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Bloodstream infections (BSI) have a substantial impact on morbidity and mortality

worldwide. Despite scarcity of data from many low- and middle-income countries

(LMICs), there is increasing awareness of the importance of BSI in these countries. For

example, it is estimated that the global mortality of non-typhoidal Salmonella bloodstream

infection in children under 5 already exceeds that of malaria. Reliable and accurate

diagnosis of these infections is therefore of utmost importance. Blood cultures are the

reference method for diagnosis of BSI. LMICs face many challenges when implementing

blood cultures, due to financial, logistical, and infrastructure-related constraints. This

review aims to provide an overview of the state-of-the-art of sampling and processing

of blood cultures, with emphasis on its use in LMICs. Laboratory processing of blood

cultures is relatively straightforward and can be done without the need for expensive and

complicated equipment. Automates for incubation and growth monitoring have become

the standard in high-income countries (HICs), but they are still too expensive and not

sufficiently robust for imminent implementation in most LMICs. Therefore, this review

focuses on “manual” methods of blood culture, not involving automated equipment.

In manual blood cultures, a bottle consisting of a broth medium supporting bacterial

growth is incubated in a normal incubator and inspected daily for signs of growth. The

collection of blood for blood culture is a crucial step in the process, as the sensitivity

of blood cultures depends on the volume sampled; furthermore, contamination of the

blood culture (accidental inoculation of environmental and skin bacteria) can be avoided

by appropriate antisepsis. In this review, we give recommendations regarding appropriate

blood culture sampling and processing in LMICs. We present feasible methods to detect

and speed up growth and discuss some challenges in implementing blood cultures in

LMICs, such as the biosafety aspects, supply chain and waste management.

Keywords: clinical bacteriology, blood culture, low-resource settings (LRS), laboratory medicine practices,

bacteremia diagnosis
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INTRODUCTION

Scope of This Review
This review provides an overview of current best practices in
sampling and processing blood cultures in low- and middle-
income countries (LMICs). LMICs are defined depending on
gross national income per capita by the World Bank1.
LMICs face many challenges when implementing laboratory
medicine, related to lack of financial and human resources
and infrastructure (1). Since most studies on blood cultures
have been performed in high-income countries (HICs), many
recommendations from these studies cannot be easily adopted
in LMICs. This review will therefore focus on blood culture
methods and techniques appropriate for settings with limited
resources. Studies conducted in LMICs will be mentioned
explicitly when available.

Furthermore, attention will be given to caveats and obstacles
of implementing blood cultures in LMICs. The details of
implementing such a blood culture system in microbial
surveillance and techniques used for identification and antibiotic
susceptibility testing will not be discussed. In addition, advice on
implementation of quality management for clinical bacteriology
in LMICs has already been described elsewhere (2).

Blood Culture Definitions and Work-Flow
In normal conditions, blood is sterile. Severe localized or systemic
infections can cause micro-organisms to enter the bloodstream
through the lymphatic system. This presence of bacteria in the
bloodstream is called “bacteremia.” Most of the time, these
bacteria are cleared quickly by the immune system. In the case
of overwhelming infections or intravascular focus of infection,
the immune system may be unable to clear the bacteria from
the blood, resulting in a bloodstream infection (BSI) (3). The
micro-organisms responsible for this infection can be identified
by blood culture. A blood culture consists of a blood sample
from a patient, suspected to have a BSI, which is inoculated
into a specialized blood culture bottle containing a broth (i.e.,
liquid) medium that supports optimal growth of bacteria. The
concentration of bacteria in the blood of patients with BSI is
very low (4), therefore direct culture on an agar plate cannot
detect the presence of bacteria in the patient’s blood. Once
the blood is inoculated into the blood culture bottle, further
amplification of the bacteria can take place, ultimately leading
to visible bacterial growth. When growth of bacteria is detected
in the blood culture bottle, a Gram stain of the blood-broth
mixture is done to confirm presence of micro-organisms and
distinguish between Gram-positive, Gram-negative bacteria and
yeasts (Table 1). This and other microscopic information, such as
shape and configuration of the bacteria, can orient the clinician
to the identification of the bacteria causing the BSI and hence
to the most appropriate antibiotic treatment. A subculture of
the blood-broth mixture on an agar plate is then done to obtain
colonies of the pathogen, on which further identification and
antibiotic susceptibility testing can be performed. See Figure 1

1https://blogs.worldbank.org/opendata/new-country-classifications-income-
level-2018-2019

for a visualization of the blood culture workflow and Table 2 for
definitions regarding blood cultures.

Indications for Blood Culture
Blood cultures must be obtained whenever there is a clinical
suspicion of BSI. However, it is currently not clear which clinical
signs are good predictors for BSI. Many predictive models to
optimize the yield of blood cultures have been proposed, but so
far only two of these have been shown to reliably distinguish
between high (>30%) and low (<3%) risk of BSI, according
to a 2015 systematic review (8). Of these, one model is a
computerized system using a causal probabilistic network with
input of many different variables (9), compromising its possible
use in LMICs, and the other has been validated only for patients
with community-acquired pneumonia (10). Moreover, none of
these validated models are used in routine clinical practice,
possibly because they are too complicated to calculate at the
bedside and because of their reliance on laboratory data that are
not available at the time of blood sampling (8).

Other well-studied clinical predictive models are the SIRS
criteria (systemic inflammatory response syndrome) and the
Shapiro criteria (11, 12) (see Figure 2). Both these models have
demonstrated high sensitivity but low specificity (14–16) and
rely on laboratory parameters that are not readily available in
most LMICs. Their usefulness in daily practice is therefore
rather limited.

In 2016, the Third International Consensus Definitions Task
force described an easy clinical score to identify patients at risk of
sepsis, the quick Sequential Organ Failure Assessment (qSOFA)
score (13) (see Figure 2). Sepsis is defined as life-threatening
organ dysfunction caused by a dysregulated host response
to infection (17). It can occur with or without bloodstream
infection. The predictive validity of the qSOFA for in-hospital
mortality outside of intensive care units was higher than that
of the SOFA and SIRS criteria (which are more elaborate).
However, as qSOFA was validated on patients already suspected
of infection, it cannot be used to differentiate patients with
infection from those without infection.

In Figure 3, we propose a set of clinical indications for
sampling blood cultures in LMICs. These indications were based
on known common causes of BSI (3), the qSOFA criteria (13) and
experience within our research network (18, 19). For neonates,
blood culture indications are different and more complex; we
refer to other resources for more information (20–22).

Collection of Blood for Blood Culture
The process of collection of blood for blood culture is very
important for the quality of the results (23). It requires applying
a tourniquet on the arm, palpating the vein that will be used for
the sampling, and applying appropriate antiseptics at the place
of sampling. After antisepsis, the vein should not be touched
anymore unless wearing sterile gloves. Next, the vein is pierced
with either a needle and syringe or a butterfly needle. A sufficient
volume of blood is aspirated either directly into the blood culture
bottle (with certain bottle types and use of butterfly needle) or
into a syringe and next divided over the blood culture bottles.
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FIGURE 1 | Workflow of grown blood cultures in high-resource vs. low-resource setting.

Automated vs. Manual Blood Cultures
Further processing of cultures is described in this text with an
emphasis on so-called “manual” blood culture systems (i.e., not
making use of automated equipment). These systems rely on
the use of appropriate blood culture bottles, which are placed
in a conventional static incubator and are inspected daily to
visually detect signs of growth ofmicro-organisms. This contrasts
with the automated systems, which over the past decades have
largely replaced manual blood culture systems in HICs and are
the current standard (23). In these systems, the carbon dioxide
production by micro-organisms in the bottles is continuously
monitored, either by colorimetric or fluorescent detection.
During incubation, the bottles are continuously agitated in the
automated equipment. The current automated systems show
better performance than manual systems in terms of yield and
especially speed of growth, as recent studies from LMICs such as
Egypt, Pakistan, and India have shown (24–26). However, these
automated systems are costly, require regular maintenance and
are not adapted to tropical, dusty environments, impeding the
sustainable implementation of this technique in many LMICs
outside of study sites, large reference laboratories or private
laboratories in the capital cities (1, 27). Therefore, manual blood
culture bottles are still most frequently used in LMICs and
contribute worldwide to approximately the double of market

share compared to automated systems (27). These manual blood
culture bottles will be discussed and evaluated keeping theWorld
Health Organization’s (WHO) ASSURED criteria for diagnostics
in LMICs in mind; i.e., they must be affordable, sensitive, specific,
user-friendly, robust, rapid, equipment-free, and delivered to
those who need it (28). Recently, the same research group
proposed to add two criteria to this list: the REASSURED criteria
put an additional emphasis on real-time connectivity and ease of
specimen collection (29).

The Importance of Blood Cultures in LMICs
BSI presents a high burden of morbidity and mortality
worldwide, with the highest burden in neonates and children
(30). Exact figures for incidence and associated mortality of BSI
are scarce to non-existent in many LMICs, because of a lack
of bacteriological laboratories and surveillance (31–34). Even
in HICs, however, mortality of BSI is still substantial, ranging
between 17 and 29% (31, 32, 35, 36). Key interventions to
decrease mortality of BSI are sampling of blood cultures before
administration of antimicrobial therapy and daily reassessment
of antimicrobial therapy for optimization and de-escalation,
based on the identification and antibiotic susceptibility testing of
the pathogen (37). As survival of BSIs is inversely related with
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TABLE 1 | Examples of common bacterial species grown in blood cultures.

Gram-positive Gram-negative Yeast

Pathogen Contaminant Pathogen Contaminant Pathogen

Aerobic Bacillus species Pseudomonas aeruginosa Stenotrophomonas maltophilia* Cryptococcus neoformans

Burkholderia pseudomallei Pseudomonas species (non-aeruginosa)*

Acinetobacter species

Anaerobic Clostridium species Cutibacterium acnes Bacteroides species

Facultative

/aero-tolerant

Streptococcus

pneumoniae

Coagulase-negative

Staphylococcus spp.

Escherichia coli Candida albicans

Staphylococcus

aureus

Micrococcus species Klebsiella pneumoniae Candida glabrata

Non-typhoidal Salmonella

Salmonella Typhi

*Uncertainty of interpretation according to current literature.

time to adequate antibiotic therapy (38), it is also important that
results of blood cultures are available as soon as possible.

