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Abstract Microalgae of numerous heterotrophic genera

(obligate or facultative) exhibit considerable metabolic

versatility and flexibility but are currently underexploited

in the biotechnological manufacturing of known plant-

derived compounds, novel high-value biomolecules or

enriched biomass. Highly efficient production of microalgal

biomass without the need for light is now feasible in

inexpensive, well-defined mineral medium, typically supple-

mented with glucose. Cell densities of more than 100 gl−1

cell dry weight have been achieved with Chlorella,

Crypthecodinium and Galdieria species while controlling

the addition of organic sources of carbon and energy in

fedbatch mode. The ability of microalgae to adapt their

metabolism to varying culture conditions provides oppor-

tunities to modify, control and thereby maximise the

formation of targeted compounds with non-recombinant

microalgae. This review outlines the critical aspects of

cultivation technology and current best practices in the

heterotrophic high-cell-density cultivation of microalgae.

The primary topics include (1) the characteristics of

microalgae that make them suitable for heterotrophic

cultivation, (2) the appropriate chemical composition of

mineral growth media, (3) the different strategies for

fedbatch cultivations and (4) the principles behind the

customisation of biomass composition. The review con-

firms that, although fundamental knowledge is now

available, the development of efficient, economically

feasible large-scale bioprocesses remains an obstacle to

the commercialisation of this promising technology.

Keywords Microalgae . Heterotrophic growth . High-cell-

density culture . Fedbatch process . Substrate limitation .
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Introduction

Microalgae, a large and heterogeneous group of micro-

scopic algae, are an almost untapped pool of metabolic

versatility. As many of the species occurring in nature have

not yet been identified and/or physiologically characterised,

their potential awaits exploitation in the biotechnological

manufacturing of high-value biomolecules or deliberately

enriched biomass (Guedes et al. 2011; Raja et al. 2008;

Rosenberg et al. 2008; Wijffels 2008). The term ‘micro-

algae’ is typically used in its narrowest sense as a synonym

for photoautotrophic, unicellular algae utilising CO2 and

gaining energy from light. Although certain species are

obligate photoautotrophs, numerous microorganisms current-

ly classified as microalgae are in fact obligate heterotrophs

(Droop 1974; Gladue and Maxey 1994), and others are

capable of both heterotrophic and photoautotrophic metabo-

lism either sequentially or simultaneously (Chojnacka and

Marquez-Rocha 2004; Droop 1974; Gladue and Maxey

1994; Lee 2001).

Heterotrophic cultivation without light and with the

controlled addition of an organic source of carbon and

energy is similar to procedures established with bacteria or

Dedicated to Professor Thomas Egli on his 60th birthday, in

recognition of his invaluable guidance and unfailing inspiration in the

field of microbial physiology

F. Bumbak : S. Cook : S. Hauser :K. Kovar (*)

Institute of Biotechnology,

Zurich University of Applied Sciences (ZHAW),

8820, Wädenswil, Switzerland

e-mail: karin.kovar@zhaw.ch

V. Zachleder

Laboratory of Cell Cycles of Algae,

Institute of Microbiology of AS CR,

37981, Třeboň, Czech Republic

Appl Microbiol Biotechnol (2011) 91:31–46

DOI 10.1007/s00253-011-3311-6



yeasts in multipurpose stirred closed tanks sterilised by

heat. To date, only a small number of microalgal species

have been cultured heterotrophically in conventional bio-

reactors (Chen 1996; Perez-Garcia et al. 2011). The few

commercialised processes in which microalgae are grown

under heterotrophic conditions are focussed on the manu-

facture of polyunsaturated fatty acids (PUFA) in 100-m3

scale (Behrens 2005). These biotechnological processes

represent a sustainable alternative to the extraction of PUFA

from fish oil (Apt and Behrens 1999; Barclay et al. 1994;

Barclay 1992; Kyle and Gladue 1991; Kyle et al. 1991;

Mendes et al. 2009; Wynn et al. 2005). Several other

heterotrophic processes that utilise microalgae have been

established at laboratory scale to deliberately enrich the

biomass with compounds such as pigments and antiox-

idants (Pulz and Gross 2004; Raja et al. 2008; Spolaore et

al. 2006). L-Ascorbic acid (Running et al. 1994) and

polysaccharides (Ramus 1972) are examples of commer-

cially valuable extracellular products obtained from micro-

algae. Classes of compounds that are found in microalgae

and that exhibit desirable properties for treating inflamma-

tion, tumours and viral or microbial infections are attracting

new interest (Guedes et al. 2011). Moreover, research in the

rapidly expanding field of biofuels (Wijffels and Barbosa

2010) provides a valuable source of fundamental informa-

tion on the physiology and biochemistry of microalgae,

producing high-value compounds (e.g. Brányiková et al.

2010; Xiong et al. 2010b). The growing interest in

microalgae, either non-recombinant or with appropriate

genetic modification (Potvin and Zhang 2010; Specht et al.

2010), suggests that heterotrophic microalgal processes

offer significant commercial opportunities (Rosenberg et

al. 2008).

In contrast to plants or seaweeds, in which biomass is

fairly compact, the harvesting of unicellular microalgae

dispersed in natural habitats of microbial consortia is not as

straightforward. Low cell densities of several grams per

litre are an important cost factor for established production

processes with photoautotrophic microalgae in convention-

al open ponds or photobioreactors (Molina Grima et al.

