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Abstract

Advances in transcriptome sequencing allow for simultaneous interrogation of

differentially expressed genes from multiple species originating from a single RNA

sample, termed dual or multi-species transcriptomics. Compared to single-species

differential expression analysis, the design of multi-species differential expression

experiments must account for the relative abundances of each organism of interest

within the sample, often requiring enrichment methods and yielding differences in

total read counts across samples. The analysis of multi-species transcriptomics

datasets requires modifications to the alignment, quantification, and downstream

analysis steps compared to the single-species analysis pipelines. We describe best

practices for multi-species transcriptomics and differential gene expression.

Keywords: RNA-Seq, Transcriptomics, Best practices, Differential gene expression

Introduction

Transcriptomics experiments measure the underlying transcriptional signatures re-

sponsible for observed phenotypes [1–3]. By assessing mRNA profiles, it is possible to

interrogate the specific genetic processes underlying, and giving rise to, specific pheno-

types of interest. The use of transcriptomics has expanded to evaluate the transcrip-

tional profile of other RNA populations [4], such as rRNAs [5], miRNAs [6–8], tRNAs

[9, 10], and other small RNAs [11–14]. Traditional transcriptomics analyses usually

identify transcriptional alterations in a single organism. However, biological processes

often involve the interactions of multiple organisms, and interrogating the transcrip-

tional profile of only one organism of a multi-organism system is insufficient to fully

understand the biological system. This is especially important in the context of host-

pathogen interactions, in which a holistic view of the biological system can aid in

better understanding the system in ways to provide alteration, like the development of

novel treatment therapeutics. But it is also important in the study of host-

endosymbiont systems. To address this, researchers have developed methods to inter-

rogate the transcriptome of multiple organisms from a single sample. Dual-species

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Chung et al. Genome Biology          (2021) 22:121 

https://doi.org/10.1186/s13059-021-02337-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02337-8&domain=pdf
https://orcid.org/0000-0002-9545-523X
https://orcid.org/0000-0002-7337-7154
https://orcid.org/0000-0002-5778-960X
https://orcid.org/0000-0003-4987-7957
https://orcid.org/0000-0001-8790-7649
http://orcid.org/0000-0003-3862-986X
mailto:jdhotopp@som.umaryland.edu
mailto:jdhotopp@som.umaryland.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


transcriptomics or dual-RNA-seq studies use transcriptomics to assess the transcrip-

tional profiles of multiple organisms originating from the same sample [15].

The first dual-species transcriptomics studies were used to analyze interactions be-

tween the eukaryotic and prokaryotic organisms in host-pathogen systems [16–19].

However, compared to typical transcriptomics studies, dual-species transcriptomics

studies are technically challenging due to a difference in the proportion of reads from

the major and minor organisms in the system, where major and minor refer to tran-

script abundance. The organisms studied in dual-species transcriptomics experiments

are present in different relative abundances and while the read proportions between the

two organisms differ by system, most infection models, particularly biologically relevant

models, have the total RNA content of the host vastly outnumbering microbe [15]. In

the cases where the number of microbial cells are more limited, enrichment methods

are needed to derive a meaningful number of reads from the minor organism for statis-

tically robust analyses. As library enrichment methods have improved, dual-species

transcriptomics studies expanded to include the study of eukaryote-eukaryote and

prokaryote-prokaryote systems. As an example, dual-species transcriptomics has been

used to study fungal interactions with numerous mammals and plants [20–25]. In

prokaryote-prokaryote systems, dual-species transcriptomics has been used to study

transcriptional profiles in prokaryotic biofilm interactions [26]. More recently, multi-

species transcriptomics experiments have been conducted examining bacteria-

eukaryote-eukaryote interactions in an endosymbiont-parasite-vector system [27]. With

this increasing complexity, best practices are needed for properly designing and con-

ducting a differential expression analysis within a multi-species transcriptomics

experiment.

Here, we describe best practices for multi-species transcriptomics experiments from

the initial experimental design to the downstream differential expression analysis,

highlighting important considerations that should be taken for these multi-species ana-

lyses when compared to traditional single-species transcriptomics analyses. While we

note currently available kits and tools for each step of the analysis, our goal here is nei-

ther to provide a comprehensive list of tools for each task nor to define the best tool.

Similar to previous transcriptomics best practices studies [28, 29], our objective is to

provide a guide for conducting a multi-species transcriptomics study from start to fin-

ish while highlighting considerations specific to multi-species transcriptomics studies.

Sample preparation and sequencing

Sample preparation

Sample preparation for multi-species RNA-Seq experiments requires maximizing the

number of reads from the minor organism relative to the major organism. Even when

the cells of the two organisms are present in equal numbers, the RNA molecules can

differ in abundance by orders of magnitude. A single mammalian cell contains approxi-

mately two orders of magnitude more RNA than a single bacterial cell [15]. Enriching

for mRNA from the minor organism has been reviewed previously [15, 30] and can be

done using physical methods prior to sequencing, such as fluorescence-activated cell

sorting [13, 23, 31, 32], laser capture microdissection [16], or differential lysis [33], all

of which can also serve other purposes, like enriching for a select population of cells.
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Techniques with longer processing time need to incorporate steps to minimize further

changes in the transcriptome during sample preparation including through the use of

RNA stabilization reagents. Selection of the right reagents depends upon the system

and techniques used (e.g., as described in [13] and recently reviewed by [30]). Enrich-

ment for the minor organism can also be achieved by enriching for minor organism

transcripts prior to sequencing using rRNA depletions [34] or custom RNA-Seq cap-

ture panels [35].

Estimating the proportion of RNA from both the major and minor organisms

The design of a multi-species transcriptomics experiment is heavily influenced by the

proportional composition of the organisms in the system of interest. It is important to

define a target number of reads for each organism of interest and develop a sample

preparation, enrichment, and sequencing strategy that can generate the target number

of reads for the lowest cost and without introducing substantial bias. Thus, the relative

proportions of each organism should be measured with techniques like qRT-PCR or

limited test sequencing, which are then used to calculate a sufficient number of reads

(described further below) to be sequenced to ensure adequate representation for all tar-

get organisms. For samples that include prokaryotes, methods for qRT-PCR and library

construction should not rely solely on techniques that prime from the polyA-tail, since

bacterial RNA transcripts largely lack polyA-tails. The optimal library size varies be-

tween different experiments and systems, and since fewer reads are needed when or-

ganisms have fewer transcripts, experimental designs must also consider the number of

transcripts in the target organisms. Greater read depth is also needed if looking for rare

transcripts and/or examining transcript isoforms, which may also require longer reads

to fully resolve. CPM thresholds and saturation curves, both discussed in detail below,

can be useful tools in assessing if a sample has been sequenced to sufficient depth for

robust and rigorous differential expression analysis. While all of this can sometimes be

achieved without enrichment and by sequencing for each organism separately, many

experimental systems require the construction of multiple libraries using differential

enrichment strategies.

rRNA and polyA-RNA depletion and enrichment strategies for short-read sequencing

When the major and minor organisms are all eukaryotes and the minor organism is at

sufficient abundance, the transcriptomes of the major and minor organisms can be ana-

lyzed using libraries made following only polyA-enrichment. But when one of the or-

ganisms is a prokaryote, rRNA depletion is typically required with a kit that works on

all organisms in the mixture. Total RNA is rRNA-depleted by selective removal using

products such as the Illumina Ribo-Zero rRNA removal kit or the NEBNext rRNA de-

pletion kit. In some cases, the difference in abundance of the major and minor member

is too great requiring separate sequencing of the major and minor members. For

obtaining the bacterial component of a bacteria-eukaryote sample, poly(A) depletion

can be combined with the rRNA depletion, enriching for prokaryotic mRNA. Kits like

the NEBNext Poly(A) mRNA Magnetic Isolation Module and the ThermoFisher Dyna-

beads mRNA Purification Kit are typically used for poly(A) enrichment with magnetic

beads hybridized to oligo (dT) residues being used to extract polyadenylated transcripts
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(Fig. 1). Typically for poly(A) enrichments, after hybridization the supernatant is dis-

carded and the poly(A)-selected RNA can be eluted from the beads. For poly(A) deple-

tions, the supernatant is instead retained. Poly(A)- and rRNA-depleted RNA samples

are enriched for all non-polyadenylated non-rRNA transcripts which include prokary-

otic transcripts as well as eukaryotic RNAs that are not polyadenylated, like some long

ncRNAs [36]. While effective in some systems, there are cases where sequencing after a

rRNA-, poly(A) depletion is unable to yield a sufficient number of prokaryotic reads

(e.g., obtaining sequencing data from the Wolbachia endosymbiont wBm in B. malayi

infected mosquitos [27]). In these instances, targeted transcriptomics capture ap-

proaches may be required to sufficiently enrich for reads originating from a specific or-

ganism [27, 37, 38].

Targeted capture

For multi-species transcriptomics experiments involving eukaryote-eukaryote or

prokaryote-prokaryote relationships, rRNA and polyA-RNA enrichments and deple-

tions cannot be used to differentiate between the two organisms and enable enrichment

of the minor organism, when needed. In these cases, targeted capture approaches, also

referred to as CaptureSeq or Hybrid Capture, can be used to enrich for transcripts ori-

ginating from an organism of interest [35, 37, 39, 40]. Targeted capture experiments

rely on the use of probes designed to specifically hybridize to sequences in a target or-

ganism. With targeted capture methods, enrichments of up to 2242-fold fold have been

reported with positive linear correlations (r2 = 0.56–0.87) relative to their counterparts

that used rRNA and polyA depletions [40].

