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Abstract In this contribution, we extend the existing
theory of minimum mean squared error prediction (best
prediction). This extention is motivated by the desire to
be able to deal with models in which the parameter vec-
tors have real-valued and/or integer-valued entries. New
classes of predictors are introduced, based on the prin-
ciple of equivariance. Equivariant prediction is develo-
ped for the real-parameter case, the integer-parameter
case, and for the mixed integer/real case. The best pre-
dictors within these classes are identified, and they are
shown to have a better performance than best linear
(unbiased) prediction. This holds true for the mean
squared error performance, as well as for the error
variance performance. We show that, in the context of
linear model prediction, best predictors and best estima-
tors come in pairs. We take advantage of this property by
also identifying the corresponding best estimators. All
of the best equivariant estimators are shown to have a
better precision than the best linear unbiased estimator.
Although no restrictions are placed on the probability
distributions of the random vectors, the Gaussian case
is derived separately. The best predictors are also com-
pared with least-squares predictors, in particular with
the integer-based least-squares predictor introduced in
Teunissen (J Geodesy, in press, 2006).
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1 Introduction

The prediction of spatially and/or temporally varying
variates based on observations of these variates (or
functionals thereof) at some locations in space and/or
instances in time, is an important topic in various spa-
tial and Earth science disciplines. This topic has been
extensively studied, albeit under different names. In
physical geodesy, where it is used to predict spatially
varying variates, it is known as least-squares colloca-
tion (LSC). Fundamental contributions to this field have
been made by Krarup (1969) and Moritz (1973), also see
Rummel (1976), Dermanis (1980), Sanso (1980, 1986),
Grafarend and Rapp (1980), Moritz and Suenkel (1978),
Tscherning (1978). The underlying model of LSC is the
so-called trend-signal-noise model. This model is quite
general and it encompasses many of the conceivable
geodetic measurements (Moritz 1980). It also forms the
basis of the concept of integrated geodesy as introduced
in Eeg and Krarup (1973), also see Krarup (1980) and
Hein (1986).

Prediction of spatially varying variates was also deve-
loped in meteorology, where it was originally referred
to as objective analysis (Gandin 1963). Furthermore,
least-squares prediction finds its analogue in Baarda’s
(1968) xR-variates, which show how correlated, but free
or constituent, variates are adjusted.

The trend-signal-noise model also forms the basis of
prediction in geostatistics, where optimal linear predic-
tion is called Kriging, named after Krige (1951) and fur-
ther developed by Matheron (1970), also see, e.g., Blais
(1982), Journel and Huijbregts (1991), Reguzzoni et al.
(2005). When the trend is unknown it is referred to as
universal Kriging and when the trend is absent or set
to zero, it is called simple Kriging. Although collocation
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and Kriging have been developed for spatially varying
variates, they are closely connected with the fundamen-
tal work of Kolmogorov (1941) and Wiener (1948) on
the interpolation, extrapolation and smoothing of sta-
tionary time-series. In the absence of a trend, colloca-
tion and simple Kriging become the spatial analogue of
Kolmogorov–Wiener prediction (Grafarend 1976;
Moritz 1980).

All of the above methods of prediction can be cast in
the framework of either least-squares prediction or of
best linear (unbiased) prediction. In a statistical context,
we speak of prediction if a function of an observable
random vector y is used to guess the outcome of another
random, but unobservable, vector y0. We speak of ‘best’
prediction if the predictor minimizes the mean squared
prediction error.

In the present contribution, the minimization of the
mean squared prediction error will be the leading prin-
ciple. Since the current theory of best prediction is res-
tricted to models in which the parameter vectors are
real-valued, no best predictors yet exist that can take
advantage of the possible integer nature of the para-
meters. This is a serious shortcoming of the present
theory and implies that it is not optimally applicable to
such models as used in, e.g., Global Navigation Satellite
Systems (GNSS) or Interferometric Synthetic Aperture
Radar (InSAR).

The goal of the present contribution is therefore to
extend the current theory of best prediction, so as to be
able to accomodate models in which the parameter vec-
tor is of the mixed type, i.e. having integer-valued as well
as real-valued entries. As a result, we will introduce new
predictors that can be shown to outperform some of the
best predictors of the current theory. We will also show
the link with integer-based least-squares prediction, the
theory of which has been developed in Teunissen (2006).
The principle of integer-based least-squares prediction
is intrinsically different from that of best prediction, the
difference of which becomes particularly apparant if one
has to deal with integer parameters.

This contribution is organized as follows. In Sect. 2,
we first present some general properties of best predic-
tors. They are very useful for studying the properties
of specific best predictors treated in the following sec-
tions. Also, a brief review of best linear prediction is
given, which will serve as reference for some of the new
predictors that will be introduced. In Sect. 3, we intro-
duce the linear model of prediction. It forms the basis of
our extention of the current theory of best prediction.
This model is quite versatile and can be shown to cover
various prediction problems. In this context, it is also
shown that prediction is a more general concept than
estimation. We will take advantage of this in the sections

following by simultaneously identifying the best estima-
tors as well. Since one can minimize the mean squared
error within different classes of predictors, there are dif-
ferent predictors that one can call ‘best’. All the best
predictors treated in the present contribution will be
related to one another according to their mean squared
error and error variance performance.

In Sect. 3 we consider the class of linear unbiased pre-
dictors, of which the weighted least-squares predictor is
an example. Linear unbiased prediction forms the step-
ping stone to the new concept of equivariant prediction,
which is introduced in Sect. 4. Since the class of equiva-
riant predictors encompasses the class of linear unbiased
predictors, best equivariant prediction outperforms best
linear unbiased prediction. The best equivariant predic-
tor is derived and its properties are given.

In Sect. 5, we introduce the concept of integer equiva-
riant prediction. Predictors of this class make an explicit
use of the ‘integerness’ of the parameters. The best inte-
ger equivariant predictor is derived and its properties
are given. This predictor outperforms the previously
treated predictors. The same holds true for the cor-
responding estimators. Thus, the best integer equiva-
riant estimator can be shown to have a better precision
than the well-known best linear unbiased estimator
(BLUE).

In Sect. 6, we use the results of Sects. 4 and 5 as buil-
ding blocks for studying the mixed integer/real para-
meter case. Although we make no restriction on the
probability distribution when deriving the best predic-
tors, the best mixed equivariant predictor is also derived
for the Gaussian case. This predictor is also compared
to the integer-based weighted least-squares predictor.
Finally, it is shown that the best linear unbiased predic-
tor and the integer-based weighted least-squares predic-
tor can be seen as two different limiting cases of the best
mixed equivariant predictor.