2003). However, cell densities of more than 100 gl−1 cell

dry weight, achieved with Chlorella, Crypthecodinium and

Galdieria species, highlight the potential of heterotrophic

microalgal processes (de Swaaf et al. 2003c; Doucha and

Lívanský 2011; Graverholt and Eriksen 2007; Wu and Shi

2007). Moreover, systematic screening for new compounds

is only feasible provided that sufficient quantities of

concentrated biomass from axenic (pure) cultures are

attainable (Olaizola 2003; Wijffels 2008).

From taxonomic studies, it is acknowledged that micro-

algae exhibit considerable metabolic plasticity (Trainor

2009). In response to their surroundings, particular species

can occur in alternative phenotypes, and these can result in

the altered formation of metabolites and/or products. Thus,

the composition of biomass (or intracellular products) or the

production of desired extracellular products is typically

affected by culture conditions (Hu 2004; Illman et al. 2000;

Jakobsen et al. 2008; Lv et al. 2010; Shi et al. 2006; Xiong

et al. 2010b; Yongmanitchai and Ward 1991). In turn, this

large environmental adaptability provides opportunities to

modify the production of targeted natural compounds and

to control their formation at high titres, yields, productiv-

ities and the required quality (purity). However, screening

the various (natural) phenotypes under different conditions

is a complex, time-consuming task involving a large

number of culture variables. The basic principles of

systematic screening were established during studies of

the species suitable for use in aquaculture hatcheries

(Gladue and Maxey 1994).

Although the opportunities for heterotrophic processes

with microalgae have been considered in several review

papers (Apt and Behrens 1999; Borowitzka 1999; Lee 2001

as well as more recently by Eriksen 2008b and Perez-

Garcia et al. 2011), few cover aspects of cultivation

technology in depth (e.g. Chen 1996; Chen and Chen

2006). In an attempt to address the outstanding issues, this

review paper outlines the current best practices in the

heterotrophic high-cell-density cultivation of microalgae for

the production of biomass or specific products for health

and nutraceutical applications. The main topics dealt with

include (1) the characteristics of microalgae suitable for

heterotrophic cultivation, (2) the appropriate chemical

composition of mineral growth media, (3) strategies for

high-cell-density cultivation and (4) the principles of

customising biomass composition. Thus, the potential and

limitations of fedbatch technology are outlined. The generic

process strategies described are based on experimental data

collected for non-recombinant microalgae and are, in

principle, also applicable to emerging strains improved by

genetic engineering.

Cultivation of microalgae in conventional stirred

bioreactors

The microalgal species which are currently attracting

commercial interest grow under heterotrophic conditions

and perform efficiently in conventional bioreactors in a

similar manner to bacteria or yeast (Riesenberg and Guthke

1999). Such sophisticated, safe and controllable bioreactor

systems are used to produce novel high-value compounds

with microalgae. In contrast, established microalgal prod-

ucts are mostly manufactured by traditional outdoor

photoautotrophic technologies (Lee 1997). If a product is

unique or is not obtainable in the desired quality or quantity

by other means (such as extraction from animal or plant
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material or chemical synthesis), the superior heterotrophic

growth characteristics become less critical. Performance

losses may also be acceptable in cases where patent

infringements need to be prevented. Nevertheless, using

microalgae instead of bacteria or yeasts provides the

opportunity to establish a new intellectual property claim

in the manufacture of competitive products (Borowitzka

1992).

General prerequisites and constraints

In order to be optimally suited for cultivation in conven-

tional stainless steel stirred bioreactors, a particular micro-

algal species should meet a number of desirable criteria

(Table 1). The primary prerequisite is the ability to grow

heterotrophically in an inexpensive, well-defined mineral

medium with a high degree of resistance to mechanical and

chemical stress.

Need for axenic cultures

An additional crucial prerequisite is the requirement for a

monoculture in a long-term bioreactor operation. To date,

this is still hampered by the dearth of axenic (pure) cultures

of species isolated from the environment. In heterotrophic

cultures, the advantage of preventing the growth of

contaminants through selective photoautotrophic conditions

is not a possibility. Thus, any (minor) contamination

introduced with the inoculum could easily outgrow the

desired microalgal species.

The particular obstacle can largely be overcome by

modern methods of flow cytometry. For example,

fluorescence-activated cell sorting permits the efficient

differentiation and subsequent isolation of single cells

based upon their morphology (size) and variation in

autofluorescence (Cellamare et al. 2010; Sensen et al.

1993; Surek and Melkonian 2004). The rate of success for

the isolation of axenic microalgal cultures collected from

natural habitats was reported to be considerably higher than

with a classical approach (Surek and Melkonian 2004).

Furthermore, for selectivity reasons and the resulting ease

of handling, microalgae such as Galdieria sulpuraria,

which perform well at 42 °C and at a pH of 2, are desirable.