Fig. 1 A general workflow for the enrichment, library preparation, and sequencing steps of a typical multi-

species RNA-Seq analysis. Created with BioRender.com
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For example, one model of lymphatic filariasis includes three organisms: the vector

host Aedes aegypti, the filarial nematode Brugia malayi, and the nematode’s bacterial

Wolbachia endosymbiont, wBm. At 18 h post-infection of A. aegypti with B. malayi, an

enrichment of polyadenylated reads performed on total RNA yields 82.4% of reads

mapping to A. aegypti and 0.4% of reads mapping to B. malayi [27, 40]. Using a tar-

geted capture panel designed for B. malayi, a 146-fold enrichment of B. malayi reads

can be obtained.

Targeted captures also provide an advantage when rRNA and polyA-RNA enrich-

ment and depletion methods are unable to extract sufficient reads from the minor or-

ganism of the study, usually because the minor organism is of such low abundance.

From the same mosquito/nematode/bacteria sample, rRNA and poly(A) depletion per-

formed on total RNA yielded 122 (< 0.1%) of reads mapping to the bacteria, wBm.

Using a targeted capture designed for wBm on total RNA, the number of wBm mapped

reads increased to 703,956 (0.9%) [40], which is on average over 850 reads/gene.

Targeted capture relies on knowing the transcript sequences. Therefore, transcript se-

quences must already be known or inferred through either transcriptome sequencing/

assembly or whole genome sequencing/assembly/annotation. Since oligonucleotides are

custom designed and synthesized for each transcript, the method can be expensive. A

method for capturing after library multiplexing could help drive down cost. Lastly, the

results are biased by the oligonucleotides in the capture. For instance, leaving out the

rRNA genes is desirable as it limits the presence of rRNA following capture. But any

other region not included will also not be captured. This limits the potential to discover

new transcripts, or analyze newly discovered transcripts, unless oligonucleotides are

used that tile both strands of the whole genome.

Enrichment methods for long-read sequencing

The larger scale of sequence reads obtained by short-read sequencing technologies rela-

tive to their long-read counterparts provides higher power that is indispensable for dif-

ferential expression analyses (Fig. 1). Additionally, for low abundance minor organisms

in multi-species transcriptomics experiments, the greater number of reads conferred by

short paired-read sequencing is advantageous with respect to detection of the minor or-

ganism. However, when a high-quality reference is not available for mapping and a de

novo transcriptome assembly is required, long-read sequencing may be advantageous

to improve assembly quality and detect isoforms. Long reads may also have advantages

in the accurate identification of transcript isoforms [41, 42]. However, the relative

abundance of the major and minor organism must again be considered.

While transcript variants have been less studied in bacteria, there is increasing evi-

dence of alternate transcription start sties and termination sites internal to operons, as

well as antisense transcription, cis-regulatory elements, and riboswitches in 5′-untrans-

lated regions [43–45]. Therefore, methods to obtain long bacterial reads are needed,

particularly ones that can be leveraged for multi-species RNA-seq analyses. Long-read

SMRT sequencing can be supplemented with a Pacific Biosciences IsoSeq protocol that

includes a poly(A) enrichment and rRNA depletion step [46] while Oxford Nanopore

Technologies direct RNA sequencing can be performed on either in vivo polyadeny-

lated mRNA from eukaryotes or in vitro polyadenylated RNA from any organism,
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including bacteria [47]. SMRT-Cappable-seq can also be used to enrich for bacterial

RNA, generating long bacterial IsoSeq reads using a protocol that adds a desthio-

biotinylated cap to 5′-triphosphorylated primary prokaryotic mRNA transcripts

followed by polyadenylation [48]. The biotinylated cap can then be enriched and se-

quenced, enabling the identification of the 5′-end, operons, and transcript variants.

SMRT-Cappable-seq RNA can also be sequenced using the Oxford Nanopore technol-

ogy to generate similar data by directly sequencing RNA, allowing for the additional

potential analysis of RNA modifications. However, the reactions require a large amount

of RNA that may be difficult to obtain in many systems, particularly when interrogating

a low abundance minor member. Methods for targeted enrichment of cDNA con-

structed from long transcripts have been reported [49, 50] that could be used for

cDNA-based IsoSeq or ONT libraries, but do not scale to obtaining whole transcrip-

tome enrichment of the complete transcriptome of the minor organism without having

all ORFs cloned in the minor organism. Methods designed to capture long DNA frag-

ments will likely capture from cDNA, but methods are needed for long RNA capture

for direct sequencing with ONT. As mentioned with capture of Illumina libraries, these

methods require a priori knowledge of the genome or transcriptome to design the baits

and are limited by the bait design.

Alignment and quantification

Differences in the analysis of prokaryotic and eukaryotic RNA-Seq data

There are important differences in analyses between eukaryote and prokaryote data.

Due to splicing observed in eukaryote transcripts, separate aligners and options are fre-

quently used for prokaryotes and eukaryotes. The human and mouse genomes repre-

sent two of the best annotated genomes to date, such that the sequences of entire

transcripts are known. In comparison, genomes of non-model organisms have less

established gene models, often containing only coding sequences and lacking UTR se-

quences. While de novo transcriptome assemblies, using tools such as Cufflinks [51],

Oases [52], rnaSPAdes [53], Trans-ABySS [54], or Trinity [55], could serve as a poten-

tial solution, it is often difficult to perform on the minor organisms in multi-species

transcriptomics experiments due to a lack of adequate sequencing depth. While se-

quencing pure cultures of an organism in different conditions can provide good cover-

age of a transcriptome for a de novo assembly, such methods are not as straightforward

for obligately host-associated organisms.

Quality control and read alignments

Following quality control of the sequenced reads and their subsequent trimming, reads

are typically aligned to a reference genome or transcriptome for each species or to a

composite multi-species reference (Fig. 2), although alignment-independent methods

can also be used. Raw read data should be quality-controlled with tools, such as

FASTX-toolkit [56], FASTQC [57] or NGS QC [58], to examine the GC content, base

quality score, and the total number of reads sequenced. Reads should be trimmed with

Cutadapt [59] or Trimmomatic [60]. For prokaryotes, splice-agnostic aligners such as

Bowtie [61] or BWA [62] can be used, while for eukaryotes, splice-aware aligners such

as HISAT2 [63] or STAR [64] are frequently used. Aligner issues have been identified
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because aligners are primarily tested on simulated data and typically human data [65],

illustrating that more testing with real data from diverse organisms would be beneficial.

Because most aligners have been designed with the intent of aligning reads to a single

organism, most tools are not optimized for multi-species data sets. Using a combined

reference containing the nucleotide genome or coding sequences of all target organisms

in a multi-species transcriptomics analysis mitigates the number of incorrect mappings

and should be used in most cases [66, 67] and should be splice-aware if any organism

has splicing. As an additional precaution, reads with equal mapping to two (or more)

organisms, expected to be few, can be removed from the analysis [23], with the excep-

tion of endosymbiont/host systems with extensive lateral gene transfer, like Wolbachia

endosymbionts and their hosts [68].

The initial seed length is also important for the correct mapping of reads. When ap-

plied to multi-species datasets, the aligner BWA-MEM has been found to sometimes

yield a substantial number of reads mapping to the incorrect organism when run using

the default seed length of 19 nt and a single reference [66]. This misalignment can be

avoided when references are merged, but when they cannot be merged (e.g., because

the aggregate genome size of the organisms is too large for the aligner), increasing the

seed length can improve the analysis [66].

Alignment-dependent transcript quantification

Alignment files obtained from read mapping are inputs for transcript quantification

using tools such as featureCounts [69] or HTSeq [70] (Fig. 2). Using reference annota-

tion in a GFF/GTF file, alignment-dependent quantification tools take the coordinates

of mapped reads and counts fragments per gene based on the overlap between the

mapping coordinates of the read and any specified feature in the annotation file. The

Fig. 2 A general workflow for the read processing, alignment, and quantification steps of a typical multi-

species RNA-Seq analysis. Created with BioRender.com
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tools featureCounts and HTSeq use genome mapping with annotation while other

quantification tools such as eXpress [71] and RSEM [72] require mapping to transcrip-

tome sequences. The tools eXpress and RSEM use on-line or batch expectation

maximization (EM) algorithms, respectively, to assign ambiguous fragments to target

sequences based on probability [71, 73]. Additionally, the quantification tool RSEM can

perform the read alignment step prior to quantification or directly use an alignment file

as an input [72]. While a good option where the set of transcripts has been previously

well defined, de novo transcriptome assemblies can be difficult, nuanced, and impre-

cise, making extensions even with weak support [74, 75], which frequently preclude the

use of transcriptome-alignment-based tools. Mapping to complete genome sequences

provides greater specificity in read mapping, particularly for reads from unannotated

transcripts [65] or unannotated portions of transcripts like 5′- and 3′-UTRs in ge-

nomes where only CDSs are annotated.

For genomes that have not been extensively characterized, transcript quantifica-

tion is often performed at a coding sequence level rather than a transcript level.

Yet, the widespread presence of operons in prokaryotes [76, 77] causes potential

downstream issues [78]. Transcripts from operons contain multiple coding se-

quences in a single mRNA transcript, and the presence of operons can lead to very

long transcripts in bacteria. The close proximity of genes in an operon leads to is-

sues when attempting to quantify coding sequences rather than transcripts, leading

to an underestimation in the read counts for genes encoded in operons, with

smaller operonic genes being more heavily impacted [78]. FADU is prokaryote-

specific read counting algorithm with an implemented EM algorithm [78]. FADU

balances errors in bacterial read counting that was tested on simulated data and

real data from multiple organisms [78], but more research and algorithm develop-

ment are needed in this area.

