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Abstract

Next-generation sequencing technologies have enabled a dramatic expansion of clinical genetic testing both for
inherited conditions and diseases such as cancer. Accurate variant calling in NGS data is a critical step upon which

virtually all downstream analysis and interpretation processes rely. Just as NGS technologies have evolved

considerably over the past 10 years, so too have the software tools and approaches for detecting sequence variants
in clinical samples. In this review, I discuss the current best practices for variant calling in clinical sequencing

studies, with a particular emphasis on trio sequencing for inherited disorders and somatic mutation detection in

cancer patients. I describe the relative strengths and weaknesses of panel, exome, and whole-genome sequencing
for variant detection. Recommended tools and strategies for calling variants of different classes are also provided,

along with guidance on variant review, validation, and benchmarking to ensure optimal performance. Although

NGS technologies are continually evolving, and new capabilities (such as long-read single-molecule sequencing) are
emerging, the “best practice” principles in this review should be relevant to clinical variant calling in the long term.
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Background

The emergence of next-generation sequencing more than a

decade ago represented a major technological advance over

traditional sequencing methods. NGS technologies enabled

ambitious large-scale genomic sequencing efforts that have

transformed our understanding of human health and disease,

such The Cancer Genome Atlas [1–8], the Centers for Men-

delian Genomics [9], and the UK10K Project [10]. They have

also been widely adopted for clinical genetic testing. Whole-

exome sequencing, which selectively targets the protein-

coding regions of known genes, has become a frontline diag-

nostic tool for inherited disorders [11–14]. Targeted panels

which leverage this approach to interrogate medically

relevant subsets of genes have become core components of

precision oncology [15–17].

The characteristics and sheer volume of NGS reads ne-

cessitated the development of a new generation of compu-

tational algorithms and analysis pipelines equipped to

handle such data. As NGS technologies have matured, so

too have the software tools for key analytical tasks, such as

variant calling. Ten years and thousands of samples later,

we now have a much deeper understanding of the capabil-

ities and limitations of NGS for detecting and characteri-

zing sequence variation. In this review, I discuss the

current “best practices” for variant calling in clinical

sequencing for both germline analysis in family trios and

somatic analysis of tumor-normal pairs. This includes rec-

ommendations for the choice of sequencing strategy, NGS

read alignment/preprocessing, combination of multiple

variant calling tools, and rigorous filtering to remove false

positives. I also include guidance on benchmarking NGS

analysis pipeline performance using “gold standard” refer-

ence datasets to achieve the optimum balance of sensitiv-

ity and specificity.
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Sequencing strategies and implications

The choice of sequencing strategy for a clinical sample has

important ramifications for variant calling (Table 1). Single-

or multi-gene panels are increasingly cost-effective means of

testing for subsets of genes associated with specific clinical

phenotypes. For example, the OtoSCOPE hearing loss panel

[18] targets 89 genes and microRNAs associated with hear-

ing loss (1574 total exons); across a cohort of 711 sequenced

patients, the average sequence depth achieved was 716× per

patient. Numerous gene panels are commercially available,

ranging in size from a single gene to hundreds of genes. Ex-

ome sequencing, which targets virtually all ~ 20,000 protein-

coding genes, typically achieves > 100× average depth across

the target regions. Whole-genome sequencing offers the

most comprehensive approach and typically yields ~ 30–60×

average sequence depth across the entire genome. Other

considerations, such as cost and turnaround time, also influ-

ence the choice of sequencing strategy but are beyond the

scope of this review.

These differences in depth and breadth of sequencing

coverage have implications on variant calling. All three

strategies generally offer excellent sensitivity for detect-

ing SNVs/indels using tools such as GATK Haplotype-

Caller [19] and Platypus [20]. Copy number variants

(CNVs) spanning multiple exons can be called with rea-

sonable sensitivity using panel and exome data [21].

Whole-genome sequencing remains the superior strategy

for the comprehensive detection of all types of sequence

variants. However, it should be noted that the higher se-

quence depth achieved in panel and exome sequencing

may enable more sensitive detection of variants at low

allele frequencies, e.g., subclonal somatic mutations in

cancer and mosaic germline variants [22–24].

Alignment and pre-processing

The primary analysis of sequencing data, including its

alignment to a reference sequence, is a critical phase of

NGS analysis. A selection of recommended tools can be

found in the top of Table 2.