Restrictions due to high salinity

Should growth in the presence of sea salt (and thus at a very

high salinity of about 35 g kg−1 of Na/KCl and high

osmolarity) be essential for good performance of a

particular species, additional investments in vessels coated

with special materials like polyether ether ketone are

necessary. However, high salinity has not always been

Table 1 Prerequisites, benefits and constraints of heterotrophic cultivation in conventional stirred bioreactors

Prerequisites/benefits Constraints

Bioreactor

cultivation

Performance independent of climate High oxygen demand

Reduced downstream costs Sophisticated substrate feed control

Enhanced productivity and/or titre Rheological limitations (at high viscosity)

Control of substrate concentrations Critical/toxic levels of metabolites

Scalable process strategies High costs for (new) equipment

Use of multi-purpose bioreactors

Low land requirement

Indoor and cGMP operation

Culture media Energy of light not required Enhanced risk of contamination (organic carbon

substrate, temperature, pH)

Defined (mineral) and inexpensive Corrosion (high salinity, critical pH)

Easy to sterilise Expensive ingredients (vitamins, amino acids)

Non-corrosive (low salinity, acidity) Non-defined composition (e.g. yeast extract)

Contamination protection (due to high salinity, extreme pH levels, high

temperature>40 °C)

Species Available as axenic culture Surface adhesion

Reasonable specific growth rate Aggregate formation

Mechanical resistance Secretion of viscous metabolites

Temperature achievable with conventional cooling (25–40 °C) Osmotic stress (at substrate over-dosing)

Robust and resistant (to long periods of refrigeration, freezing, repeated

cultivation, sudden condition changes)

Intracellular product harvest (hampered by rigid

cell walls)

Compiled from: Borowitzka 1992; Chen 1996; Doucha and Lívanský 2008 and 2011; Doucha et al. 2009; Gladue and Maxey 1994; Perez-Garcia

et al. 2011; Schmidt et al. 2005; Wu and Shi 2008
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linked to increased corrosion of metallic materials (Schmidt

et al. 2005). The requirement of marine species for high salt

concentrations is sometimes unwittingly overestimated and

the salt concentration may be significantly reduced without

productivity loss (Kiy et al. 2008). On the other hand, high

salt conditions have been found to significantly enhance

lipid formation. Upon changing the sodium chloride

concentration from 10 to 20 gl−1 in a culture of N. laevis,

the synthesis of total lipids, the production of eicosapen-

taenoic acid (EPA) and the accumulation of polar lipids

increased while the synthesis of neutral lipids decreased

(Chen et al. 2008).

Species used in heterotrophic processes

The ability of a number of microalgal species to grow with

organic carbon substrates has been demonstrated previously

(Droop 1974; Gladue and Maxey 1994). However, the

number of current commercially important microalgae that

are capable of growth on organic carbon substrates in the

dark, and where experience of fedbatch cultivation has been

gained, is very limited.

Growth characteristics

Both the (growth) kinetic and stoichiometric characteristics

of these microalgae, along with values for other microalgal

species obtained from batch cultures, are summarised in

Table 2. This table encompasses fast-growing species with

a specific growth rate higher than 0.09 h−1 (e.g. Chlorella,

Crypthecodinium, Nitzia, Prototheca spp.) and species that

grow at about half the rate, but where a lot of cultivation

experience is available (e.g. Galdieria, Haematococcus,

Nannochloropsis or Schizochytrium spp.). These specific

growth rates correspond to doubling times of between 7 and

15 h. Interestingly, the Chlorella genus exhibits a wide

range of growth rates with glucose, which vary with species

and growth conditions, such as temperature, pH or

dissolved oxygen concentrations (Shi et al. 2006). The

latter condition, in particular, can be controlled in high-cell-

density (heterotrophic) cultures as the specific growth rate

can be deliberately reduced to assure sufficient oxygen

supply (Doucha and Lívanský 2011). Furthermore, hetero-

trophic growth of Dunaliella sp. and Nannochloropsis sp. is

possible but is not practicable due to its very slow growth

(Gladue and Maxey 1994).

The specific microalgae’s tolerance to certain extracel-

lular substrate concentrations of several grams per litre, as

outlined in Table 2, is a feature that also allows particular

species to be readily grown to high cell densities in batch

culture. Galdieria sulphuraria reached the highest specific

growth rates at glucose concentrations of between 2 and

166 gl−1, while a glucose concentration of 200 gl−1 was

regarded as inhibiting its growth (Schmidt et al. 2005).

Other highly tolerant species are Schizochytrium and

Thraustochytrium, both known to accumulate large quan-

tities of lipids within their biomass (Jain et al. 2007; Kiy et

al. 2008). Although Chlorella sp. principally grow at

glucose concentrations of more than 60 gl−1 (Ip and Chen

2005b), residual concentrations as low as 10 gl−1 signifi-

cantly inhibit their growth (Sansawa and Endo 2004; Wu

and Shi 2007; Xiong et al. 2008).

Instigating the photosynthetic apparatus in the dark

Most of the ‘classic’ microalgal species are recognised

primarily as photoautotrophs. Studies on the effect of

repeated (and long-term) propagation in the absence of

light and using an organic carbon/energy source for the

production of substances involved in the photosynthetic

apparatus of microalgae are not yet conclusive (Graverholt

and Eriksen 2007; Sansawa and Endo 2004; Shen et al.

2010; Xiong et al. 2010a). Some of these substances

continue to be synthesised in the dark, for example, the

light-harvesting pigment phycocyanin from G. sulphuraria

(Eriksen 2008a).

Nevertheless, the inability of obligate photoautotrophs to

grow and divide without photosynthetically derived energy

is often the main obstacle preventing the efficient hetero-

trophic production of microalgal metabolites. This can be

overcome through appropriate genetic engineering, for

example, the introduction of a gene encoding a glucose

transporter as demonstrated by Zaslavskaia et al. (2001).

