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Best practices for use of stable isotope mixing models in
food-web studies
Donald L. Phillips, Richard Inger, Stuart Bearhop, Andrew L. Jackson, Jonathan W. Moore,
Andrew C. Parnell, Brice X. Semmens, and Eric J. Ward

Abstract: Stable isotope mixing models are increasingly used to quantify consumer diets, but may be misused and misinter-
preted. We address major challenges to their effective application. Mixing models have increased rapidly in sophistication.
Current models estimate probability distributions of source contributions, have user-friendly interfaces, and incorporate com-
plexities such as variability in isotope signatures, discrimination factors, hierarchical variance structure, covariates, and con-
centration dependence. For proper implementation of mixing models, we offer the following suggestions. First, mixing models
can only be as good as the study and data. Studies should have clear questions, be informed by knowledge of the system, and have
strong sampling designs to effectively characterize isotope variability of consumers and resources on proper spatio-temporal
scales. Second, studies should use models appropriate for the question and recognize their assumptions and limitations.
Decisions about source grouping or incorporation of concentration dependence can influence results. Third, studies should be
careful about interpretation of model outputs. Mixing models generally estimate proportions of assimilated resources with
substantial uncertainty distributions. Last, common sense, such as graphing data before analyzing, is essential to maximize
usefulness of these tools. We hope these suggestions for effective implementation of stable isotope mixing models will aid
continued development and application of this field.

Key words: consumers, diet, food chain, isotopic ratios, trophic level.

Résumé : Si les modèles de mélange d’isotopes stables sont de plus en plus utilisés pour quantifier les régimes alimentaires des
consommateurs, ils pourraient être mal utilisés ou mal interprétés. Nous nous penchons sur d’importants défis associés à leur
application efficace. La complexité des modèles de mélange a augmenté rapidement. Les modèles actuels estiment les distribu-
tions de probabilités des contributions de différentes sources, ont des interfaces conviviales et intègrent des éléments complexes
comme la variabilité des signatures isotopiques, des facteurs de discrimination, la structure de variance hiérarchique, les
covariables et la dépendance à la concentration. Nous formulons les suggestions suivantes pour assurer la bonne utilisation de
ces modèles de mélange. Premièrement, la qualité des modèles de mélange est limitée par celle de l’étude et des données
sous-jacentes. Pour permettre la caractérisation efficace de la variabilité isotopique des consommateurs et des ressources à des
échelles spatiotemporelles adéquates, les études doivent poser des questions claires et reposer sur une bonne connaissance du
système et une conception soigneuse de l’échantillonnage. Deuxièmement, les études doivent utiliser des modèles adaptés à la
question posée et tenir compte des hypothèses sous-jacentes et des limites de ces modèles. Les décisions concernant le regroupe-
ment de sources ou l’inclusion de la dépendance à la concentration peuvent influencer les résultats. Troisièmement, la prudence
est de mise dans l’interprétation des sorties des modèles. Les modèles de mélange estiment généralement les proportions de
ressources assimilées avec d’importantes distributions d’incertitude. Finalement, il est nécessaire de faire preuve de bon sens,
par exemple en affichant graphiquement les données préalablement à leur analyse, pour maximiser l’utilité de ces outils. Nous
espérons que ces suggestions pour une application efficace des modèles de mélange d’isotopes stables contribueront à leur
développement et à leur application continus. [Traduit par la Rédaction]

Mots-clés : consommateurs, régime alimentaire, chaîne alimentaire, rapports isotopiques, niveau trophique.

Introduction
In recent years, stable isotope analysis has become an increas-

ingly important tool in the study of food webs (McKechnie 2004;
Crawford et al. 2008). A common application is to use the stable

isotopic composition of consumers and their foods to make infer-
ences about the composition of the animal’s assimilated diet. This is
accomplished by the use of isotopic mixing models to convert the
isotopic data into estimates of food source contributions from
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the various components of an animal’s diet (Phillips 2012). One of
the earliest studies employing this method was Evelyn Haines’
classic work on the relative importance of the C4 marsh grass
Spartina alterniflora Loisel. (smooth cordgrass) and other C3 plants
for Atlantic fiddler crabs (Uca pugnax (S.I. Smith, 1870)) in a Georgia
salt marsh (Haines 1976). Since that time, there has been a steady
increase in the number of studies utilizing isotopic mixing mod-
els to examine animal trophic relations, with a noticeable accel-
eration in their use in recent years (Fig. 1).

At the same time, mixing model capabilities and sophistication
have continued to progress in recent years. Initially, mixing mod-
els only provided point estimates for dietary contributions (e.g.,
40% A, 33% B, and 27% C), with no uncertainty levels specified to
account for variability in consumer or food isotopic values, mea-
surement error, etc. Sources of variation and uncertainty were first
explicitly addressed in the IsoError mixing model (Phillips and
Gregg 2001a, 2001b). In certain cases, large differences in elemental
concentrations among food sources may need to be considered in
estimating dietary composition. This feature was incorporated in
concentration-dependent equations in the IsoConc model (Phillips
and Koch 2002). Traditionally, mixing models could only partition
the dietary proportions of two or three food sources based on the
use of one or two isotopic values (e.g., �13C, �15N), respectively;
otherwise the models were mathematically underdetermined and

there was no unique solution (Phillips and Gregg 2003). The Iso-
Source mixing model (Phillips and Gregg 2003) was developed to
allow calculation of distributions of possible diets, including a larger
number of sources, and has been widely used. Several other similar
mixing models using different algorithms were subsequently devel-
oped as well (SOURCE/STEP: Lubetkin and Simenstad 2004; Moore–
Penrose pseudoinverse: Hall-Aspland et al. 2005; LP_Tracer: Bugalho
et al. 2008) but have been less frequently used (Layman et al. 2012).