In a typical pipeline (Fig. 1a), raw sequence data in

FASTQ format are aligned to the reference sequence

using an aligner such as BWA-Mem [25], with the result-

ing alignments typically stored in binary alignment/map

(BAM) file format [31]. Because of their compressed file

size, indexed-access capabilities, and standardized data

formats, BAM files have become the standard format for

storing and sharing NGS data. The Samtools package [31]

provides most of the BAM file manipulation tools re-

quired for clinical sequencing.

Once NGS data are aligned to the reference sequence,

it is possible to identify redundant reads that originated

from the same DNA sequence molecule. These “PCR

duplicates” represent 5–15% of sequencing reads in a

typical exome [64] and can be identified on the basis of

the alignment position and read pairing information.

Tools such as Picard [28] and Sambamba [29] identify

and mark duplicate reads in a BAM file to exclude them

from downstream analysis.

The GATK Best Practices workflow [65] recommends

two additional steps for pre-processing BAM files prior

to variant calling. The first is base quality score recali-

bration (BQSR), which adjusts the base quality scores of

sequencing reads using an empirical error model. The

second is local realignment around indels, which aims to

reduce false-positive variant calls caused by alignment

artifacts (discussed below). Evaluations of variant calling

accuracy before and after BQSR/realignment suggest

that the improvements are marginal [66]; because of this

and the high computational cost, this may be viewed as

an optional step for pre-processing.

Routine quality control (QC) of analysis-ready BAMs

should be performed prior to variant calling to evaluate key

sequencing metrics [28], to verify that sufficient sequencing

coverage was achieved [32], and to check samples for evi-

dence of contamination [35]. In the case of family studies

and paired samples (e.g., tumor-normal), expected sample

relationships should be confirmed with tools for relationship

inference such as the KING algorithm [34].

Benchmarking resources for variant calling

Evaluating the accuracy of variant calls requires access

to benchmark datasets in which the true variants are

already known. Several such benchmarking resources

have been made publicly available in recent years. The

most widely used ones include the Genome in a Bottle

(GIAB) [67] and the Platinum Genome [68] datasets for

NA12878, a human sample of European ancestry that

has been sequenced with various technologies at

Table 1 Sequencing strategies for NGS and empirical variant

detection sensitivity. The Otoscope hearing loss panel v5 [18],

which targets 89 genes and microRNAs, illustrates a typical

gene panel. The approximate size of the total target space is

given in megabase pairs (Mbp). Typical exome kits target ~

50 Mbp of genome bases comprising coding sequences, splice

sites, alternative exons, and some non-coding RNAs, though this

space varies among manufacturers

Strategy Panel Exome Genome

Size of target space (Mbp) ~ 0.5 ~ 50 ~ 3200

Average read depth 500–100× 100–150× ~ 30–60×

Relative cost $ $$ $$$

SNV/indel detection ++ ++ ++

CNV detection + + ++

SV detection – – +

Low VAF ++ + +

Dollar signs represent approximate relative costs, though it should be noted

that the cost of panel sequencing depends on the size of the panel. The

empirical performance of each strategy for detecting variants of different

classes is indicated as good (+), outstanding (++), or poor/absent (−)
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laboratories around the world. Each benchmarking data-

set includes a set of “ground truth” small variant calls

(SNVs and indels) based on the consensus of several

variant calling tools, as well as defining the “high-confi-

dence” regions of the human genomes in which variant

calls can be benchmarked against a variety of public re-

sources. The GIAB dataset has been continually im-

proved with the addition of data from multiple short-

read and linked-read sequencing datasets and the expan-

sion of the reference from one sample to seven [69]. The

Global Alliance for Genomics and Health has also estab-

lished a best practice framework to guide evaluations of

variant calling accuracy using these resources [70]. As

discussed in this paper, sophisticated comparison tools

which account for subtle differences in variant represen-

tation are recommended when comparing a set of

variant calls against a benchmark resource.

One drawback of the aforementioned benchmarking

resources is that many of the same sequencing technolo-

gies and variant calling algorithms evaluated against

them were also used to construct the reference datasets

in the first place. Synthetically created datasets in which

the positions of all sequence variants are known a priori

have been published to address this issue. For example,

the synthetic diploid (Syndip) dataset is derived from de

novo long-read assemblies of two homozygous human

cell lines and aims to provide a less biased view of

variant calling accuracy genome-wide [71]. Syndip is

uniquely advantaged to provide benchmarking data for

more challenging regions of the genome, such as dupli-

cated sequences. Although the cell lines themselves are

not in a public repository, sequencing datasets for both

are widely available. More guidance on using bench-

marking datasets to optimize variant calling performance

is offered in the relevant sections below.