Another technically driven means involves exploiting

mixotrophic cultures, where microalgal cultures are simul-

taneously exposed to an organic carbon source and light

(Liang et al. 2009; Liu et al. 2009; Chen et al. 2006; Sloth

et al. 2006; Feng et al. 2005; Garcia et al. 2005; Ma and

Chen 2001). These do, however, require specially con-

structed illuminated bioreactors. It has also been suggested

that light-dependent production can be deliberately induced

by ‘oxidative stress’, triggered by substances other than

light (e.g. H2O2 or Fe
2+; Ip and Chen 2005a; Kobayashi et

al. 1993).

Composition of culture media and microalgal biomass

Most of the culture media for growing microalgae in vitro

have been developed using, as a base, the stoichiometric

composition of the microbial biomass grown under regular

physiological conditions (Egli 2000; Egli and Fiechter 1981).

Information on the composition of microbial biomass in

relation to the formation of a particular product is very

limited and may vary depending on species and culture

conditions. For natural phytoplankton (representing a hete-

rogeneous consortium of microalgae), the proportions of the
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elements are typically derived from the ‘Redfield ratio’ dating

back to 1934, suggesting amolar ratio of C106N16P1 as described

in Falkowski (2000). This has recently been further extended to

include other important elements (Ho et al. 2003; Quigg et al.

2003). The stoichiometric composition of phytoplankton is

comprehensively reviewed by Klausmeier et al. (2008). For

heterotrophic cultures of Chlorella vulgaris, a molar stoichiom-

etry of C3.96H7.9O1.875N0.685P0.0539K0.036Mg0.012 was deter-

mined (Sansawa and Endo 2004), and this has been reflected

in optimised media compositions for biomass production

in high-cell-density fedbatch processes (e.g. Doucha and

Lívanský 2011; Xiong et al. 2008). All of the major

molecules in microalgae (i.e. proteins, carbohydrates,

lipids) contain carbon as the principal element, with

oxygen, hydrogen and nitrogen at lower, or even zero,

concentrations (Fig. 1). Typically, in media for heterotro-

phic cultures that support optimal growth, all of the

constituents are supplied in stoichiometric excess to the

organic carbon source. Applying stoichiometric principles

to an established medium for photoautotrophic cultures of

Chlorella spp. (Vonshak 1986), the medium was shown to

be deficient in iron, magnesium, sulphur and nitrogen.

When optimised, a fivefold increase in biomass concen-

tration was achieved (Mandalam and Palsson 1998).

For most of the microalgal species capable of heterotro-

phic growth, glucose or acetate is an adequate source of

energy and carbon (Table 2; Lee 2004; Lee 2001; Perez-

Garcia et al. 2011). In addition, low-cost media formula-

tions with molasses or carob pulp syrup, or the waste

streams from sugar or milk processing industries, have been

successfully used as alternatives to glucose (Mendes et al.

2007; Schmidt et al. 2005). Although microalgae grow with

various carbonaceous compounds, glucose is the preferred

carbon source because of its ease of handling, accessibility

and safety (Lee 2004; Perez-Garcia et al. 2011; Sun et al.

2008). In particular, glucose is used for the production of

high-value compounds where the processes need to be

reproducible for prospective regulatory approval for phar-

maceutical manufacture. Acetate and ethanol are possible

alternatives but, because of their respective corrosive effects

or high flammability, are only used when an exceptional

productivity enhancement is achieved (de Swaaf et al.

2003b; de Swaaf et al. 2003c; Ogbonna et al. 1998).

Although the cost of (pure) glucose for microalgal

production of high-value compounds is less critical than

in the biofuel field, opportunities for valorisation of the

biomass after isolation of the target compound are

desirable. Examples of such valorisation include the

subsequent production of animal and fish feed or its use

as an energy-rich biomass for the production of biofuels

(Brennan and Owende 2010; Chisti 2007).

Nitrate, ammonia and/or urea are the preferred nitrogen

sources at a bioreactor scale (Grobbelaar 2004). Tryptone,

glycine and yeast extract have also been evaluated for their

potential to enhance growth or product formation (Shen et

al. 2010). Moreover, growth data suggest that nitrogen

source preference might vary between the species (Shen et

al. 2010; Xiong et al. 2008). Yeast extract, a complex

component with a high carbon content, is not defined at the

single-element level but is frequently used as a source of

stnemeleselucelom
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7 –10%
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6 –8%
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51 –72%
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Fig. 1 Compositional variation in Chlorella sp. biomass. Left,

molecular composition, lower and upper limits determined at low

and high nitrogen availability in heterotrophic cultures of C.

protothecoides (adapted from Xiong et al. 2010b). Right, proportions

of macro and micro elements (adapted from Oh-Hama and Miyachi

1988)
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nitrogen, amino acids, vitamins and trace elements (Grant

and Pramer 1962). As its composition varies from lot to lot,

supplementation with yeast extract makes precise stoichio-

metric process control impossible. Moreover, the depletion

of some of the components of yeast extract has been shown

to result in a linear growth pattern. For example, in a

heterotrophic culture with C. cohnii, a non-specific nutri-

tional limitation was detected, which coincided with a

change from exponential to linear growth while continu-

ously feeding glucose to maintain a residual concentration

of between 5 and 20 gl−1 (de Swaaf et al. 2003c). It was

concluded that nitrogen, solely derived from the yeast

extract, was most probably depleted, resulting in the onset

of the linear phase, a cessation of cell division and the

diversion of added glucose into the accumulation of lipids

within the cell.