Alignment-independent transcript quantification

Alignment-independent tools quantify reads based on a pseudoalignment or quasi-

mapping of read k-mers allowing for considerably faster compute times relative to

alignment-dependent tools while obtaining similar results. As inputs, k-mer-based tools

require an index generated from a nucleotide FASTA file containing the transcript se-

quences of the target organism along with paired-end FASTQ files. Alignment-

independent tools available for transcript quantification include kallisto [79], Sailfish

[80], and Salmon [81] (Fig. 2). References for alignment-independent approaches

should include predicted transcript sequences from all organisms of interest to

maximize the accuracy of the quantification tool. Similar to transcriptome-alignment-

based quantification methods, the lack of high-quality transcriptome assemblies and/or

transcript annotation may preclude the use of these tools. Recently, some issues have

been identified with these tools as testing has heavily relied on simulated data and reads

from unannotated transcripts can be misassigned, although suggested improvements

and implementation of an option in Salmon may alleviate some of these issues [65].

However, testing is needed on more diverse data, particularly prokaryotes since tran-

script structural variation is quite different and intron/exon differences cannot be used

to disentangle read counts.
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Downstream analyses

Saturation curves

To determine if a sample has been sufficiently sequenced, a saturation curve can

be generated with software like vegan in R [82]. To generate saturation curves,

subsets of the reads in a sample are taken and the number of detected genes in

each of these subsets is plotted [83] (Fig. 3). In other words, the number of reads

in a subset are plotted on the X-axis and the number of transcripts detected with

that subset are plotted on the Y-axis with the final value in the plot being the

number of transcripts detected in the complete dataset. A sample sequenced to

saturation plateaus, such that saturation is assessed by looking at the shape of

the curve. It is important that the emphasis is not on the height of the plateau

since samples can have different subsets of genes transcribed such that they plat-

eau at different levels. For example, in an analysis of the life cycle of a filarial

nematode, male samples consistently plateau above other samples, likely because

of the large number of male-specific transcripts only in these samples [27]. In

the case that the curve is not reaching saturation, it likely indicates that the sam-

ple has not been sequenced to a sufficient depth. In these cases, the library could

be queued for additional sequencing and fastq files merged from multiple runs.

When further sequencing is not possible, samples might be removed from the ex-

periment [27], new libraries constructed with enrichment [27], or the analysis

could be adjusted accordingly, (e.g., examining the rank abundance of the most

highly expressed genes can form the basis for new testable hypotheses [25]). Ana-

lysis methods presented below in addressing batch effects may be beneficial. An

alternative or compliment to saturation plots involves plotting the number of

Fig. 3 Examples of saturation curves for two samples that reach saturation and two samples that do not

reach saturation
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new genes added with each subsequent addition of a subset of reads in a satur-

ation analysis; such a plot shows a decay that also plateaus indicating the limits

of detecting new genes [83].

Expression threshold

Genes with low abundance or unusually high abundance may need further examination

before downstream analyses. For low abundance genes, a minimum expression depth

threshold is needed that is applied evenly to each organism in all samples. The differen-

tial expression tools DESeq2 [84] and edgeR [85] both employ thresholds to ensure that

genes have sufficient reads to be considered for downstream analyses. By default,

DESeq2 uses a prefiltering step that excludes all genes with < 10 reads and a later filter-

ing step on the mean of normalized counts [84]. The edgeR manual suggests using a

counts-per-million (CPM) threshold to establish the minimum number of reads that a

gene must have to be considered valid [85], and the CPM threshold is implemented to

ensure that it is applied equally across samples regardless of sequencing depth differ-

ences between samples.

Examining extremely high abundance genes may also need to be addressed, although

the TMM algorithm in EdgeR was designed for these issues [86]. Erroneously predicted

CDSs within rRNA genes can have very high counts, which can be remedied by exam-

ining and correcting the annotation. High counts have also been an issue in Wolbachia

transcriptomes for the 6S RNA, a noncoding RNA and global transcriptional regulator

that associates with RNA polymerase [87]. The Wolbachia 6S RNA is differentially

expressed and possibly associated with control of intracellular replication and growth

[88, 89]. In the 2005 Wolbachia strain wBm annotation, the 6S RNA was not annotated

and an adjacent CDS (Wbm0439) had a misannotated start site placed within the

6S RNA [90]. This misannotation combined with the high levels of 6S RNA ex-

pression (> 75% of the non-RNA in some samples [27]) impeded analysis of differ-

entially expressed genes with WGCNA. This was remedied by using updated NCBI

annotation, limiting the analysis to CDSs, and including a separate analysis of the 6S RNA

[27]. Heat maps of TPM values can be helpful in identifying these issues.

Clustering to identify technical artifacts

Before other downstream analyses, clustering analyses such as principal component

analyses (PCA) or hierarchical clustering should be completed to ensure that samples

cluster together based on experimental design, such as biological replicates, and not by

technical factors, like the number of reads sequenced, library preparation, or sequen-

cing runs (Fig. 4). If technical artifacts are suspected, an interrogation of batch effects

as described further below is warranted. The R package WGCNA has functions to de-

termine outlier samples using hierarchical clustering of the samples using gene expres-

sion values [91]. Statistical support should be used to measure confidence in the

generated clusters, such as with bootstrap supports in the case of hierarchical cluster-

ing. In the case that biological replicates do not cluster with one another, the samples

must be examined further for potential sequencing artifacts or inadequate sequencing

depth. If a small number of samples display aberrant clustering, such as due to low se-

quencing depth, removing them may be a preferred option where sufficient samples
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remain for the planned analyses. Clustering should be performed for the data for each

organism in the samples separately, as the transcriptional variation patterns can differ

between organisms in the magnitude and direction of change.

For the comparison of transcript abundance across multiple samples, transcript

counts need to be normalized in each organism by individual transcript lengths and

total library size. Due to the differences in transcript abundances between the major

and minor organisms, counts for each organism should be normalized independently

using transcript per million (TPM) calculations [73]. TPM values are calculated by

dividing all read counts by the length of each gene in kilobases to obtain a reads per

kilobase (RPK) value for each gene [92]. The RPK value for each gene is then divided

by the sum of RPK values divided by 1,000,000. While RPKM and FPKM calculations

are also used for normalization, the sum of the RPKM and FPKM values differ between

samples with differing numbers of reads, which can result in disproportionate

comparisons [92].

Batch effects

Frequently, experimental designs assume that the variation between treatments is larger

than biological or technical variation between samples within a treatment, but there are

situations where this is not true. This biological or technical variation (referred to as

batch effects) leads to unwanted data variation and other normalization methods can

be used to remove these systematic artifacts. RUV normalization uses replicate libraries

or spike-in controls [93], or alternatively negative control genes or samples [94], to

Fig. 4 A general workflow showing examples of downstream analyses for a typical multi-species RNA-Seq

analysis. Created with BioRender.com
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normalize for batch effects. The tool limma addresses this issue by modeling hetero-

geneity at the sample and observational levels, yielding fewer false discoveries [95].

SVA [96] and PEER [97] are two additional methods for detecting batch effects in tran-

scriptomics data that rely on different statistical methods and can be applied when

needed in an analysis.

Differential expression analysis

In the case of multi-species transcriptomics analyses, separate differential expression

analyses are typically conducted for each organism. DESeq2 [84] and edgeR [85] both

use raw read counts instead of normalized counts to perform differential expression

analyses (Fig. 4), as reviewed previously [98]. Prior to conducting differential expression

analyses, both tools have internal methods to normalize across different library sizes

along with the difference in the relative size of the target transcript, with DESeq2 using

a relative log expression (RLE) normalization [99] and edgeR using a trimmed mean of

m-value (TMM) normalization [86]. Both methods along with a third method, median

ratio of normalization (MRN) [100], yield similar results when used for the pre-

processing steps of a differential expression analysis [98]. For differential expression

analyses with kallisto or Salmon, the tools sleuth [101] and Swish [102] account for the

uncertainty in the alignment-free quantification, reducing technical biases or inferential

variance.

Prokaryotic differential expression analyses are typically performed at the coding

sequence (CDS) level, despite operons being widespread in bacterial genomes, with

630–700 operons being estimated in the Escherichia coli genome [103]. However, dif-

ferential expression is more accurate when applied to transcripts as opposed to CDS.