Best practices for germline variant calling

Dozens of variant calling tools for NGS data have been

published in the past 10 years, and countless more have

been developed by researchers for internal use. A selection

of exemplar tools grouped by purpose can be found in the

middle of Table 2. Because SNV/indel detection tools

such as GATK HaplotypeCaller have demonstrated high

accuracy (F-scores > 0.99) in numerous benchmark data-

sets, choosing a single variant caller that meets the needs

of the laboratory (in terms of pipeline compatibility and

ease of implementation) is usually sufficient. However,

combining the results of two orthogonal SNV/indel cal-

lers, such as HaplotypeCaller and Platypus, may offer a

slight sensitivity advantage. Software packages such as

BCFtools make it possible to merge and reconcile multiple

variant callsets (in VCF format) into one, though care

should be taken to properly handle complex variants and/

or differences in variant representation [70].

To discuss the recommended best practices for germ-

line variant calling, we will consider trio sequencing for

inherited disorders, which is a common scenario for

clinical genetic testing. A trio analysis pipeline typically

Table 2 Key components of NGS analysis and a list of exemplar tools. Most clinical sequencing pipelines will employ a single read

aligner (e.g., BWA-MEM) and mark duplicates with one algorithm (e.g., Picard). However, multiple tools for collecting sequencing

metrics and performing sample QC may be employed to meet the needs of the laboratory. For variant calling, it is recommended

that pipelines incorporate 2–3 tools for each class of variant to maximize detection sensitivity. See the relevant section of this review

for recommendations specific to each variant class

Strategy Variant callers

Alignment and pre-processing

Read alignment BWA-MEM [25], Bowtie 2 [26], minimap2 [27], Novoalign

Marking duplicates Picard tools [28], Sambamba [29], SAMBLASTER [30]

BAM file creation Samtools [31], GATK [19]

Sequencing metrics BEDTools [32], Picard tools [28], QualiMap 2 [33]

Sample quality control KING [34], VerifyBamID [35]

Variant calling

Inherited SNVs/indels FreeBayes [36], GATK HaplotypeCaller [19], Platypus [20], Samtools/BCFtools [37]

Somatic mutations deepSNV [38], MuSE [39], MuTect2 [40], SomaticSniper [41], Strelka2 [42], VarDict [43], VarScan2 [44]

Copy number variants cn.MOPS [45], CONTRA [46], CoNVEX [47], ExomeCNV [48], ExomeDepth [49], XHMM [50]

Structural variants DELLY [51], Lumpy [52], Manta [53], Pindel [54], SVMerge [55]

Gene fusions (RNA-seq) fusionCatcher [56], fusionMap [57], mapSplice [58], SOAPfuse [59], STAR-Fusion [60], TopHat-Fusion [61]

Variant review/storage

Visualization and review Artemis [62], Integrative Genomics Viewer [63]

VCF/BCF file manipulation BCFtools [37]

BAM binary alignment/map, SNV single nucleotide variant, VCF variant call format, BCF binary variant call format
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begins with the analysis-ready BAM files for the proband

and both parents (Fig. 1b). For optimal results, all three

samples should be sequenced under identical protocols

(capture kit, instrument, and reagent kit) and processed

with identical alignment and pre-processing steps. This

is particularly important for copy number variant calling

and SV calling, which rely on uniform sequencing depth

and library insert size, respectively.

Individual versus joint variant calling

Virtually, all variant calling tools can be applied to indi-

vidual samples after alignment and pre-processing are

complete. It may be preferable, therefore, to perform

variant calling on every sample as it comes through the

pipeline. Doing so can facilitate automation of NGS ana-

lysis, which may be desirable for laboratories processing

large numbers of samples. Individual VCF files can be

merged later using BCFtools or similar packages; how-

ever, it should be noted that VCF files typically only

contain entries for positions that are variant in a particu-

lar sample. In other words, when a variant is only de-

tected in some samples but not others, it is not clear

whether the other samples are wild type for that position

or simply did not achieve sufficient coverage for the

variant caller to make a call.