Various examples are given to illustrate the theory.
In order to avoid possible discontinuities in the lines
of thought, most of the (longer) proofs are placed in
the Appendix. We make use of the following notation:
matrices and (multivariate) functions will be denoted by
capitals, with the capital Q being reserved for variance-
covariance matrices. The matrix inequality A ≤ B means
that matrix B − A is a positive semi-definite matrix. The
n-dimensional space of real numbers is denoted as Rn

and the n-dimensional space of integers is denoted as
Zn. E(.) denotes the mathematical expectation operator
and the probability density function (PDF) of a random
vector y will be denoted as fy(.). ||.|| denotes the standard
Euclidean norm and ||.||W denotes the weighted norm,
in which W is a positive semi-definite weight matrix
(W ≥ 0). Thus ||.||2W = (.)TW(.).
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We will often need to evaluate E
(||.||2W

)
. If there is

no reason for confusion, we will write this mean squared
value simply as E||.||2W . Also the conditional mean will
often be used. As is usual, we will write the mean of
a random vector y0, conditioned on another random
vector y, as E(y0|y). The conditional mean E(y0|y) is
again a random vector when considered as function of y.
Sometimes, however, we will have the need to consider
it just as a function, using a different symbol, say v, as
argument. To make clear that this particular function
is based on the conditional PDF fy0|y(., .), we will then
write Ey0|y(y0|v) instead of E(y0|v).

2 Minimum mean squared error prediction

2.1 Classes of best predictors

In this subsection, we present some general lemmas
for best predictors. They will be useful for studying the
properties of best predictors from different classes. We
speak of prediction if a function of an observable ran-
dom vector y ∈ Rm is used to guess the outcome of ano-
ther random, but unobservable, vector y0 ∈ Rm0 . If the
function is given as G, then G(y) is said to be the pre-
dictor of y0 (we call it a prediction of y0 if the function
is taken of an outcome of y).

If G(y) is a predictor of y0, then e0 = y0 − G(y) is its
prediction error. We will use the mean squared error
(MSE) E(||e0||2) to judge the performance of a pre-
dictor. Note, since both y0 and y are random, that the
mean is taken with respect to their joint PDF. Thus,
E(||e0||2) = ∫ ∫ ||y0 − G(y)||2fy0y(y0, y)dy0dy.

A predictor is called ‘best’ if it succeeds in minimi-
zing the MSE. Since one can minimize the MSE over
different classes of functions, there are different predic-
tors that one can call ‘best’.

Definition 1 (Best predictor of certain class) Ĝ(y) is said
to be the best predictor of y0 within class � if

E||y0 − Ĝ(y)||2 = min
G∈�

E||y0 − G(y)||2 (1)

In this contribution, different classes of functions are
considered, some of which are subsets of others. By
knowing the relation among the different classes of func-
tions, one can often already infer which of the minimum
MSEs will be largest or smallest. It will be clear that
the minimum MSE (MMSE) can not get smaller if one
puts more restrictions on the class of functions � over
which the minimization takes place. We therefore have
the following lemma.

Lemma 1 (MMSE versus predictor class) Let �1, �2 be
two classes of functions. If �1 ⊂ �2, then

min
G∈�2

E||y0 − G(y)||2 ≤ min
H∈�1

E||y0 − H(y)||2 (2)

Usually one will have a strict inequality in Eq. (2).
Lemma 1 can also be used to show that the inclusion
of more data will never deteriorate the performance of
a ‘best’ predictor (and in case of a strict inequality, it
will improve the performance). Let G(y) = G(y1, y2), in
which y1 represents the ‘old’ data and y2 represents the
‘new’ data. Then the stated claim follows if �1 in Eq.
(2) is taken as the subset of functions G(y1, y2) of �2 for
which the outcome does not depend on y2.

So far, we have taken the MSE with respect to the
Euclidean norm ||.||. One can also decide, however, to
weight the prediction errors in the MSE and thus take
the MSE with respect to the weighted norm ||.||W , in
which W is a positive semi-definite weight matrix.

As we will see, all ‘best’ predictors treated in the
present contribution will be invariant for this choice of
norm. That is, the choice of weight matrix in the norm
is of no consequence for the ‘best’ predictors. One of
the consequences of this invariance is that the ‘best’
predictor of a linear function of y0 is equal to the same
linear function of the ‘best’ predictor of y0.

Lemma 2 (Best prediction of linear functions) If

E||y0−Ĝ(y)||2W
= min

G∈�
E||y0−G(y)||2W for any W ≥ 0 (3)

then Ĥ(y) = FTĜ(y) + f0 satisfies

E||z0 − Ĥ(y)||2 = min
H∈�

E||z0 − H(y)||2 (4)

where z0 = FTy0 + f0 and � = {H|H = FTG + f0,
G ∈ �}.

Proof Since Eq. (3) holds true for any W ≥ 0, it also
holds true for W = FFT. Hence, E||y0 − Ĝ(y)||2W
= E||(FTy0 + f0) − (FTĜ(y) + f0)||2 = E||z0 − Ĥ(y)||2
and minG∈� E||y0 − G(y)||2W = minG∈� E||(FTy0 + f0)−
(FTG(y) + f0)||2 = minH∈� E||z0 − H(y)||2, from which
the result follows. ��

The MSE of an arbitrary predictor can often be decom-
posed into a sum of squares, with one of the squares
being the MSE of the ‘best’ predictor. Lemma 3 states
some general conditions under which such a decompo-
sition is made possible. As we will see later, these condi-
tions are satisfied by all ‘best’ predictors treated in this
contribution.
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Lemma 3 (MSE decomposition) Let Ĝ(y) and G(y),
both of class �, be the best predictor and an arbitrary
predictor of y0, respectively, and let ê0 = y0 − Ĝ(y) be
the error of the best predictor. If Eq. (3) holds true and

Ĝ(y) + λ
(

G(y) − Ĝ(y)
)

∈ � for any G ∈ � and any

λ ∈ R, then

E
(

êT
0 W[G(y) − Ĝ(y)]

)
= 0 ∀G ∈ �, W ≥ 0 (5)

and

E||y0 − G(y)||2W = E||ê0||2W + E||Ĝ(y)

−G(y)||2W ∀G ∈ �, W ≥ 0 (6)

Proof see Appendix. ��
As a consequence of Lemma 3, we have the following

result.

Lemma 4 (Error-predictor covariance) If the conditions
of Lemma 3 apply and the best predictor Ĝ(y) is unbiased,
i.e. E(ê0) = E(y0 − Ĝ(y)) = 0, then

Qê0Ĝ(y)
= Qê0G(y) ∀G ∈ � (7)

Proof Substitution of W = ff T into Eq. (5) gives 0 =
E(êT

0 ff T[G(y) − Ĝ(y)]) = f TE(ê0[G(y) − Ĝ(y)]T)f , and
therefore, since E(ê0) = 0, f TQê0[G(y)−Ĝ(y)]f = 0. Since
this holds true for any f ∈ Rm0 , we have Qê0[G(y)−Ĝ(y)]
= 0, from which the result follows. ��
Equation (7) states that the covariance between the best
prediction error and any predictor of class � is constant
and equal to the covariance between the best prediction
error and the best predictor. This property will be later
used to infer the type of functions the different ‘best’
prediction errors are uncorrelated with.