Historically, the default acute fever diagnosis in tropical
settings has been malaria, which still represents a major
childhood killer. Based on symptoms and clinical presentation,
severe malaria is indistinguishable from BSI, contributing to
overdiagnosis of malaria and underdiagnosis of BSI particularly
in children <5 years old (39, 40). Moreover, morbidity and
mortality of malaria have been declining steadily over the last
few decades. The number of malaria deaths globally fell from
an estimated 839,000 in 2000, to 445,000 in 2016, which is a
decline of 47% (WHO World Malaria Report 20172. In contrast,
progress in outcomes for sepsis has been much more modest,
with a decline in mortality from sepsis of only 25% between
2000 and 2015—moving it upwards in the rank of deadly diseases
requiring pathogen-based diagnosis (41). Increasing evidence
of co-infection of malaria with non-typhoidal Salmonella (42,
43) further emphasizes the importance of blood culture in
these settings.

The spectrum and frequency ranking of bacteria causing BSI
in LMICs differ from those recorded in HICs. Pathogens like
Salmonella enterica or Burkholderia pseudomallei are uncommon
in HICs but account for a large proportion of pathogens in Africa
and South-East Asia (5, 19, 44–47). Typical childhood pathogens
for which vaccination is available in HICs, such as Haemophilus
influenzae and Streptococcus pneumoniae, are also more common
in LMICs (45, 46).

Feasibility of Blood Cultures in LMIC
Settings
In the majority of blood cultures only one organism grows.
Polymicrobial infections make up 6–18% of all BSI episodes,
with higher proportions of polymicrobial infections seen in
patients with chronic conditions, malignancies and nosocomial
infections (48–54). Polymicrobial infections are probably less
prevalent in LMICs, because of differences in patient population.
A 2010 review of BSI in Africa found only 1.2% of BSI

2https://www.who.int/gho/malaria/epidemic/deaths/en/

episodes to be polymicrobial (45). An analysis of BSI episodes in
Cambodia showed that only 4.9% of episodes were polymicrobial
(5). A convenient consequence of this is that the work-up of
blood cultures for identification and antibiotic susceptibility
testing is relatively straightforward, as no further isolation of
different possible pathogens has to be done. In comparison
to other specimens, it is usually easy to differentiate between
pathogens and contaminants, and correct identification of
the most common causative pathogens can be achieved with
simplified techniques. Indications for blood cultures are simple
to standardize hospital-wide, and quality indicators to monitor
compliance to procedures are more clearly defined than for other
specimens (1).

For these reasons, blood culture is an easy first step in starting
clinical bacteriology in any laboratory, and it is recognized as a
priority specimen for surveillance of antimicrobial resistance by
WHO because of its clinical importance and the accurate and
uncomplicated methods of detection (55).

Importance of Blood Culture for Antibiotic
Stewardship and Hospital Infection
Prevention and Control
Because of the severity of most BSIs, blood cultures have
high clinical relevance. Rapid notification of even preliminary
blood culture results, such as the result of a Gram stain of
a grown culture, has been shown to have a large impact on
rational antibiotic prescriptions, length of hospitalization and
even patient survival (56–62).

Moreover, results from blood culture surveillance can be
efficiently used in infection prevention and control. Analysis of
trends per hospital ward can alert outbreaks (63, 64). Moreover,
blood culture results allow to make the distinction between
healthcare-associated and community-acquired infections. The
WHO defines a healthcare-associated infection as “an infection
occurring in a patient during the process of care in a hospital
or other health-care facility which was not present or incubating
at the time of admission” (65). This term has replaced the
term “nosocomial” or “hospital-acquired” infection, as it was
acknowledged that the epidemiological and microbiological
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Systemic inflammatory response syndrome (SIRS): at least 2 of the following are

present (11):

– Temperature < 36◦C OR > 38◦C

– Heart rate >90/min

– Respiratory rate > 22/min OR pCO2 < 32 mmHg on arterial blood gas

– White blood cell count < 4,000/µl OR > 12,000/µl OR > 10% immature

neutrophils (band forms)

Shapiro criteria: blood cultures indicated if 1 major OR 2 minor of the

following (12):

– Major criteria:

◦ Suspicion of endocarditis

◦ Temperature > 39.4◦C

◦ Indwelling catheter

– Minor criteria:

◦ Temperature 38.3◦C−39.3◦C

◦ Age > 65 years

◦ Chills

◦ Vomiting

◦ Systolic blood pressure < 90 mmHg

◦ White blood cell count > 18,000/µl

◦ Creatinine > 2 mg/dl

◦ Platelet count < 150000/µl

◦ Neutrophils > 80%

◦ Band forms > 5%

qSOFA score: presence of 2–3 criteria near onset of infection is associated with

higher in-hospital mortality (13):

– Altered mental state (Glasgow coma scale < 15)

– Fast respiratory rate (≥22/minute)

Low systolic blood pressure (≤100 mmHg)

FIGURE 2 | Models and scores to predict BSI: SIRS criteria, Shapiro criteria &

qSOFA score (11–13).

features of infections acquired in the hospital were very similar
to those acquired in other types of healthcare facilities (65–68). A
healthcare-associated infection is thus defined as an infection that
presents itself more than 48 h after the patient has been admitted
to the hospital, or within 48 h of admission if the patient received
care at any other facility (including at home) before the hospital
admission (66).

However, specialized home care and referrals from other
healthcare facilities are rare in LMICs and usually healthcare-
associated infections in these settings can accurately be defined
as infections with a first positive culture obtained at least
48 h after the moment of admission (similar to the previous
definition for hospital-acquired infections). This definition is also
used in the Global Antimicrobial Resistance Surveillance System
(GLASS) report for use in surveillance of healthcare-associated
infections (55).

Monitoring and surveillance of blood culture results can shed
a light on the type, impact and number of healthcare-associated
infections in a facility. This information can guide selection of
appropriate prevention and control measures.

METHODS AND TECHNIQUES FOR
PROCESSING MANUAL BLOOD
CULTURES

Despite continuous advances in molecular techniques and
biomarkers, blood culture remains the gold standard for

1. Fever (axillary T◦ ≥ 38◦C) OR history of fever (last 48 h) OR hypothermia

(axillary T◦ ≤ 36◦C)

2. AND one of the following signs of severity:

A. Hypotension (systolic blood pressure =< 100 mmHg)

B. Confusion (Glasgow coma scale < 15)

C. Increased respiratory rate (>= 22 per minute)

D. Suspicion of severe localized infection:

• Pneumonia

• Meningitis

• Osteomyelitis

• Complicated urinary tract infection

• Abscess

• Skin or soft tissue infection

• Abdominal infection

E. Suspicion of other severe infection:

• Severe malaria

• Typhoid fever

• Endocarditis

FIGURE 3 | Proposal for clinical indications of bloodstream infections in LMICs

(3, 17–19).

diagnosis of BSI (23). As mentioned above, LMICs still largely
rely on manual blood culture systems, because of the financial
and logistic challenges associated with automated systems.

Manual blood cultures are usually incubated for 7 days at 35◦C
(69, 70). The incremental value of bacterial growth on day 6 and
7 may be limited; a study from 1985 showed that 89% of isolates
had been recovered by day 5; many of the isolates retrieved on day
6 and 7 were probable contaminants (71). This observation holds
true even for fastidious organisms, such as the HACEK group
bacteria (see Table 1 for definitions) (72). As local differences
in pathogens can impact the effect of a shorter incubation, the
guidelines of the American Society for Microbiology (ASM)
recommended examining the impact of a 5-day instead of a 7-
day incubation per site and described a procedure to do so in its
2004 edition (73).

For automated blood culture systems, incubation of 5 days has
been shown to be sufficient, even for fastidious organisms such
as members of the HACEK group (endocarditis) and Brucella
species (72, 74) (see Table 1). For most pathogens, incubation of
3 days would already suffice (75).

Broth Type and Additives to Promote
Growth in Blood Cultures
Broth Medium
The most important feature of a blood culture bottle is that it
should adequately support bacterial growth. For this purpose, a
variety of peptide broths and additives are available (see Table 3).
There is no single “optimal” broth medium; most broths contain
dextrose and animal-derived complex peptide molecules. Broth
media which support growth of a wide range of bacterial species
include tryptic soy broth, also known as soybean-casein digest
broth, supplemented peptone broth and brain heart infusion
broth. Other commonly used broths such as thioglycolate broth,
thiol broth, Columbia and Brucella (hypertonic) broth are also
adequate for bacterial recovery (69, 88). For anaerobic bacteria,
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TABLE 2 | Definitions used in or related to the blood culture process.

Automated blood culture

system

Blood culture system that uses equipment (an

automated incubator) for incubation, agitation, and

monitoring of blood culture bottles for microbial

growth

Bacteremia Presence of bacteria in the bloodstream

Biphasic blood culture

system

Blood culture system in which a single bottle

consists of a liquid broth phase and a solid agar

phase; designed so the agar can be irrigated (and

inoculated) with the broth medium

Blind subculture Subculture performed from the blood culture bottle in

the absence of visual signs of growth

Blood culture Specimen of blood sampled through 1 venipuncture

(possibly divided into multiple blood culture bottles)

for the culture of micro-organisms

Blood culture broth A liquid enrichment medium for the growth of

bacteria used in the diagnosis of BSI. Usually

contains peptides of animal origin and dextrose.

Bloodstream infection Infection with the presence of bacteria in the blood

Bloodstream infection

episode

A BSI episode is defined as (1) the initial recovery of a

pathogen in a blood culture, (2) the recovery of a

pathogen different from the initial pathogen ≥48 h

after the recovery of the initial pathogen, or (3) the

recovery of the same pathogen after at least a

14-day interval since the previous grown culture with

this pathogen (5, 6)

Contamination Growth of a micro-organisms in a blood culture that

was introduced into the culture during blood culture

collection or processing and that is not the cause of

the suspected BSI

Culture medium Substance used to facilitate growth of bacteria; can

be solid (agar) or liquid (broth)

Endocarditis Infection of the inner layer of the heart, the

endocardium, often involving the heart valves

Fastidious organisms Organisms that require special nutritional and

incubation conditions for culture (e.g., addition of

certain nutrients, incubation in carbon dioxide

atmosphere)

HACEK organisms A group of Gram-negative bacteria that are unusual

causes of endocarditis; consists of the following

species: Haemophilus parainfluenzae, Haemophilus

aphrophilus, Actinobacillus actinomycetemcomitans,

Cardiobacterium hominis, Eikenella corrodens, and

Kingella kingae (7)

Manual blood culture bottle Blood culture bottle that is designed for use in a

manual blood culture system, i.e., without using

automated equipment

Manual blood culture

system

Blood culture system that processes blood culture

bottles without the use of automated equipment

Non-fermenting

Gram-negative organisms

(non-fermenters)

Heterogenous group of Gram-negative bacilli that are

aerobic and cannot metabolize carbohydrates

through fermentation; mainly implicated in

healthcare-associated infections and often resistant

to many types of antibiotics

Subculture A secondary culture of bacteria made from material

derived from another culture, such as the

blood-broth mixture of a blood culture bottle or the

colonies on an agar plate

Terminal subculture A subculture done at the end of the incubation

period of blood culture bottles that failed to show

signs of growth, to confirm the absence of growth of

micro-organisms

TABLE 3 | Media composition of manual blood culture bottles.

