validation schemes can be applied. If automatic selection of
additional parameters, e.g., fNIRS feature selection, is to be performed, the cross-validation
should be nested. If a regressor is learned, for instance, the across-trial HRF shape using a
GLM approach, the GLM needs to be embedded in the cross validation.130 Applying a learned
filter or the GLM on the entire dataset before single trial analysis invalidates the integrity of the
approach. All steps for the training and selection of models and parameters should be reported to
allow methodological assessment and reproducibility.

3.6.11 Multimodal fNIRS integration

With the perspective of measuring complementary physiological parameters HbO2 and Hb, the
integration of fNIRS in multimodal studies is becoming more frequent. Historically, first simul-
taneous fNIRS/fMRI studies131–133 aimed to clarify commonalities and improve quantification
of hemoglobin during activation. Quantification was also studied combining either fNIRS or
TD-NIRS with Positron Emission Tomography (PET).134,135 Early integration of fNIRS with
EEG136–138 and Magnetoencephalography (MEG)139 aimed to investigate neuro-vascular coupling
processes. These early studies helped to develop specific guidelines to report multimodal studies.

A strong rationale is required to justify the practical difficulties as well as the cost of multi-
modal studies. Therefore, any multimodal fNIRS study should first describe the motivations to
combine fNIRS with another modality, which are usually falling within one of the four main
categories listed below: (1) providing improved quantification of brain hemodynamics and oxy-
genation (e.g., combining hemoglobin measurements with fMRI, DCS, or CCO measurements
to provide quantitative measurements of physiologically interpretable parameters such as
CMRO2 and hemoglobin22,140–145), (2) assessing brain activity at the time of complex or transient
events, usually monitored and detected using scalp EEG146 (e.g., prolonged recordings to char-
acterize hemodynamic responses to epileptic discharges,136–138,147–149 sleep physiology150,151 and
sleep disorders,152 or resting-state fluctuations153), (3) monitoring brain activity in real time for
brain–computer interfaces154 and during noninvasive brain stimulation,155 or (4) when experi-
mental designs involving complex cognitive processes can benefit from simultaneous recordings
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to better explore the underlying complex neural processes (e.g., language, learning, attention,
intention, emotion).156–158

When reporting fNIRS multimodal studies, the set up of the acquisition should be carefully
described, especially the methods considered to synchronize the different modalities in time. To
fully benefit from the added value of multimodal approaches, accurate sensor localization and
coregistration are also helpful,35 notably through the use of neuro-navigation tools. We, there-
fore, recommend to include a detailed figure of the experimental set up. Other issues to be con-
sidered are (1) guiding optical fibers in the scanner for fNIRS/fMRI corecording and ensuring
optode-scalp coupling, (2) simultaneous montage arrangement with EEG (integrated fNIRS/
EEG sensors,159 optimal montage design integrating fNIRS and EEG positions,148,160 and gluing
optical fibers on the scalp148,161 are among the options), and (3) fNIRS sensor profile and
thickness for simultaneous fNIRS/Transcranial Magnetic Stimulation (TMS), fNIRS/MEG, and
fNIRS/fMRI acquisitions (e.g., low-profile sensors have been considered to keep the TMS
stimulation coil close to the scalp155).

Each multimodal approach requires a unique method to combine the data and simultaneously
analyze it. For instance, in simultaneous fNIRS/EEG, EEG oscillations or transient discharges
can be used to model the fNIRS response using GLM-based approaches. Integration of tomog-
raphy, statistical methods, and brain normalization can facilitate future studies and one should
promote the development of software packages allowing the analysis of several functional
modalities (fMRI, fNIRS, and EEG/MEG) within the same environment (e.g., NIRS-SPM79 and
NIRSTORM13).