Joint variant calling—which considers all samples sim-

ultaneously—offers several key advantages. First, it pro-

duces called genotypes for every sample at all variant

positions, not just the ones that were detected in a given

individual. This makes it possible to differentiate be-

tween a position that matches the reference sequence

with high probability and a position in which the sample

did not achieve sufficient coverage. Second, in the case

of trio sequencing, joint calling enables direct inference

of phase information to establish, for example, whether

two heterozygous variants in a proband are in cis or in

trans. Third, it mitigates the issue of variant representa-

tion differences which might otherwise be problematic,

Fig. 1 Standard pipelines for NGS analysis. a Alignment and pre-processing of NGS data for an individual sample. Raw sequence data in FASTQ

format are aligned to the reference sequence, with the resulting alignments typically stored in binary alignment/map (BAM) file format. Marking

of duplicates in the BAM file is a critical step to account for duplicate reads of the same fragment. Base quality score recalibration (BQSR) and

local realignment around indels are a computationally expensive step that may marginally improve variant calls. At the conclusion of this step,

the file is ready for variant analysis. b Variant calling in NGS trio sequencing. In this common study design, variants are called jointly

(simultaneously) in a proband and both parents, which enables the phasing of variants by parent of origin. The initial variant calls are typically

filtered to remove a number of recurrent artifacts associated with short-read alignment and maybe visually confirmed by manual review of the

sequence alignments. Orthogonal validation may be performed to confirm the variant and its segregation within the family. De novo alterations

should be aggressively filtered to remove both artefactual calls in the proband (false positives) and inherited variants that were under-called in a

parent (false negatives). In addition to manual inspection of alignments, most de novo mutations are independently verified by orthogonal

validation techniques, such as Sanger sequencing. c Somatic variant calling in matched tumor-normal pairs. Identification of somatic alterations in

tumors requires specialized variant callers which consider aligned data from the tumor and normal simultaneously. Candidate somatic variants are

filtered and visually reviewed to remove common alignment artifacts as well as germline variants under-called in the normal sample. The

resulting variants are typically validated by orthogonal approaches, which may require specialized approaches for low-frequency variants
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particularly for complex variants [72]. Finally, joint ana-

lysis allows a variant caller to use information from one

sample to infer the most likely genotype in another,

which has been shown to increase the sensitivity of vari-

ant calling in low-coverage regions [19].

SNV/indel calling

Numerous tools have been developed to identify single

nucleotide variants (SNVs) and short insertions/dele-

tions (indels) from aligned NGS data. Most tools for this

purpose, such as Samtools/BCFtools [37] and FreeBayes

[36], employ Bayesian statistics to infer the most likely

genotype. GATK HaplotypeCaller [19] and Platypus [20]

also employ local realignment or assembly of sequencing

reads to improve the accuracy of variant calls. Numerous

studies have compared the relative performance of these

tools on various datasets and have found, generally, that

they produce similar results: variant concordance is typ-

ically 80–90% concordance or higher, with most differ-

ences are attributed to variants at low-coverage or low-

confidence positions [73–76]. Even so, such differences

could amount to thousands of variant calls genome-

wide. Thus, it is important not only to choose a robust

variant caller for SNVs/indels, but also to benchmark

and fine-tune it to achieve optimal performance on the

data to be analyzed.

Filtering to remove artifacts

The accuracy of NGS variant calls relative to the previ-

ous “gold standard” of Sanger sequencing has been well

documented at > 99% [77–79]. However, it should be

noted that NGS data are prone to certain types of

artifactual variant calls, many of which are related to er-

rors in short-read alignment [37, 66]. Numerous groups

including ours have investigated the source of artifacts

and demonstrated that they can be systematically filtered

without significantly compromising sensitivity [41, 44].

Even so, visual review of the alignments for clinically

relevant variants, using a tool like the Integrative

Genomics Viewer [63], is recommended to identify false-

positive variant calls that slip past automated filters.

Figure 2 depicts several frequently occurring artifacts

that can be identified by manual review: low-quality base

calls (Fig. 2a), read-end artifacts (Fig. 2b) due to local

misalignment near indels (Fig. 2c), strand bias artifacts

(Fig. 2d), erroneous alignments in low-complexity re-

gions (Fig. 2e), and paralogous alignments of reads not

well represented in the reference (Fig. 2f).