Medium or

Component/Additives

Short description/Comment/References

CULTURE MEDIUM

Thioglycolate Favors growth of anaerobes (76)

Tryptic Soy broth (TSB) General purpose medium, favors Pseudomonas

species (77, 78)

Thiol broth Favors growth of Streptococcus species (78)

Brain-Heart Infusion (BHI) General purpose medium, facilitates recovery of

yeasts and Gram-positive organisms (79)

Columbia broth General purpose medium, favors growth of anaerobes

Supplemented peptone

broth

General purpose medium; superior to TSB for most

common pathogens in blood culture (80)

Hypertonic medium

(Brucella broth)

Supposedly improves cellular stability and increases

recovery rates of some bacteria, including

Staphylococcus aureus, Escherichia coli, Candida

species (81); evidence regarding its efficacy is mixed

(77)

ADDITIVES

Sodium-polyanethole

sulfate (SPS)

Anticoagulant; SPS also inhibits lysozyme, inactivates

clinically achievable concentrations of some

aminoglycoside and polymyxin antibiotics, inhibits

parts of the complement cascade, and inhibits

phagocytosis (69). Higher SPS concentrations, while

promoting the recovery of Gram-positive cocci,

decrease the recovery of Gram-negative bacteria.

Certain species of bacteria are inhibited by SPS, such

as Neisseria species, Peptostreptococcus

anaerobius, Moraxella catarrhalis, and Gardnerella

vaginalis (69, 77).

Gelatin Counteracts the inhibition of growth of bacterial

species by SPS in-vitro (80, 82). Evidence for its

clinical efficacy however is not strong (82–86).

Yeast extract Promotes bacterial growth (77)

Saponin Lytic agent (used in lysis-centrifugation system);

improves recovery of Streptococcus species

Hemin (X-factor) Promotes growth of fastidious organisms such as

Haemophilus influenzae and Neisseria species (87)

NAD (V-factor) Promotes growth of fastidious organisms such as

Haemophilus influenzae and Neisseria species (87)

Pyridoxine Promotes growth of pyridoxine-dependent organisms

such as certain Streptococcus species

Para-amino benzoic acid Inhibits the effect of sulfonamide antibiotics

Cysteine Reducing agent; improves recovery of anaerobic

bacteria and Streptococcus pneumoniae (77)

Columbia broth, pre-reduced peptone broths, thioglycolate
broths, and thiol broths are advantageous, supposedly based on
their low redox potential (76, 77, 89–91).

Regarding the volume of broth, a blood-broth ratio of 1:5 to
1:10 should be respected to optimize growth (92). In children,
higher blood-broth ratios (e.g., 1:50 to 1:100) are acceptable (93).

Additives to Promote Growth
Supplementation of the broth medium can further promote
growth. A number of additives have been defined as growth
enhancers in blood cultures, but the effect of additives is limited
to the organism targeted for growth (see Table 3).
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One of the most important additives is sodium polyanethole
sulfonate (SPS). This is an anticoagulant, which in addition has
been shown to have a stabilizing effect on microbial growth
in blood cultures (69, 88). The typical concentration of SPS
ranges from 0.025 to 0.05% (3, 77, 88, 94). The utilization of
SPS has greatly reduced time-to-detection for many bacteria,
and it is generally agreed to be an indispensable component of
blood cultures.

Another commonly used additive is saponin, which is added
in some blood culture systems as a lytic agent with subsequent
centrifugation (Isolator system from Abbott Laboratories,
Chicago, USA). A 1998 study also showed an increased recovery
rate with shorter time-to-detection with the addition of saponin
to the blood culture media of an automated system (95).
Saponin is also widely used in anaerobic bottles in the BACTEC
automated blood culture system, in combination with resin-
supplemented aerobic bottles (96)3.

Resins and Charcoal
All guidelines on sepsis management stress the importance
of sampling blood for blood culture before administration of
antibiotics (37). The negative impact of antibiotic use prior to
sampling on the yield of blood cultures is substantial, as the
presence of antibiotics in the serum can inhibit the growth of
bacteria (97–100). However, patients in LMICs are often already
under antibiotic treatment before presenting to the hospital
(101), since antibiotics are often readily available over-the-
counter in these settings (102–104). To counteract the effect of
antibiotics on growth of bacteria in the broth, antibiotic removal
devices have been in use since 1982 (105). Nowadays, this role is
largely taken up by resins.

Antimicrobial-binding resins and charcoal are generally
considered effective in increasing microbial recovery rates.
More microorganisms, particularly staphylococci and yeasts, are
recovered from formulations with these additives, compared to
non-supplemented formulations (106–109). There is no firm
clinical evidence that the increased microbial recovery rates are
due to inhibition or removal of antibiotic substances, although in-
vitro research has extensively shown this to be the case (69, 110–
113). Most resins are formulated as highly porous polyvinyl and
benzene within a spherical bead; there are cationic ion-exchange
resins and polymeric adsorbent resins (77). In addition to binding
of antimicrobial agents, resin beads provide additional surface
area for bacterial growth and help filter and bind components
of the complement cascade (69). The exact formulations and
balance between ratios of nutrients and resins is often proprietary
and thus unknown.

The drawbacks of adding resins to a blood culture medium
are the non-specific neutralizing and binding properties of the
resins that can result in the removal of nutrients and other
substances required for bacterial growth. Moreover, addition of
resins to the blood culture broth changes themedium’s dynamics,
shortens its shelf life and impacts the visual reading of growth
in the bottles (90). The addition of resins may even increase

3https://www.bd.com/resource.aspx?IDX=11265

the time-to-detection for some bacteria, such as Pseudomonas
species (113).

However, in automated systems, resin-supplemented broths
are superior to general broths and broths containing charcoal
(114–118). Importantly, resins also do not interfere as much with
Gram staining and reading as does charcoal (114).

Gas Phase of the Bottle
For aerobic blood culture bottles, the headspace contains ambient
atmosphere to which different amounts (5–10%) of carbon
dioxide (CO2) have been added. For anaerobic blood culture
bottles, headspace contains CO2 and nitrogen dioxide (NO2).
Actual amounts of CO2, O2 and redox potential vary widely,
mostly depending on the manufacturing practices of the blood
culture bottles (90).

A portion of the headspace atmosphere is evacuated to
create a partial vacuum; thus, blood culture bottles contain
an atmosphere in the bottle headspace that has a lower
pressure than the atmosphere, enabling easy sampling (88).
Not all commercially available bottles contain a vacuum;
depending on the sampling techniques, this can create problems
during sampling.

Detection of Mycobacterial and Fungal Infections
For detection of mycobacterial, fungal or yeast infections in
the blood, other broth types and incubation times may be
needed. For detection of yeast, such as Candida species, regular
blood culture bottles and incubation times are advised (74),
although Candida has a slightly longer time-to-detection than
most bacteria (119, 120). Specialized bottles for detection of fungi
in blood exist and are more effective than regular aerobic blood
culture bottles (121–123), but are not routinely used.

In case of suspicion of invasive filamentous or dimorphic
fungi infection, such as Histoplasma spp., the use of lysis-
centrifugator tubes (Isolator system, Abbott Laboratories) is
advised (74, 124). In this method, blood cells are lysed by saponin
and the sample is centrifuged. The resulting sediment is then
cultured directly on blood agar (69). Lysis-centrifugation can
also be used for detection of bacteria, for which a study from
India showed lower sensitivity but shorter time-to-detection than
conventional blood culture using trypticase soy broth (125).
Older studies had already shown good results for detection
of bacterial or fungal BSI, but with the drawback of higher
contamination rates (126, 127). Moreover, it is more time-
consuming than conventional blood culture.

For mycobacteria, lysis-centrifugation has also been used to
good effect, including in some LMICs (128, 129). Currently, the
use of specific bottles for mycobacteria is advised (74). Longer
incubation times are necessary for both mycobacterial infections
and filamentous fungal infections (74).

Visual Detection
Visual Signs of Growth
Growth detection of manual blood culture bottles depends on
visible changes in the broth such as turbidity, hemolysis, puff
balls, and gas production (see Figure 4). Inspection of the
blood culture bottles is done by the laboratory technicians with
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the naked eye. Therefore, the blood culture bottle must be
designed to optimize this visual detection. For example, see-
through plastic or glass must be used. The addition of resins
or charcoal, described above, can create a haziness in the broth,
compromising visual detection of growth (90), while addition of
charcoal renders visual detection of growth nearly impossible due
to the dark coloration of the broth.

Biphasic Bottles
Biphasic bottles can be an option to facilitate growth detection.
They consist of a liquid phase (the broth) and a solid phase
in the form of an agar slant (see Figure 5). These bottles were
first developed by Castañeda in 1947 for the isolation of Brucella
(130). Brucella species grow slowly with a need for extended
incubation times. Because of hemolysis and debris of dying red
blood cells, turbidity can no longer be reliably assessed beyond
7 days and repeated subcultures are needed to detect growth.
By obviating the need for frequent subculture and its associated
infection risks for the laboratory staff handling the blood cultures,
biphasic bottles are useful for the isolation of this pathogen.
Biphasic media also facilitate the detection of growth of other
bacteria for non-expert users, as growth of colonies on the
agar may be easier to detect than subtle changes in the broth.
Additionally, there is the theoretical advantage of bypassing
the initial subculture step in the process of identification and
antibiotic susceptibility testing when using the colonies growing
on the agar slant, resulting in a potential 18–24 h reduction of
the turnaround time in comparison with the conventional blood
culture bottles (131).