More recently, Bayesian mixing models have been developed
that allow flexible model specification in a rigorous Bayesian sta-
tistical framework to incorporate some or all of these features—
uncertainties, concentration dependence, larger numbers of
sources—as well as others. These models include MixSIR (Moore
and Semmens 2008; Ward et al. 2010), SIAR (Parnell et al. 2010),
MixSIAR (Stock and Semmens 2013), IsotopeR (Hopkins and
Ferguson 2012), and FRUITS (Fernandes et al. 2014). Erhardt and
Bedrick (2013) also recently published a description for an un-
named Bayesian mixing model that is an extension of the earlier
SISUS model (http://statacumen.com/sisus/, accessed 23 July 2014),
and Kadoya et al. (2012) developed IsoWeb, which solves for diet
proportions for entire food webs rather than just a focal con-
sumer. Bayesian approaches use statistical distributions to char-
acterize the uncertainties in food source and consumer isotopic
values and in estimated source contributions. Alternative linear

Fig. 1. Number of citations per year from 1990 to 2012 for papers matching the search terms (a) “stable isotopes” and “mixing model” or
(b) “stable isotopes” and “mixing models” from ISI Web of Knowledge. Search conducted June 2013.
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programming approaches use ranges of isotopic values to deter-
mine ranges of source contributions even in underdetermined
situations (Evrard et al. 2010, 2012). Our focus here is on general
principles and practices for use of mixing models in food-web
studies; we do not attempt to comprehensively review all the
features and capabilities of various individual mixing models
here, but Hopkins and Ferguson (2012) provide a table that ad-
dresses many of these. Readers are also referred to the papers
cited above and review papers that address this topic (Boecklen
et al. 2011; Layman et al. 2012; Phillips 2012; Parnell et al. 2013).

With the availability of these tools, the number of isotopic mix-
ing model applications to food-web problems has proliferated in
the published literature. Hopefully, there have been gains in our
knowledge about food webs and animal diets as a result. However,
as with any tools, the best results come when they are the right
ones for the job, they are used properly, and their limitations are
understood. As the developers of a number of the mixing models
cited above, collectively we have had considerable opportunity to
see the details of how the models are applied in food-web studies
and we consult on those uses when asked. The purpose of this
paper is to put forth some “best practices” guidelines for judicious
use of isotopic mixing models in these types of studies in the hope
that they will help researchers maximize the models’ usefulness,
but be cognizant of their limitations and assumptions as well.

Suggested guidelines

1. Use prior knowledge to identify questions and spatial or
temporal scales

Clearly defined questions or sets of hypotheses should always
be the starting point for any well-designed study. Often isotopic
mixing models are employed to address general questions such as
“what is the diet of consumer X”? However, as discussed more
thoroughly in later sections, it must be realized that (i) there is an
inherent temporal scale to this question that depends on the
choice of samples and (ii) the diet estimates are not precise due to
a number of uncertainties. Beyond static estimates of diet for a
given time window, interesting questions may be posed about
quantifying dietary variation owing to factors such as temporal,
spatial, and demographic segregation within or between popula-
tions. There may be population hierarchical structures that are
either categorical (e.g., different regional populations, different
social groups in the same region) or continuous (e.g., differences
in zooplankton diet across gradients of light penetration in lakes),
and which could either be eliminated from the sampling design or
incorporated into the model framework (Semmens et al. 2009).
The mixing model technique is particularly powerful when the
results of dietary studies are used in subsequent analysis to ad-
dress questions about causes and consequences of the observed
patterns, and determine how diet links to life-history parameters
of individuals or dynamics of populations.

Researchers should also consider whether isotopic mixing mod-
els are the right tool for the job. While in some systems isotopic
analysis can provide unique opportunities and insights, it may not
always be the appropriate choice. Examples of this might include
the following: (i) where there is little isotopic variation among
various food sources; (ii) where the isotopic composition of spe-
cific diet items varies substantially on spatial scales over which
the consumers move; or (iii) where there is large temporal varia-
tion either in diet composition or in isotopic values of diet items
relative to the integration time of the consumer tissues sampled.
A sound appreciation of the assumptions and limitations of stable
isotope analysis and the application of mixing models is key here.
Novel study systems where very little is known about dietary pref-
erences are unlikely to be suitable for stable isotopic mixing mod-
els, unless there are well-described isotopic gradients across
which the consumer is thought to forage such as the gradient
between marine and terrestrial habitats. Stable isotope analyses

may still be useful for characterizing food-web components and
giving a rough idea of trophic levels, for example, but not neces-
sarily for using mixing models to quantify diets of specific con-
sumers with so little background information.

2. Consider what is known about the animal’s diet
A good understanding of your study system is essential before

using stable isotope mixing models to determine the diet of con-
sumers. Isotopic mixing models are not a “magic bullet” and re-
searchers cannot simply sample an animal’s tissue, measure the
isotopic ratios, and hope to determine its diet. This is because you
need to know some aspects of an animal’s diet a priori; specifi-
cally, you need to know what different food sources might be in
the diet of your study species. Identification of food sources may
be achieved by traditional means such as direct observation, stom-
ach content analysis, fecal pellet analysis, or via the literature,
although we advise caution with the latter approach as recent
stable isotope studies suggest that there is considerable inter- and
intra-population variability in diet (Votier et al. 2003; Semmens
et al. 2009; Willson et al. 2010a; Layman et al. 2012). Once the
dietary sources have been identified, stable isotope mixing mod-
els offer an excellent way to quantify the diet (in proportional
terms) of both individuals and populations and offer significant
advantages over other methods. Stable isotope analyses provide a
picture of diet integrated over a period of time, while conven-
tional dietary analysis by stomach contents, regurgitates, and fe-
cal pellets give only a short-term picture of diet; in addition, stable
isotopes represent assimilated diet rather than what is ingested,
which may or may not be digested and contribute to a consumer’s
nutrition (Bearhop et al. 1999; Votier et al. 2003). Conventional
methods may also be biased toward particular types of prey
(Hobson et al. 1994).

Microbial food sources can be particularly challenging to discern
and characterize, especially in aquatic systems. While allochthonous
organic matter may be consumed directly by consumers, it may also
be consumed indirectly through microbes that decompose this ma-
terial. Isotopic characterization of microbial food sources is difficult
and is often done indirectly using primary consumers or other prox-
ies (e.g., bulk or size classes of organic matter, respired CO2), or
compound-specific isotope analysis of biomarkers, although all of
these approaches have their own drawbacks; for further discussion
of these issues see Middelburg (2014).

3. Sample collection
A considered and well-planned sampling design is critical to any

stable isotope mixing model study. A critical consideration is the
time period over which the diet is to be estimated and what tis-
sues best reflect this period. Bone collagen or fish otoliths may
provide dietary information that spans the entire life of an indi-
vidual (Radtke et al. 1996; Dalerum and Angerbjörn 2005), while
other more metabolically active tissues may turn over in days
(e.g., liver) or months (e.g., muscle) (Tieszen et al. 1983). Sampling
of some tissues (e.g., bone) requires that the consumer is sacri-
ficed. Destructive sampling also has the advantage that any tis-
sue(s) of interest can be sampled. However, while it may be an
option for harvested populations (e.g., fisheries or game birds), it
is often not feasible due to the nature of the study question, where
the aim of the research is to identify how diet affects other param-
eters in the future, or on moral, ethical, or conservation grounds.
Where destructive sampling is not an option (or undesirable),
there are a number of nondestructive options available. Blood is a
particularly useful metabolically active tissue because it can be
separated into two components: plasma, which rapidly turns over
and so reflects diet over the previous few days (depending on the
study species metabolic rate), and red blood cells, which turn over
more slowly and represent diet over the previous few weeks.
Hence, a single sample can yield details on diet over two temporal
time periods, which may be particularly useful in determining
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diet switches (Hobson and Clark 1993; Votier et al. 2003; Phillips
and Eldridge 2006; Klaassen et al. 2010; Heady and Moore 2013).
Tissues that are metabolically inert after formation such as hair,
claw, or feather also offer scope for constructing time series.