Orthogonal validation of NGS variants

Whether or not Sanger confirmation should be required

for clinically relevant variants remains a matter of debate

[80, 81]. In general, the validation rate for NGS variant

calls is extremely high—99.965% according to a well-

powered study [79]—suggesting that for the vast major-

ity of NGS variants, independent confirmation is un-

necessarily redundant. In many cases, a visual manual

review of the variant may be enough to determine if it

passes muster or warrants orthogonal validation. An

interlaboratory study of more than 80,000 clinical speci-

mens demonstrated that a heuristic approach examining

fewer than ten criteria (read depth, quality score, ob-

served variant allele sequence, repetitive sequence, etc.)

can identify the subset of variants most likely to be false

positives and thus requiring orthogonal validation [82].

Identifying de novo mutations

A key advantage of joint calling in trios is the ability to

distinguish de novo mutations, which account for a sig-

nificant proportion of positive diagnoses from clinical

genetic testing [11, 83–85]. According to recent large-

scale trio sequencing studies, the human de novo muta-

tion rate is approximately 1.29 × 10−8 per base pair per

generation [86, 87]. Thus, each proband likely harbors ~

70 de novo mutations genome-wide against a back-

ground of ~ 4–5 million inherited variants. In the

protein-coding exome, we expect ~ 1 de novo mutation

on a background of ~ 50,000 inherited variants. A se-

quence variant called in the proband is therefore far

more likely to be inherited than de novo. Furthermore,

even with extremely high variant calling precision

(99.9%), there will be 50 false-positive calls for each de

novo mutation. Thus, candidate de novo mutations

merit careful scrutiny.

In addition to filtering for artifactual calls as described

above, de novo mutations should be queried against

public databases of genome variation, such as the gno-

mAD database. Although true de novo mutations can

certainly occur at positions of known sequence variants,

a candidate de novo with appreciable frequency in the

population (i.e., MAF > 0.0001) is far more likely to

represent a germline variant. Similarly, manual review in

Integrative Genomics Viewer (IGV) should be used to

exclude both artifactual calls and variants with support-

ing evidence in one or both parents (e.g., Fig. 2a).

Copy number and structural variant calling

Copy number variants (CNVs) are a major source of hu-

man genetic variation and have been implicated in nu-

merous diseases [88–90], such as autism [91],

intellectual disability [92], and congenital heart disease

[93–95]. Although microarray testing is typically ordered

prior to panel or exome testing in a clinical setting,

NGS-based CNV detection is increasingly incorporated

into clinical diagnostic testing and accounts for 3–5% of

positive diagnoses. A number of tools exist for identify-

ing CNVs from targeted NGS data, such as cn.MOPS

[45], CONTRA [46], CoNVEX [47], ExomeCNV [48],
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ExomeDepth [49], and XHMM [50]. Most rely on com-

parisons of sequence depth between a test subject and a

comparator to identify significant changes in copy num-

ber. Not all CNV calling tools perform well in all situa-

tions, and as a rule, the sensitivity for CNV detection

using targeted NGS is limited compared to genome

sequencing [96].

Paired-end whole-genome sequencing data also en-

ables the detection of structural variants with increasing

precision. Popular tools for this application, such as

DELLY [51], Lumpy [52], Manta [53], Pindel [54], and

SVMerge [55], use two types of information to identify

signatures of structural variants. Read pairing informa-

tion serves to identify segments of the genome in which

molecularly linked read pairs map at unexpected dis-

tances or orientations. Split read alignments, in which a

single sequence read maps to two different regions of

the genome, are also incorporated into SV calling. It

should be emphasized that while many consider SNV/

indel detection with NGS to be routine, SV detection

with whole-genome sequencing data is still challenging,

as illustrated by the fact that leading tools achieve F-1

values of only ~ 0.80–0.90 in benchmarking experiments.

There are at least two principal reasons for this. First, it

is widely recognized that a large proportion of structural

variation occurs in “difficult” regions of the genome,

such as repetitive or tandem-duplicated sequences. Sec-

ond, the relatively short length of NGS reads (~ 150 bp)

and typical fragments (~ 300–500 bp) is often insuffi-

cient to resolve complex structural variants and long in-

sertions [97]. For this reason, linked-read and long-read

sequencing technologies are increasingly being applied

Fig. 2 Common artifacts in NGS alignments that gave rise to a false-positive de novo mutation call in a family trio. Each pane is an IGV

screenshot of WGS alignments for the proband (top track), mother, (middle track), and father (bottom track). Each sample’s track comprises two

parts: a histogram of the read depth and the reads as aligned to the reference sequence. Reads are colored according to the aligned strand

(red = forward strand; blue = reverse strand). a False positive associated with low base quality. Most reads supporting the variant have low base

quality indicated by lightly shaded non-reference bases. Four reads in the proband showed the alternate allele with good quality, triggering the

variant call. b False positive due to misalignments near the start or end of reads. Notice that the alternate allele is only observed at the start/end

of reads in the proband. In this case, the read depth histogram provides a clue as to the cause of the misalignment. As shown in the next panel,

this occurs at the breakpoint of a large paternally inherited deletion. c The same position as in b, but with soft-clipped bases shown in color.