4 Results: How and What to Report

4.1 Figures and Visualization

Good visualizations that depict all relevant information in a clear and presentable way enable
readers to understand complex information quickly and easily. The Results section should
include visualizations of both chromophores HbO2 and Hb and statistical outcomes (e.g., t-val-
ues) on a brain/head template, or a justification if one of the two chromophores is not reported.
When reporting statistics, the rules set by the American Psychological Association should be
followed162 {e.g., “There was a significant increase in HbO2 signal during the task period
[mean� SD: 20� 5 μMmm; one sample t-test, tð23Þ ¼ 2.5, p < 0.05, Cohen’s d ¼ 0.5].”}.
Average HbO2 and Hb time-series for each channel or a selected set of channels or ROIs at
the subject or group level are of great benefit for providing the temporal characteristics of the
change as well as data quality.19 In such plots, providing standard deviations is a minimum
requirement. To illustrate the statistical contrasts, it is often useful to also show the data as box
plots or distributions that include single data points.163,164 If the analysis is focused on prediction/
classification using machine learning, established data science reporting should be followed.
Among the tools used for visualizing statistics and performance are receiver operating character-
istic plots, confusion matrices, and scatter plots showing statistical distributions.

A strategy that has proven itself to create high-quality figures is to first create the raw figures
using the signal processing and data analysis tools used (e.g., MATLAB®, R, Python) and then to
finish the images with a professional vector graphics software.

4.2 Concise Text and Rigor

The results section should be very concise and well organized, presenting only, but completely,
the results obtained with the methods described. If the journal has length restrictions, some of the
results can be shown in the supplemental material. Results that have been published previously
should be clearly delimited from new results. A bias toward publication of results that confirm
the tested hypothesis is often observed, possibly harming objectivity.165 It is, therefore, highly
recommended to report all analyses undertaken, irrespective of whether the results are positive or
null. Also, it is good practice to separate planned analyses, decided upon prior to data analysis (if
these were preregistered at an open science platform, then a URL to the preregistered study plan

Yücel et al.: Best practices for fNIRS publications

Neurophotonics 012101-20 Jan–Mar 2021 • Vol. 8(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 07 Feb 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



can be provided, see Sec. 7.1), and exploratory analyses, inspired by the data during analysis.
Highlighting null results or results that contradict the original hypotheses are important for trans-
parency and replicability.

5 Discussion and Conclusion: The Implications of the Work
for the Bigger Picture

5.1 Discussion of the Results in Light of Existing Studies:
Strengths, Limitations, and Future Work

In the Discussion, previous findings in the same or related fields (fNIRS, fMRI, EEG, or other)
should be compared and contextualized with the existing results. This ensures a consistency
check with the literature and brings out the innovative contributions and significance of the find-
ings. Correlation and causality should not be confused, and causality should not be reported
without evidence.

Discussion should ideally have a separate section dedicated to the strengths and limitations of
the study. The strengths of an fNIRS study could include an innovative experimental paradigm
employed, an in-depth study of a particular neural/cognitive phenomenon, a large sample size, or
the development and application of an innovative hardware or signal processing method.
Limitations could be small sample size, instrumentation, and presence of confounding effects
in the measurements and analysis. For instance, although fNIRS brain sensitivity is higher in
younger populations due to smaller scalp/skull thickness,82 a study, if performed without an
independent measurement of the extracerebral hemodynamic changes (e.g., via short-separation
channels) should still consider physiological confounders in their analysis and discuss possible
implications of physiological noise on their results and interpretation.

A dedicated description of potential next steps of research based on the work presented in the
manuscript enables the discussion of open scientific questions and ideally includes the formu-
lation of hypotheses that the new work generated, which can be investigated in the follow-
up work.

5.2 Conclusion

The Conclusion should synthesize the main findings of the study and summarize its significance
and impact for the field in a very concise form. The conclusion needs to be consistent with the
aims and with the results. It is recommended that the conclusions are carefully considered and
defined first. This helps writing a consistent straightforward publication.

6 Bibliography

6.1 Proper Citations

Familiarity with the literature in the area of research is a prerequisite for the contextualization of
the presented work. To provide context and a rationale, and to compare the findings with the
existing literature, it is essential to include relevant review articles and original research articles
on the specific topic at hand. Consequently, in the final draft, each reference should be double-
checked to verify that the information referred to in the manuscript is in agreement with the one
presented in the cited original work.