Published literature on the effectiveness of biphasic blood
culture bottles for bacteria other than Brucella is scarce and there
are no recent studies (131–136). Overall, those studies indicate
superior performance of biphasic bottles for Gram-positives in
comparison to other, non-biphasic, manual blood culture bottles.
With regards to the speed of growth, a study by Brook et al.
showed slower growth in the biphasic bottle as compared to a
monophasic bottle (135). Weckbach et al. used a special biphasic
bottle design (Figure 6A), physically separating the agar from
the broth, and found faster recovery of yeasts (Candida spp.)
and Pseudomonas spp. with the biphasic bottle compared to
the conventional bottle. Because of easy subculture, isolated
colonies were also available much sooner with the biphasic bottle
compared to subculture from the regular bottle (131). Some
other studies also found that detection of growth on the agar
slant preceded detection of growth in the broth (134, 137).
However, the few studies done suffer from sample sizes and a
lack of comparability which precludes sound conclusions on the
advantages of the biphasic blood culture bottles.

A variation to this type of biphasic blood culture bottle is
the connection of a cylindrical “paddle,” containing solid agar
plates, to a blood culture bottle, effectively separating the agar
and broth phase (Figure 6B). Subculturing can then be done
by inverting the bottle and flooding the agar plates with the
broth-blood mixture. This can be done at various intervals to
optimize isolation. A well-known example of this type of bottle
was the Septi-Chek blood culture system by Becton-Dickinson
Diagnostics (Franklin Lakes, New Jersey, United States), which

was based on a conventional blood culture bottle to which a
transparent plastic chamber was connected, which contained a
panel of three solid agar media allowing to visualize growth
and preliminary identification. This system had promising
results and was widely used, but it is no longer commercially
available (138–141).

Volume of Blood to Be Sampled
Low Concentration of Bacteria in Blood Necessitates

Large Volume
The concentration of micro-organisms in blood of patients with
BSI ranges between <1 colony forming unit (CFU)/ml to 10
CFU/ml of blood in adults (4). To avoid missing BSI with
a low bacterial load in the process of culturing blood, it is
recommended to sample as large a volume as possible for culture.
Multiple studies have already shown that higher volumes of
cultured blood lead to higher rates of detection (6, 142–147).
Therefore, the volume of sampled blood is an important quality
indicator for blood cultures and should be monitored (3, 148,
149). Blood volume inoculated in a blood culture bottle can
be estimated by weighing the bottle before and after sampling,
translating the weight to volume by correcting for the density of
blood (1.06 g/ml) (150).

However, sampling large volumes of blood is not without
risk of iatrogenic anemia in children (151). Moreover, it is not
culturally acceptable to patients and healthcare workers in many
LMICs (152, 153). Although this has not been widely studied,
it is telling that even large clinical studies conducted in Africa
using blood cultures sample only one bottle of 5–10ml of blood
in adults (154, 155).

Recommendations for Adults
For adults, both the Clinical Laboratories Standards Institute
(CLSI) and Cumitech recommend to sample two blood cultures
of 20–30ml of blood each (3, 88) over 24 h, thus adding up to
sampled volume of 40–60ml. One blood culture is defined in
these, and most other, guidelines as the volume of blood sampled
through one venipuncture (70, 88). These recommendations are
based on two older studies using manual blood cultures, where
two consecutive blood cultures were found to detect 88 and
>99% of BSI episodes (106, 156).

More recent studies suggest that even higher volumes of blood
should be cultured. Cockerill et al. found that with an automated
blood culture system, 65.1% of BSI episodes were detected with
the first blood culture (consisting of 20ml of blood) (6). By
adding a second blood culture, 80.4% of episodes were detected,
and up to 95.7% were detected when three blood cultures were
used. A study by Lee in 2007 indicated similarly that two blood
cultures of 20ml each in a 24-h period detected 89.7% of BSI
(147). In this study, three blood cultures of 20ml detected 98.2%
of BSI and only with four blood cultures, >99% of BSI episodes
were detected. Another recent study confirmed the need for at
least three blood cultures (or 60ml) to be sampled, as they found
that 7.5% of BSI episodes would have beenmissed without a third
blood culture (157).

A particular situation in terms of number of cultures to
sample is suspicion of endocarditis. In this case it is generally
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FIGURE 4 | Signs of growth in blood culture bottles. (A) pellicle formation on surface; (B) gas production; (C) turbidity (left bottle: no growth; right bottle: turbidity); (D)

puff balls.

FIGURE 5 | Schematic representation of biphasic bottle.

recommended to sample three blood cultures of 20ml, as this
has showed to detect 96 to 98% of BSI in the context of
endocarditis (158).

In many studies, a distinction is made between optimal
volume per blood culture and optimal number of cultures to be
sampled per BSI episode. However, as it has been established that
drawing blood cultures at intervals or at the time of a fever peak
does not contribute to a higher recovery of pathogens (159, 160),
the key variable is the total volume of blood that is cultured,
irrespective of time and frequency of sampling. For example, if it

is recommended to sample 60ml of blood for culture, it may not
makemuch difference whether this 60ml is cultured as two blood
cultures of 30ml or as three blood cultures of 20ml (23, 145, 161).

Recommendations for Children
In children, the situation is more complex. The volume of blood
that can safely and comfortably be sampled in children is related
to the child’s age and weight. It was long believed that very small
volumes of blood were sufficient for blood culture in children, as
bacterial concentrations in children with BSI were thought to be
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FIGURE 6 | Schematic representations of special biphasic bottle designs. (A)

bottle used in study by Weckbach et al. (131). (B) Septi-Chek system.

much higher than in adults (162). However, some studies have
shown proportions of low-level bacteremia (< 10 CFU/ml) in
23 to 69% of infants and children (163–165). In line with these,
sampling higher volumes has been shown to increase sensitivity
of blood cultures in children (163, 166, 167). Given the high
proportion of low-level bacteremia that was found by Kellogg et
al. (163), the authors recommended to sample up to 4–4.5% of
the patient’s total blood volume.

The latest guidelines from the Infectious Disease Society of
America and American Society of Microbiology, recommend
sampling 2.5 to 4% of total blood volume from children (74)
(Table 4). However, a review from 2011 suggests that only
3.8% of total blood volume can be safely sampled (for all
laboratory analyses combined over a 24 h period) in children
beyond the neonatal period, and this safety value is further
challenged by higher rates of severe anemia in children in LMICs,
particularly caused by severe Plasmodium falciparum malaria,
which predisposes to Gram-negative BSI (43, 151, 168, 169).
Given the necessity in many seriously ill children to sample blood
for other analyses as well, sampling 4% of total blood volume for
blood culture alone can therefore not be recommended in LMIC.
More in line with these concerns, CLSI recommends sampling of
maximum 1% of the total blood volume (for infants and younger
children) (88).

Many articles however recommend an age-based sampling
strategy illustrated in Table 5 (166, 170, 171). This age-based
sampling is convenient and safe, as the volumes are noticeably
smaller than with weight-based guidelines (see Figure 7 for
an example in LMICs). However, no upper limits are defined
for any of the age categories, leaving quite some room for
interpretation. For children over 36 months of age, this guideline
risks sampling insufficient volume. It is unlikely that the same
volume is appropriate for a 4-year old child as for a 13-year old
child, but this distinction is not made. Unfortunately, as CLSI
remarks, “There are no published data for determining when
volumes considered to be appropriate for adults can be used for

older children” (88). As was pointed out by Dien Bard et al. in
2016, there is no consensus between different guidelines on which
volume to sample in children (172), so controversy remains.

Conclusions on Volume
In conclusion, it is recommended that for adults at least 40ml
of blood should be drawn, divided over 4 blood culture bottles,
to obtain sufficient sensitivity. If feasible, it is recommended to
sample an additional 20 to 40ml of blood. It is unnecessary
to sample more than 80ml of blood, as >99% of pathogens
will be detected at this point (147). In case of suspicion of
endocarditis, 3 blood cultures of 20ml each must be sampled.
For children, recommendations are less straightforward. Because
of simplicity, concerns regarding iatrogenic anemia, widespread
use in hospitals and comparability across published literature, we
recommend the use of the age-based simple algorithm depicted
in Table 5 (e.g., sampling ≥0.5ml for neonates <1 month of
age, ≥1ml for children age 2–36 months and to sample ≥4ml
in children ≥36 months of age), despite our awareness of the
limitations of this strategy.

Preventing Contamination of Blood
Cultures
Sometimes, bacteria not present in the blood of the patient
grow in blood cultures after having been introduced into the
bottle during broth preparation, blood sampling or processing
of the blood sample. These blood culture contaminants
usually originate from the environment or the patient’s
skin (173). Most frequently, contamination happens during
venipuncture, when skin fragments containing normal skin
flora are dislodged and aspirated together with the sampled
blood. Examples of common skin contaminants are coagulase-
negative Staphylococcus species, Corynebacterium species and
Cutibacterium acnes (formerly Propionibacterium acnes) (173).
Contamination from the environment is also possible; Bacillus
species (other than Bacillus anthracis) are often seen in this case.

Distinction Between a Contaminant and a Pathogen
It can be difficult to make the distinction between a contaminant
and a pathogen, as some typical blood culture contaminants such
as coagulase-negative Staphylococcus species can cause catheter
infections or other foreign body infections. The distinction can
be made either by clinical assessment (i.e., review of medical
records), or by the number of blood cultures that show growth
for this particular organism. Often, such an organism is only
regarded as clinically relevant if it is isolated in at least 2
separate cultures (and venipunctures), because the odds of having
contaminated both cultures with the same pathogen are very
small (174). However, this approach cannot be used in settings
where only one blood culture is sampled. Time-to-detection
can also be of help in the interpretation, as it has been shown
that contaminants show slower growth than true pathogens
(6, 119, 175).

Corynebacterium species, Bacillus species (other than
Bacillus anthracis), Micrococcus species, Lactobacillus species
and Cutibacterium species are rarely associated with clinical
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TABLE 4 | Recommended volumes of blood for culture in children.

Weight of

patient (kg)

Total patient

volume (ml)

Recommended volume of blood for blood

culture (ml)

Total volume for

culture (ml)

Percentage of patient’s

total blood volume

Culture 1 Culture 2

≤1 50–99 2 - 2 4

1.1–2 100–200 2 2 4 4

2.1–12.7 > 200 4 2 6 3

12.8–36.3 >800 10 10 20 2.5

>36.3 > 2200 20 – 30 20 – 30 40 – 60 1.8 – 2.7

Based on IDSA Microbiology guideline (74).