BLAT alignment of such reads reveals that the soft-clipped portion matches the other side of the deletion segment some 5.2 kb downstream. d

False positive associated with strand bias. All but one variant-supporting reads in the proband are on the reverse strand, whereas reference-

supporting reads are equally represented on both strands. e False positives associated with low-complexity sequences. In this case, reads

erroneously showing a single-base deletion (horizontal black line) at a T-homopolymer are enriched in the proband. R supporting insertions

(purple) are also seen. Note that this position is zoomed out compared to the other panels, a recommended practice to visualize the end of

repetitive sequences. f False positives due to paralogous alignments of reads from regions not well represented in the reference. Alignments for

proband include reads with several substitutions relative to the reference sequence within the 41-bp viewing window. This typically occurs when

reads from sequences not represented in the reference are mapped to the closest paralog
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to resolve large SVs and complex sequences [98–100],

for a recent review, see [101].

Visual review of CNVs and structural variants called

by NGS can also, to some extent, be performed in IGV.

For SVs in particular, it is useful to view reads as pairs

and color them according to insert size, as shown in

Fig. 3. Well-supported structural variants are often sup-

ported by both discordant read pairs and changes in

overall sequence depth, such as the deletions in Fig. 3a

and b and the duplication in Fig. 3d. Manual review can

also help resolve ambiguous SV breakpoints (Fig. 3c).

Benchmarking germline variant calling pipelines

As described in the previous section, several reference

datasets and a “best practice” framework for benchmark-

ing variant calling pipelines are publicly available. At the

time of writing, the most recent dataset for sample

NA12878 includes ~ 3.04m SNVs and ~ 0.5m small

indels, as well as aligned high-depth Illumina sequencing

data in BAM format. These resources make it possible

to evaluate performance and fine-tune variant calling

pipelines to achieve optimal results. For small variants,

an F1 score > 0.99 should be achievable by robust variant

calling pipelines. High-quality DNA samples for

NA12878 can also be ordered from Coriell and se-

quenced independently to evaluate the performance of a

laboratory’s entire pipeline from sample preparation

through variant calling.

Benchmarking structural and copy number variant cal-

lers tends to be more challenging for two reasons. First,

these variants are more challenging to detect with preci-

sion using short-read sequencing data. Second, the precise

breakpoints for SVs/CNVs are not always well-defined,

which makes comparisons across callsets a more complex

endeavor. Even so, multiple “gold standard” SV callsets

such as GIAB [99], HS1011 [102], and HuRef [103] have

been published which employ orthogonal sequencing

technologies to define reference callsets comprising thou-

sands of structural variants. When benchmarking with

such resources, it is important to recognize that SV calling

with short-read data is more error-prone than small

variant calling; even the best-performing SV callers only

achieve F-1 scores of ~ 0.80–0.90 [103].

Best practices for somatic mutation calling

NGS of tumor specimens is increasingly deployed in on-

cology to guide diagnosis, prognosis, and personalized

care [104]. Although ~ 10% of cancer patients harbor

germline predisposition variants, the main purpose of

clinical tumor sequencing is often the identification of

somatic mutations, copy number alterations, and fusions

that may have clinical relevance. A standard pipeline for

this is shown in Fig. 1c. It illustrates a paired tumor-

normal sequencing strategy, that is, sequencing DNA

from a tumor sample and a matched control sample

(e.g., blood or skin) from the same patient. Although

tumor-only sequencing has been adopted by many la-

boratories as a cost-effective approach to guide cancer

diagnosis, prognosis, and therapy [16, 105–107], doing

so makes it difficult to distinguish true somatic muta-

tions from constitutional variants [108–110]. Thus, the

emphasis of this section will be on the “best practice” of

sequencing a tumor sample with a matched comparator

sample.