In addition to the isotopic values of consumers, mixing models
require data on the food sources consumed. These data are of
equal importance to the consumer data and equal consideration
and planning should be attached to collection of food sources as
well as to the sampling of consumers. There are two key points to
consider here: firstly the number of sources to include in the
model, and if necessary how to aggregate sources, and secondly
temporal and geographic variation in sources.

The number of sources to be included in the model is an initial
and critical consideration and will of course be shaped by the
study system. Mixing models are sensitive to missing sources and
may produce erroneous results if all sources are not included;
hence, it is critical that all food sources are sampled (see section 6
below). However, the discriminatory power of mixing models gen-
erally decreases with the number of sources, although this is also
strongly influenced by the isotopic separation of sources. The
number of sources therefore should be kept as low as possible
without excluding sources. In our experience, the discriminatory
power of mixing models starts to decline markedly above six or
seven sources. But how exactly do we define a food source? We
will consider a study examining the diet of Brent Geese (Branta
bernicla (L., 1758)) (Inger et al. 2006), which alter their diet during
the nonbreeding period from feeding almost exclusively on inter-
tidal marine resources during the early season before increasing
feeding on terrestrial grasses as the season progresses. During the
intertidal foraging period, the birds feed on two species of the
seagrass genus Zostera L. (eelgrass (Zostera marina L.) and dwarf
eelgrass (Zostera noltii Hornem.)), and as this becomes depleted,
they eat increasing amounts of the green algae Ulva lactuca (L.,
1753) and various species of the genus Enteromorpha Link, 1820 (=
Ulva L., 1753) before moving inland to feed on terrestrial grasses,
which are dominated by perennial rye grass (Lolium perenne L.) and
common timothy (Phleum pratense L.). So we can identify at least six
sources, although this number would increase if we tried to iden-
tify Enteromorpha to species level and include all the different
species of terrestrial plants on which the geese feed. Aggregation
of isotopically similar sources is one way to reconcile the compet-
ing needs for including all utilized sources but retain discrimina-
tory power. For the Brent Goose system, the isotopic data for each
species of food revealed clear patterns leading to the aggregation
of the samples into four sources by combining the different species
of Zostera, Enteromorpha, U. lactuca, and terrestrial grasses because
these groups were clearly clustered and separated in isotopic
space (Fig. 1 in Inger et al. 2006). In addition, these source group-
ings make intuitive sense biologically and were pertinent to the
study question. (For further discussion of source aggregation see
section 7 below.)

If mixing models are used to analyze diet variation in a hierar-
chical population structure, data collection must assess the isoto-
pic composition of sources across these strata. The isotopic values
of sources may vary widely both temporally and spatially, so it is
also important to ensure that the samples taken for analysis geo-
graphically match the food the consumers are eating and reflect
the time periods over which the tissues of interest were synthe-
sised, which is likely to mean that source samples are collected
before those of the consumer. Temporal matching of sources and
consumers can be particularly problematic for tissues that inte-
grate over longer terms, such as bone collagen, as the isotopic
ratios of these tissues represent the average of all food sources
consumed and any diet switches that may have occurred during
the period of synthesis. There may also be considerable isotopic
variation within sources even from the same geographic and tem-
porally sampled population and it is important that the sampling
regime adequately captures this variation.

When using Bayesian mixing models that fully incorporate
sources of uncertainty, the amount of data collected for both
consumers and sources can have a substantial impact on the pre-
cision of model-based parameter estimates. Bayesian models use
means and variances (and, for more advanced models, covari-
ances) supplied by the user to characterize uncertainty for each
source. However, traditional model formulations assume that
these means and variances are known without error, while in
reality they are estimated from samples. When the number of
samples per source is small (<20), there may be considerable un-
certainty in the mean and variance values, and Ward et al. (2010)
recommend a “fully Bayesian approach” that models them as ran-
dom variables conditioned on the observed sample data. When
using hierarchical models to incorporate structure in a modelling
framework (e.g., subpopulations, social groups, individual differ-
ences in consumers; Semmens et al. 2009), the number of samples
within each level of the model can have substantial influence on
the precision of the level-specific variance terms. Limitations of
time and expense often limit the number of samples that are
possible to collect and analyze, so there are trade-offs among sam-
ple size, model complexity (number of parameters to estimate),
and the precision of estimation.

4. Use appropriate diet–tissue discrimination factors
The saying “you are what you eat plus a few per mil” (DeNiro

and Epstein 1976) refers to the fact that even at isotopic equilib-
rium with its diet, an animal’s tissues generally have somewhat
higher (usually) isotopic values for C and N than its diet because of
discrimination during assimilation and excretion processes (Olive
et al. 2003). Before applying a mixing model, these systematic
differences must be corrected. This is generally done either by
subtracting a diet–tissue discrimination factor (DTDF) from the
consumer tissue isotope values or adding it to the food source
isotope values. The latter approach is more flexible, allowing dif-
ferent factors for different food sources (Ben-David et al. 1997b).
Whereas most studies focus on the dietary contributions of prey
items directly consumed, some studies aim instead to measure
the importance to the consumer of food webs based on different
basal resources (generally producers or detritus). One example of
this is the study of Reid et al. (2008) on the importance of biofilm,
allochthonous detritus, macrophytes, and algae basal resources
for stream consumers. This requires additional information about
trophic structure, as the DTDFs must be multiplied by the number
of trophic levels between the consumer and the basal resources to
appropriately correct the isotope values used in the mixing model
analyses.