To illustrate this, we used an existing simulation ([78]; https://github.com/IGS/FADU)

of an RNA-Seq experiment for E. coli K-12 substrain MG1655 using Polyester [104] to

model three hundred 2-fold over- and under-expressed transcripts using transcript

models obtained from OperonDB [105] with 582 overlapping transcripts. The simula-

tion had 592,066–625,563 reads per sample and consisted of two conditions of two

replicates each. A total of 556 of the 1973 E. coli transcripts (1246 of the 4419 genes)

were simulated as differentially expressed with the remainder being not differentially

expressed. We assessed the performance of 13 quantification methods, using the tools

FADU [78], featureCounts [69], HTSeq [70], kallisto [79], and Salmon [81], paired with

two differential expression tools, DESeq2 [84] and edgeR [85], using either transcript or

gene models (Table 1). Across all methods of quantification and differential expression,

we see marked improvement in the accuracy of detecting differential expression when

using transcript models with an increase in detection of differentially expressed genes

of 21.9–40.4% for DESeq2 and 1.8–20.1% for edgeR (Table 1). This suggest that many

differentially expressed genes are currently being overlooked. The number of tran-

scripts being falsely deemed as differentially expressed (false positives) was more con-

stant when using genes with the exception of the counting algorithms featureCounts

-O and HTSeq --nonunique all, which assign full counts to all transcripts that a given

read pair overlaps. This suggests that for most counting algorithms using prokaryotic

transcript annotations allow for substantially more accurate prediction of differentially

expressed genes.
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Despite the substantial improvement that a transcript annotation confers to a differ-

ential expression analysis, most prokaryotic differential expression analyses are limited

to being conducted at the gene level. Because of the difficulty in annotating full-length

transcripts for non-model organisms, particularly those with polycistronic transcripts

and/or a high coding density, there is currently no easy solution to this problem in pro-

karyotic differential expression analyses [106]. This is another area for further research

and algorithm development, perhaps incorporating long reads to annotate polycistronic

transcripts.

Clustering genes by expression pattern

Methods like hierarchical clustering, k-means clustering, and self-organizing maps can

be used to identify clusters of coordinately regulated genes with similar expression pat-

terns [107, 108] (Fig. 4). The representative expression pattern for each of these clusters

can be identified by taking the average of the z-score of the log-transformed expression

values for each of the sample. The z-score is the number of standard deviations that a

value for a given gene in a given sample is away from the mean of all the values for all

the samples for the same gene. A z-score of -2 means that this value is 2 standard devi-

ations lower than the mean across all the samples. It is an effective tool for normalizing

prior to visualization particularly when there is not a clear reference sample. When a

reference sample is available that all samples are compared to, the log-fold change can

be shown relative to the reference. Clustering on counts or log-transformed counts can

also be useful and is often the most intuitive. For studies with multiple sample types,

like time courses, algorithms like WGCNA can be helpful to identify co-regulated

genes. WGCNA constructs a co-expression network using normalized expression

values to form co-expression clusters that contain the genes regulated to the same ex-

tent under the same conditions, although sometimes in opposite orientations [91].

Hierarchical clustering and dynamic tree cutting of the co-expression network allows

for the identification of distinct expression clusters. From WGCNA, each expression

cluster has an eigengene that indicates the major representative expression pattern of

the contained genes, while the inverse of the eigengene can be used to identify genes

with the inverse pattern of expression. Similarly, EPIG-Seq [109] is another clustering

tool that extracts gene profiles from count data and uses them to create clusters of

genes based on their expression profiles. EPIG-Seq then assesses the significance of the

clustering of co-expressed genes to their respective patterns and assigns a p value to

each gene.

When there is a large difference in the number of genes between major and minor

organisms, the normalized expression values for each of the target organisms may need

to be clustered separately. Otherwise, the data from the major organism may seed al-

most all the recovered co-expression clusters such that only expression patterns from

the major organism are recovered. Recovering expression modules separately for each

organism in the study allows for the recovery of prominent co-expression patterns in

all organisms of interest and those parallel patterns can be compared post hoc. Co-

expression examined using WGCNA revealed the interplay of pathways between a Wol-

bachia endosymbiont and its B. malayi host over the life cycle of the parasite [110].

Clusters of HeLa/human genes were identified that have expression that correlates with
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a Salmonella gene using a z-score on counts that were analyzed with a Pearson correl-

ation and p values [13]. In a study of Haemophilus ducreyi infection in humans, a gen-

eralized linear model was used to identify 106 bipartite networks containing 146 host

genes and 114 bacterial genes [111].

Gene co-expression network construction

Using tools such as WGCNA and EPIG-Seq, correlation matrices can be con-

structed for a set of differentially expressed genes across a multi-organism dataset

(Fig. 4). These correlation matrices can be used to construct multi-organism ex-

pression networks that can be visualized with tools such as Cytoscape [112] in

order to identify genes whose expression patterns are highly similar to one another.

Additionally, the protein-protein interaction database STRING [113] can accept a

list of differentially expressed genes for over 5000 organisms to construct protein-

protein interaction networks. Using these network construction tools, differentially

expressed genes can be narrowed down into smaller gene subsets for functional

term enrichment or pathway-based analyses [114]. Construction of a genome-

informed network representation of a parasite’s metabolic capabilities and integra-

tion of transcriptome data for both the nematode parasite B. malayi and its

Wolbachia endosymbiont led to the identification of stage-specific metabolic de-

pendencies and potential therapeutic targets, three of which were experimentally

verified with human drugs [115].

Functional analyses for sets of differentially expressed genes

The list of genes derived from differential expression and clustering tools are used

to extrapolate biological significance from the input samples (Fig. 4). Using the

functional annotations assigned to different genes, such as Gene Ontology (GO)

terms [116, 117], InterPro descriptions [118], KEGG orthology IDs [119–121], or

TIGRFAMs [122], differentially expressed genes or expression modules can be sta-

tistically analyzed for the over- or under-representation of specific functional terms.

These lists of genes can also be used for gene set enrichment analyses using tools

such as DAVID [123, 124]. By identifying significantly over- or under-represented

functional terms, biological systems can be summarized into the general up- or

downregulation of the broader functional processes in each of the different organ-

isms in the multi-species system. Additionally, pathway enrichment analyses can be

conducted using Ingenuity Pathway Analysis (IPA) [125] for pathway analysis from

human gene lists, while Reactome and PANTHER [126] can be used for the path-

way analysis of eukaryotic and prokaryotic organisms, further defining the meta-

bolic pathways integral to a multi-species system. For example, use of IPA on the

host transcriptional response to two different fungi led to identification of EGF re-

ceptor (EGFR) as a novel host target [24, 127]. Inhibition of EGFR signaling with

cetuximab or gefitinib, which are both FDA-approved inhibitors of EGFR, leads to

a reduction in invasion and damage during fungal infection, and gefitinib pro-

longed survival in a mouse model [127]. Unfortunately, IPA is limited to examining

only human, mouse, or rat hosts.
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Other applications

Single-cell multi-species transcriptomics

Developed in 2009, single-cell approaches to transcriptomics (scRNA-Seq) have been

increasingly used to examine the transcriptome of individual cells compared to the

population-level transcriptome of a sample [128–131]. By using individual cell isolation

methods such as fluorescent activated cell sorting [23, 132, 133], laser microdissection

[16], or micromanipulation methods [134–136], it becomes possible to isolate individ-

ual cells of interest, extract their RNA, and sequence their transcriptome individually.

Additionally, there are entire suites of tools developed for scRNA-Seq analyses (for re-

views, see [137, 138]).

The continued development of scRNA-Seq provides an additional tool for multi-

species transcriptomics analyses. While traditional multi-species transcriptomics studies

must factor the possibility of the transcript abundances of the major organism

overwhelming the transcript abundances of the minor organism, single-cell isolation

approaches allow for different cells belonging to the different organisms to be sepa-

rated. Additionally, different populations of cells from the target organisms can be ex-

tracted and analyzed. This allows for separate bulk transcriptomes to be extracted from

individual cells within a population and can reveal that the average transcriptional sig-

nal from a population may correspond to heterogenous gene expression. For example,

infected and uninfected hosts cells can be distinguished. For both eukaryotic and pro-

karyotic microbes, the gene expression in different niches can be assessed including

distinguishing intracellular or extracellular interactions with respect to the host. With

intracellular bacteria, there may be both specific opportunities and challenges that re-

late to cell lysis and whether host and bacterial cells lyse under similar or different con-

ditions. Some studies have carried out simultaneous analysis of single microbial and

host cells, such as bacteria or fungi engulfed by macrophages [23, 31, 132, 133]. Due to

the low input RNA of a single cell, the quality filtering and analysis methods vary from

standard methods for bulk samples. Examining transcriptomic variation between mul-

tiple organisms in parallel can reveal profiles corresponding to states of each organism,

as well as trajectories between stages, resulting, for example, in different infection out-

comes [23].

As of now, prokaryotic scRNA-Seq approaches are lacking in that prokaryotes have

extremely low RNA abundance, lack mRNA polyadenylation, and have thick cell walls

[139]. While the recent development of techniques such as PETRI-seq [139] and micro-

SPLiT [140] has enabled the capture of single-cell prokaryotic transcriptomes, increased

sensitivity is likely needed before being able to properly interrogate the minor organism

of multi-species host-pathogen systems. Additionally, no techniques have been demon-

strated to be simultaneously applicable to eukaryotes and prokaryotes, limiting the use

of scRNA-Seq in many host-pathogen systems. Despite this, further advancements in

scRNA-Seq has the potential to allow for the interrogation of multi-species systems in

greater detail than ever before.

Metatranscriptomics

While multi-species RNA-Seq studies look at the interplay between a handful of de-

fined organisms, metatranscriptomics studies are frequently used to characterize gene
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expression of all members within a given biological system. The design of metatran-

scriptomics studies requires further considerations in that a proper study design must

account for the high diversity and complexity of the biological community of interest,

which includes the relative ratios of its different members and the large dynamic range

of transcript expression [141].