TABLE 5 | Recommended blood volumes for blood culture in children based on

age (166, 170, 171).

Age Volume of blood to be sampled

<1 month ≥0.5 ml

1–36 months ≥1 ml

≥36 months ≥4 ml

Girl of 18 months old with a weight of 10 kg and an hemoglobin value of 2 g/dL

(severe anemia):

Hemoglobin reference values at this age: 10.5 − 13.5 g/dl

Estimated total blood volume (TBVe): 10 kg × 80 ml/kg = 800 ml

Functional total blood volume (TBVf) (corrected for hemoglobin):

Worstcase =
800ml (=TBV)×2g/dL (=actual hemoglobin value)

13.5g/dl (=upper limit of hemoglobin reference value)
= 118.5ml

Bestcase =
800ml (=TBV)×2g/dL (=actualhemoglobinvalue)
10.5g/dl (=lowerlimitofhemoglobinreferencevalue)

= 152.4ml

Weight-based guideline IDSA : 6 ml to be sampled for blood culture = 3.9% −

5% of TBVf

(see Table 4)

Age-based guideline : ≥ 1 ml to be sampled (upper limit = ?)

1 ml sampled for blood culture = 0.7% − 0.8% of TBVf

4 ml sampled for blood culture = 2.6% − 3.4% of TBVf

(see Table 5)

FIGURE 7 | Example of safe sampling in an 18-month old child with severe

anemia caused by Plasmodium falciparum malaria [formulas used from

Kuijpers et al. (169)]. The weight-based guideline recommends sampling of

higher volumes than the age-based guideline. This example demonstrates

how, in cases of severe anemia, the weight-based guideline may not be safe

in children.

infections and are almost always contaminants (176). Coagulase-
negative staphylococci can cause true infection but are
much more often implicated as contaminants. Isolation
of Enterococcus species, non-fermenting Gram-negative
species (e.g., Acinetobacter species or Stenotrophomonas
maltophilia) and viridans streptococci is often of uncertain
clinical significance, complicating their role in the interpretation
of blood culture results (70, 176).

Contamination in LMIC
Contamination of blood cultures remains a substantial problem,
with contamination rates as high as 10% even in many HICs
(177). Contamination is suspected to be more frequent in LMICs,

with some settings (i.e., South Africa, Ghana, the Gambia,
Malawi) indeed reporting very high contamination rates (178–
181). The spectrum of contaminants in LMICs differs slightly
to HICs; for example, more Bacillus species are seen in LMICs
(178). This finding suggests that contamination of blood cultures
in LMICs commonly has the environment as a source, as
Bacillus species are known to be present in dust and have been
described in outbreaks of pseudo-bacteremia originating from
the environment (182, 183). More confusingly, some organisms
representing “true pathogens” in HICs, such as Pseudomonas
aeruginosa or other non-fermenting Gram-negative organisms,
are sometimes considered as contaminants in LMICs (181, 184).

Laboratory work-up of these contaminants demands time
and money, both of which are not in large supply in resource-
limited settings. Furthermore, contaminants lead to longer
hospital stays, increased prescription of antibiotics and related
morbidity (185–188), and may hamper growth of pathogens.
Therefore, avoiding contamination is of utmost importance
and can lead to substantial cost savings and improvements
in patient management. Current guidelines advocate a target
of <3% contamination rate and ideally <1% (70, 88, 173).
In the following paragraphs, some strategies are described to
avoid contamination.

Strategies to Reduce Contamination

Skin antisepsis
WHO’s recommendation from 2010 regarding the type of
antiseptic preferably used for blood sampling in the context
of blood transfusion is 2% chlorhexidine in 70% isopropyl
alcohol (189). No guidance is given regarding blood sampling
in the context of blood culture. The CLSI guideline of 2007
on procedures for blood cultures states that tincture of iodine
(alcohol-based iodine) and chlorhexidine gluconate are probably
equivalent to each other but superior to povidone iodine (water-
based iodine) (88). Unlike iodine, chlorhexidine is not associated
with allergic reactions, although its safety in infants <2 months
of age has not been established (190–192). A lot of evidence
suggests that products containing alcohol are better than those
without alcohol (193–199), a finding whichmay be due to the fact
that alcohol dries faster than water-based products and therefore
less waiting time is required to obtain maximal disinfecting
activity. Alcohol has an immediate onset of action, but the effect
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is not sustained, which is why it is often combined with other
antiseptics with a residual effect, such as chlorhexidine (196).

In contrast to this, a recent meta-analysis found no
significant difference between any of the antiseptics under study
(povidone iodine, iodine tincture, chlorhexidine compounds,
or chlorhexidine alcohol) (200), although its methods have
been criticized (201). The debate on the most ideal antiseptic
is thus ongoing, but most antiseptics seem to give good
results when used properly. For this reason, alcohol-based
antiseptics may be more effective, as the drying time is shorter,
and they are therefore more likely to be used correctly. In
addition, alcohol-based solutions are less vulnerable to accidental
colonization with Gram-negative bacteria compared to water-
based antiseptics (202).

One-step vs. two-step procedure
The comparison of one-step (single application of an antiseptic)
vs. two-step procedures (consecutive application of the same or
different antiseptics) for skin antisepsis has been made mainly in
the context of blood collection for blood donation. These studies
generally evaluate the effect of antiseptics on the bacterial load
of the skin (203). A Cochrane review of 2015, however, found
no experimental or quasi-experimental publications which had
studied the effect of one-step vs. two-step procedures on actual
blood culture contamination (204).

Therefore, no recommendation can be given regarding the
effectiveness of either procedure. In many LMICs, patients have
had long travels on dusty roads before reaching the hospital. It is
therefore good practice to use a two-step procedure for antisepsis:
the first application of antiseptic (preferably isopropyl alcohol
70%) can be used to clean the skin of dust and dirt. Cleaning
with alcohol swabs must be repeated until the swabs are visually
clean—since, unlike ethanol, isopropyl alcohol has a cleaning
effect (205). Only when the skin is clean, the second step of
antisepsis can be performed.

Phlebotomy teams
To further decrease contamination, there is quite good evidence
for the use of dedicated phlebotomy teams for blood culture, as
opposed to blood cultures being sampled by all ward nurses or
interns (193, 197, 206, 207). This approach has also had good
results in a low-income country; after the introduction of a team
of nurses dedicated to phlebotomy in Malawi, contamination
rates decreased from 19.6 to 5% (179).

Blood culture collection packs
Another possible strategy is the use of blood culture collection
packs. Blood culture collection packs are prepackaged kits
assembling all materials needed for blood culture. Although
many studies have reported lower contamination rates after the
introduction of blood culture collection packs (208–210), a meta-
analysis of 2012 showed no conclusive evidence for this practice
(207). Most of the publications which have reported a decrease
in contamination rates combined introduction of the blood
culture collection packs with hospital staff training and awareness
campaigns, thereby compromising validity of the research. Given
the added cost of blood culture collection packs, more evidence

is needed before its implementation can be recommended in
LMICs (207).

Diversion of first portion of blood
Contamination of blood samples can occur during venipuncture
because of dislodging of skin fragments colonized with bacteria.
Diverting or discarding the first few milliliters of blood can
possibly decrease contamination due to this cause. The first
study done to evaluate this method was the trial by Patton and
Schmitt (211), which indeed showed decreased contamination
after diversion of the first ml of blood into a sterile Vacutainer R©

tube (Becton-Dickinson Diagnostics, Franklin Lakes, NJ, USA).
Contamination went down from 2.8 to 1.4%. This concept
was repeated by Binkhamis et al. (212) and Rupp et al. (213);
both studies found significant results with a reduction in
contamination rates of 3.4–2.4% and 1.78–0.22%, respectively.
In all three studies, pre-intervention contamination rates were
already low. In LMICs with higher contamination rates, the same
relative reduction could potentially lead to a large decrease in
contaminated samples.

Usually, it is advised to sample first blood cultures and only
next the tubes for other blood analyses. This recommendation
is based on the observation that reflux from contaminated
citrate- or EDTA tubes to the syringe may occur, with
possible contamination of the blood culture sample (177, 214–
216). However, these reports of “pseudo-bacteremia” caused
by contaminated blood collection tubes all date from the
1970’s and 1980’s and the current risk for this is unknown.
Given the effectiveness of diverting the first portion of blood,
contamination could actually be reduced by sampling first other
blood collection tubes if a butterfly needle with vacutainer
system is used. Sterilization of blood collection tubes may further
prevent cross-contamination.

Multi-sampling vs. single-sampling strategy
The CLSI guideline recommends collection of two to three
blood cultures, each consisting of two blood culture bottles
sampled through one venipuncture, per episode (88). However,
it has been shown that a time interval between the different
draws is unnecessary (159, 160). Therefore, the necessity of
sampling blood using separate venipunctures, referred to as
multi-sampling, has been contested. There are obvious practical
advantages to sampling blood by just one venipuncture, referred
to as single-sampling (23). This single-sampling approach may
also theoretically decrease the risk of contamination (161, 217).
Unfortunately, few studies directly comparing both strategies are
available. One trial in France showed increased positivity rate,
improvement of overall performance (sensitivity and specificity)
and better compliance to protocol of the multi-sampling strategy
compared with the single-sampling strategy (218).

Contamination, however, can be more difficult to judge
when single-sampling instead of multi-sampling is used. The
reason for this is that many low-virulence organisms are no
longer considered as contaminants when they are isolated from
blood cultures sampled through more than one venipuncture
(69, 88, 174). However, an evaluation by Arendrup et al. did
not find the interpretation to be more difficult when using the
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single-sampling strategy (219). They also demonstrated that the
recovery of pathogens was correlated with the number of grown
blood culture bottles, suggesting this indicator can be used to
determine the presence of contaminants.

The recommended approach will probably depend on the
setting and patient population; in a setting with very few central
venous catheters or prosthetic devices, it is probably not needed
to sample from different venipuncture sites, because infections
with organisms of low virulence are very unlikely in this setting.
In many LMICs there is a reluctance to sampling blood in both
staff and patients (1), so a single-sampling strategy will probably
more acceptable. In settings where the interpretation of possible
contaminants is more difficult, it is still recommended to sample
from at least two separate venipunctures.