Early studies indicated that DTDFs were around +1‰ for C
(DeNiro and Epstein 1978), +3‰ for N (DeNiro and Epstein 1981), and
negligible for S (Peterson and Fry 1987). More recently, researchers
have documented considerable variation in DTDFs. Several review
and meta-analysis papers (McCutchan et al. 2003; Vanderklift and
Ponsard 2003; Dalerum and Angerbjörn 2005) summarized this
variation as a function of a number of environmental and physi-
ological factors that include environment (terrestrial, freshwater,
marine), trophic level, taxon, tissue, metabolic rate (poikilotherm,
homeotherm), nitrogenous excretion (ammonia, urea, uric acid),
and sample treatment procedures. Other authors have examined
the effects of diet quality on trophic enrichment (Webb et al. 1998;
Adams and Sterner 2000; Robbins et al. 2005; Miron et al. 2006;
Florin et al. 2011). Caut et al. (2008b, 2009) proposed that DTDFs
vary systematically based on the isotopic values of the diet, but
this conclusion has been criticized for the lack of a theoretical and
mechanistic basis and also because of mathematical artefacts and
experimental biases (Auerswald et al. 2010; Perga and Grey 2010;
Codron et al. 2012). Because of the multiplicity of factors that can
affect DTDFs, this is probably one of the biggest sources of uncer-
tainty in using mixing models to assess diet, and DTDF estimates
obtained for the particular situation (e.g., taxon, tissue, diet)
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are likely to produce the most accurate results (Spence and
Rosenheim 2005; Caut et al. 2008a; Bond and Diamond 2011). Par-
ticularly useful in this regard are captive feeding studies (DeNiro
and Epstein 1978, 1981; Tieszen et al. 1983; Hobson and Clark 1992;
Hilderbrand et al. 1996) and studies of wild populations where
their diets are well-known (Fox-Dobbs et al. 2007; Harper 2007;
Newsome et al. 2010). It should be clear, however, that in the vast
majority of cases there will always be some uncertainty and vari-
ability associated with the DTDFs. This was one of the rationales
behind the production of Bayesian mixing models such as MixSIR
(Moore and Semmens 2008) and SIAR (Parnell et al. 2010). These
models have the advantage of allowing one to specify a priori a
standard deviation around the DTDF estimate to account for this
uncertainty in the mixing analysis. Despite incorporating this
uncertainty because DTDFs are one of the key parameters in mix-
ing models, it is not surprising that results are still sensitive to the
values used for DTDFs. We strongly recommend the use of sensi-
tivity analysis to test the robustness of model outputs to variation
in DTDFs.

5. Plot your data
It is always a good idea to do some exploratory data analysis to

make sure that you understand the data that you will be process-
ing with a mixing model. After applying appropriate DTDF correc-
tions (see section 4), the first thing that should be done is to plot
the data. If, for example, one has �13C and �15N values for con-
sumer tissues and for various food sources, then plot those on a
graph of �15N vs. �13C or vice versa (Fig. 2). Food source isotopic
values can be plotted as mean values, along with confidence in-
tervals around those values if desired. Consumer values can be
plotted similarly, or isotopic values for individual consumers may
be shown. In order for there to be solutions for diet composition
from these food sources, the consumer isotopic values must fall

within the range of the food source isotopic values. For example,
if the consumer had a �15N value of 16‰ but all its food sources
ranged from 10‰ to 15‰ (after correction for DTDFs), then there
is no combination of those food isotopic values that could result
in the observed consumer isotopic value. While there technically
could be mathematical solutions that involve negative diet pro-
portions and possibly proportions >100%, these make no physical
or biological sense and should not be considered, as assumed by
current mixing model applications.

Thus, consumer isotopic values within the range of corrected
food source isotopic values for each element (e.g., C and N) is a
necessary condition for mixing models to work. This is illustrated
by a bounding rectangle in the �15N vs. �13C biplot (Fig. 2). How-
ever, this condition is not sufficient because there may be corners
of this space that are outside the range of any “combination” of
�13C and �15N values. For example, in Fig. 2 if the mink had a �13C
value equivalent to that of the rodent and a �15N value equivalent
to that of the duck, it would fall within the bounding rectangle
but there still would be no set of dietary proportions for these
seven food sources that could result in the observed isotopic val-
ues for the mink. The only way to account for the mink’s �13C is for
the diet to consist entirely of rodents, but this would not account
for the high �15N value. If two isotopic values are used (e.g., �13C
and �15N), a useful graphical two-dimensional geometric proce-
dure is to use the food source data points to define a “convex hull”.
In essence, one connects the food source data points with lines to
create a convex polygon with these data points as vertices. If in-
cluding a source as a vertex would lead to a concave side (e.g.,
shrimp), then it would not be connected but allowed to just lie
inside the convex polygon defined by the other sources (Fig. 2). If
the consumer lies within the convex hull in isotope space defined
by the food sources, then one or more solutions exist that can

Fig. 2. Sample �15N vs. �13C biplot of a consumer (MINK) and its food sources corrected for trophic enrichment. For simplicity, only mean
values are shown here. The dotted lines show the minimum bounding rectangle that corresponds to the lowest and highest food source
values for �15N and �13C. The solid lines show the convex hull defined by the sources. Note that shrimp is not a vertex of the convex polygon
created because its inclusion as a vertex would create a concave side. The consumer must fall inside this mixing polygon for its isotopic
composition to be explained as a mixture of just these seven food sources. Data are from Ben-David et al. (1997b).
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explain the consumer’s isotopic values as a combination of those
dietary components. If it does not, then the reason for this must
be sought. Are there data transcription errors? Are there other
food sources that should have been included? Have DTDF correc-
tions been applied or are their values inappropriate? If mean iso-
topic values of food sources are used for the vertices but source
sample variability is being considered as in Bayesian models, then
the question of whether the consumer lies within the convex hull
or not becomes fuzzy. Smith et al. (2013) propose a Monte Carlo
procedure to construct many possible convex hulls, taking into
account the variability in isotopic values and DTDF values. They
then calculate the proportion of these hulls that contain the con-
sumer data points and recommend using a mixing model with a
particular set of sources only if this proportion is greater than
some specified level (e.g., 95%).

Fry (2013) proposed some graphical procedures for analyzing
mixing problems as an alternative to mixing models. These in-
volve subdividing mixing diagrams into zones and using several
semiquantitative indices to indicate the relative degree of uncer-
tainty in the source (e.g., dietary component) proportions for mix-
tures (e.g., consumers) that fall in these areas. It has long been
recognized that the geometry of sources and mixtures in a mixing
diagram determines how constrained or diffuse the possible
source contributions may be (e.g., Fig. 6 in Phillips and Gregg
2003). Fry’s (2013) procedures may be useful for getting a qualita-
tive feel for mixture data, but Semmens et al. (2013) were critical
of their subjectivity and Fry’s dismissal of the statistical probabil-
ity foundation of Bayesian mixing models.