There are many tools for metatranscriptomics analyses (for review, [141]).The

upstream pre-processing steps of a metatranscriptomics studies are similar to that

of a dual-RNA-Seq study in that the same trimming and depletion tools can be

used. For the metatranscriptomic analysis of the microbiome, mycobiome, or vir-

ome of a host-pathogen system [142], host reads must first be depleted to

minimize the potential of host reads being misclassified as reads belonging to an-

other taxa. This can be done through a subtractive alignment, by first mapping

reads to the host genome and excluding all mapped reads [143], or using tools that

perform a similar function, such as SortMeRNA [144]. Metatranscriptomic reads

can then be taxonomically classified using tools such as Kraken2 [145], MetaPhlAn

[146], or Centrifuge [147] to identify the transcriptionally active members of a

community and functionally categorized using tools and pipelines such as FMAP

[148], HUMAnN3 [149], or MetaTrans [150]. Differential abundance analyses of

functional active taxa or transcripts can be identified using traditional RNA-Seq

differential expression tools such as DESeq2 [84], edgeR [85], or limma [151]. Add-

itionally, LEfSe [152] has been developed specifically for the identification of dis-

criminating features between different groupings of samples in metagenome

analyses.

The current limitations of metatranscriptomics lies in the limited reference da-

tabases available for both taxonomic and functional categorizations, leading to a

large proportion of unclassified reads in the analysis. While this can be addressed

through the use of tools for de novo metatranscriptomics assembly, such as

IDBA-UD [153] and rnaSPAdes [53, 154], the results can be confounded due to

repetitive patterns in different genes along with large variances in mRNA abun-

dances due to both differences in expression and the abundances of different

species [53, 154].

Future directions

Transcriptomic approaches designed to study a single species in isolation are often in-

adequate for effectively profiling the transcriptomes of multiple species in the same

sample. By enabling the simultaneous interrogation of gene expression in multiple

organisms, multi-species transcriptomics provides key insights in the transcriptional

networks and regulatory pathways that govern multi-organism interactions within com-

plex biological systems. As enrichment methods, sequencing technologies, and analysis

tools continue to develop, multi-species transcriptomics will yield more comprehensive

and accurate maps of interactions between an increasing number and diversity of or-

ganisms. Importantly, multi-species transcriptomics will become an increasingly power-

ful tool to explore the interactions of microbial pathogens and their mammalian hosts,

providing the foundation for novel therapeutic strategies that target as-of-yet unknown

virulence factors and host defense pathways that would have remained hidden in trad-

itional single-species transcriptomic analyses.

Chung et al. Genome Biology          (2021) 22:121 Page 17 of 23



Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13059-021-02337-8.

Additional file 1. Review history.

Review history

The review history is available as Additional file 1.

Peer review information

Anahita Bishop was the primary editor of this article and managed its editorial process and peer review in

collaboration with the rest of the editorial team.

Authors’ contributions

All authors participated in writing and editing the manuscript. The author(s) read and approved the final manuscript.

Authors’ information

Twitter handles: @DunningHotopp (Julie C. Dunning Hotopp).

Funding

This work was funded by the National Institute of Allergy and Infectious Diseases U19AI110820 and U19AI110818.

Declarations

Competing interests

The authors declare no competing interests.

Author details
1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA. 2Department of

Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. 3Infectious

Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA. 4Greenebaum Cancer Center, University

of Maryland, Baltimore, MD 21201, USA.

Received: 21 October 2020 Accepted: 1 April 2021

References

1. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-

Seq. Nat Methods. 2008;5(7):621–8. https://doi.org/10.1038/nmeth.1226.

2. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast

genome defined by RNA sequencing. Science. 2008;320(5881):1344–9. https://doi.org/10.1126/science.1158441.

3. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated single-base resolution

maps of the epigenome in Arabidopsis. Cell. 2008;133(3):523–36. https://doi.org/10.1016/j.cell.2008.03.029.

4. Saliba AE, SCS, Vogel J. New RNA-seq approaches for the study of bacterial pathogens. Curr Opin Microbiol. 2017;35:78–

87. https://doi.org/10.1016/j.mib.2017.01.001.

5. Elekwachi CO, Wang Z, Wu X, Rabee A, Forster RJ. Total rRNA-Seq analysis gives insight into bacterial, fungal, protozoal

and archaeal communities in the rumen using an optimized RNA isolation method. Front Microbiol. 2017;8:1814.

6. Wang N, Wang R, Wang R, Tian Y, Shao C, Jia X, Chen S. The integrated analysis of RNA-seq and microRNA-seq depicts

miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism. Plos One. 2017;12(8):e0181761.

https://doi.org/10.1371/journal.pone.0181761.

7. Zhang G, Yin S, Mao J, Liang F, Zhao C, Li P, Zhou G, Chen S, Tang Z. Integrated analysis of mRNA-seq and miRNA-seq

in the liver of Pelteobagrus vachelli in response to hypoxia. Sci Rep. 2016;6(1):22907. https://doi.org/10.1038/srep22907.

8. Menzel P, McCorkindale AL, Stefanov SR, Zinzen RP, Meyer IM. Transcriptional dynamics of microRNAs and their targets

during Drosophila neurogenesis. RNA Biol. 2019;16(1):69–81.

9. Zheng G, Qin Y, Clark WC, Dai Q, Yi C, He C, Lambowitz AM, Pan T. Efficient and quantitative high-throughput tRNA

sequencing. Nat Methods. 2015;12(9):835–7. https://doi.org/10.1038/nmeth.3478.

10. Chen CW, Tanaka M. Genome-wide translation profiling by ribosome-bound tRNA capture. Cell Rep. 2018;23(2):608–21.

https://doi.org/10.1016/j.celrep.2018.03.035.

11. Yin W, Song Y, Chang X. Single-cell RNA-Seq analysis identifies a noncoding interleukin 4 (IL-4) RNA that post-

transcriptionally up-regulates IL-4 production in T helper cells. J Biol Chem. 2019;294(1):290–8.

12. Carvalho Garcia A, Dos Santos VLP, Santos Cavalcanti TC, Collaco LM, Graf H. Bacterial small RNAs in the genus

Herbaspirillum spp. Int J Mol Sci. 2018;20(1):46.

13. Westermann AJ, Forstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Muller L, Reinhardt R, Stadler PF, Vogel J. Dual

RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature. 2016;529(7587):496–501. https://doi.

org/10.1038/nature16547.

14. Arrigoni A, Ranzani V, Rossetti G, Panzeri I, Abrignani S, Bonnal RJ, Pagani M. Analysis RNA-seq and noncoding RNA.

Methods Mol Biol. 2016;1480:125–35. https://doi.org/10.1007/978-1-4939-6380-5_11.

15. Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 2012;10(9):618–30. https://

doi.org/10.1038/nrmicro2852.

Chung et al. Genome Biology          (2021) 22:121 Page 18 of 23

https://doi.org/10.1186/s13059-021-02337-8
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1126/science.1158441
https://doi.org/10.1016/j.cell.2008.03.029
https://doi.org/10.1016/j.mib.2017.01.001
https://doi.org/10.1371/journal.pone.0181761
https://doi.org/10.1038/srep22907
https://doi.org/10.1038/nmeth.3478
https://doi.org/10.1016/j.celrep.2018.03.035
https://doi.org/10.1038/nature16547
https://doi.org/10.1038/nature16547
https://doi.org/10.1007/978-1-4939-6380-5_11
https://doi.org/10.1038/nrmicro2852
https://doi.org/10.1038/nrmicro2852


16. Vannucci FA, Foster DN, Gebhart CJ. Laser microdissection coupled with RNA-seq analysis of porcine enterocytes

infected with an obligate intracellular pathogen (Lawsonia intracellularis). BMC Genomics. 2013;14(1):421. https://doi.

org/10.1186/1471-2164-14-421.

17. Rienksma RA, Suarez-Diez M, Mollenkopf HJ, Dolganov GM, Dorhoi A, Schoolnik GK, Martins Dos Santos VA, Kaufmann

SH, Schaap PJ, Gengenbacher M. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by

microbe-enriched dual RNA sequencing. BMC Genomics. 2015;16:34.

18. Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK. RNA-Seq-based monitoring of infection-linked

changes in Vibrio cholerae gene expression. Cell Host Microbe. 2011;10:165–74.

19. Humphrys MS, Creasy T, Sun Y, Shetty AC, Chibucos MC, Drabek EF, Fraser CM, Farooq U, Sengamalay N, Ott S, Shou H,

Bavoil PM, Mahurkar A, Myers GSA. Simultaneous transcriptional profiling of bacteria and their host cells. Plos One. 2013;

8(12):e80597. https://doi.org/10.1371/journal.pone.0080597.

20. Enguita FJ, Costa MC, Fusco-Almeida AM, Mendes-Giannini MJ, Leitao AL. Transcriptomic crosstalk between fungal

invasive pathogens and their host cells: opportunities and challenges for next-generation sequencing methods. J Fungi

(Basel). 2016;2(1):7.

21. Naidoo S, Visser EA, Zwart L, Toit YD, Bhadauria V, Shuey LS. Dual RNA-sequencing to elucidate the plant-pathogen

duel. Curr Issues Mol Biol. 2018;27:127–42. https://doi.org/10.21775/cimb.027.127.

22. Tierney L, Linde J, Muller S, Brunke S, Molina JC, Hube B, Schock U, Guthke R, Kuchler K. An interspecies

regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front

Microbiol. 2012;3:85.

23. Munoz JF, Delorey T, Ford CB, Li BY, Thompson DA, Rao RP, Cuomo CA. Coordinated host-pathogen transcriptional

dynamics revealed using sorted subpopulations and single macrophages infected with Candida albicans. Nat Commun.

2019;10(1):1607. https://doi.org/10.1038/s41467-019-09599-8.