7 Supplementary Data: Reinforcing Reproducibility

7.1 Preregistration, Data, and Code Sharing

Study and analysis plans can be preregistered before data acquisition begins. Such practice ensures
transparency and allows researchers to distinguish between planned and exploratory analyses and
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interpret their findings accordingly. Studies can be preregistered on a number of open science reposi-
tories such as Neuroimaging Tools and Resources Collaboratory (NITRC), GitHub, rOpenSci,
Dryad, Open Science Framework (OSF), Mendeley, Figshare, and arXiv. Many of these also allow
data and code sharing once the study is completed. Sharing data and code with the research com-
munity facilitates the reproducibility of the findings as it allows researchers to independently test and
verify the results, and to obtain new discoveries and interpretations without the unnecessary rep-
etition of the work. Consequently, we strongly encourage the sharing of fNIRS data and code, as
well as other useful information such as stimuli presented during the experiment. Some journals
provide the opportunity to share this additional information as a supplementary to the main body of
the paper. If such options do not exist, one of many other avenues might be used such as online
repositories. A link to the relevant repository can be provided in the methods section of the paper.
One advantage of using such resources is that they allow logging downloaders who have access to
the data, as is required by many ethics’ committees. When data from human studies are openly
shared, it is crucial to ensure that it has been completely de-identified. IRBs are great resources
to get guidance on the protection of human privacy while sharing data. Openly sharing hard-
ware/software is also quite useful and can further speed up innovative technological developments
(e.g., the opennirs166,167/openfnirs168,169 projects). Finally, data should be shared in an openly and
broadly accessible format. The fNIRS community is adapting a common fNIRS data format: The
“shared near-infrared data format,” or “snirf” (https://github.com/fNIRS/snirf). Using a common
standard format and standard guidelines such as compatibility with the Brain Imaging Data
Structure,170 already adopted by most other neuroimaging modalities, can greatly facilitate data
sharing across research groups that use different acquisition systems and processing pipelines.

8 Appendix

Table 1 is a checklist for guiding authors in the preparation of their manuscripts, and Table 2 is
a list of commonly used fNIRS nomenclature.

Table 1 The following checklist is provided as a means to summarize the guidelines in this article

to help the reader cross-check whether s/he can further improve the manuscript before submis-

sion. Each question refers to a numbered section in the main text that can be consulted again for

more detail.

Topic Checklist

2.1.1 Choosing a good title Is the title short, specific, and informative about the results?

2.1.2 Structured abstract:
Clarity and consistency

Is the most relevant information described in a motivating way? Can you
reduce the abstract further to improve clarity? Is the abstract structured
similarly to the structure of the main body of the paper? Is the data in the
abstract and main manuscript consistent and complete?

2.2.1 Scope, context,
significance, and aim of
the work.

Is the scope, context, and significance of the work established? Has the
previous work been described and cited properly? Are the aim and
hypothesis clearly defined?

3.1.1 Human participants Are all relevant demographic, clinical, and other relevant characteristics
described? Are all participant and data inclusion/exclusion criteria clearly
defined? Are all ethical issues and procedures discussed? Is approval from
the local ethics committee clearly addressed? Are excluded participants
disclosed and well justified?

3.1.2 Sample size and
statistical power analysis

In cases where no effect is observed: Was a power analysis performed?
Was the selection of sample size, power, alpha levels, and effect size
reported and justified? A posthoc power analysis may state the sample size
needed to achieve statistical significance in case the study was
underpowered.
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Table 1 (Continued).

Topic Checklist

3.2.1 Experimental design
(or “study design”)

Is the following information provided for the study design? All studies: The
duration of recording; the environment in which the participant is placed
(e.g., lighting conditions, auditory conditions, objects or displays in their
visual field, etc.). Specific to block- and event-related designs: The number
of conditions; the number of blocks or trials per condition; the order in which
the blocks or trials are presented; the duration of each block or trial; and the
duration of interblock or intertrial intervals. A diagram that provides details
of the timings of stimulus and images of the stimuli themselves.