6. Include all sources in an informed way
One of the implicit assumptions of any mixing model is that all

the sources are included and researchers should strive to ensure
that this is the case to get the most reliable results. If one food
source that contributes to the diet is excluded from the analysis,
then that necessarily will lead to a bias in the estimates of the
dietary contributions for the other sources since they must still
sum to 100%. The sum of these biases over the remaining food
sources will equal the actual contribution of the excluded source.
It may not seem too important if a food source that contributes 5%
to the diet of the consumer is excluded because the remaining
food sources will simply be attributed to 100% of the diet rather
than the actual 95%. However, the magnitude and direction of the
biases for the individual food sources may vary greatly depending
on the geometry of the mixing space. Figure 3 shows a hypothet-
ical example of four food sources in the diet of a consumer.
Source D is the most different from the consumer in its isotopic
values and one might be tempted to consider excluding it from
the analysis on that basis. Table 1 shows the effect of this exclusion
on the results of mixing model analyses for the remaining food
sources under different hypothetical diets that are all consistent
with the data. Even when the deleted source actually only ac-
counts for 5% of the diet (diet No. 5), this causes biases of +10%,
−15%, and +10% (which sum to 5%) on the dietary proportion esti-
mates for the other three sources. However, in this particular
example, it is also possible that source D, which isotopically is the
most dissimilar from the consumer, could represent up to 25% of
the diet (diet No. 1); in this case, its deletion would lead to extreme
biases of +50%, −75%, and +50% (which sum to 25%) for the other
three sources.

This example was designed as a worst case scenario for demon-
strating the potential impact of excluding a source. It may be
tempting to drop a source because of its dissimilarity in isotopic
composition from the consumer, but that dissimilarity also mag-
nifies the effect on estimates for the other sources. There are
obvious limits to including everything as remotely possible food
sources from the standpoint of sample collection logistics, expense
of stable isotope analyses, and the general broadening of source
contribution distributions as the number of sources increases. To

the extent possible, researchers should use information from
other sources (e.g., fecal analyses, behavioral observations, previ-
ous studies) in selecting the food sources for an animal dietary
study. Excluding sources should be based on knowledge that they
are not important in an animal’s diet, not just that they are isoto-
pically dissimilar; this example demonstrates that they may still
contribute and exclusion from the model still biases the results.
Residual error terms provide one approach to account for this
(Parnell et al. 2010, 2013). An alternative to excluding sources to
simplify the mixing model is to group sources together, which is
the next topic.

7. Consider grouping sources
If sources of uncertainty (e.g., sample variability, measurement

error, diet–tissue discrimination factor uncertainty) are not con-
sidered, then in theory mixing models using n isotope values (e.g.,
�13C, �15N) can be used to find a unique set of assimilated diet
proportions for n + 1 food sources. Models with greater than n + 1
sources are underdetermined and multiple solutions exist, often
leading to diffuse ranges of possible diet proportions for each source
(Phillips and Gregg 2003; Moore and Semmens 2008; Parnell et al.
2010). While valid food sources should not be discarded from the
model as discussed above, combining some sources to reduce the
total number may sometimes lead to more constrained, less dif-
fuse solutions (Phillips et al. 2005) and should be considered to be
an option. Phillips et al. (2005) proposed alternative a priori and a
posteriori approaches for combining sources, described below.

Gannes et al. (1998) stated that when using stable isotope data to
reconstruct animal diets, the sources examined should have iso-
topically distinct signatures. The a priori approach involves per-
forming statistical tests for equality of means and combining
sources before running the mixing model if they are not signifi-
cantly different (Ben-David et al. 1997a, 1997b). Rosing et al. (1998)
provided a K-nearest-neighbor randomization test for this specific
purpose, but other statistical tests might be used as well. Interpre-
tation of the results will be more sensible if the sources that are
combined are logically related in some way (e.g., same taxon or
trophic guild) so that the combined source has some biological
meaning (Phillips et al. 2005). If several sources are not signifi-
cantly different in their isotopic composition, then they may be
represented in the mixing model by a single set of isotopic values
that is computed as the means of the individual source isotopic
values or as weighted means if weighting by sample size is de-
sired. What if several sources are similar in their isotopic values,
but are still statistically different? The threshold for significance
of differences varies with sample size in statistical tests, and if
sample size is large, then a small difference (e.g., a small fraction
of 1‰) may test as significant even though it is of no practical
biological significance. Alternatively, the objective may be to con-
trast general groups of food sources whose isotopic differences
are large compared with the variation within the groups (e.g., C3

vs. C4 plants, marine vs. terrestrial foods). So some judgement
may be applied, but sources should only be combined a priori if
they are not significantly different in their isotopic composition
using either strict statistical criteria or modifying those by judg-
ments of biological significance if sample sizes are large, or if the
within-group isotopic variation is small compared with the among-
group variation. But combining sources with somewhat larger
isotopic differences (e.g., several ‰) implies that the individual
sources each contribute equally if simple means are used, or con-
tribute relative to their respective sample sizes if weighted means
are used. These implied contributions may not be the case and
may lead to biases in the mixing model estimates for some or all of
the sources. This concern is not an issue if there is no significant
difference among sources because the mean (or weighted mean)
isotopic values are common to the sources being combined. Fortin
et al. (2007) and Edwards et al. (2011) provide recent examples of
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this a priori approach to combining sources in their studies of
bear diets.

Alternatively, in the a posteriori approach, all the candidate
sources may be included in the mixing model, providing the usual
distribution of proportions for each source. Then for each individ-
ual solution, the proportions can be summed for sources that are
to be grouped together (Phillips et al. 2005). Since this approach
utilizes each individual solution, it preserves the covariation struc-
ture among source proportions. In some cases, especially where
there are more than four or five sources, the distribution of pos-

sible solutions for each source can be fairly wide and diffuse,
while those for combined sources may be much narrower and
lead to easier interpretation. Figure 4 shows an example of this
from a study of paleohuman diets in northern California from
Newsome et al. (2004) and discussed further in Phillips et al.
(2005). Three marine food sources with a broad range of �13C and
�15N values were included in the mixing model for Early Holocene
humans and had broad distributions of possible dietary contribu-
tions: pinnipeds (4%–48%), shellfish (0%–36%), and marine fish
(0%–68%). These ranges were so broad that they did not provide

Fig. 3. Hypothetical mixing diagram for four food sources where one (source D) is deleted from the mixing analysis. The solid lines indicate
the mixing polygon without D and the broken lines indicate how it would be extended by including D. For the effects of deleting source D on
the proportion estimates for the other sources see Table 1.