The variance matrix of the prediction error is referred
to as the error variance matrix. Note, since E(||e0||2) =
traceE(e0eT

0 ), the MSE is equal to the trace of the error
variance matrix if the predictor is unbiased. Thus for
unbiased predictors, minimization of the MSE is equi-
valent to minimization of the trace of the error variance
matrix. Under certain conditions, this equivalence can
be generalized to the variance of any linear function of
the predictor error.

Lemma 5 (Minimum error variance) Let ê0 = y0 −Ĝ(y)

and e0 = y0 − G(y). If Eq. (3) holds true and Ĝ(y) is
unbiased, then

Qê0ê0 ≤ Qe0e0 (8)

for any unbiased predictor G ∈ �.

Proof It follows with W = ff T from Eq. (3) that
f TE(ê0êT

0 )f ≤ f TE(e0eT
0 )f for any f ∈ Rm0 . Since E(ê0) =

E(e0) = 0, the result follows. ��

Under the conditions stated in Lemma 5, best predictors
are minimum error variance unbiased predictors. Since
these conditions hold true for the best predictors treated
in this contribution, they are all minimum error variance
unbiased predictors, albeit in different classes �.

2.2 Best and best linear prediction

In this subsection, we give a brief review of the best
predictor and the best linear predictor, together with
their properties (e.g., Bibby and Toutenburg 1977; Koch
1980; Rao and Toutenburg 1999; Teunissen et al. 2005).
They will serve as reference for the predictors treated in
the subsequent sections.

Theorem 1 (Best predictor) A predictor ŷ0 = Ĝ(y) is
said to be the best predictor (BP) of y0 if it satisfies
E||y0 − ŷ0||2W ≤ E||y0 − G(y)||2W for any G. The best
predictor is given by the conditional mean,

ŷ0 = E(y0|y) (9)

Proof see Appendix. ��
Note that the BP is generally a nonlinear function of the
data and that one needs the conditional PDF fy0|y(y0|y)

in order to be able to compute the BP. This is, however,
not needed in case one restricts the minimization of the
MSE to the class of linear functions, which gives the best
linear predictor.

Theorem 2 (Best linear predictor) A predictor ŷ0 =
Ĝ(y) is said to be the best linear predictor (BLP) of
y0, if it satisfies E||y0 − ŷ0||2W ≤ E||y0 − G(y)||2W for any
G which is of the form G(y) = L0y+ l0. The BLP is given
as

ŷ0 = ȳ0 + Qy0yQ−1
yy (y − ȳ) (10)

where ȳ0 = E(y0) and ȳ = E(y).

Proof see Appendix. ��
If there is no reason for confusion, we will use the same
notation for the BLP as the one used for the BP (this
will also be done for the other ‘best’ predictors treated
in the next sections). We will only use a discriminating
notation, e.g. ŷ0BP for the BP and ŷ0BLP for the BLP, in
case the need arises.

Note, as opposed to the BP, which requires the com-
plete PDF fy0|y(y0|y), that the BLP only requires the
first- and second-order moments, namely the means ȳ0,
ȳ, and the variance–covariance matrices Qy0y, Qyy. We
now list the properties of both the BP and the BLP.
They are similar, but since the minimization of the MSE
is carried out over a more restrictive class of functions in
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case of the BLP, one can also expect some of the BLP-
properties to be more restrictive. On the other hand,
since linearity is imposed, some of the results will be
easier to compute.

Corollary 1 (BP and BLP properties)

(i) Zero-mean error: The BP and the BLP are both
unbiased predictors. Hence, they have zero-mean
prediction errors.

(ii) Error covariance: The BP prediction error is
uncorrelated with any function of the data vector y,
whereas the BLP prediction error is uncorrelated
with any linear function of the data. Thus

Qê0H(y) = 0 (11)

for any H in case of the BP and for any linear H
in case of the BLP.

(iii) Error variance: The error variance matrices of the
BP and the BLP are equal to the difference of the
variance matrix of y0 and the variance matrix of
the BP and the BLP, respectively: Qê0ê0 = Qy0y0 −
Qŷ0ŷ0 . Hence, their error variance matrices are
given as

QBP
ê0ê0

= Qy0y0 − QE(y0|y)E(y0|y) and

QBLP
ê0ê0

= Qy0y0 − Qy0yQ−1
yy Qyy0 (12)

(iv) Minimum error variance: The BP is a minimum
error variance unbiased predictor, whereas the
BLP is a minimum error variance linear unbia-
sed predictor.

(v) Mean squared error: The BP and the BLP MSEs
are equal to the traces of their error variance
matrices. Their MSEs are related as

MSE(BLP)=MSE(BP)+E||ŷ0BLP−ŷ0BP||2 (13)

(vi) Predicting a function: The BP of a linear function
of y0 is the linear function of the BP of y0. The
same holds true for the BLP.

(vii) Predicting the observable: An observable is its
own BP and BLP, respectively.

(viii) Independence: The BP reduces to the mean of
y0, if y0 and y are independent. For the BLP this
already happens in case y0 and y are uncorrelated.

(ix) Gaussian case: The BP takes the form of the BLP
in case y0 and y have a joint normal distribution.

Proof see Appendix. ��
Equation (13) shows that the MSE of the BP is never
larger than the MSE of the BLP. Similarly, the error

variance matrix of the BP is never larger than the error
variance matrix of the BLP. These properties are a conse-
quence of the fact that in case of the BLP the MSE is
minimized over a more restricted class of functions.

We remark that, instead of using the principle of mini-
mizing the MSE, one can also use the above first two
properties, E(ê0) = 0 and Qê0H(y) = 0, as the defining
principle for best prediction. To see this, with E(ê0) = 0,

we can write Qê0H(y) = 0 as E
(
[y0 − Ĝ(y)]H(y)

)
=

∫ [∫ (y0fy0|y(y0|y)dy0)−Ĝ(y)]H(y)fy(y)dy = ∫ [E(y0|y)−
Ĝ(y)]H(y)fy(y)dy = 0. Since this ‘orthogonality’ rela-
tion needs to hold for any H, the optimal predictor fol-
lows as Ĝ(y) = E(y0|y). Should one restrict H to linear
functions of y, then E(ê0) = 0 and Qê0H(y) = 0 leads
to the BLP as the best predictor. For the best predic-
tors treated in the following sections, we will also see
that E(ê0) = 0 and Qê0H(y) = 0 hold true, but then for
alternative classes of functions H.