3.2.2 Participant
instructions, training, and
interactions

Were incentives, instructions, and feedback to the participants clearly
outlined? What experimental conditions could have influenced the
participant’s performance?

3.3.1 fNIRS device and
acquisition parameters
description

Is the acquisition set up and instrumentation sufficiently described?
(system, wavelengths, sample rate, number of channels, and other
parameters)

3.3.2 Optode array design,
cap, and targeted brain
regions

Is the description of optode array design, cap, and targeted brain regions
complete?

3.3.3 For publications on
instrumentation/hardware
development

Are all crucial hardware and software performance characteristics and
validation steps reported? Are the architecture and all crucial components
(light source, detector, and multiplexing strategies) sufficiently described?
What standards/norms were followed and what safety regulations were
considered (i.e., maximum permissible skin exposure)? For
instrumentation or methods development papers: Is phantom-based
performance characterization reported? For application studies: Are
regular system quality checks reported?

3.4.1 fNIRS signal quality
metrics and channel rejection

How was signal quality of fNIRS channels checked and were bad channels
rejected?

3.4.2 Motion artifacts How were motion artifacts identified and removed?

3.4.3 Modified Beer–Lambert
law, parameters and
corrections

What were the assumptions, parameters, and models selected to derive
concentrations from the raw fNIRS signals using the mBLL? How were
estimation errors corrected/what are the signals’ units?

3.4.4 Impact of confounding
systemic signals on fNIRS

How did your study distinguish between the variety of physiological
processes that comprise fNIRS signal changes? Have you considered all
factors of possible physiological confounds?

3.4.5 Strategy for statistical
tests and removal of
confounding signals

Have the overall preprocessing and statistical testing strategies clearly
been identified and outlined?

3.4.6 Filtering and drift
regression

How were confounding signals outside of the main fNIRS band of interest
tackled? (High/low-pass filtering/GLM drift regression)

3.5.1 Strategies for
enhancing the reliability of
brain activity measurements

What strategies were pursued to correct for physiological confounds and
changes in the extracerebral tissue compartment? How were confounding
signals identified and separated and what was done to reduce the
likelihood of false positives/negatives?

3.5.2 Strategy 1: Enhance
depth sensitivity through
instrumentation and signal
processing

How was depth sensitivity achieved? If multidistance measurements were
performed, what are the source–detector separations used? What signal
processing methods were applied to remove confounding physiological
components in the fNIRS signals? How are the limitations discussed?

3.5.3 Strategy 2: Signal
processing without intrinsic
depth-sensitive
measurements

If no depth-sensitivity/multidistance measurements are available: What
signal processing methods were applied to minimize confounding
physiological components? How are the limitations discussed?
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Table 1 (Continued).

Topic Checklist

3.5.4 Strategy 3:
Incorporating measurements
of changes in systemic
physiology in the fNIRS
signal processing

If other physiological signals were used for the removal of confounding
signals in the fNIRS signals, which ones? Are all relevant parameters and
steps sufficiently described?

3.6.1 Hemodynamic
response function estimation:
Block averaging versus
general linear model

What is the effective number of trials used for HRF estimation? In GLM
approaches: What confounding signal regressors were used and how were
they modeled? What method was used to estimate regressor weights?

3.6.2 HRF estimation:
Selection of the HRF
regressor in GLM
approaches

In GLM approaches: How was the HRF modeled? What shape/function
was used for the HRF regression? What are the parameters? If a fixed
shape was used, what is the justification?

3.6.3 Statistical analysis:
General remarks

What statistical tests were performed and are all corresponding parameters
(e.g., assumed distribution, degrees of freedom, p-values, etc.) reported?
Is the effect size stated?

3.6.4 Statistical analysis of
GLM results

What regressors were included in GLM to explain effects of interest and
confounds for fNIRS data? What statistical model and methods have been
used for testing the hypothesis at the first and second levels?

3.6.5 Statistical analysis:
Multiple comparisons
problem

If statistical analysis was performed on multiple regions/voxels/network
components, were family-wise errors corrected? What correction method
was applied?