Numerous variant callers have been published for this

purpose; a list of the most cited callers can be found in

Table 2. Widely used somatic mutation callers, such as

MuTect2 [40], Strelka2 [42], and VarScan2 [44], con-

sider aligned data from the tumor and normal simultan-

eously. Several groups have attempted to directly

compare the performance of mutation callers for differ-

ent applications [111–113], finding that each has

strengths and weaknesses. Because no somatic caller has

emerged which offers superior performance in all sce-

narios, an ensemble approach that combines the results

of two or more complementary callers may offer the best

balance of sensitivity and specificity [73, 114].

Several aspects of clinical tumor sequencing can make

the detection of somatic mutations more challenging.

Tumor purity—the proportion of cells in a sample that

are cancerous—governs the representation of somatic mu-

tations in a sequenced sample, but pathology estimates of

purity based on light microscopy are notoriously inaccur-

ate [115–117]. Somatic mutations present at low fre-

quency due to low tumor cellularity and/or subclonal

mutation architectures can be challenging to detect, even

with high-depth sequencing data. Although many somatic

mutation callers such as VarScan2 can be configured for

the detection of variants at low frequencies, doing so often

reduces the overall false-positive rate. The type of speci-

men obtained for sequencing also influences mutation

calling. Formalin-fixed, paraffin-embedded (FFPE) sam-

ples, which are preferred for histopathological diagnosis,

often harbor thousands of artifacts arising from chemical

DNA damage [118–120]. These challenges call for a ro-

bust somatic mutation detection pipeline that performs

well across many types of clinical tumor samples.

Filtering somatic variant calls

Similar to germline SNVs/indels, candidate somatic vari-

ants should be filtered to remove common alignment ar-

tifacts such as those illustrated in Fig. 2. In addition, the

availability of a matched normal sample enables a direct

comparison of data characteristics at the site of a candi-

date somatic variant call to help distinguish true variants

from false positives. For example, reads supporting high-

quality mutation calls should exhibit similar position

and strandedness as reads supporting the wild-type
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allele. Other metrics, such as the difference in average

mapping quality or trimmed read length, help uncover

false positives due to alignment artifacts. Mismatch quality

sum (MMQS) difference, computed as the average sum of

base qualities for non-reference base calls in variant-

supporting reads, is a powerful metric for identifying false

positives associated with paralogous alignments [121].

Filtering with population databases

Population variant filtering is a powerful strategy for

identifying and removing likely germline variants from

somatic mutation callsets but should be done with

caution. Simply removing all variants in dbSNP [122] is

an appealing but hazardous strategy, since that database

contains a number of recurrent mutations from human

tumors—such as p.(H1047R) in PIK3CA (rs121913279)

and p.(R132H) in IDH1 (rs121913500)—as well as sev-

eral mutations from the COSMIC somatic mutation

database [109]. There is a similar risk for applying a

broad filter based on all variants in the gnomAD data-

base [123], in which the presence of apparent somatic

loss-of-function variants in hematological malignancy

genes like ASXL1 has been documented [124]. Allele fre-

quency information can be used to safeguard against the

Fig. 3 Visual review of copy number and structural variants. Each pane is an IGV screenshot of WGS for a proband (top), mother, (middle), and

father (bottom). The top track for each sample is a histogram of sequence depth. Reads are viewed as pairs, with discordant pair alignments

highlighted in color. a A homozygous ~ 4-kb del that appears heterozygous in the proband, homozygous in the mother, and absent from the

father. Note the discordant read pairs suggesting a deletion (red) and visible change in read depth. b Homozygous deletion inherited from two

heterozygous parents. c A heterozygous paternally inherited deletion with ambiguous end point by paired-end mapping resolved by visual

inspection of read depth. d A maternally inherited tandem duplication. Note the increased read depth in the histogram and the discordant read

pairs highlighted in green that span the original sequence and their tandem duplication
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inadvertent filtering of true somatic variants that are

present in such databases. Requiring a minimum minor

allele frequency > 0.0001 in the gnomAD or TopMed

database is recommended to select variants for filtering

somatic mutation callsets.

Some groups have also found value in using an in-

ternal “panel of normals” to identify and remove recur-

rent sequencing artifacts [38]. In this approach,

sequencing data from a set of normal DNA specimens

(typically ~ 50) are compiled into a reference panel

against which candidate somatic variants from tumors

can be quickly filtered to remove variant calls associated

with germline variants or sequencing artifacts. This ap-

proach is advantageous because it identifies artifacts that

may be specific to a laboratory’s sequencing protocols or

downstream analysis pipelines.