Furthermore, several microalgae that are grown in pure

culture with mineral medium require supplementation with

the vitamins cobalamin and/or thiamine (Carvalho et al.

2006; Croft et al. 2005; Droop 2007). In turn, species

capable of endogenously synthesising cobalamin need

traces of cobalt (Grobbelaar 2004).

High-productivity processes

The development of appropriate strategies for enhancing

biomass and/or product formation is based on understand-

ing (Carvalho et al. 2006; Grobbelaar 2004; Hu 2004) and

exploitation of the flexibility (adaptability) of biomass

composition within its upper and lower limits as defined

by different culture conditions and/or the altered supply of

chemical elements in the culture medium. Achieving the

desired (optimum) process performance, however, is far

from straightforward, as some objectives are by their very

nature contradictory (e.g. the highest product titre vs. the

shortest process duration, the highest product purity vs. the

highest biomass or product formation rates and yields).

High cell densities achieved

In the scientific literature concerning the mass cultivation of

microalgae, the term ‘high-cell-density culture’ (HCD) is ill

defined but is generally applied to those values of biomass

concentration that fall within the range of the highest values

published for photoautotrophic or heterotrophic processes.

For a photoautotrophic system, the highest biomass

concentration achieved to date is 40 gl−1 of cell dry weight

(CDW) with thin-layer cultures (Doucha and Lívanský

2006). However, in heterotrophic fedbatch cultures of

Chlorella sp. concentrations ranging from approximately

100 gl−1 to greater than 150 gl−1 CDW are currently

achievable (Table 3; e.g. de Swaaf et al. 2003b; Doucha and

Lívanský 2011; Graverholt and Eriksen 2007; Schmidt et

al. 2005; Hauser, unpublished data). Typically, such high

cell densities are attainable in fedbatch operation where the

increasing biomass is retained and thus accumulates in the

bioreactor. A highly concentrated solution of the growth

substrate is added in a controlled mode, which in turn

determines the specific growth rate and limits the concen-

tration of the residual substrate in the culture broth (e.g.

glucose concentration in the feed solution ranging from 100

to 570 gl−1, where the highest concentration was used by de

Swaaf et al. (2003c)). As the actual data relating to the time

courses of the effective (working) culture volume are

generally not provided in the publications (Table 3), it is

not possible to calculate the amount of biomass produced

(in grams) and, thus, the specific growth rates.

Furthermore, biomass concentrations of more than

40 gl−1 CDW have been achieved in batch cultures with

the few microalgal genera that tolerate exceptionally high

substrate concentrations (Table 2; e.g. Galdieria, Schizo-

chytrium and Thraustochytrium in Schmidt et al. 2005;

Jain et al. 2007; Kiy et al. 2008, respectively). For

instance, high-cell-density batch cultures with the obli-

gate heterotrophic Prototheca sp. and Aurantiochytrium

sp. were described by Running et al. (2002) and Jakobsen

et al. (2008), respectively. In the latter, the cell dry weight

increased from 40 to 90 gl−1 during a post-exponential

growth phase while the lipid content of the biomass

increased between circa 10% and 60%. In this context, the

term ‘biomass growth’ needs to be differentiated as either

the cells’ proliferation due to cell division or an increase

in cell mass not directly linked to an increase in cell

number.

Do high-cell-density culture and rapid growth imply high

productivity?

Although microalgal biomass is the only target in some

processes (Becker 2007; Brown et al. 1997; Doucha et al.

2009; Duerr et al. 1998; Tokusoglu and Unal 2003), the

apparent prime focus on HCD cultures often obscures the

ultimate objective for any microalgal process, which is to

achieve the highest product concentration of the desired

quality in the shortest possible time. From the basic data

summarised in Table 3, the product to biomass yield (Yp/x, in

g g−1) and the volumetric productivities (rx or rp, in g l−1 h−1)

can be calculated. In principle, however, interpreting

productivities that have been computed on the basis of

average values for the whole process duration can be

misleading.

Maintaining growth at the maximum specific growth rate

(μ, in h−1) does not often correlate with the highest

attainable rate of specific product formation (qp, in g g−1

h−1). Generally, the kinetic models accepted of microbial
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growth association also apply for microalgae. For instance,

in continuous cultures, the maximum production of EPA by

photoautotrophically grown Nannochloropsis sp. was

achieved at dilution rates in the range of 0.004–0.013 h−1

while maximum biomass productivity was obtained at

higher dilution rates ranging between 0.011 and 0.017 h−1

(Zou et al. 2000). Similarly, the highest DHA content as

well as the highest degree of fatty acid unsaturation of

Crypthecodinium cohnii was measured at low glucose

concentrations (5 gl−1) and thus at a slow growth rate

(Jiang and Chen 2000). The formation of EPA by Nitschia

laevis in continuous heterotrophic culture was, on the

contrary, reported to occur at a higher dilution rate and

higher glucose concentration than maximum growth (Wen

and Chen 2003). A positive growth association was

however reported to apply to the biosynthesis of astaxan-

thin in Chlorella zofingiensis (Wang and Peng 2008). The

above information illustrates that product formation kinetics

can fall into either positive or non-/negative growth-

associated product formation or a combination of both.

Especially in those cases where product formation is not

correlated with maximal growth, it is advantageous to have

full control over the specific growth rate. In general, such

fine-tuning of growth is achieved by the controlled addition

of medium constituents in fedbatch cultivation.