3.6.6 Specific guidelines for
data processing in clinical
populations

Are clinical variability and expected alterations of behavioral, neuronal, and
vascular responses considered when interpreting the results?

3.6.7 Specific guidelines for
data processing in
neurodevelopmental studies

How were the increased noise, artifacts, and analysis handled specifically
for the developmental populations? Is the artifact rejection procedure well
documented in the manuscript?

3.6.8 Connectivity analysis What correlation indices have been used? How were the statistical
thresholds determined?

3.6.9 Image reconstruction What head anatomy was used and how was coregistration between optical
elements and head geometry performed? How was the head anatomy
segmented and into what tissue types? How was the head mesh
generated? What optical properties were used for each tissue type? What
model/approach was used for the generation of sensitivity profiles and
image reconstruction?

3.6.10 Single trial analysis
and machine learning

What efforts were undertaken to understand and interpret the classifier
weights and outputs?What was the training and test size, howwere (hyper-
) parameters selected? Was training and test data strictly separated,
especially in approaches that use learned filters, regressors, or the GLM?
Was cross validation performed and if yes, what kind?

3.6.11 Multimodal fNIRS
integration

Was the sensor coplacement/localization/registration sufficiently
described? What were the methods used for data fusion and multimodal
analysis?

4.1 Figures and visualization Was the measurement set up, optode array configuration and placement,
and experimental protocol visualized? Is a sensitivity analysis included? If
the processing pipeline is complex, is it depicted in a simplified block
diagram? Are both brain maps and time courses available and provided?
Are results linked to anatomical locations? Are both HbO2 and Hb
reported? Are higher order statistics of the data visualized as well?

4.2 Concise text and rigor Are the results presented in a concise and well-organized manner? What
efforts were undertaken to minimize confirmation bias? Are negative
results reported, if present?
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Table 1 (Continued).

Topic Checklist

5.1 Discussion of the results
in light of existing studies:
Strengths, limitations, and
future work

Are all relevant results discussed? Is any part of the discussion based on
results that were not presented? Were caveats from confounding
physiology sufficiently addressed? Is the presented work sufficiently
compared and contextualized with existing studies? Are strengths and
weaknesses clearly outlined and discussed? Are potential next steps
discussed?

5.2 Conclusion Are 3 to 5 conclusions drawn that summarize the main findings of the study
in a concise way? Do they include the significance of the result? Are the
conclusions based on the results of the study?

6.1 Proper citations Are all the statements that reference to an original work agree with the
information provided therein?

7.1 Preregistration, data, and
code sharing

Is data/code made available to other researchers to reproduce the results?
Is data shared in a common data format that the community supports (e.g.,
snirf)?

Table 2 Useful nomenclature.

Channel Unique/independent measurement area that the system is capable of
recording.

Note: Any time series originating from the same optode, such as different
wavelengths or oxygenated/deoxygenated hemoglobin, still belongs to the
same channel measurement.

DPF Scaling factor that relates geometrical source–detector distance to the
average pathlength light travels between the source and detector within the
entire sampling region, accounts for the increased distance that light travels
from the source to the detector due to scattering.

Frame One concurrent/corresponding sample from all channels.

Frame rate Rate at which frames were recorded in Hz.

Frequency multiplexing Distinguishing different channels by modulating the sources at
nonoverlapping frequencies.

Mean pathlength The pathlength light travels within the entire sampling region (source–
detector distance multiplied by DPF).

Partial pathlength The path light travels within the fraction of tissue that is of interest, e.g., for
functional brain activation, this is the path only in the activated region
(source–detector distance multiplied by partial pathlength factor).

Partial pathlength factor The scaling factor that relates source–detector distance to the average
pathlength light travels within the activated region.

Partial volume effect Underestimation of the concentration changes due to the fact that changes
in hemoglobin occur in a focal region rather than in the entire sampling
region.

Partial volume error Error that occurs when the partial volume effect is different between the
different wavelengths which may lead to inverse traces.

Sampling rate Number of samples collected per second (in Hz) from each channel.

Time multiplexing Distinguishing different channels by turning them on one at a time or in
groups.
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