Table 1. Effect of deleting a utilized food source (source D) on the dietary proportion estimates for
the remaining food sources (see Fig. 3).

Food source

Hypothetical actual diets (%)

Mixing model estimateDiet 1 Diet 2 Diet 3 Diet 4 Diet 5

A 0 10 20 30 40 50
B 75 60 45 30 15 0
C 0 10 20 30 40 50
D 25 20 15 10 5 —

Note: Five different hypothetical diets are shown, all of which are consistent with the data. If any one of these
represents the actual diet, then the difference between the mixing model estimates and the actual source propor-
tions represent the bias induced by dropping source D out of the model.
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much information at all about diet. However, when these sources
were combined a posteriori into a general “marine foods” source,
the combined marine source had a dietary contribution range of
70%–84%, which clearly indicates the primacy of marine foods
versus terrestrial foods in the diet of these humans. Recent exam-
ples of this a posteriori approach for combining sources in animal
studies include Painter et al. (2009) and MacArthur et al. (2011)
using IsoSource, Cherry et al. (2011) using MixSIR, and Vaslet et al.
(2011) using SIAR. Ward et al. (2011) proposed a procedure using
the MixSIR Bayesian mixing model to evaluate the posterior prob-
abilities of various combinations of sources for the a posteriori
approach. Researchers may choose group membership strictly
based on maximum posterior probability, or they may weigh
the trade-offs between slightly lower posterior probability with
greater biological relevance and interpretability (e.g., combining
sources with similarities in functional guild, taxon, habitat).

8. Consider concentration dependence and isotopic routing
If there are large disparities among food sources in the concen-

trations of elements associated with the isotopic values being
used (e.g., C for �13C, N for �15N), then the possibility of using a
concentration-dependent mixing model might be considered
(Phillips and Koch 2002). In a typical mixing model application
employing �13C and �15N values for food sources and consumer
tissues, there is an implicit assumption that the proportion of C
that each source contributes to the consumer is the same as the
proportion of N that it contributes. But if C and N concentrations
vary widely so that the sources have very different C:N ratios, then
this may be an untenable assumption. This may be particularly
applicable to omnivores that consume both low N (and high C:N)
plant foods and high N (and low C:N) animal foods. A concentration-
dependent model allows for different C contributions, N contri-
butions, and overall biomass contributions from any food source,
depending on elemental concentrations and isotopic values.
Readers are referred to Phillips and Koch (2002) for details on how

concentrations are incorporated into mixing models. The original
IsoConc model (Phillips and Koch 2002) performs these calcula-
tions for a two-element three-source system, but concentration
dependence has also been incorporated into SIAR (Parnell et al.
2010), IsotopeR (Hopkins and Ferguson 2012), MixSIAR (Stock and
Semmens 2013), and FRUITS (Fernandes et al. 2014), which can
deal with any numbers of isotopic values and sources. When sta-
ble isotope analyses are performed, elemental concentrations are
also determined along the way, so researchers should be sure to
ask the laboratory for these data to consider concentration depen-
dence.

Since isotopic mixing models assess the proportions of food
sources assimilated by the consumer, not just ingested by the
consumer, elemental concentrations in the ingested foods may
not be the most appropriate measure. Rather, the macromolecu-
lar composition (e.g., % protein, lipid, carbohydrate) and the di-
gestibility and C and N concentrations in these macromolecular
components will determine the amounts of assimilated C and N
from each food source; Koch and Phillips (2002) show how these
calculations can be made. Thus, the data needs for using a
concentration-dependent model in this way are considerably
higher and the requisite information may not always be available.
On the other hand, after going through all these calculations, it
may turn out that the assimilated C and N concentrations are
much more similar among sources than their raw C and N con-
centrations indicate. A plant food source may have a low C:N ratio
compared with an animal food source, but when the C in indigest-
ible materials like lignin, cellulose, and fiber are subtracted out,
the result may be more similar to the animal food. In this case, the
results of a concentration-dependent mixing model would be sim-
ilar to those of a standard model, although this would not be
known a priori without going through these calculations (Koch
and Phillips 2002). In other cases, the results for contributions of
C, N, and overall biomass from various food sources to the con-

Fig. 4. Ranges of feasible dietary biomass contributions of individual marine food sources for an early Holocene (about 7000 years ago) group
of humans on the central California coast (Newsome et al. 2004). Distributions shown reflect 11 345 dietary solutions found by the mixing
model. While broad ranges of use are possible for each individual marine food source, the combined marine food group is tightly constrained
and represents 70%–84% of the diet. (From Phillips et al. 2005, reproduced with permission of Oecologia, vol. 144, p. 524, © 2005 Springer
Science + Business Media.)
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sumer’s tissues may be quite distinct when sizable source differ-
ences in assimilated C and N concentrations exist (Phillips and
Koch 2002). Gauthier et al. (2003) first applied the concentration-
dependent model to examine the use of endogenous vs. exogenous
food resources in birds. More recent examples of concentration-
dependent mixing model use include applications to mice
(Ramírez-Hernández and Herrera M 2010), birds (Rutz et al. 2010),
fish (Wilson et al. 2010b; Vaslet et al. 2011), and shellfish (Wilson
et al. 2010b; MacArthur et al. 2011).

A major assumption in all aforementioned mixing models is
that the food sources are homogenised fully in the consumer
where they are reassembled to generate new tissues (Wolf et al.
2009). It is well known that the metabolic pathways for creating
new tissues, even within an organism, are physiologically differ-
ent and hence fractionate heavy and light isotopes differently
(Caut et al. 2009; Martínez del Rio et al. 2009; Wolf et al. 2009).
Furthermore, food sources that differ considerably in the com-
pounds containing N and C are likely to be processed differently
within the consumer. This process is readily dealt with by apply-
ing appropriate DTDFs for a given consumer tissue and source
combination. Where this becomes more difficult is where the diet
itself affects the DTDFs so that they become a function of the
proportion in which they and the other sources are consumed.
This can occur when consumer diets comprise sources with very
different balances in protein and carbohydrates such as nectar-
and fruit-eating animals, and omnivores (Martínez del Rio et al.
2009). In this case, not only can the relative masses of C and N
differ between the sources (which can be handled by including
concentration dependence in the model), but also consuming low
N or low C diets can alter the balance between exogenous (diet-
derived) and endogenous (recycled from other tissues) com-
pounds (Martínez del Rio et al. 2009).