3 Best linear unbiased and weighted least-squares
prediction

3.1 The linear model for prediction

Although the requirements for the BLP are less strin-
gent than those for the BP, the BLP still requires that
the means ȳ0 = E(y0) and ȳ = E(y) be known. In many
applications, this information is not available. We the-
refore now consider the situation where the two means
ȳ0 and ȳ are still unknown, but linked to one another
by a known linear relationship. This is a situation that
holds true for many applications (see, for instance, the
examples given in this and subsequent sections). Consi-
der the following partitioned linear model,
[

y
y0

]
=
[

A
A0

]
x +

[
e
e0

]
(14)

with known matrices A and A0 of order m×n and m0×n,
respectively, x a nonrandom unknown parameter vector
and [eT, eT

0 ]T a random vector, with expectation and dis-
persion given as,

E
[

e
e0

]
=
[

0
0

]
and

D
[

e
e0

]
= D

[
y
y0

]
=
[

Qyy Qyy0

Qy0y Qy0y0

]
(15)

respectively. Matrix A is assumed to be of full column
rank.

As the following examples show, the above formula-
tion of the linear prediction model also allows one to
cover other formulations of the prediction problem:
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Example 1 (Prediction of random vector with unknown
mean) Let y = Ax′ + e, in which x′ is a random vector
with known variance matrix Qx′x′ and unknown mean x,
and e is a zero-mean random vector, uncorrelated with
x′, with known variance matrix Qee. To set the stage for
predicting x′, in Eqs. (14) and (15) we set, e 	→ A(x′ −
x) + e, y0 	→ x′, A0 	→ I, and e0 	→ x′ − x (here the
notation ‘a 	→ b’ means ‘replace a by b’).

Example 2 (Predicting individual error components)
Let e in y = Ax + e be given as e = Dd, with matrix
D known and where d is a zero-mean random vector
with known variance matrix Qdd. As an application of
this formulation, the entries of d can be thought of as
being the individual error components that contribute
to the overall error vector e. To set the stage for predic-
ting d, in Eqs. (14) and (15) we set, e 	→ Dd, y0 	→ d,
A0 	→ 0, and e0 	→ d. For the special case D = I, the
prediction of e is covered.

Example 3 (Trend-signal-noise model) The so-called
trend-signal-noise model is another important case of
Eqs. (14) and (15). The trend-signal-noise model has
found wide-spread application in the spatial and Earth
sciences (e.g., Moritz 1980; Stark 1987; Journel and Hui-
jbregts 1991; Cressie 1991; Wackernagel 1995). In this
model, the observable vector y is written as a sum of
three terms, y = Ax+s+n, with Ax a deterministic trend,
with an unknown parameter vector x, s a zero-mean
random signal vector, and n a zero-mean random noise
vector.

To predict the signal s and noise n, one can proceed
as described in Example 2. Often one can extend the
trend-signal-noise model so as to hold true for an unob-
servable vector y0 = A0x+s0+n0, in which s0 and n0 are
uncorrelated zero-mean random vectors, and n0 is also
uncorrelated with n. For instance, y0 could be a functio-
nal of the same type as y, but evaluated at a different
location in space or at a different instant in time. To set
the stage for predicting y0, s0 and n0, in Eqs. (14) and (15)
we set, e 	→ s + n, y0 	→ (yT

0 , sT
0 , nT

0 )T, A0 	→ (AT
0 , 0, 0)T,

and e0 	→ (
(s0 + n0)

T, sT
0 , nT

0

)T
.

Although our goal is to use the observable random
vector y to predict the unobservable random vector y0,
at this point it is useful to include the concept of esti-
mation into our considerations as well. Recall that we
speak of prediction if a function of an observable ran-
dom vector y is used to guess the outcome of another
random, but unobservable, vector y0. We speak of esti-
mation, however, if a function of y is used to guess the
value of a deterministic, but unknown, parameter vector
x, or a function thereof. As Lemma 6 shows, the assump-
tions of the above linear model, with its known linear

relationship between the unknown means of y and y0,
respectively, imply that MSE-based estimation may be
considered a special case of MSE-based prediction.

Lemma 6 (Prediction versus estimation) Let y and y0
satisfy Eqs. (14) and (15), and let G(y) be a best predic-
tor of y0 within a certain class �. Then G(y) reduces to
the best estimator of A0x within the same class, if e0 is
identically zero.

Proof If e0 is identically zero, then fy0y(y0, y) = δ(y0 −
A0x)fy(y), in which δ(τ ) is the Dirac impulse function
(with the properties:

∫
δ(τ )dτ = 1 and

∫
g(τ )δ(τ −

v)dτ = g(v)). Thus if e0 is identically zero, the MSE of a
predictor G(y) of y0 becomes E||y0 −G(y)||2 = ∫∫ ||y0 −
G(y)||2fy0y(y0, y)dy0dy = ∫ ||A0x − G(y)||2fy(y)dy =
E||A0x−G(y)||2, which is the MSE of G(y) as estimator
of A0x. ��
Thus in the present context, prediction is a more general
concept than estimation. As a consequence, best predic-
tors and best estimators come in pairs. We will take
advantage of this in the next sections, by also identifying
the best estimators.

3.2 Best linear unbiased prediction

Given the model of Eqs. (14) and (15), in which both
means ȳ = Ax and ȳ0 = A0x are unknown, one cannot
use the BLP to predict y0 in a MMSE-sense. This is
also apparant if one considers the second term on the
right-hand side of Eq. (53) in the Appendix, which -
in the present case - reads ||ȳ0 − L0ȳ − l0||2W = ||(A0 −
L0A)x−l0||2W . Setting this term equal to zero by choosing
the optimal l0 equal to ȳ0 − L0ȳ, as was done in the case
of the BLP, would now not help as it would give a value
for l0 that still depends on the unknown x.

To make the dependence on x disappear, the approach
taken is to consider only those values for L0 that satisfy
L0A = A0. With this choice and the choice l0 = 0,
we again achieve that the second term on the right-hand
side of Eq. (53) becomes equal to zero. The consequence
of this choice is of course that we are now considering the
minimization of the MSE over a restricted class of linear
predictors, namely the linear predictors G(y) = L0y+ l0
for which L0A = A0 and l0 = 0. This class is refer-
red to as the class of linear unbiased predictors, since
E(G(y)) = L0Ax + l0 = A0x = E(y0).

We will now give a useful representation of the class
of linear unbiased predictors.

Lemma 7 (Linear unbiased predictors) A linear
predictor G(y) = L0y + l0 is said to be a linear unbiased
predictor (LUP), with respect to the linear model as defi-
ned in Eqs. (14) and (15), if L0A = A0 and l0 = 0. Let
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G(y) be a LUP. Then an m0 × (m − n) matrix H exists
such that

G(y) = A0x̂ + Ht (16)

where x̂ = (ATQ−1
yy A)−1ATQ−1

yy y, t = BTy, and B is an
m × (m − n) matrix of which the columns span the null
space of AT.