High-confidence somatic SNV/indel calls

In summary, high-confidence somatic SNV/indel calls

should be identified by multiple somatic mutation calling

tools at positions with sufficient sequencing coverage (>

10× in both tumor and normal tissue). Variant alleles

should be supported by reads on both strands with no ap-

parent bias in read position, base quality, or mapping

quality. High-quality SNVs/indels should also be absent

from public databases and an internal laboratory panel of

normal (if available), or else present at very low frequen-

cies (MAF < 0.001). Finally, candidate SNV/indel calls

Fig. 4 Detecting somatic rearrangements in cancer using NGS. Shown is whole-genome sequencing data for chromosome 1 for a tumor-normal

pair. Top: Log2 values indicate copy number changes in the tumor relative to the normal. Bottom: copy gains and losses skew tumor allele

frequencies for heterozygous variants, with loss of heterozygosity (red) apparent in regions of heterozygous deletions
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should be reviewed by visualization of the tumor and

normal sequencing alignments with a tool such as IGV.

Calling somatic copy number and structural variants

Many of the tools developed for germline CNV/SV call-

ing have been adapted for cancer genomics [125], and

still, others have been developed for the critical task of

identifying fusions from RNA-seq data [126]. Somatic

copy number alteration (SCNA) detection is arguably

the easier of the two tasks, since a matched normal sam-

ple is often alive to use as a comparator. Further, deep

sequencing data allow for precise determination of vari-

ant allele frequencies, the skewing of which can often be

observed to support candidate variants. Similar to som-

atic mutation calling, combining the results of at least

two tools, such as VarScan 2 (less conservative) and

GATK (more conservative), may provide the optimal

strategy for calling somatic CNAs. Further, incorpor-

ation of tumor variant allele frequency (VAF) informa-

tion can help generate supporting evidence for somatic

structural variants, since changes in copy number tend

to skew allele frequencies of heterozygous variants

(Fig. 4). Similar to somatic SNV/indel calling, somatic

SV/CNA calls may be filtered against a panel of normals

to remove calls in regions of highly variable copy num-

ber and recurrent artifactual SVs.

Benchmarking somatic calling pipelines

Benchmarking somatic mutation callers requires a reference

“truth set” of real somatic mutations. Such datasets have been

generated by synthetic mixing experiments (for example, of

NA12878 with another well-characterized sample at specific-

ally defined proportions). Of note, though numerous compari-

sons of somatic mutation callers have been published, the

findings are inconsistent [127]. One reason for this is that the

researchers conducting those studies often apply variant cal-

lers with default parameter settings or neglect to perform crit-

ical downstream filtering. To address this issue, the DREAM

ICGC-TCGA Somatic Mutation calling challenge invited

teams, including several developers of somatic mutation call-

ing tools, to benchmark their pipelines on a common dataset.

The organizers employed a robust simulation framework to

introduce synthetic somatic alterations (i.e., a truth set) into

real WGS data for three tumors upon which each team’s sub-

missions were evaluated. The simulated datasets and truth sets

from these challenges are freely available and offer a well-

vetted benchmarking resource for somatic SNV, indel, and

structural variant calling pipelines [128].

Conclusions and future directions

Variant calling in NGS data, much like NGS technolo-

gies themselves, has evolved considerably over the past

decade and remains an active area of research. Robust

pipelines for NGS analysis include steps for optimized

alignment and pre-processing, variant calling, filtering of

false positives, and visual manual review. While some of

these procedures, such as read alignment and SNV/indel

detection, can be suitably performed with a single soft-

ware package, others, such as CNV/SV calling and som-

atic mutation detection, benefit from incorporating

multiple independent tools. Benchmarking resources for

both germline and somatic variants provide an oppor-

tunity to evaluate and optimize the performance of vari-

ant calling. Although some classes of variants—such as

de novo mutations in germline studies and low-

frequency somatic mutations in cancer patients—likely

require validation on an orthogonal platform, the burden

of additional confirmatory testing is likely to decrease as

technologies continue to improve. However, the obser-

vation that even state-of-the-art SV callers only

achieve F-scores of ~ 0.80–0.90 in gold standard

datasets suggests that emerging long-read sequencing

technologies may ultimately be required to accurately

call large and/or complex structural variants. Never-

theless, the general principles discussed in this

review—rigorous pre-processing of sequencing data,

implementation of multiple variant calling ap-

proaches, and systematic filtering to remove arti-

facts—will remain relevant guidance for clinical

variant calling in years to come.
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