Different carbon substrates lead to different biomass/

substrate yields and also affect the formation of the targeted

product. As a consequence, maximum product formation

does not always correlate with maximum biomass concen-

tration. For instance, in a culture of C. cohnii grown with

acetic acid, 77 gl−1 of biomass and 9.5 gl−1 of docosahex-

aenoic acid (DHA) were harvested after 210 h (de Swaaf et

al. 2003c). In an alternative process strategy using ethanol

as the carbon and energy source, less biomass (59 gl−1)

generated more DHA (10.4 gl−1) in a shorter period of time

(200 h; de Swaaf et al. 2003b). In another example,

Euglena gracilis grown with glucose reached 48 gl−1 of

biomass and 150 μg gCDW
−1 of α-tocopherol in 182 h

(Ogbonna et al. 1998). When fed with ethanol, the growth

slowed significantly; however, the product yield was

enhanced by a factor of approximately 10, reaching

1,200 μg gCDW
−1 and 39.5 gl−1 of biomass in 455 h.

As biomass growth slows, for instance, due to the effect

of temperature or restricted substrate availability, cell

division decelerates and the formation of storage products

typically increases simultaneously. PUFA synthesis in

certain species, such as eicosapentaenoic acid in Chlorella

minutissima, has been reported to occur preferentially at

temperatures lower than those required for optimal growth

(Yongmanitchai and Ward 1991). However, in the diatom

Phaeodactylum tricornutum, maximum product yield and

maximum biomass concentration were achieved at the same

cultivation temperature between 21.5 and 23 °C. In

contrast, the lutein yield (Yp/x) of heterotrophically grown

Chlorella protothecoides was increased from 4.25 to

4.59 mg g−1 by raising the cultivation temperature from

24 to 35 °C (Shi et al. 2006).

Strategies to enhance productivity in fedbatch cultures

Fedbatch cultivation is the most effective technique for

reaching high biomass concentrations in a short time and

controlled manner. Typically, this is achieved in cultures

grown heterotrophically through controlling the rate of

addition of the organic carbon and energy source (i.e. the

substrate feed). Varying feed strategies can lead to different

efficiencies of biomass and/or product formation.

In contrast to batch mode, osmotic or toxic effects due to

high substrate concentrations can be avoided in a fedbatch

culture. Moreover, perfusion technology (with cell retention

but exchange of culture medium) is appropriate when

inhibitory metabolites, which would otherwise affect

biomass growth or product formation, need to be

removed (Wen and Chen 2002). Auto-inhibition effects

have been described in the literature for the cultivation of

different species or desired products, such as fatty acids

(Bosma et al. 2008; Javanmardian and Palsson 1991; Zou

et al. 2000).

The microalgal high-cell-density processes described in

the literature (Table 3) employ several different strategies

for substrate addition, which are optimised with respect to

both the physiological requirements of the particular

species and the technical restrictions of the available

equipment. The majority of heterotrophic processes

employing fedbatch mode, and using microalgae to produce

high-value compounds that have been described systemat-

ically in recent publications, concentrate on some five to

ten species and can be categorised by their target product as

follows:

& Polyunsaturated fatty acids, like DHA (Chi et al. 2009; de

Swaaf et al. 2003c; Ganuza and Izquierdo 2007) and EPA

(Wen and Chen 2002; Wen et al. 2002), using C. cohnii,

Nitzschia laevis, Schizochytrium sp. or Ulkenia sp.

& Carotenoids, like astaxanthin (Sun et al. 2008) and

lutein (Shi et al. 2002), using Chlorella sp., and

tocopherols with E. gracilis (Ogbonna et al. 1998)

& Phycobiliproteins like phycocyanin using G. sulphuraria

(Graverholt and Eriksen 2007; Schmidt et al. 2005)

The principal differences of the fedbatch processes listed

in Table 2 are (1) the cells’ physiological state which is

both affected by unrestricted or controlled substrate

availability, (2) the limited (since controlled) availability

of an element other than carbon and (3) the control strategy,

which is either a predefined open-loop control or a

feedback control (closed loop).
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Pulsed addition of an organic carbon and energy source

The pulsed addition of a carbon source is frequently

employed in the high-cell-density cultivation of Chlorella

sp. (Doucha and Lívanský 2011; Sansawa and Endo 2004;

Shi et al. 2002; Sun et al. 2008; Xiong et al. 2008) and has

also been applied in processes with E. gracilis (Ogbonna et

al. 1998) and G. sulphuraria (Schmidt et al. 2005).

Following the depletion of the substrate during an initial

batch phase, the residual glucose concentration in the

bioreactor is typically maintained within pre-determined

upper and lower concentration limits. With C. zofingiensis

and C. protothecoides, the upper limits were set at

concentrations of approximately 24 or 30 gl−1, respectively.

Higher levels would have inhibited biomass growth

(Sansawa and Endo 2004; Shi et al. 2002; Sun et al.

2008; Xiong et al. 2008). The pulsed addition of a highly

concentrated substrate solution was repeatedly triggered

(about five to seven times during the entire process)

whenever the glucose concentration dropped below a

defined concentration of several grams per litre (Fig. 2).

As described in a later section on feedback control

strategies, overdosing with substrate can be prevented by

implementing an automated dosing strategy based on

monitoring the dissolved oxygen concentration.