24. Liu Y, Shetty AC, Schwartz JA, Bradford LL, Xu W, Phan QT, Kumari P, Mahurkar A, Mitchell AP, Ravel J, Fraser CM, Filler

SG, Bruno VM. New signaling pathways govern the host response to C. albicans infection in various niches. Genome

Res. 2015;25(5):679–89. https://doi.org/10.1101/gr.187427.114.

25. Bruno VM, Shetty AC, Yano J, Fidel PL Jr, Noverr MC, Peters BM. Transcriptomic analysis of vulvovaginal candidiasis

identifies a role for the NLRP3 inflammasome. MBio. 2015;6(2). https://doi.org/10.1128/mBio.00182-15.

26. Wen ZT, Liao S, Bitoun JP, De A, Jorgensen A, Feng S, Xu X, Chain PSG, Caufield PW, Koo H, Li Y. Streptococcus mutans

displays altered stress responses while enhancing biofilm formation by Lactobacillus casei in mixed-species consortium.

Front Cell Infect Microbiol. 2017;7:524. https://doi.org/10.3389/fcimb.2017.00524.

27. Chung M, Teigen LE, Libro S, Bromley RE, Olley D, Kumar N, Sadzewicz L, Tallon LJ, Mahurkar A, Foster JM, et al: Drug

repurposing of bromodomain inhibitors as potential novel therapeutic leads for lymphatic filariasis guided by

multispecies transcriptomics. mSystems 2019;4(6):e00596–19.

28. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang

X, Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13. https://doi.org/10.1186/

s13059-016-0881-8.

29. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang

X, Mortazavi A. Erratum to: a survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:181.

30. Westermann AJ, Barquist L, Vogel J. Resolving host-pathogen interactions by dual RNA-seq. Plos Pathog. 2017;13(2):

e1006033. https://doi.org/10.1371/journal.ppat.1006033.

31. Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB, Trombetta JJ, Satija R, Shalek AK, Xavier RJ, Regev A, Hung DT.

Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell. 2015;162(6):1309–21. https://doi.

org/10.1016/j.cell.2015.08.027.

32. Westermann AJ, Vogel J. Host-pathogen Transcriptomics by dual RNA-Seq. Methods Mol Biol. 1737;2018:59–75.

33. Pisu D, Huang L, Grenier JK, Russell DG. Dual RNA-Seq of Mtb-infected macrophages in vivo reveals ontologically

distinct host-pathogen interactions. Cell Rep. 2020;30(2):335–50 e334. https://doi.org/10.1016/j.celrep.2019.12.033.

34. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNA-Seq by poly (a) capture, ribosomal RNA

depletion, and DNA microarray for expression profiling. BMC Genomics. 2014;15(1):419. https://doi.org/10.1186/1471-21

64-15-419.

35. Bussotti G, Leonardi T, Clark MB, Mercer TR, Crawford J, Malquori L, Notredame C, Dinger ME, Mattick JS, Enright AJ.

Improved definition of the mouse transcriptome via targeted RNA sequencing. Genome Res. 2016;26:705–16.

36. Kumar N, Lin M, Zhao X, Ott S, Santana-Cruz I, Daugherty S, Rikihisa Y, Sadzewicz L, Tallon LJ, Fraser CM, Dunning

Hotopp JC. Efficient enrichment of bacterial mRNA from host-bacteria total RNA samples. Sci Rep. 2016;6:34850.

37. Betin V, Penaranda C, Bandyopadhyay N, Yang R, Abitua A, Bhattacharyya RP, Fan A, Avraham R, Livny J, Shoresh N,

Hung DT. Hybridization-based capture of pathogen mRNA enables paired host-pathogen transcriptional analysis. Sci

Rep. 2019;9(1):19244. https://doi.org/10.1038/s41598-019-55633-6.

38. Peterson EJ, Bailo R, Rothchild AC, Arrieta-Ortiz ML, Kaur A, Pan M, Mai D, Abidi AA, Cooper C, Aderem A, et al.

Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol Syst Biol.

2019;15:e8584.

39. Amorim-Vaz S, Tran Vdu T, Pradervand S, Pagni M, Coste AT, Sanglard D. RNA enrichment method for quantitative

transcriptional analysis of pathogens in vivo applied to the fungus Candida albicans. MBio. 2015;6(5):e00942–15. https://

doi.org/10.1128/mBio.00942-15.

40. Chung M, Teigen L, Liu H, Libro S, Shetty A, Kumar N, Zhao X, Bromley RE, Tallon LJ, Sadzewicz L, Fraser CM, Rasko DA,

Filler SG, Foster JM, Michalski ML, Bruno VM, Dunning Hotopp JC. Targeted enrichment outperforms other enrichment

techniques and enables more multi-species RNA-Seq analyses. Sci Rep. 2018;8(1):13377. https://doi.org/10.1038/s41598-

018-31420-7.

41. Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D. Unveiling the complexity of the

maize transcriptome by single-molecule long-read sequencing. Nat Commun. 2016;7(1):11708. https://doi.org/10.1038/

ncomms11708.

42. Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS. Long reads: their purpose and place. Hum Mol Genet. 2018;

27(R2):R234–41. https://doi.org/10.1093/hmg/ddy177.

Chung et al. Genome Biology          (2021) 22:121 Page 19 of 23

https://doi.org/10.1186/1471-2164-14-421
https://doi.org/10.1186/1471-2164-14-421
https://doi.org/10.1371/journal.pone.0080597
https://doi.org/10.21775/cimb.027.127
https://doi.org/10.1038/s41467-019-09599-8
https://doi.org/10.1101/gr.187427.114
https://doi.org/10.1128/mBio.00182-15
https://doi.org/10.3389/fcimb.2017.00524
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1371/journal.ppat.1006033
https://doi.org/10.1016/j.cell.2015.08.027
https://doi.org/10.1016/j.cell.2015.08.027
https://doi.org/10.1016/j.celrep.2019.12.033
https://doi.org/10.1186/1471-2164-15-419
https://doi.org/10.1186/1471-2164-15-419
https://doi.org/10.1038/s41598-019-55633-6
https://doi.org/10.1128/mBio.00942-15
https://doi.org/10.1128/mBio.00942-15
https://doi.org/10.1038/s41598-018-31420-7
https://doi.org/10.1038/s41598-018-31420-7
https://doi.org/10.1038/ncomms11708
https://doi.org/10.1038/ncomms11708
https://doi.org/10.1093/hmg/ddy177


43. Guell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S,

et al. Transcriptome complexity in a genome-reduced bacterium. Science. 2009;326(5957):1268–71. https://doi.org/1

0.1126/science.1176951.

44. Warrier I, Ram-Mohan N, Zhu Z, Hazery A, Echlin H, Rosch J, Meyer MM, van Opijnen T. The transcriptional landscape of

Streptococcus pneumoniae TIGR4 reveals a complex operon architecture and abundant riboregulation critical for

growth and virulence. Plos Pathog. 2018;14(12):e1007461. https://doi.org/10.1371/journal.ppat.1007461.

45. Wade JT, Grainger DC. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev

Microbiol. 2014;12(9):647–53. https://doi.org/10.1038/nrmicro3316.

46. Cartolano M, Huettel B, Hartwig B, Reinhardt R, Schneeberger K. cDNA library enrichment of full length transcripts for

SMRT long read sequencing. Plos One. 2016;11(6):e0157779. https://doi.org/10.1371/journal.pone.0157779.

47. Pitt ME, Nguyen SH, Duarte TPS, Teng H, Blaskovich MAT, Cooper MA, Coin LJM. Evaluating the genome and resistome

of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing. Gigascience.

2020;9(2). https://doi.org/10.1093/gigascience/giaa002.

48. Yan B, Boitano M, Clark TA, Ettwiller L. SMRT-Cappable-seq reveals complex operon variants in bacteria. Nat Commun.

2018;9(1):3676. https://doi.org/10.1038/s41467-018-05997-6.

49. Giolai M, Paajanen P, Verweij W, Witek K, Jones JDG, Clark MD. Comparative analysis of targeted long read sequencing

approaches for characterization of a plant's immune receptor repertoire. BMC Genomics. 2017;18(1):564. https://doi.

org/10.1186/s12864-017-3936-7.

50. Sheynkman GM, Tuttle KS, Laval F, Tseng E, Underwood JG, Yu L, Dong D, Smith ML, Sebra R, Willems L, Hao T,

Calderwood MA, Hill DE, Vidal M. ORF capture-Seq as a versatile method for targeted identification of full-length

isoforms. Nat Commun. 2020;11(1):2326. https://doi.org/10.1038/s41467-020-16174-z.

51. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene

and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78.

https://doi.org/10.1038/nprot.2012.016.

52. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of

expression levels. Bioinformatics. 2012;28:1086–92.

53. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application

to RNA-Seq data. Gigascience. 2019;8(9). https://doi.org/10.1093/gigascience/giz100.

54. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M,

Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A,

Zhao YJ, Moore RA, Hirst M, Marra MA, Jones SJM, Hoodless PA, Birol I. De novo assembly and analysis of RNA-seq data.

Nat Methods. 2010;7(11):909–12. https://doi.org/10.1038/nmeth.1517.

55. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z,

Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-

length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.

https://doi.org/10.1038/nbt.1883.

56. FASTX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit/ Accessed 19 April 2021.

57. FastQC. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Accessed 19 April 2021.

58. Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. Plos One. 2012;7(2):

e30619. https://doi.org/10.1371/journal.pone.0030619.