Proof The sought-for representation follows from sol-
ving the matrix equation L0A = A0 or its transposed
form ATLT

0 = AT
0 . The general solution of this trans-

posed form is given by the sum of its homogeneous
solution and a particular solution. Since BHT is the
homogeneous solution and Q−1

yy A(ATQ−1
yy A)−1AT

0 is a
particular solution, the general solution for L0 follows
as L0 = A0(ATQ−1

yy A)−1ATQ−1
yy + HBT. Substitution of

this solution into G(y) = L0y + l0 gives, with l0 = 0, the
result Eq. (16). ��
The vector (x̂T, tT)T in Eq. (16) stands in a one-to-one
relation with the data vector y. We have
[

x̂
t

]
=
[

(ATQ−1
yy A)−1ATQ−1

yy
BT

]
y

⇔ y =
[
A, QyyB(BTQyyB)−1

] [ x̂
t

]
(17)

Note that E(t) = 0 and that x̂ and t are uncorrelated.
They are independent when y is normally distributed.

The (m − n)-vector t, which will be referred to as
the redundancy vector of misclosures, is identically zero
in the absence of redundancy (the full rank matrix A
will then be a square matrix with m = n). Thus, in the
absence of redundancy, only a single LUP exists, namely
G(y) = A0x̂ = A0A−1y. Hence, it is the presence of
redundancy (m > n) that gives the freedom to select
a best predictor from the class of linear unbiased pre-
dictors. This best linear unbiased predictor follows from
minimizing the MSE over this more restricted class of
linear predictors.

Theorem 3 (Best linear unbiased predictor) Given the
linear model as defined in Eqs. (14) and (15), a predictor
ŷ0 = Ĝ(y) is said to be the best linear unbiased predictor
(BLUP) of y0, if it satisfies E||y0 − ŷ0||2W ≤ E||y0 −
G(y)||2W for any G, which is of the form as given in Eq.
(16). The BLUP is given as

ŷ0 = A0x̂ + Qy0tQ
−1
tt t

= A0x̂ + Qy0yQ−1
yy (y − Ax̂) (18)

Proof see Appendix. ��
The first expression of Eq. (18) is given to explictly show
the LUP-structure (i.e., H = Qy0tQ

−1
tt ; see Eq. 16). Note,

with reference to Lemma 6, that Theorem 3 genera-
lizes the classical Gauss–Markov theorem of best linear
unbiased estimation (BLUE). That is, the Gauss-
Markov theorem on BLUE can be considered a corol-
lary of Theorem 3. If e0 in Eq. (14) is identically zero,
then Qy0t = 0, Qy0y = 0 and Eq. (18) reduces to ŷ0 =
A0x̂, which is the expression for the BLUE of E(y0) =
A0x. The BLUE-property of ŷ0 = A0x̂ is a consequence
of the minimum error variance property of the BLUP
(see (iv) of Corollary 4). The minimum error variance
of ê0 = y0 − ŷ0 becomes, since y0 is now nonrandom, a
minimum variance of ŷ0.

The following three examples show the BLUP at
work.

Example 4 (Predicting individual error components)
If we use the settings as given in Example 2 and apply

Eq. (18), we obtain the BLUP of d as d̂ = QddDT(DQdd
DT)−1(y − Ax̂). Note that for the special case D = I, we
obtain the BLUP of e as y − Ax̂, which is also known as
the least-squares residual.

Example 5 (Separation of trend, signal and noise) Con-
sider the problem of separating the trend, signal and
noise in y = Ax + s + n. If we use the settings e 	→ s + n,
y0 	→ (sT, nT)T, A0 	→ 0, e0 	→ (sT, nT)T in the linear
model of Eqs. (14) and (15), and apply Eq. (18), we
obtain

x̂ =
(

AT(Qss + Qnn)−1A
)−1

AT(Qss + Qnn)−1y

ŝ = Qss(Qss + Qnn)−1(y − Ax̂)

n̂ = Qnn(Qss + Qnn)−1(y − Ax̂)

Note that y = Ax̂ + ŝ + n̂, which reflects the property
that the observable is its own BLUP (see also property
(vii) of Corollary 4).

Example 6 (Ionospheric prediction) Consider as a
trend-signal-noise model, the single-frequency, single
epoch, geometry-free GPS equations, based on double-
differenced (DD) carrier phase and pseudorange,

y1 = λx1 + x2 + s + n1

y2 = + x2 − s + n2

with x1 the unknown integer DD carrier phase ambi-
guity, λ the known wavelength of the carrier phase,
x2 the unknown DD range, s the residual ionospheric
signal, and n1 and n2 the noise of the carrier phase and
the pseudorange, respectively.

Let σ 2
1 and σ 2

2 denote the variances of the DD carrier
phase and pseudorange, respectively, and let σ 2

s denote
the variance of the ionospheric signal. Then the BLUE



766 P. J. G. Teunissen

of x and its variance matrix are given as
[

x̂1
x̂2

]
=
[

(y1 − y2)/λ

y2

]
and

Qx̂x̂ = 1
λ2

[
4σ 2

s + σ 2
1 + σ 2

2 −λ(2σ 2
s + σ 2

2 )

−λ(2σ 2
s + σ 2

2 ) λ2(σ 2
s + σ 2

2 )

]

If we want to predict the signal s0 (e.g. the residual ionos-
pheric delay at another time instant), then s0 plays the
role of y0 and thus

Qs0y = [σs0s, −σs0s], Qyy =
[

σ 2
s + σ 2

1 −σ 2
s

−σ 2
s σ 2

s + σ 2
2

]

from which the BLUP ŝ0 = Qs0yQ−1
yy (y − Ax̂) works out

as

ŝ0 = σs0s/σ
2
1

1 + σ 2
s /σ 2

1 + σ 2
s /σ 2

2

[

(y1 − λx̂1 − x̂2) − σ 2
1

σ 2
2

(y2 − x̂2)

]

Note that this predictor has not made use of the fact that
x1 is integer-valued (see Example 12).

Note that the structure of the BLUP resembles that of
the BLP [cf. Eqs. (18) and (10)]. The BLUP is obtai-
ned from the expression of the BLP, by replacing the
(unknown) means ȳ0 and ȳ by their BLUEs A0x̂ and
Ax̂, respectively. Since the class of LUPs is a subset of
the class of LPs, the error variance performance and
the MSE performance of the BLUP will be poorer than
that of the BLP. This is made precise in the following
corollary.

Corollary 2 (BLUP and BLP compared)

(i) Error variance: The error variance matrices of the
BLUP and the BLP are related by

QBLUP
ê0ê0

= QBLP
ê0ê0

+ A0|yQx̂x̂AT
0|y (19)

where A0|y = A0 − Qy0yQ−1
yy A.