Pulsed fedbatch strategies are therefore appropriate to

species where growth is inhibited by very high substrate

concentrations but where residual substrate concentrations

of several grams per litre can be tolerated. Biomass is

developed at the highest specific growth rates when growth

occurs in the continuous presence of an excess of substrate

and in a balanced medium. The values for a specific growth

rate achieved in such fedbatch processes are comparable to

those rates attained during unrestricted, exponential growth

in a batch culture (e.g. μmax>0.18 h−1 for C. vulgaris;

Doucha and Lívanský 2011). The pulsed fedbatch strategy

is applicable to systems required to produce compounds

where formation is tightly associated with fast biomass

growth. In addition, the combined production strategies can

be applied to systems where rapidly built biomass is

Maximal biomass productivity (when growth is unrestricted) due to pulsed substrate addition 
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Fig. 2 Principles of controlling growth and product formation

through different modes of substrate addition. The three pictograms

in each row show (from left to right) the time dependence of the

following variables within the fedbatch phase of a bioreactor

cultivation of C. vulgaris and their maximum (max), minimum

(min), optimum (opt) or residual (res) values as indicated by the

horizontal dashed lines: specific growth rate (μ), specific substrate

utilisation rate (qs) and specific product formation rate (qp); concen-

trations of biomass (x) and the growth-limiting substrate (s) in the

bioreactor, where the substrate concentration in the bioreactor was

either determined by pulsed addition at predefined limits (s>s1 and s<

s2) or reached a residual concentration (sres) below which the substrate

cannot be utilised at the particular specific growth rate; mode of

substrate addition. In the left-hand pictograms, growth-associated

kinetics of the product formation was applied accordingly to the

formula: qp=Yp/x ·μ, where Yp/x is a constant product yield per biomass

coefficient. A constant specific growth rate near to its maximum

(μmax) and correspondingly exponentially increasing biomass concen-

tration is achieved with pulsed substrate addition (first row, derived

from the data of Doucha and Lívanský 2011). With continuous

substrate addition and an exponentially increasing feed rate (second

row), a desired constant specific growth rate (μopt<μmax) is controlled

at the optimum for product formation. To reach near-optimum

conditions, the exponential addition can also be approximated by a

stepwise increasing feed rate (dashed step-like line)
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essential during the first process phase, prior to a

subsequent differently controlled phase that promotes

product formation (e.g. Ganuza et al. 2008; Hata et al.

2001).

Continuous addition of an organic carbon and energy

source

Potential strategies for continuous substrate addition are

usually categorised using mathematical functions that

describe the time dependence of the rate of substrate

addition (i.e. the feed profile). Such strategies encompass

substrate addition at constant or predefined rates. Prede-

fined rates can increase or decrease following linear or

exponential functions or by equivalent, stepwise approx-

imations (Fig. 2). However, the only feed profiles that are

currently used to grow microalgae are those with stepwise

increasing or decreasing feed rates (for example, Chlorella,

Crypthecodinium, Galdieria and Nitzschia by Wu and Shi

(2007), de Swaaf et al. (2003b), Graverholt and Eriksen

(2007) and Wen and Chen (2002), respectively).

The optimum feed profile for product formation can be

determined by using a rational approach provided that the

effect of appropriate control variables (including μ) on the

targeted productivity has been quantified and, preferably,

captured in a model (Wu and Shi 2007; Zhang et al. 1999a;

Zhang et al. 1999b; Zhang et al. 1999c). In addition,

models based on hybrid neural networks can be used to

predict optimum fedbatch strategies. A feed profile that

included an exponentially increasing glucose addition over

several steps, each at a constant feed rate, was successfully

applied to a Chlorella pyrenoidosa culture to attain a

biomass concentration of 116 gl−1 at an average produc-

tivity of 1.02 gl−1 h−1 (Wu and Shi 2007). Similarly, with a

culture of G. sulphuraria, the feed rate was increased up to

3.7 times in one step per day, achieving 27.8 gl−1 of

biomass and an average productivity of approximately

0.33 gl−1 h−1 (Graverholt and Eriksen 2007). Following an

initial batch culture, the substrate was continuously added

at a specific rate, which was lower than the specific glucose

utilisation rate required to support the biomass, i.e. a μmax

of 0.053 h−1. Residual glucose concentrations were main-

tained below 0.5 gl−1 and the specific growth rate was

controlled at 0.046 h−1 during the fedbatch phase.

Specific growth rate can be controlled at a particular

defined rate, lower than its maximum, by continuous

(preferably exponential) substrate addition. This allows

product formation to be enhanced when its optimum is

not linked to the fastest biomass growth (as illustrated in

the pictograms in Fig. 2). However, the strategy of

controlling the μ at a certain (optimum) value as demon-

strated with bacteria and yeast has not yet been described in

the literature on microalgae.

Substrate addition determined by feedback control

A feedback control strategy allows a continuous adap-

tation of the rate of substrate addition based on

physiological criteria, such as the production of acids

or bases (de Swaaf et al. 2003c), or oxygen utilisation

(de Swaaf et al. 2003b; Schmidt et al. 2005). The changes

in pH and pO2 values resulting from biomass growth (or

product formation) are countered up to a predefined

value.