59. Martin M. Cutadapt removes adapter sequences from high-throughput sequence reads. EMBnetjournal. 2011;17:1–12.

60. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):

2114–20. https://doi.org/10.1093/bioinformatics/btu170.

61. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the

human genome. Genome Biol. 2009;10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25.

62. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

63. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):

357–60. https://doi.org/10.1038/nmeth.3317.

64. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal

RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.

65. Srivastava A, Malik L, Sarkar H, Zakeri M, Almodaresi F, Soneson C, Love MI, Kingsford C, Patro R. Alignment and

mapping methodology influence transcript abundance estimation. Genome Biol. 2020;21:239.

66. Robinson KM, Hawkins AS, Santana-Cruz I, Adkins RS, Shetty AC, Nagaraj S, Sadzewicz L, Tallon LJ, Rasko DA, Fraser CM,

et al. Aligner optimization increases accuracy and decreases compute times in multi-species sequence data. Microb

Genom. 2017;3:e000122.

67. Avraham R, Haseley N, Fan A, Bloom-Ackermann Z, Livny J, Hung DT. A highly multiplexed and sensitive RNA-seq

protocol for simultaneous analysis of host and pathogen transcriptomes. Nat Protoc. 2016;11(8):1477–91. https://doi.

org/10.1038/nprot.2016.090.

68. Chung M, Basting PJ, Patkus RS, Grote A, Luck AN, Ghedin E, Slatko BE, Michalski M, Foster JM, Bergman CM, Hotopp

JCD. A meta-analysis of Wolbachia transcriptomics reveals a stage-specific Wolbachia transcriptional response shared

across different hosts. G3 (Bethesda). 2020;10:3243–60.

69. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic

features. Bioinformatics. 2014;30(7):923–30. https://doi.org/10.1093/bioinformatics/btt656.

70. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics.

2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638.

71. Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods.

2013;10:71–3.

72. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC

Bioinformatics. 2011;12(1):323. https://doi.org/10.1186/1471-2105-12-323.

73. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping

uncertainty. Bioinformatics. 2010;26(4):493–500. https://doi.org/10.1093/bioinformatics/btp692.

Chung et al. Genome Biology          (2021) 22:121 Page 20 of 23

https://doi.org/10.1126/science.1176951
https://doi.org/10.1126/science.1176951
https://doi.org/10.1371/journal.ppat.1007461
https://doi.org/10.1038/nrmicro3316
https://doi.org/10.1371/journal.pone.0157779
https://doi.org/10.1093/gigascience/giaa002
https://doi.org/10.1038/s41467-018-05997-6
https://doi.org/10.1186/s12864-017-3936-7
https://doi.org/10.1186/s12864-017-3936-7
https://doi.org/10.1038/s41467-020-16174-z
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1093/gigascience/giz100
https://doi.org/10.1038/nmeth.1517
https://doi.org/10.1038/nbt.1883
http://hannonlab.cshl.edu/fastx_toolkit/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/nprot.2016.090
https://doi.org/10.1038/nprot.2016.090
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1093/bioinformatics/btp692


74. Ungaro A, Pech N, Martin JF, McCairns RJS, Mevy JP, Chappaz R, Gilles A. Challenges and advances for transcriptome

assembly in non-model species. PLoS One. 2017;12(9):e0185020. https://doi.org/10.1371/journal.pone.0185020.

75. Holzer M, Marz M. De novo transcriptome assembly: a comprehensive cross-species comparison of short-read RNA-Seq

assemblers. Gigascience. 2019;8(5). https://doi.org/10.1093/gigascience/giz039.

76. Ermolaeva MD, White O, Salzberg SL. Prediction of operons in microbial genomes. Nucleic Acids Res. 2001;29(5):1216–

21. https://doi.org/10.1093/nar/29.5.1216.

77. Karp PD, Weaver D, Paley S, Fulcher C, Kubo A, Kothari A, Krummenacker M, Subhraveti P, Weerasinghe D, Gama-Castro

S, et al. The EcoCyc database. EcoSal Plus. 2014;6(1). https://doi.org/10.1128/ecosalplus.ESP-0009-2013.

78. Chung M, Adkins RS, Mattick JSA, Bradwell KR, Shetty AC, Sadzewicz L, Tallon LJ, Fraser CM, Rasko DA, Mahurkar A,

Dunning Hotopp JC: FADU: a quantification tool for prokaryotic transcriptomic analyses. mSystems. 2021;6(1):e00917–20.

79. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):

525–7. https://doi.org/10.1038/nbt.3519.

80. Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using

lightweight algorithms. Nat Biotechnol. 2014;32(5):462–4. https://doi.org/10.1038/nbt.2862.

81. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript

expression. Nat Methods. 2017;14:417–9.

82. Community Ecology Package. https://github.com/vegandevs/vegan Accessed 19 April 2021.

83. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth.

Genome Res. 2011;21(12):2213–23. https://doi.org/10.1101/gr.124321.111.

84. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

85. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital

gene expression data. Bioinformatics. 2010;26:139–40.

86. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome

Biol. 2010;11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25.

87. Wassarman KM. 6S RNA, a global regulator of transcription. Microbiol Spectr. 2018;6(3). https://doi.org/10.1128/

microbiolspec.RWR-0019-2018.

88. Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjaer P, Rainbow L, Radford AD, Blaxter ML, et al.

Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive

roles within the symbiosis. Genome Res. 2012;22:2467–77.

89. Darby AC, Gill AC, Armstrong SD, Hartley CS, Xia D, Wastling JM, Makepeace BL. Integrated transcriptomic and

proteomic analysis of the global response of Wolbachia to doxycycline-induced stress. ISME J. 2014;8(4):925–37. https://

doi.org/10.1038/ismej.2013.192.

90. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T,

Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O,

Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B. The Wolbachia genome of Brugia malayi: endosymbiont evolution

within a human pathogenic nematode. Plos Biol. 2005;3(4):e121. https://doi.org/10.1371/journal.pbio.0030121.

91. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):

559. https://doi.org/10.1186/1471-2105-9-559.

92. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent

among samples. Theory Biosci. 2012;131(4):281–5. https://doi.org/10.1007/s12064-012-0162-3.

93. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples.

Nat Biotechnol. 2014;32(9):896–902. https://doi.org/10.1038/nbt.2931.

94. Peixoto L, Risso D, Poplawski SG, Wimmer ME, Speed TP, Wood MA, Abel T. How data analysis affects power,

reproducibility and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Res. 2015;43:7664–74.

95. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME, Asselin-Labat ML, Smyth GK, Ritchie ME. Why

weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids

Res. 2015;43:e97.

96. Leek JT. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 2014;

42(21):e161.

97. t Hoen PA, Friedlander MR, Almlof J, Sammeth M, Pulyakhina I, Anvar SY, Laros JF, Buermans HP, Karlberg O, Brannvall

M, et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat Biotechnol. 2013;

31(11):1015–22. https://doi.org/10.1038/nbt.2702.

98. Maza E. In Papyro comparison of TMM (edgeR), RLE (DESeq2), and MRN normalization methods for a simple two-

conditions-without-replicates RNA-Seq experimental design. Front Genet. 2016;7:164.

99. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.

org/10.1186/gb-2010-11-10-r106.

100. Maza E, Frasse P, Senin P, Bouzayen M, Zouine M. Comparison of normalization methods for differential gene expression

analysis in RNA-Seq experiments: a matter of relative size of studied transcriptomes. Commun Integr Biol. 2013;6:e25849.

101. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification

uncertainty. Nat Methods. 2017;14(7):687–90. https://doi.org/10.1038/nmeth.4324.

102. Zhu A, Srivastava A, Ibrahim JG, Patro R, Love MI. Nonparametric expression analysis using inferential replicate counts.

Nucleic Acids Res. 2019;47:e105.

103. Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J. Operons in Escherichia coli: genomic analyses and

predictions. Proc Natl Acad Sci U S A. 2000;97(12):6652–7. https://doi.org/10.1073/pnas.110147297.

104. Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating RNA-seq datasets with differential transcript expression.

Bioinformatics. 2015;31:2778–84.

105. Pertea M, Ayanbule K, Smedinghoff M, Salzberg SL. OperonDB: a comprehensive database of predicted operons in

microbial genomes. Nucleic Acids Res. 2009;37:D479–82.

106. Zaidi SSA, Zhang X. Computational operon prediction in whole-genomes and metagenomes. Brief Funct Genomics.

2017;16(4):181–93. https://doi.org/10.1093/bfgp/elw034.

Chung et al. Genome Biology          (2021) 22:121 Page 21 of 23

https://doi.org/10.1371/journal.pone.0185020
https://doi.org/10.1093/gigascience/giz039
https://doi.org/10.1093/nar/29.5.1216
https://doi.org/10.1128/ecosalplus.ESP-0009-2013
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.2862
https://github.com/vegandevs/vegan
https://doi.org/10.1101/gr.124321.111
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1128/microbiolspec.RWR-0019-2018
https://doi.org/10.1128/microbiolspec.RWR-0019-2018
https://doi.org/10.1038/ismej.2013.192
https://doi.org/10.1038/ismej.2013.192
https://doi.org/10.1371/journal.pbio.0030121
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1007/s12064-012-0162-3
https://doi.org/10.1038/nbt.2931
https://doi.org/10.1038/nbt.2702
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1038/nmeth.4324
https://doi.org/10.1073/pnas.110147297
https://doi.org/10.1093/bfgp/elw034


107. D'Haeseleer P. How does gene expression clustering work? Nat Biotechnol. 2005;23(12):1499–501. https://doi.org/10.103

8/nbt1205-1499.