Sampling through catheters
Many studies have shown increased contamination rates when
blood is sampled through intravascular catheters, as opposed to
venous puncture (177). However, most of this evidence is found
when using central lines for blood sampling. This suggests that
sampling blood when placing a peripheral intravascular catheter
might be safe and practical, especially in children in whom a
reduction of the number of venipunctures is desirable. Indeed,
some studies did not show a higher contamination rate from
blood sampled through a recently placed peripheral catheter than
through separate venipuncture (220–223). However, many other
studies have found higher contamination rates with this practice
(224–227). Hall et al. described contamination rates as low as
1.6% when sampling via newly inserted catheters by following a
sterile technique protocol in a pediatric emergency department
(228). In general, sampling through peripheral catheters must be
discouraged, but its practical advantages cannot be denied and
should be balanced against the risk of increased contamination.

Disinfecting the blood culture bottle septum
Another measure to decrease contamination is to disinfect the
blood culture bottle septum with 70% isopropyl alcohol or
ethanol before injecting the blood sample (88, 193, 229, 230); in
many institutes, however, this is not done routinely (193, 231).
Bekeris et al. did not find evidence for the effectiveness of this
measure in decreasing contamination, however they noted that
their study was not powered to detect such an effect as they had
quite low rates of contamination overall (206). In the context of
higher environmental contamination in LMICs, disinfection of
the blood culture bottle septum is an easy and low-cost strategy
to avoid contamination.

Sterile gloves
Sterile gloves may reduce contamination rate but increase the
cost of blood cultures (232, 233). Whether this incremental cost
will be offset by decreased costs associated with work-up of
contaminants will need to be evaluated and will depend on the
baseline contamination rate (177). As there are many inexpensive
ways to decrease contamination, sterile gloving might not be
the most cost-effective option when looking for a strategy to
reduce contamination rates. In most studies evaluating the use
of sterile gloving, the absolute reductions in contamination rates

following its implementation were low, leading to a high cost
for very few averted contaminants (232, 233). However, baseline
contamination rates were also low in these studies; in settings
where contamination is much more prevalent, such as most
LMICs, the same relative decrease in contamination rates will
lead to a higher number of averted contaminants. In that case,
the intervention will have a better cost-benefit ratio.

Collection system
Although no impact on contamination rates has been described
to our knowledge, the choice of the type of collection system will
be briefly discussed in this paragraph. For collection of blood
cultures, either a butterfly needle with Vacutainer R© system or a
simple needle with syringe method can be used. It is not possible
to increase the safety of the needle/syringe system by using safety
devices (such as retractable needles), as the healthcare worker
will still use the needle after sampling to inoculate the blood
in the blood culture bottle. The time between sampling and
inoculation into the bottle is the period of risk of needle stick
injury (234). It is also not recommended to connect a blood
culture bottle directly to the needle using a Vacutainer R© system,
as backflow of the broth into the patients’ veins may occur.
Butterfly needles on the other hand, are easy to use, especially
when other blood analyses must be done as well; and other blood
collection tubes can be connected to the Vacutainer R© system after
the blood culture bottles have been filled without the need for
a separate venipuncture. Additionally, they are probably safer
to use than needle-and-syringe as connection to the bottle is
easier (provided the correct adaptor) (234). However, they are
more expensive. If financially sustainable, butterfly needles are
therefore recommended.

Lastly, changing needles between taking blood cultures and
inoculating the blood into the blood culture bottle (in case of
syringe and needle procedure) may decrease contamination rates
slightly (235); however, it also increases the risk of needle stick
injury and it is therefore not recommended (88, 189).

Monitoring of Quality Indicators
Unlike for other specimens, such as urine and respiratory
secretions, many quality indicators which are useful to assess, and
monitor have been described for blood cultures. They can be used
to improve the processes from request to report in the hospital
and laboratory by giving directed feedback to the staff involved.
Examples of quality indicators are given in Table 6. Although
many of these indicators seem clear-cut at first sight, definitions
are not always uniform, and this leads to varying rates and figures
being reported.

For example, contamination rate will vary across studies
depending on how contamination has been defined and
calculated, and often this is not well-described. According to
Leber, the contamination rate is calculated “by dividing the
number of cultures containing contaminants by the total number
of cultures collected by venipuncture,” with a blood culture
being defined as “blood from a single venipuncture” (70). This
suggests that blood culture contamination rates are defined as
the contamination per venipuncture (and not per blood culture
bottle), and it is thus important to know how the bottles were
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TABLE 6 | Quality indicators for monitoring of blood cultures—they can be used for validation as well as for monitoring purposes.

Quality indicator Definition Goal Comment

Proportion of blood cultures

that show growth with a

pathogen (positivity rate)

Number of blood cultures showing growth

with a pathogen /total number of blood

cultures

5–15% (3)

6–12% (70)

If lower than the goal, ordering of

blood cultures is too liberal; if higher

than the goal, it is too stringent

These figures are appropriate for HICs and

settings where malaria is not endemic.

Studies performed in LMICs often show

higher proportions of pathogens (19).

Total number of blood

cultures

Number of blood cultures/1000 patient

days

103–188 (3) Has exclusively been studied in HICs;

goals for LMICs not clearly defined

Missed opportunities Number of missed opportunities for blood

culture sampling as assessed by patient

file review (236)

Not defined

Contamination rate Number of contaminated blood

cultures/total number of blood cultures

<3% (3, 70)

<1% (70)

For this definition, blood culture is defined

as blood sampled through one

venipuncture

Volume Volume per blood culture bottle ≥80% of recommended volume

(3, 70, 88)

Following formula can be used (the factor

0.94 expresses the correction for density

of blood):

Volume per bottle = (weight of bottle after

sampling – weight of bottle before

sampling + average weight of cap) * 0.94

Number and proportion of

solitary blood cultures

Adult blood cultures consisting of only one

blood culture bottle instead of at least two

Best performing hospitals have only

3.4% solitary blood cultures (3)

Needle-to-incubator time Time interval from blood culture sampling

to incubation

<2 h (88)

<4 h (70)

Time-to-detection of growth Time interval from incubation to detection

of growth

Not clearly defined for manual blood

culture bottles

Gram stain accuracy Correlation between smear result (Gram

stain) and culture result.

Turnaround time Time interval from registration of the

sample in the laboratory to reporting of the

result to the clinician (237)

Quality of antibiotic

susceptibility testing (AST)

report

Correct interpretation and reporting of raw

results

sampled exactly. Another problem with contamination rates is
the definition of contamination itself, which may not be uniform
across studies. Depending on the study, the species involved in
contaminated blood cultures may differ, the number of cultures
growing the contaminant may or may not be taken into account,
or clinical review of the patient files may or may not have been
done to determine true contamination. It is therefore important
to assess the definition used in the study when comparing
contamination rates.

CHALLENGES

Although we have argued in paragraph 1.3 that blood
cultures are feasible in LMICs, some significant challenges
remain. First and foremost, clinical bacteriology facilities
in LMICs have to be strengthened and supported. As has
been argued elsewhere, problems of staff training and
retention, insufficient infrastructure, and lack of stringent
quality control and equipment maintenance jeopardize all
laboratory activities, including blood cultures (1, 2, 153). Other
challenges, specific to blood cultures, will be discussed in the
paragraphs below.

Detection of Growth
Manual blood culture systems require inspection of the blood
culture bottles once or twice daily. Most signs of growth are
rather subtle, and experience and training are therefore needed
to recognize growth in the bottles. Manipulation of blood culture
bottles can result in stirring the blood cells with the broth, which
further complicates the detection of turbidity. Standardized
visual conditions are preferable for reliable detection of growth.
This includes standardized backgrounds and lighting; normal
daylight may show substantial variation; therefore, the use of a
lightbox can be considered.

Blind Subcultures
Because of the challenges related to visual detection of growth,
other strategies were employed before the widespread use of
automated monitoring of blood culture bottles. For manual
systems, “blind subcultures” are often recommended. These are
subcultures from the blood culture broth on agar plates, in the
absence of visual signs of growth. The optimal timing of this
subculture varies according to the consulted source. Depending
on the moment of blind subculture during the incubation [for
instance early at day 1 vs. at day 7 at the end of the incubation
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period (so-called “terminal” subculture)], blind subculture can be
used either as a way to shorten the time-to-detection or as a final
check for growth.

CLSI for example recommends subculture after 24 to 48 h of
incubation to facilitate early detection of microorganisms (88).
The American Society of Microbiology “Clinical Microbiology
Procedures Handbook” by Leber et al. (70) recommends blind
subculture at 72 h. Cumitech advises routine blind subcultures
after 12–18 h of incubation for aerobic bottles (3, 70). Routine
blind subcultures are not advised for anaerobic bottles (3).

Early subculture (within the first 24 h of incubation) seems
to be a successful strategy for rapid detection indeed. Szymczak
et al. detected 85% of pathogens with blind subculture within
24 h, whereas in only 48% of positive cultures visual signs of
growth could be detected within 24 h of incubation (238). Even
earlier subculture, within four to 14 h after incubation, led to
detection of 50% (239) and up to 85% of pathogens (240). Studies
performing subculture between 6 and 17 h after incubation
detected 48% (241) and 63% (242) of pathogens. Subcultures
performed within 6 h yielded only 10% of pathogens according
to the study by Sliva et al. they therefore do not recommend
subculture within 6 h of incubation (242). A drawback of blind
subcultures is that by opening the bottle and introducing a
syringe or pipette, contamination may be introduced.

Terminal Subcultures
Terminal subcultures (blind subcultures of blood culture
bottles at the end of the incubation period) are considered
unnecessary by many and may increase contamination rates
and needle stick injuries (243–245). However, they may still be
considered in systems which do not perform a routine blind
subculture at an earlier time or in situations with prolonged
incubation (245). They are also useful at the validation phase
of a newly introduced blood culture system. In settings with
many immunocompromised patients, where higher numbers
of Pseudomonas aeruginosa and yeast BSI are anticipated,
terminal subculture could also be of value, as these organisms
tend to show slower growth and more subtle visual signs of
growth, presumably due to smaller initial concentrations of
bacteria (246).

The Need for Speed: How to Decrease the
Time-to-Detection and Turnaround Time
It is well-known that automated blood cultures have a much
shorter time-to-detection than manual systems. For manual
systems, cumulative growth within 48 h of incubation varies
between 65.8 and 94% (137, 238, 240, 241, 247, 248). It must
be noted that all of these studies performed a blind subculture
within 24 h of incubation; not performing blind subculture may
even lead to lower detection rates after 48 h of incubation. This
is obviously longer than what is currently seen with automated
systems, where 82–91.6% of growth is detected within 24 h
(249–251). Some recent studies from LMICs, directly comparing
manual with automated systems, also found higher sensitivity,
specificity and especially much lower time-to-detection with the
automated system (24–26).