(ii) Mean squared error: The MSEs of the BLUP and
the BLP are related as

MSE(BLUP) = MSE(BLP) + E||ŷ0BLUP

−ŷ0BLP||2 (20)

Proof (i) To prove Eq. (19), we first note that the term
within the brackets on the right-hand side of ŷ0BLUP =
(y0 − Qy0yQ−1

yy y) + A0|yx̂ is uncorrelated with y, and
therefore also uncorrelated with x̂. The result follows
then from an application of the variance propagation
law. (ii) Follows from an application of Lemma 3, cf. Eq.
(6), with G as the BLUP and Ĝ as the BLP. ��

Note that Eq. (19) clearly shows, with reference to the
BLP, that the additional uncertainty in the BLUP predic-
tion error is due to the uncertainty in estimating the unk-
nown parameter vector x. More properties of the BLUP
will be given in Sect. 4, where we compare the BLUP
with the best equivariant predictor. First, however, we
will give a deterministic least-squares-based interpreta-
tion of the BLUP.

3.3 Weighted Least-Squares Prediction

It is well-known that any weighted least-squares esti-
mator of x in Eq. (14) is a member from the class of
linear unbiased estimators of x. It is also known that the
weighted least-squares estimator, which uses the inverse
of the variance matrix Qyy as weight matrix, is identical
to the BLUE of x. In this subsection, we will generalize
this equivalence to the problem of prediction.

The objective function that we will work with is given
by the positive definite quadratic form,

F(y, y0, x)

=
[

y − Ax
y0 − A0x

]T [
Wyy Wyy0

Wy0y Wy0y0

] [
y − Ax

y0 − A0x

]
(21)

If y and y0 are observable and x is unknown, then
the unique x̂′ satisfying F(y, y0, x̂′) ≤ F(y, y0, x), for all
x ∈ Rn, is said to be a (weighted) least-squares estima-
tor of x based on both y and y0. If y is observable, x is
known and y0 is unobservable, then the unique ŷ′

0 satis-
fying F(y, ŷ′

0, x) ≤ F(y, y0, x), for all y0 ∈ Rm0 , is said
to be a (weighted) least-squares predictor of y0. We are
interested in the case that is a combination of the pre-
vious two problems. Thus, as before, we assume y to be
observable, x to be unknown and y0 to be unobservable.

Theorem 4 (Weighted least-squares predictor)
Given the objective function of Eq. (21), the unique

pair x̂WLSE, ŷ0WLSP satisfying F(y, ŷ0WLSP, x̂WLSE)

≤ F(y, y0, x), for all x ∈ Rn, y0 ∈ Rm0 , is said to be
the weighted least-squares estimator–predictor (WLSE–
WLSP) pair of x, y0. This pair is given as

x̂WLSE = (ATWyy|y0A)−1ATWyy|y0y

ŷ0WLSP = A0x̂WLSE − W−1
y0y0

Wy0y(y − Ax̂WLSE) (22)

with Wyy|y0 = Wyy − Wyy0W−1
y0y0

Wy0y.

Proof see Appendix. ��
Note, since ŷ0WLSP is unbiased and a linear function of
y, that ŷ0WLSP is a LUP of y0 for any choice of the weight
matrix in Eq. (21). Hence, the MSE property of ŷ0WLSP
will, in general, be inferior to that of the BLUP. For
a particular choice of the weight matrix, however, the
WLSP becomes identical to the BLUP.
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Corollary 3 (BLUP as WLSP) If the weight matrix in
Eq. (21) is chosen equal to the inverse of the joint variance
matrix of y and y0, then x̂WLSE and ŷ0WLSP become iden-
tical to the BLUE of x and the BLUP of y0, respectively.

Proof If the weight matrix of Eq. (21) is equal to the
inverse of the variance matrix of Eq. (15), then Wyy|y0 =
Q−1

yy and W−1
y0y0

Wy0y = −Qy0yQ−1
yy . With this result, the

estimator–predictor pair of Eq. (22) becomes identical
to the BLUE–BLUP pair. ��

Corollary 3 generalizes the relation that exists between
least-squares estimation and BLUE, to that between
least-squares prediction and BLUP. Note that a similar
least-squares-based interpretation can be given to the
BLP. If x is assumed known and the quadratic form of
Eq. (21) is minimized as function of y0, then the resul-
ting WLSP reads ŷ′

0WLSP = A0x − W−1
y0y0

Wy0y(y − Ax),
which becomes identical to the BLP if W−1

y0y0
Wy0y =

−Qy0yQ−1
yy .

4 Best equivariant prediction

4.1 Equivariant prediction

So far, we considered nonlinear and linear predictors.
We will now introduce a new class of predictors for the
linear model of Eqs. (14) and (15). This class will be
larger than the class of linear unbiased predictors. It is
quite natural that one ends up with the class of LUPs for
the linear model, if one starts from the class of LPs. Thus
if one starts from the class of LPs, one has to enforce the
unbiasedness condition in order to ensure that predic-
tors are obtained that are independent of the unknown
parameter vector x.

Starting from the class of LPs is not needed, however,
since one can start from a larger class and still do justice
to the equivariance that is present in the linear model.
The idea is as follows. Assume that y in Eq. (14) is per-
turbed by Aα. Then x gets perturbed by α and y0 gets
perturbed by A0α. When designing a predictor of y0,
it therefore seems reasonable to request that any such
predictor, being a function of y, behaves in the same way
with regard to such perturbations. Predictors that have
this property will be called equivariant predictors.

Definition 2 (Equivariant predictors) The predictor
G(y) is said to be an equivariant predictor (EP) of y0,
with respect to the linear model as defined in Eqs. (14)
and (15), if

G(y + Aα) = G(y) + A0α ∀y ∈ Rm, α ∈ Rn (23)

Note that equivariant predictors need not be linear.
They only behave linearly with respect to pertubations
Aα.

Lemma 8 (LUP ⊂ EP) A linear predictor (LP) G(y) =
L0y + l0 is an equivariant predictor if and only if L0A =
A0. Hence, any linear unbiased predictor is an equivariant
predictor.

Proof We have G(y + Aα) = L0(y + Aα)+ l0 = G(y)+
L0Aα. Hence, G(y + Aα) = G(y) + A0α for all α ∈ Rn,
if and only if L0A = A0. Since this condition on L0 is
satisfied by LUPs, any LUP is an equivariant predictor.

��

Note, since any LUP is an EP, the BLUP and the WLSP
are both EPs. Lemma 8 also shows that the set of EPs
and the set of LPs have an overlap in which the subset
of LUPs resides. In Eq. (16), we gave a representation
of LUPs. We will now give an equivalent representation
of EPs.