In an auxostat-fedbatch system with Schizochyrium sp.,

the pH was continuously controlled at a value of 7 through

the addition of ammonium hydroxide solution (Ganuza et

al. 2008). In this manner, both pH and an excess of nitrogen

were controlled while the growth of the biomass reflected

the utilisation of the carbon substrate. The substantial

technical benefit of such a system is the potential to replace

the ammonium hydroxide solution used for pH control with

a potassium hydroxide solution. In this way, the desired

onset of the production of lipids (DHA) is readily triggered

through nitrogen deprivation (i.e. the nitrogen level

decreases to zero from the concentration accumulated

during the ammonium hydroxide addition phase). Effec-

tively, this process strategy is fedbatch with respect to the

nitrogen addition but is batch with respect to the (carbon)

growth substrate. In a fedbatch process producing DHA

with C. cohnii (de Swaaf et al. 2003b), the acetic acid used

as the carbon/energy substrate was added via a pH control

system to maintain a pH of 6.5. This resulted in the

continuous addition of acetic acid at a rate which followed

a time course determined by the metabolic requirements of

the biomass.

Feedback control based on the dissolved oxygen concen-

tration (pO2 or DO) is another process strategy that is

technically feasible to prevent overdosing of the substrate.

As determination of the residual concentration of the substrate

typically involves a time delay, monitoring the decrease/

increase in pO2 has the advantage such that the pulsed

addition of substrate can be appropriately timed (Schmidt et

al. 2005).

Strategies for customising biomass composition

by adapting the culture medium

The following strategies, potentially combined with fedbatch

culture, allow product formation or biomass composition to be

further controlled:

& Controlling the availability of components in the

growth medium other than carbon

& Replacing a medium component with an alternative

(e.g. using a different carbon or nitrogen source or

exchanging sulphur with selenium)
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& Adapting the culture conditions (for example, T, pO2,

pH) to conditions that would typically be outside of the

optimal range for biomass growth

Affecting the proportions of macromolecules

within the biomass

Biomass composition can be customised and/or product

formation can be enhanced through tailoring the composi-

tion of the culture medium. The latter is achieved by

controlling the consumption of a particular element through

ensuring that its supply and, thus, availability are limited.

An example of this principle is seen in the range of

biomass composition achievable with C. protothecoides

(Fig. 1).

Lipid content has been reported to increase under

nutrient-deprived conditions such as low concentrations of

nitrogen (Griffiths and Harrison 2009; Hsieh and Wu 2009;

Illman et al. 2000; Jakobsen et al. 2008; Lv et al. 2010;

Lynn et al. 2000; Rodolfi et al. 2009; Widjaja et al. 2009;

Yongmanitchai and Ward 1991), phosphorus (Lynn et al.

2000; Reitan et al. 1994; Rodolfi et al. 2009) and silicon

(Griffiths and Harrison 2009; Lynn et al. 2000). Low

nitrogen concentrations were also reported to increase the

cellular contents of lutein in C. protothecoides (Shi et al.

2002) and astaxanthin in C. zofingiensis (Ip and Chen

2005b).

N-deprivation regimes are most frequently expressed as

the molar carbon-to-nitrogen (C-to-N) ratio (Ip and Chen

2005b; Shi et al. 2002; Sloth et al. 2006; Wen et al. 2002).

Grown at a high C-to-N ratio, the cell dry mass of C.

protothecoides contained up to 53.8% lipids compared to

25.2% obtained in low C-to-N medium. This lipid increase

was accompanied by a drop in protein content from 25.8%

at low C-to-N to 10.5% at a high C-to-N ratio (Xiong et al.

2010b).

Biomass enrichment by replacing its constituents

The enrichment of the microalgal biomass with (readily

bio-available) selenium at extraordinarily high volumetric

productivities and final concentrations (> 0.4 mg Se per

gram of biomass) is governed by a different mechanism

than the enrichment by lipids. Microalgae, which are grown

in medium containing a lower-than-stoichiometrically-re-

quired concentration of sulphur, are exposed to inorganic

selenium in the form of selenite. Depending on the algae

species, the cells are capable of incorporating the

element at different levels, preferentially into intracellular

protein, e.g. C. vulgaris or Scenedesmus quadricauda in

Doucha et al. (2009) and Umysová et al. (2009),

respectively.

Conclusions and future trends

Recent advances in microalgal biotechnology have created

opportunities for the efficient production of high-value

(natural) compounds with the properties of plant-derived

products that provide unique benefits (e.g. plant-like

glycosylation) compared to their analogues resulting from

chemical synthesis or recombinant microorganisms. The

laboratory-scale bioreactor cultivations included within this

review provide a first insight into the feasibility of carrying

out heterotrophic processes with microalgae at an industrial

scale. These processes have, in part, already been commer-

cialised with the biotechnological production of PUFA. (To

date, the authors are not aware of any literature on the

heterotrophic large-scale fedbatch cultivation of micro-

algae, in contrast to literature on batch cultivation referred

to by Apt and Behrens 1999; Behrens 2005; Wynn et al.

2005). This review confirms that the development of

efficient, economically feasible large-scale bioprocesses

remains an obstacle to the commercialisation of the

promising microalgae technology.

The generic cultivation strategies outlined are based on

the experimental data of natural microalgae but, in principle,

could also be applied to emerging strains improved by

genetic engineering. Fundamental knowledge enabling strain

design may be derived from advanced metabolic flux

analyses (Xiong et al. 2010b). A promising new avenue for

transgenic microalgae is developing based on the knowledge

gained over the past two decades, which includes the

complete sequencing of the first microalgal genomes

(Leon-Banares et al. 2004; Parker et al. 2008; Rosenberg et

al. 2008; Walker et al. 2005a; Walker et al. 2005b).
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