The importance of reducing the time-to-detection of blood
cultures cannot be overestimated, for both antibiotic stewardship
purposes and to increase demand for blood cultures by clinicians
in LMICs, as patients are often discharged or leave the hospital
against medical advice early in the course of treatment (252, 253).
Long turnaround times of test results are a common complaint in
LMICs, decreasing the trust in the laboratory services (254, 255).
Moreover, rapid communication of preliminary results, such as
the Gram stain, is often not or insufficiently done in LMICs
(153). Effective and immediate communication of blood culture
preliminary results, ideally combined with clinical advice, should
be a priority for bacteriology laboratories (312, 313).

Agitation
It may be impossible to increase the speed of detection of manual
systems up to the performance of the automated systems, as the
algorithm-driven continuous monitoring will prove difficult to
mimic in an equipment-free manual system. However, another
feature of automated systems is continuous agitation during
incubation. Agitation is thought to improve microbial recovery
by increasing the oxygen concentration in the broth medium
and will therefore speed up detection of aerobic bacteria (69,
256–258). The “Clinical Microbiology Procedures Handbook”
recommends continuous agitation of manual systems as well
(70). Continuous agitation, however, impacts ease of visual
growth detection, as turbidity will increase due to mixture with
the red blood cells.

Venting
Another strategy to speed up growth is venting, i.e., inserting a
filtered needle or other device that allows air to enter into the
bottle headspace. The need for venting of aerobic blood culture
bottle depends mainly on the manufacturer of the blood culture
bottle. For automated systems, it is agreed that venting is not
necessary (69, 259), but some commercial manual blood culture
bottles may still need venting. Most studies evaluating the impact
of venting stress the role of appropriate amounts of oxygen;
this seems especially important for Pseudomonas, Candida and
other strictly aerobic species, both for rate and speed of growth
(77, 144, 241, 260).

It is currently unclear whether venting is still required with the
newer commercial manual bottles; there are no recent studies on
this. Of course, venting involves an extra procedure to be carried
out, thereby potentially contaminating the sample. Despite this
theoretical possibility, there is no documented evidence for
increased contamination with vented bottles.

Laboratory Organization
Clinical importance of increased speed of detection is also
influenced by laboratory organization. Notification of the Gram
stain result to the clinician has been shown to have the highest
clinical impact (56, 58, 59). Laboratories not providing 24-
h service will probably see less benefit from small differences
in time-to-detection, as they may be unable to translate this
into quicker results to the clinician. Furthermore, the most
important actionable result is growth in the first bottle of a BSI
episode; growth in the other bottles of that episode are of lower
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clinical impact. When taking all this in consideration, the clinical
relevance of difference in speed between automated and manual
systems may be lower than expected. Future studies comparing
speed of growth of different systems, including comparisons
between automated and manual systems, should take these
considerations into account.

A study that has looked at the practical organization in the lab
was performed by Youngs et al. in 1985 (261). They recognized
the added value of early subculture (after 6–17 h of incubation)
but mentioned that the actual timing of subculture also depended
on arrival of the bottle in the lab. To be sure that a subculture
was performed within 6–17 h, they implemented two timeslots
for subculturing: one in the early morning for all bottles having
arrived after office hours the previous day and another subculture
at the end of the work day for all bottles that arrived during the
day. This led to growth of pathogens on solid media the day
after incubation for 10 out of 14 grown blood cultures, making
an appreciable impact for patient management, as none of these
bottles had shown visual signs of growth the day before (261).

Transport to the Laboratory
A relatively simple way of improving the speed of detection
is by ensuring that the bottles arrive in the laboratory in a
timely manner. It has been shown that a delayed incubation
significantly prolongs detection time and may lead to false-
negative results in automated systems (23, 262, 263), however the
exact critical time has not been formally established. Guidelines
recommend maximum needle-to-incubator time of 2 h (88) to
4 h (70); however, many centers actually observed much longer
average transport times (264). Long distances and irregular
transport of laboratory specimens from the site of collection to
the laboratory is more common in LMICs, resulting in even
higher transport times.

Blood culture bottles must be transported to the lab at room
temperature (88, 265) or in a thermostable carrier and should
never be refrigerated or frozen, as many fastidious organisms
are vulnerable to cold (88, 266). Pre-incubation of blood culture
bottles at 35◦C, for example in a small incubator in the emergency
department, can speed up detection of growth in manual blood
culture systems (267), but is not advised for automated systems
as it may result in false-negative results (23, 268–270). However,
high “room temperatures” are common in LMICs, warranting
short transport times when using automated blood culture
systems to avoid false-negative results.

Direct Testing on Blood Culture Broth
Performing direct identification and/or antibiotic susceptibility
testing on grown blood culture broth can also lead to faster
diagnosis and decision-making. Molecular assays and matrix-
assisted laser desorption/ionization—time-of-flight (MALDI-
TOF) methods are currently out of reach for most LMICs, but
lateral-flow immunoassays and other simple testing methods
can provide a convenient solution. A number of simple
direct tests have been described. Examples are detection of
Staphylococcus aureus by direct tube coagulase test for detection
of Staphylococcus aureus (271, 272), latex agglutination tests
(273) and immunochromatographic tests (274), and the recent

development of lateral flow assays for Burkholderia pseudomallei
(275) and Salmonella species (276).

For antibiotic susceptibility testing, lateral flow assays
have been developed to rapidly detect methicillin-resistant
Staphylococcus aureus (277), extended-spectrum beta-lactamase
(ESBL) (278) and carbapenemases (279), directly from blood
culture broth. Moreover, the European Committee on Antibiotic
Susceptibility Testing (EUCAST) recently provided guidelines
on direct disk diffusion testing from blood culture broth, with
adapted procedure and diameter cut-offs4. Performing antibiotic
susceptibility testing directly from blood culture broth decreases
the turnaround time with 1 day but requires rapid identification
as the procedure often depends on the pathogen.

Production, Distribution, and Procurement
of Blood Culture Media
Accessibility and Affordability of Blood Culture
Access to quality-assured in-vitro diagnostics is a problem
in LMICs; diagnostics are frequently more expensive when
purchased in a LMIC and they are not always easily available
(104, 280, 281). Although data are rare, it is estimated that the
cost of blood cultures is twice as high in LMICs than HICs (41).
Most healthcare systems in LMICs rely heavily on out-of-pocket
payments of patients, including for diagnostics (153, 282, 283).
According to a recent WHO report, out-of-pocket payments,
although in decline, still account for 37% of the total healthcare
cost in Africa and 44% in South-East Asia (282). Assuming a
positivity rate of only 10% for blood cultures, the cost-benefit
ratio for the individual patient of performing blood culture may
be unacceptable in very poor populations. A Kenyan study of
2009 reports a blood culture cost of 18.36 US $ per individual
test, much higher than other diagnostic tests in the same setting
such as HIV test (3.68 US $) or malaria microscopy (3.50 US $)
(284). Moreover, this price refers to a single blood culture bottle;
as mentioned before, often two to four blood culture bottles are
needed per patient, further increasing the total price. According
to a panel of stakeholders, an acceptable cost for blood cultures
would have to be <10 US $, and ideally <5 US $ (153). In the
short term, donor involvement will therefore be necessary for
blood cultures to be affordable.

Transport of commercial blood culture bottles from abroad is
very costly and transport times are considerable, compromising
shelf life. Low volumes of cultures per lab, skilled labor needs
and short shelf lives further affect affordability of blood cultures
in many settings (41). For this reason, many laboratories resort
to in-house prepared blood culture bottles, typically containing
brain-heart infusion or trypticase soy broth (41). This practice
is not advised, because the origin and quality of the culture
media are difficult to track down and useful additives, such
as the ones described in Table 3, will not be present in
the broth, compromising performance. An alternative to the
commercially available bottles is to support local production of
blood culture media by reference laboratories, from where they
can be dispersed to smaller hospitals (2, 285). An exemplary
initiative is the laboratory logistic and educational support

4http://www.eucast.org/rapid_ast_in_blood_cultures/

Frontiers in Medicine | www.frontiersin.org 16 June 2019 | Volume 6 | Article 131

http://www.eucast.org/rapid_ast_in_blood_cultures/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ombelet et al. Blood Cultures in LMICs

FIGURE 8 | Dissection of blood culture bottle.

provided by the Diagnostic Microbiology Development Program
in Cambodia (1)5.

Need for Anaerobic Culture
When choosing a blood culture medium to procure, it is
good to remind that there is no perfect all-purpose blood
culture medium. The ideal medium will depend on the expected
pathogen distribution, which may vary according to the setting.
Furthermore, the choice of broths will depend on whether
anaerobic blood culture is deemed necessary. Most centers that
analyzed the frequency of isolation of anaerobes from blood
cultures have noted a declining incidence; coinciding with this,
other (aerobic) organisms such as fungi, Pseudomonas species
and fastidious aerobic bacteria are increasingly associated with
disease (69). Some have suggested to replace routine inoculation
of anaerobic media by a second aerobic bottle and reserve the
anaerobic bottle only when clinically indicated or in patients at
risk of anaerobic infections (286–289).

Not all hospitals, however, have seen this decrease in anaerobic
bacteremia (290, 291). Moreover, Vena et al. found that in half
of the cases of anaerobic infection, this could not have been
suspected on clinical grounds (291). The choice of which bottles
to use is therefore highly dependent on the specific setting, and
every center is encouraged to perform its own evaluation on
the need for anaerobic blood culture (69). These differences in
regional incidence of anaerobic isolates from blood culture were
also confirmed in a more recent review (292). In this review, it is
stated that anaerobic cultures can safely be omitted in most cases,
unless clinical indications for anaerobic infections are present.
Moreover, identification and antibiotic susceptibility testing of
anaerobic bacteria is often difficult in LMICs due to the need of
specialized and generallymore expensive techniques6 (293). CLSI

5http://dmdp.org
6http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/
Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf

however still recommends that routine blood cultures include
paired aerobic/anaerobic blood culture bottles, as the data are
conflicting and the recommendation of limiting anaerobic blood
culture bottles has never been validated by controlled clinical
studies (88, 290, 294, 295). Because anaerobic bacteria are rarely
recovered in pediatric patients, and usually only one bottle is
sampled, the use of only aerobic bottles has been recommended
in this patient population (296, 297).