The problem from a statistical modelling point of view is that
the functional form describing how fractionation is affected by
diet is unknown (Martínez del Rio et al. 2009), and in reality, this
will likely differ by species and from case to case. Without any
general process to govern how this should behave, at present this
means that incorporating this feature may require tailor-made
models to be developed based on detailed empirical studies spe-
cific to that system. Explicitly separating the amino acids in con-
sumer tissues that have arisen exogenously from those derived
endogenously is one promising avenue of study for dealing with
this issue in cases where it is suspected a priori of being of impor-
tance (Budge et al. 2011). In many cases, however, the diet compo-
nents of consumers are not so radically different in their composition,
so this routing issue is likely to be of less concern.

As a practical matter, how should these issues of possible con-
centration effects and isotopic routing be handled when the food
sources do vary substantially in their composition, e.g., in om-
nivory? In such cases, we suggest using a concentration-dependent
mixing model after correcting for differences in digestibility of
food sources and their constituents, unless those corrections in-
dicate that there is little remaining difference in digested elemen-
tal concentrations. Where one is concerned that routing is an
issue but cannot obtain detailed empirical data on the physiology
of diet-affected DTDFs, we would recommend increasing the un-
certainty on the DTDFs (see section 4 above). In this manner, one
is treating the process as unobservable nuisance and pushing it to an
error term, rather than modelling it directly, and the uncertainty of
the source contribution estimates will increase accordingly.

9. Consider and incorporate uncertainties
Initially, mixing models could only provide point estimates for

two or three source proportions as a function of point estimates
(means) of one or two isotopic values for both the consumer and
its food sources, with no consideration of variability among sam-
ples or measurement error. IsoError (Phillips and Gregg 2001a,
2001b) was an early mixing model development that incorporates

these factors and provides statistical confidence limits around the
proportion estimates. However, this model does not cover under-
determined systems where there were greater than n + 1 sources
when using n isotopic values. IsoSource (Phillips and Gregg 2003)
addresses underdetermined systems and provides distributions of
possible sets of source proportions, but IsoSource does not in-
clude sampling and measurement sources of uncertainty in a
straightforward way. Recent Bayesian mixing models such as MixSIR
(Moore and Semmens 2008; Ward et al. 2010), SIAR (Parnell et al.
2010), MixSIAR (Stock and Semmens 2013), IsotopeR (Hopkins and
Ferguson 2012), FRUITS (Fernandes et al. 2014), and that of Erhardt
and Bedrick (2013) explicitly deal with variability among con-
sumer and source isotopic values (which implicitly include mea-
surement errors). Furthermore, these models can incorporate
uncertainty in the assigned values of DTDFs as well, which is one
of the greatest sources of uncertainty in applying mixing models
to food webs (Caut et al. 2008a; Bond and Diamond 2011). While
Bond and Diamond (2011) criticized the sensitivity of Bayesian
model results to assumed DTDF values for their particular data
examples, this reflects the inability of any mixing model to ade-
quately resolve source proportions where the isotopic values are
in a narrow range, particularly when that range is of similar mag-
nitude to the uncertainty in DTDF values. The ability to specify
uncertainties for DTDFs in Bayesian models at least allows dem-
onstration of the lack of precise solutions possible, which is a
more honest result than the more constrained results that would
be found by simply relying on a single DTDF point estimate. We
urge researchers to use these Bayesian mixing models and take
advantage of their ability to incorporate various sources of uncer-
tainty in their estimates of source proportions.

10. Report distributions of results
Just as it is important to incorporate sources of variability and

uncertainty and not just rely on point estimates in mixing model
inputs, researchers should report the distributions of source pro-
portion estimates and not just summary values (e.g., means or
medians) in mixing model outputs. As Phillips and Gregg (2003)
stated in their concluding sentence, “To avoid misrepresenting
the uniqueness of the results, users should report the distribution
of feasible solutions rather than focusing on a single value such as
the mean.” Even when mixing models are not underdetermined,
sample variability, measurement error, and uncertainty in DTDF
values impart uncertainty in source proportion estimates. Re-
searchers should always strive to provide statistical bounds on
these estimates, such as the 95% confidence intervals provided by
IsoError (Phillips and Gregg 2001a, 2001b) and the corresponding
95% credible intervals (Bayesian confidence intervals) provided by
Bayesian models. Outputs from Bayesian models are true proba-
bility distributions that may be plotted and summarized with any
number of descriptive statistics, as well as compared with each
other, with hypothesized distributions, or with other parameters
of interest such as fitness (Parnell et al. 2010). Although it is intu-
itive, making histograms of the estimated source proportions is
extremely important—doing so helps identify posteriors that are
relatively flat (not informed by data) and situations where poste-
rior sources are multimodal (such as from a data set with two
sources that are not identifiable, because they have similar or
opposing source signatures).

Many authors fail to consider the impact of joint uncertainty in
the source proportions. These are provided in the output of Bayes-
ian models such as MixSIR and SIAR and allow users to spot where
the isotopic arrangement of sources leads to unavoidable model
inadequacy. In Fig. 5, the matrix plot shows that Enteromorpha
and Zostera are strongly negatively correlated. This means that, if
Enteromorpha is being consumed at the top of its probability range,
then Zostera is likely to be at the bottom of its probability range,
and vice versa. Thus, the marginal uncertainty (shown in the his-
tograms) in each source proportion is artificially inflated and no
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amount of extra data collection could have reduced this uncer-
tainty. If desired, extremely negatively correlated source propor-
tions may be combined (as in the a posteriori manner described
above) with a potential gain in precision.

11. Limitations
Stable isotope mixing models can be a useful tool for unraveling

trophic relationships in food webs and understanding the causes
and consequences of variation in diets, but they are just a tool and
the picture that they provide of dietary composition is not neces-
sarily a precise one. Common sense dictates that their limitations
be recognized. Variability in the isotopic composition of food
sources and individual consumers blurs the picture, as does un-
certainty in DTDFs. The degree to which nice constrained distri-
butions of source contributions are found depends greatly on the
geometry of the mixing space—where the consumer falls within
the range of its food sources and how different those food sources
are from each other. One cannot expect a precise and unambiguous
sorting of the contributions of dietary sources based on isotopic val-
ues if they are not fairly distinctive in their isotopic composition.

Beyond these sources of uncertainty, however, the degree to
which a mixing model is underdetermined (having many more
sources than isotopic tracers) is an overarching consideration.
This is a fundamental and structural source of uncertainty, as
mathematically there are a large number of solutions where the
number of variables exceeds the number of constraints. In gen-
eral, the more food sources there are in an animal’s diet, the less
precise will be the estimates of their importance. This effect can
be magnified by the effects of mixing space geometry as described
above. In some cases, the distributions of food source contribu-
tions may be so wide that it is only useful in a very qualitative
sense, ruling out contributions that are less than the minimum
value and more than the maximum value (Fry 2013). For such
cases, Benstead et al. (2006) stated that the most useful results are
those with low maxima or high minima.