108. Si Y, Liu P, Li P, Brutnell TP. Model-based clustering for RNA-seq data. Bioinformatics. 2014;30:197–205.

109. Li J, Bushel PR. EPIG-Seq: extracting patterns and identifying co-expressed genes from RNA-Seq data. BMC Genomics.

2016;17(1):255. https://doi.org/10.1186/s12864-016-2584-7.

110. Grote A, Voronin D, Ding T, Twaddle A, Unnasch TR, Lustigman S, Ghedin E. Defining Brugia malayi and Wolbachia symbiosis

by stage-specific dual RNA-seq. Plos Negl Trop Dis. 2017;11(3):e0005357. https://doi.org/10.1371/journal.pntd.0005357.

111. Griesenauer B, Tran TM, Fortney KR, Janowicz DM, Johnson P, Gao H, Barnes S, Wilson LS, Liu Y, Spinola SM:

Determination of an interaction network between an extracellular bacterial pathogen and the human host. mBio. 2019;

10(3):e01193-19.

112. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software

environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

113. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al. The STRI

NG database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids

Res. 2017;45:D362–8.

114. Broderick SR, Wijeratne S, Wijeratn AJ, Chapin LJ, Meulia T, Jones ML. RNA-sequencing reveals early, dynamic

transcriptome changes in the corollas of pollinated petunias. BMC Plant Biol. 2014;14(1):307. https://doi.org/10.1186/s12

870-014-0307-2.

115. Curran DM, Grote A, Nursimulu N, Geber A, Voronin D, Jones DR, Ghedin E, Parkinson J. Modeling the metabolic

interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. Elife.

2020;9. https://doi.org/10.7554/eLife.51850.

116. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

117. The Gene Ontology C. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):

D331–8. https://doi.org/10.1093/nar/gkw1108.

118. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, et al. InterPro

in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47(D1):

D351–60.

119. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.

120. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein

annotation. Nucleic Acids Res. 2016;44(D1):D457–62. https://doi.org/10.1093/nar/gkv1070.

121. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and

drugs. Nucleic Acids Res. 2017;45(D1):D353–61. https://doi.org/10.1093/nar/gkw1092.

122. Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. TIGRFAMs and genome properties in 2013. Nucleic Acids

Res. 2013;41(Database issue):D387–95. https://doi.org/10.1093/nar/gks1234.

123. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID

bioinformatics resources. Nat Protoc. 2009;4:44–57.

124. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional

analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

125. Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics.

2014;30(4):523–30. https://doi.org/10.1093/bioinformatics/btt703.

126. Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods

Mol Biol. 2009;563:123–40. https://doi.org/10.1007/978-1-60761-175-2_7.

127. Watkins TN, Gebremariam T, Swidergall M, Shetty AC, Graf KT, Alqarihi A, Alkhazraji S, Alsaadi AI, Edwards VL, Filler SG,

et al: Inhibition of EGFR Signaling Protects from Mucormycosis. mBio. 2018;9(4):e01384–18.

128. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50:96.

129. Hedlund E, Deng Q. Single-cell RNA sequencing: technical advancements and biological applications. Mol Asp Med.

2018;59:36–46. https://doi.org/10.1016/j.mam.2017.07.003.

130. Olsen TK, Baryawno N. Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol. 2018;122:e57.

131. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, et al. mRNA-Seq whole-

transcriptome analysis of a single cell. Nat Methods. 2009;6:377–82.

132. Avital G, Avraham R, Fan A, Hashimshony T, Hung DT, Yanai I. scDual-Seq: mapping the gene regulatory program of

Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biol. 2017;18:200.

133. Saliba AE, Li L, Westermann AJ, Appenzeller S, Stapels DA, Schulte LN, Helaine S, Vogel J. Single-cell RNA-seq ties

macrophage polarization to growth rate of intracellular Salmonella. Nat Microbiol. 2016;2:16206.

134. Ericsson M, Hanstorp D, Hagberg P, Enger J, Nystrom T. Sorting out bacterial viability with optical tweezers. J Bacteriol.

2000;182(19):5551–5. https://doi.org/10.1128/JB.182.19.5551-5555.2000.

135. Guo F, Li L, Li J, Wu X, Hu B, Zhu P, Wen L, Tang F. Single-cell multi-omics sequencing of mouse early embryos and

embryonic stem cells. Cell Res. 2017;27(8):967–88. https://doi.org/10.1038/cr.2017.82.

136. Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev.

2004;68:538–59.

137. Picelli S. Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol. 2017;14(5):637–50. https://doi.

org/10.1080/15476286.2016.1201618.

138. Zappia L, Phipson B, Oshlack A. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. Plos

Comput Biol. 2018;14(6):e1006245. https://doi.org/10.1371/journal.pcbi.1006245.

139. Blattman SB, Jiang W, Oikonomou P, Tavazoie S. Prokaryotic single-cell RNA sequencing by in situ combinatorial

indexing. Nat Microbiol. 2020;5(10):1192–201. https://doi.org/10.1038/s41564-020-0729-6.

140. Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G:

Microbial single-cell RNA sequencing by split-pool barcoding. Science. 2021;371(6531):eaba5257.

141. Shakya M, Lo CC, Chain PSG. Advances and challenges in metatranscriptomic analysis. Front Genet. 2019;10:904. https://

doi.org/10.3389/fgene.2019.00904.

Chung et al. Genome Biology          (2021) 22:121 Page 22 of 23

https://doi.org/10.1038/nbt1205-1499
https://doi.org/10.1038/nbt1205-1499
https://doi.org/10.1186/s12864-016-2584-7
https://doi.org/10.1371/journal.pntd.0005357
https://doi.org/10.1186/s12870-014-0307-2
https://doi.org/10.1186/s12870-014-0307-2
https://doi.org/10.7554/eLife.51850
https://doi.org/10.1093/nar/gkw1108
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gks1234
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1007/978-1-60761-175-2_7
https://doi.org/10.1016/j.mam.2017.07.003
https://doi.org/10.1128/JB.182.19.5551-5555.2000
https://doi.org/10.1038/cr.2017.82
https://doi.org/10.1080/15476286.2016.1201618
https://doi.org/10.1080/15476286.2016.1201618
https://doi.org/10.1371/journal.pcbi.1006245
https://doi.org/10.1038/s41564-020-0729-6
https://doi.org/10.3389/fgene.2019.00904
https://doi.org/10.3389/fgene.2019.00904


142. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformatician's guide to metagenomics. Microbiol

Mol Biol Rev. 2008;72:557–78.

143. Bush SJ, Connor TR, Peto TEA, Crook DW, Walker AS. Evaluation of methods for detecting human reads in microbial

sequencing datasets. Microb Genom. 2020;6(7):mgen000393.

144. Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data.

Bioinformatics. 2012;28(24):3211–7. https://doi.org/10.1093/bioinformatics/bts611.

145. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257. https://doi.

org/10.1186/s13059-019-1891-0.

146. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity

from metagenomes. Genome Res. 2017;27(4):626–38. https://doi.org/10.1101/gr.216242.116.

147. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences.

Genome Res. 2016;26(12):1721–9. https://doi.org/10.1101/gr.210641.116.

148. Kim J, Kim MS, Koh AY, Xie Y, Zhan X. FMAP: functional mapping and analysis pipeline for metagenomics and

metatranscriptomics studies. BMC Bioinformatics. 2016;17(1):420. https://doi.org/10.1186/s12859-016-1278-0.

149. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, Knight R, Caporaso JG, Segata

N, Huttenhower C. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15:

962–8.

150. Martinez X, Pozuelo M, Pascal V, Campos D, Gut I, Gut M, Azpiroz F, Guarner F, Manichanh C. MetaTrans: an open-source

pipeline for metatranscriptomics. Sci Rep. 2016;6(1):26447. https://doi.org/10.1038/srep26447.

151. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.

152. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and

explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.

153. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data

with highly uneven depth. Bioinformatics. 2012;28(11):1420–8. https://doi.org/10.1093/bioinformatics/bts174.

154. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res.

2017;27(5):824–34. https://doi.org/10.1101/gr.213959.116.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chung et al. Genome Biology          (2021) 22:121 Page 23 of 23

https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1186/s12859-016-1278-0
https://doi.org/10.1038/srep26447
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1101/gr.213959.116

	Abstract
	Introduction
	Sample preparation and sequencing
	Sample preparation
	Estimating the proportion of RNA from both the major and minor organisms
	rRNA and polyA-RNA depletion and enrichment strategies for short-read sequencing
	Targeted capture
	Enrichment methods for long-read sequencing

	Alignment and quantification
	Differences in the analysis of prokaryotic and eukaryotic RNA-Seq data
	Quality control and read alignments
	Alignment-dependent transcript quantification
	Alignment-independent transcript quantification

	Downstream analyses
	Saturation curves
	Expression threshold
	Clustering to identify technical artifacts
	Batch effects
	Differential expression analysis
	Clustering genes by expression pattern
	Gene co-expression network construction
	Functional analyses for sets of differentially expressed genes

	Other applications
	Single-cell multi-species transcriptomics
	Metatranscriptomics

	Future directions
	Supplementary Information
	Review history
	Peer review information
	Authors’ contributions
	Authors’ information
	Funding
	Declarations
	Competing interests
	Author details
	References
	Publisher’s Note