Physical Properties of the Bottle
Equally important is the selection of the correct bottle type
(Figure 8); for reasons of (bio)safety and shipping costs, plastic
bottles may be preferred over glass bottles. The specific type
of plastic may be important for subsequent waste management
(see below). The bottle material also needs to be completely
transparent to allow visual inspection for growth. Bottles have
to be stored and shipped adequately to avoid scratches on the
material. To increase ease of use, the septum of the bottle must be
easy to perforate by a needle and the vacuum in the bottle must
be sufficient to aspirate the required amount of blood (10ml for
adult bottles, 4ml for pediatric bottles). A screw capmay be more
practical than other cap types in terms of waste management;
after autoclavation, the fluid can then be poured out safely and
the empty bottle incinerated. A screw cap is also advantageous for
sampling the blood-broth mixture (e.g., for subculture), as this
can avoid the use of needles.

Tropicalization of Blood Culture Bottles
Lastly, blood culture bottles should be “tropicalized”, i.e., adapted
to harsh environmental conditions (1, 153), in order to be
useful for LMICs. In many LMICs, no manufacturers of in-
vitro diagnostics are locally present, necessitating import and
shipment from other countries. Therefore, shipment stability is
an important factor, as is a sufficiently long shelf life. Many
compounds in blood culture bottles, such as resins and SPS, may
shorten shelf life, as exemplified by the much shorter shelf life
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of bottles designed for automates when compared to manual
blood culture bottles. In line with requirements for malaria rapid
diagnostic tests according to the Prequalification of in vitro
Diagnostics (PQDx) Programme7 of the WHO, shelf life must
be at least between 1.5 and 2 years. Storage temperature must be
sufficiently flexible to allow storage or at least shipment at tropical
temperatures (153).

Signal Without Growth on Subculture
In some cases, blood culture bottles appear “positive” (detection
of bacterial growth) by a visual sign of growth such as turbidity
or color change of a carbon dioxide indicator, but sub-culturing
on solid media does not confirm the presence of bacteria. This
phenomenon has mainly been studied for automated blood
culture systems, where it can be caused by overfilling of blood
culture bottles, elevated blood leukocyte counts, or antibiotic
consumption by the patients before blood culture sampling
(298–300). Microbiological causes are growth of Plasmodium

falciparum in the blood culture bottle (301, 302) or growth of
fastidious bacteria such as Streptococcus pneumoniae, which can
exhibit rapid autolysis (i.e., self-destruction) in case of stationary
growth, making it undetectable at Gram stain and subculture
(303, 304). Other fastidious organisms, such as Campylobacter
andMycoplasma, can cause turbidity without growth, as they are
difficult to stain and do not grow well on agar plates in normal
conditions (266).

Biosafety Concerns in Blood Cultures
Need for a Biosafety Cabinet?
A laboratory performing blood cultures usually functions as a
Biosafety Level (BSL)-2 laboratory (305). When handling blood
cultures, it is possible that laboratory staff comes into contact with
unknown pathogens causing airborne infection. This raises the
question whether laboratories in LMICs must also be equipped
with a biosafety cabinet, keeping in mind the challenges in
LMICs of dusty environments, lack of electricity and equipment
maintenance (Table 7). A class II biosafety cabinet provides
protection to laboratory staff against infectious materials as
well as to biological samples against external contamination.
The presence of a biosafety cabinet is generally recommended
for a BSL-2 laboratory in case of likely aerosol formation or
splashes (305, 306, 309). A biosafety cabinet most obviously
provides protection from inhalation of infectious aerosols. For
most other types of exposure, on the other hand, good personal
protective equipment, such as safety goggles, face shield, gloves
and masks, and the use of safe and appropriate techniques
(no mouth pipetting, use of disposable loops) are sufficient.
Therefore, the decision of the installation of a biosafety cabinet in
a specific setting should be taken after a risk analysis, taking into
account possible laboratory-acquired infections when processing
blood cultures, and existing alternative methods to mitigate this
risk (Table 7).

Because of gas production and possible aerosol formation,
opening the blood culture bottle to perform subculture

7https://www.who.int/diagnostics_laboratory/evaluations/en/

TABLE 7 | Benefits, risks and limitations of a biosafety cabinet in low-resource

settings.

Benefits of biosafety cabinet Risks/limitations of biosafety cabinet

Presence of a biosafety cabinet

in biosafety level-2 laboratory is

considered desirable according

to WHO guidelines (305).

Poor location, room air currents, decreased

airflow, leaking filters, raised sashes, crowded

work surfaces, and poor user technique

compromise the containment capability of a

biosafety cabinet (306). In those conditions,

the biosafety cabinet offers a false sense of

safety.

Procedures with a potential of

generating infectious aerosols or

high splash potential should be

conducted within a biosafety

cabinet (305, 306).

These may include pipetting,

mixing, centrifuging, grinding,

vortexing, shaking, opening of

containers of infectious material

with internal pressure that may

be different from the ambient

pressure such as blood culture

bottles (306).

With good microbiological techniques and

appropriate and consistent use of personal

protective equipment (safety goggles, face

shield, gloves, mask), biosafety level-2 agents

can be used safely in activities conducted on

the open bench, provided the potential for

producing splashes or aerosols is low (306).

Pathogens of risk groups 3 and

4 are seen more frequently in

low-resource settings as

opposed to high-resource

settings, so biosafety procedures

are likely to be more important.

Workers using biosafety cabinet must be

specifically trained for the use of a biosafety

cabinet (305, 306). In low-resource settings,

skilled workers are often not available,

training options are few and trained staff is

difficult to retain (307).

Biosafety level-3 and 4 require additional

training of the staff.

A biosafety cabinet Class II is fit for biosafety

level-3 purposes but not for biosafety

level-4 (305).

In case of an unexpected

epidemic with a risk group 3

pathogen, having a biosafety

cabinet on site can be used for

outbreak investigation or other

diagnostic purposes during the

outbreak.

The biosafety cabinet must be certified when

installed, whenever it is moved and then

annually. In many low-resource regions, a

number of practical problems prevent this

from happening, most notably lack of

awareness of this requirement, insufficient

resources for maintenance and an absence

of local competent, qualified certifiers

(307, 308).

In a survey of biosafety level-2 and 3

laboratories in 7 countries in the Asia-Pacific

region, 30% of biosafety cabinets tested

were poorly designed, incorrectly installed,

not certified, or operated improperly (308)

The use of pre-filters below the

work bench in the biosafety

cabinet or the use of door dust

filters at the entrance of the

laboratory can reduce the dust

level within the laboratory and

prolong the lifespan of the HEPA

filters.

HEPA filters need to be replaced more

frequently when working in dusty/dirty

environments; replacing HEPA filters has to

be done by a trained technician. In regions

with low accessibility and no local

manufacturers, this may be difficult to do on

a regular basis.

The price of a Class II biosafety cabinet is

around 10,000 euro; certifying the biosafety

cabinet (which should happen at installation,

annually and whenever the device is moved)

costs an estimated 1,000 euro in Europe;

costs in Africa or Asia are likely to be higher

because of much higher transport costs, if

available at all.
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substitutes a risk to the laboratory technician. Apart from
measures implemented to protect the laboratory technician from
this aerosol, aspects of the bottle itself can play a role in safety. For
example, biphasic bottles provide opportunities of subculturing
without having to open the bottle. Bottle septa that are difficult to
perforate may be a risk for needle stick injuries.

Waste Management
Another important biosafety aspect is the possibility to safely
destroy (decontaminate) grown blood culture bottles, for
instance by autoclaving and incineration. The bacterial load of
grown blood culture bottles is very high, easily reaching 106-109

CFU/ml (310). In case of steam autoclavation of blood culture
bottles, it must be kept in mind that the fluid inside the blood
culture bottle must reach 121◦C during at least 15min to ensure
effective decontamination. This requires longer cycles when a
higher volume of liquids (e.g., more blood culture bottles) are
autoclaved, a phenomenon that is often not taken into account.
Monitoring the autoclave cycle by using chemical indicators
is often not sufficient, as they will only show the presence of
steam but do not give an indication of the temperature inside
the liquids (311). The autoclave must be validated before taken
into use with the help of temperature sensors (if available) and
biological indicators, preferably placed inside (non-inoculated)
blood culture bottles. Given the importance of the total volume
of liquids in the autoclave on the time needed to sterilize, it is
important not to overfill the autoclave with liquid waste and
to validate the maximum liquid load the autoclave can still
safely sterilize.

Moreover, not all plastic can be safely autoclaved after use.
Even if re-use of the bottles is not necessary, it is important
that the bottle material can be autoclaved without posing
direct biological risks by tearing and implosion of the
bottles or loosening of the stopper. Polycarbonate (PC)
and polypropylene (PP) bottles withstand autoclavation,
however polyethylene terephthalate (PET) bottles cannot
be autoclaved without substantial damage to the bottle,
potentially causing spill of infectious material inside
the autoclave. In case of interrupted or only partially
successful cycles, this may bring the healthcare worker into
contact with infectious aerosols. Therefore, other types of
plastic that withstand autoclavation are preferred (like PP
or PC)8.

8https://www.mynewlab.com/blog/a-guide-to-autoclaving-plastics-and-glass/

Future Research Needs
Since the introduction of automated equipment for blood
cultures, hardly any further research on manual blood culture
bottles and systems has been done. This is all the more surprising
given the large market share represented bymanual blood culture
consumables (almost double that of automated systems) and the
projected substantial growth of the market for manual blood
cultures in LMICs for the decades to come (27). New research and
innovation should therefore also include manual blood culture
methods, as we have argued elsewhere (1). The recent Unitaid
Fever Diagnostic Landscape points out that short reagent shelf
lives, supply chain difficulties and highly skilled labor needs drive
up the cost of blood cultures in LMICs (41). Asmentioned before,
high cost decreases demand in these settings, resulting in low
numbers of blood cultures performed. The low numbers then
further contribute to higher prices per test. Moreover, the lack
of critical testing volume will deny the laboratory technicians
the opportunity to gain sufficient experience in processing blood
cultures, thus impacting the quality of the test results and
decreasing clinicians’ confidence in the testing. This will in
turn further drive down demand for the tests, resulting in a
vicious cycle.

To break this cycle and achieve successful implementation
of blood cultures in LMICs, affordable and tropicalized blood
culture methods are needed. Research into these methods and
close collaboration between academia, stakeholders and product
developers is mandatory (1, 153).
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