Besides not always providing a very precise determination of
dietary importance, mixing models may not necessarily always
provide an accurate one if their assumptions are not met. Two of
those assumptions are that all sources are included and that there

Fig. 5. Matrix plot of food sources for the Brent Goose (Branta bernicla) example (discussed in section 3) during their intertidal foraging period.
The diagonal cells show the posterior probability distributions for each of the four food sources. The cells below the diagonal show the
correlations between contributions for pairs of food sources. The cells above the diagonal show contours of the joint posterior probability
distribution for contributions for pairs of food sources.
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is complete mixing. The existence of unsampled sources, concen-
tration differences among sources, and metabolic routing may
compromise the validity of the results. The turnover rates of the
consumer tissues sampled define the time frame over which the
diet is being integrated. Within this time frame, temporal vari-
ability in diet, or spatial variability if the consumer shifts loca-
tions, make for a “moving target” and may muddle the results,
although Francis et al. (2011) modified the Bayesian mixing model
framework to account for continuous diet gradients. Similarly,
mixing models generally do not consider any differences in prey
availability, although several methods have been proposed to in-
corporate this information to some extent (Phillips et al. 2006;
Yeakel et al. 2011). As with simple linear regression, mixing mod-
els generally assume that errors are normally distributed. Recent
mixing model tools, such as MixSIR and SIAR (Moore and
Semmens 2008; Parnell et al. 2010), assume that all consumers
have the same diet (more advanced models, like the hierarchical
model of Semmens et al. (2009) and Parnell et al. (2013), can ex-
plicitly account for individual differences). Finally, the distinction
must also be kept in mind that any inferences from mixing mod-
els refer to the assimilated diet, which can be considerably differ-
ent from the ingested diet, depending on the relative digestibility
of various foods.

As with many statistical approaches, the fitting of the model to
the data creates some further issues of which users should be
aware (Parnell et al. 2013). The model fitting algorithm used by
SIAR (Parnell et al. 2010), IsotopeR (Hopkins and Ferguson 2012),
and Erhardt and Bedrick’s (2013) model is called Markov chain
Monte Carlo (MCMC) and involves repeatedly guessing values of
the dietary proportions, discarding those which are not probabi-
listically consistent with the data (Parnell et al. 2010). The new
guesses are required to be close to the older guesses, creating a
Markov chain. At the end of the run, the user is supplied with a
sample of posterior dietary proportions, from which they can
form means, standard deviations, or any other function they re-
quire. An unfortunate side effect of the MCMC algorithm is that it
can become stuck and not find suitable high-probability values.
For this reason, the posterior sample proportions are checked to
see if they “converge” to some suitable stable high-probability
values. If this check is not performed, the model may be produc-
ing incorrect dietary estimates.

An alternative (but strongly related algorithm) to MCMC used
by MixSIR is sampling importance resampling (SIR) (Moore and
Semmens 2008). Here, a large number of plausible dietary propor-
tions are chosen and then weighted according to their probabilis-
tic consistency with the data. These weights are rescaled to sum to
1 and the original plausible dietary proportions are resampled
according to their weights. The downside to the SIR approach is
that if the initial plausible set of dietary proportions does not
contain many good values, then there will be very few large
weights (also known as a low effective sample size). If this is the
case, then the uncertainty in the dietary proportions will be esti-
mated poorly. Both disadvantages (lack of convergence for MCMC,
badly distributed weights for SIR) can be easily discerned with
suitable checks provided as part of the packages.

12. New horizons
A number of advances have been made in stable isotope mixing

model methods for food-web studies in recent years, but this is a
dynamic field that continues to move ahead. One general area in
which we expect further advances is bringing additional nonisotopic
constraints to bear in mixing analyses. Earlier work included
Phillips et al. (2006), which proposed a general postfiltering pro-
cedure for any type of constraints, and Sinisalo et al. (2006), which
used intestinal parasite presence to further constrain estimates of
the diet of seals. Later work with Bayesian models included Yeakel
et al. (2011), which used prey abundance data to weight source
estimates in model posterior distributions when sources were

isotopically similar, and Chiaradia et al. (2014), which incorpo-
rated DNA analysis data into model prior distributions to further
constrain dietary estimates. The recent MixSIAR model (Stock and
Semmens 2013) allows for incorporation of hierarchical popula-
tion structure and other continuous covariates in its estimation of
consumer diets. Phospholipid-derived fatty acid (PLFA) analyses,
compound-specific isotopic analyses, and pulse-chase experi-
ments using enriched isotopic tracers to label certain food-web
components are other powerful and promising techniques that
are being increasingly used to supplement bulk natural abun-
dance isotopic analyses in food-web studies (Van den Meersche
et al. 2009; Evrard et al. 2010, 2012; Middelburg 2014).

The mixing models described in this paper for the most part
focus on a single consumer species in a food web based on isotopic
composition. In contrast, linear inverse models (Vezina and Platt
1988) attempt to solve matter and energy flows throughout the
food web based on an array of estimates of biomass, flux, etc., and
other constraints that is generally highly underdetermined. There
is potential for some merging of these two approaches to get
better estimates of food-web processes utilizing both types of data
and some steps have already been taken in this direction. From
the mixing model side, Kadoya et al. (2012) have developed the
IsoWeb model, which uses stable isotope data along with a user-
specified food-web topology to estimate diet proportions for the
entire food web. From the linear inverse model side, Eldridge et al.
(2005) first incorporated carbon stable isotope data as constraints
in an estuarine food-web model. Recently, Pacella et al. (2013) used
results from the stable isotope mixing model SIAR as additional
constraints input into a linear inverse model of an estuarine food
web. These first steps show the potential for synergy between
these two different modelling approaches.

Conclusions
Mixing models can quantify resource contributions to consum-

ers through analysis of stable isotopes. However, they are not the
best tool for every job. For instance, many study systems will have
source isotope signatures that overlap broadly in isotope space,
preventing source discrimination. Some consumers may feed on
such a diversity of prey that stable isotopes can only provide a
blurry picture of patterns of consumption. On the other hand,
stable isotopes may provide insights into consumer–resource re-
lationships that would otherwise be difficult to impossible to
quantify. We hope that the suggestions offered above provide a
helpful set of guidelines for best practices in stable isotope mixing
models.
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