Lemma 9 (EP representation) Let G(y) be an EP of y0.
Then a function H : Rm−n 	→ Rm0 exists such that

G(y) = A0x̂ + H(t) (24)

Proof Here we make use of the reparametrization y =
Ax̂ + Ct, where C = QyyB(BTQyyB)−1. This repara-
metrization establishes a one-to-one relation between y
and (x̂T, tT)T (see Eq. 17). First, we prove that any G of
the form given in Eq. (24) is an EP. With y = Ax̂ + Ct
and y′ = y+Aα, we have y′ = A(x̂+α)+Ct = Ax̂′ +Ct.
Therefore, G(y + Aα) = G(y′) = A0x̂′ + H(t) = A0(x̂ +
α) + H(t) = G(y) + A0α. We now prove the converse.
If we choose α = −x̂ in G(y + Aα) = G(y) + A0α, then
G(y) = A0x̂ + G(y − Ax̂), where G(y − Ax̂) is a function
of only t, since y = Ax̂ + Ct. ��

Compare Eq. (24) with Eq. (16). It shows that the dif-
ference between the two classes of predictors, LUP and
EP, lies in the way use can be made of the vector of
misclosures t. In case of the LUPs, only linear functions
of t are considered, whereas in case of the EPs, nonli-
near functions of t are also permitted. Note that an EP
is unbiased if and only if E (H(t)) = 0. Also note that, if
redundancy is absent and thus t is identically zero, only
a single unbiased EP is left, namely G(y) = A0A−1y.

4.2 Best equivariant predictor

Now that we have defined and characterized the class of
equivariant predictors, we are in the position to select
the best equivariant predictor.
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Theorem 5 (Best equivariant predictor) Given the linear
model as defined in Eqs. (14) and (15), a predictor ŷ0 =
Ĝ(y) is said to be the best equivariant predictor (BEP)
of y0, if E||y0 − ŷ0||2W ≤ E||y0 −G(y)||2W for any G, which
is of the form as given in Eq. (24). The BEP is given as

ŷ0 = A0x̂ + E(y0 − A0x̂|t)
= A0x̂ +

∫

Rn

Ey0|x̂t(y0 − A0x̂|v, t)fx̂|t(v|t)dv (25)

Proof see Appendix. ��

The second expression for the BEP in Eq. (25) has been
included so as to make an easy comparison possible
with the ‘best’ predictor of the next section. Note that
the BEP is the sum of A0x̂ and the BP of y0 − A0x̂ based
on the ‘data vector’ t.

Example 7 Prediction of individual error components)
To determine the BEP of the zero-mean random vector
d in y = Ax + Dd, we take the settings in Example 4
and apply Eq. (25). This gives the BEP as d̂ = E(d|t).
Similarly, one finds the BEP of e as ê = E(e|t).

If e0 in Eq. (14) is identically zero, we obtain, from Eq.
(25), the best equivariant estimator (BEE) of E(y0) =
A0x as A0x̂ + A0E(x − x̂|t). Since the BEP of e0 is given
as E(e0|t), it follows that the BEP of y0 = A0x + e0 can
be decomposed as the sum of the BEE of E(y0) = A0x
and the BEP of e0.

We now list and compare the properties of the BEP
and the BLUP, respectively.

Corollary 4 (BEP and BLUP properties)

(i) Zero-mean error: The BEP and the BLUP are
both unbiased predictors. Hence, they have zero-
mean prediction errors.

(ii) Error covariance: The BEP prediction error is
uncorrelated with any function of the vector of
misclosures t, whereas the BLUP prediction error
is uncorrelated with any linear function of the mis-
closures. Thus

Qê0H(t) = 0 (26)

for any H in case of the BEP and for any linear H
in case of the BLUP.

(iii) Error variance: The error variance matrices of
the BEP and the BLUP are equal to the diffe-
rence of the variance matrix of y0 − A0x̂ and the
variance matrix of the BEP and the BLUP of
y0−A0x̂, respectively, Qê0ê0 = Q(y0−A0x̂)(y0−A0x̂)−

Q(ŷ0−A0x̂)(ŷ0−A0x̂). Hence, their error variance
matrices are given as

QBEP
ê0ê0

= Q(y0−A0x̂)(y0−A0x̂)

−QE(y0−A0x̂|t)E(y0−A0x̂|t)
QBLUP

ê0ê0
= Q(y0−A0x̂)(y0−A0x̂) − Qy0tQ

−1
tt Qty0 (27)

(iv) Minimum error variance: The BEP is a mini-
mum error variance equivariant unbiased predic-
tor, whereas the BLUP is a minimum error
variance linear unbiased predictor.

(v) Mean squared error: The BEP and the BLUP
MSEs are equal to the traces of their error variance
matrices. Their MSEs are related by

MSE(BLUP) = MSE(BEP) + E||ŷ0BLUP

−ŷ0BEP||2 (28)

(vi) Predicting a function: The BEP of a linear func-
tion of y0 is the linear function of the BP of y0. The
same holds true for the BLUP.

(vii) Predicting the observable: An observable is its
own BEP and BLUP, respectively.

(viii) Independence: The BEP reduces to the BLUE of
E(y0), if both y0 and x̂ are independent of t. For
the BLUP this already happens in case y0 and t
are uncorrelated.

(ix) Gaussian case: The BEP takes the form of the
BLUP in case y0 and y have a joint normal distri-
bution.

Proof see Appendix. ��
Corollary 4 shows that the BEP and the BLUP are both
unbiased, just like the BP and the BLP. There is, howe-
ver, one marked difference between these four predic-
tors, namely that in the case of the BLUP, unbiasedness
is enforced a priori, this in contrast to the other three
predictors. Thus, although the BLP and the BLUP are
both minimum error variance linear unbiased predic-
tors, the minimum error variance of the BLUP has been
achieved in a more restrictive class. Corollary 4 also
shows that the BEP outperforms the BLUP, in terms
of both the MSE and the error variance. Similarly, the
BEE outperforms the BLUE. Both are unbiased, but
the variance of the BEE is smaller or, at most, equal to
that of the BLUE.

Finally note that there exist analogies between the
BP–BLP pair and the BEP–BLUP pair (compare Corol-
laries 1 and 4). In the Gaussian case, the BP takes
the form of the BLP and the BEP takes the form of
the BLUP. This implies that, in the Gaussian case, the
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minimum error variance of the BLUP holds true for a
larger class than the LUPs. As another analogy, we note
that the prediction errors of the first pair are uncor-
related with any function of y and any linear function
of y, respectively, whereas the prediction errors of the
second pair are uncorrelated with any function of t and
any linear function of t, respectively. Thus, in the case
of the BEP–BLUP pair, the redundancy vector of mis-
closures t takes over the role of y. This is also clear if
one considers the representations of the four different
classes of predictors. In the case of the classes of arbi-
trary predictors and LPs, the predictors are represented
by arbitrary functions and linear functions of y, respecti-
vely, whereas in case of the classes of EPs and LUPs, the
predictors are represented by A0x̂ plus arbitrary func-
tions and linear functions of t, respectively.

5 Best integer equivariant prediction

5.1 Integer equivariant prediction

So far, the unknown parameter vector of our linear
model was considered to be real-valued, x ∈ Rn. Now
we will assume it to be integer-valued, x ∈ Zn. Although
the BLUP and the BEP are still applicable to this case,
these ‘best’ predictors do not make use of the fact that x
is now an integer vector. We therefore introduce a new
class of predictors, which does take this information into
account. The approach used is similar to that of equiva-
riant prediction, but the equivariance is now assumed
to hold only for integer pertubations. This leads to the
class of integer equivariant predictors.

Definition 3 (Integer equivariant prediction) The pre-
dictor G(y) is said to be an integer equivariant predictor
(IEP) of y0, with respect to the linear model as defined
in Eqs. (14) and (15), if

G(y + Az) = G(y) + A0z ∀y ∈ Rm, z ∈ Zn (29)

Comparing this definition with Definition 2 [cf. Eq. 23], it
will be clear that the class of IEPs is larger than the class
of EPs, which, according to Lemma 7, is again larger than
the class of LUPs. Hence, we have the following ordering
for these three classes of predictors: LUP ⊂ EP ⊂ IEP.
The MSE of the best IEP will therefore not be larger
(and, in fact, in most cases smaller) than the MSEs of
the BEP and the BLUP. Before we determine the MSE
of the best IEP, we first give a useful representation of
the IEPs.

Lemma 10 (IEP representation) Let G(y) be an IEP of
y0. Then a function H : Rn × Rm−n 	→ Rm0 exists such

that

G(y) = A0x̂ + H(x̂, t) (30)

where H(x̂ + z, t) = H(x̂, t), ∀z ∈ Zn.

Proof We make use of the reparametrization y = Ax̂ +
Ct, where C = QyyB(BTQyyB)−1. First we prove that
any G of the form given in Eq. (30) is an IEP. With
y = Ax̂ + Ct and y′ = y + Az, we have y′ = A(x̂ +
z) + Ct = Ax̂′ + Ct. Therefore, G(y + Az) = G(y′) =
A0x̂′ + H(x̂′, t) = A0(x̂ + z) + H(x̂, t) = G(y) + A0z.
We now prove the converse. If we subtract A0(x̂ + z)

from both sides of G(y + Az) = G(y) + A0z, we obtain
G(y + Az) − A0(x̂ + z) = G(y) − A0x̂. Now let H(x̂, t) =
G(y) − A0x̂, then H(x̂ + z, t) = H(x̂, t). ��
Comparing Eq. (30) with Eqs. (24) and (16) shows the
differences among the three classes of predictors. In case
of an IEP, the function H depends on both x̂ and t, but
is invariant for an integer pertubation in its first slot.
In case of an EP, the dependence on x̂ is absent and H
is only a function of t, whereas in case of a LUP, the
dependence on t is reduced to a linear one. Also note
that, if redundancy is absent and thus t is identically zero,
different IEPs still exist. This in contrast with the LUPs
and unbiased EPs.

Since LUPs and EPs are also IEPs, the class of IEPs
is richer. The following example gives an IEP which is
not a LUP nor an EP.

Example 8 (Prediction based on rounding) We assume
that all entries of the parameter vector x in the linear
model of Eq. (14) are integer-valued. Let �x̂ denote
the integer vector that is obtained by rounding all the
entries of x̂ to their nearest integer. Then

ŷ0IEP = A0�x̂ + Qy0yQ−1
yy (y − A�x̂)

is an IEP of y0. This predictor has the same structure
as the BLUP. In fact, it has been obtained from the
expression of the BLUP, by replacing x̂ by the integer
vector �x̂. Note that ŷ0IEP can be written as ŷ0IEP =
A0x̂+H(x̂, t), with H(x̂, t) = Qy0tQ

−1
tt t−A0|y(x̂−�x̂) and

A0|y = A0 − Qy0yQ−1
yy A. Thus, since H(x̂, t) is invariant

for integer pertubations in its first slot, the predictor
ŷ0IEP is indeed an IEP. Other IEPs can be obtained in
a similar way. If one replaces �x̂ by any other integer
estimator, e.g. the integer bootstrapped estimator or the
integer least-squares estimator (Teunissen 1999), then
again an IEP of y0 is obtained.

5.2 Best integer equivariant predictor

Now that we have defined the class of IEPs, we are in
the position to determine the best predictor of this class.
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Theorem 6 (Best integer equivariant predictor) Given
the linear model as defined in Eqs. (14) and (15), a pre-
dictor ŷ0 = Ĝ(y) is said to be the best integer equivariant
predictor (BIEP) of y0, if E||y0−ŷ0||2W ≤ E||y0−G(y)||2W
for any G, which is of the form given in Eq. (30). The
BIEP of y0 is given as

ŷ0 =A0x̂+
∑

v∈x̂+Zn

Ey0|x̂t(y0−A0x̂|v, t)
fx̂|t(v|t)

∑
v∈x̂+Zn fx̂|t(v|t)

(31)

Proof see Appendix. ��
If one considers how EPs and IEPs are defined, one
can expect the BEP and the BIEP to be closely related
[cf. Eqs. (25) and (31)]. This shows that the BIEP follows
from the BEP, if the averaging operation

∫
Rn [•]fx̂|t(v|t)dv

of the BEP is replaced by the discretized version∑
v∈x̂+Zn [•]fx̂|t(v|t)/(∑v∈x̂+Zn fx̂|t(v|t)). The difference

between the two predictors will therefore become less,
the finer the integer grid of Zn becomes in comparison
with the PDF fx̂|t(v|t).

Just like the BLUE and the BEE may be considered
special cases of the BLUP and the BEP, respectively, the
best integer equivariant estimator may be considered a
special case of the BIEP. This follows from Theorem 6
by assuming e0 to be identically zero.

Corollary 5 (Best integer equivariant estimator) The
best integer equivariant estimator (BIEE) of E(y0) =
A0x is given as

ŷ0 = A0
∑

z∈Zn

z
fx̂|t(x̂ + x − z|t)

∑
z∈Zn fx̂|t(x̂ + x − z|t) (32)

Proof If e0 is identically zero, then Ey0|x̂t(y0−A0x̂|v, t) =
A0(x − v). Substitution of this result into Eq. (31) gives
Eq. (32). ��
We now list the properties of the BIEP.

Corollary 6 (BIEP properties)

(i) Zero-mean error: The BIEP is unbiased and the-
refore has a zero-mean prediction error.

(ii) Error covariance: The BIEP prediction error is
uncorrelated with any function of x̂ and t which is
invariant for integer pertubations of x̂. Thus

Qê0H(x̂,t) = 0 (33)

for any H that satisfies H(x̂+z, t)=H(x̂, t), ∀z∈Zn.
(iii) Error variance: The error variance matrix of the

BIEP is equal to the difference of the variance

matrices of y0 − A0x̂ and ŷ0 − A0x̂, respectively,

Qê0ê0 = Q(y0−A0x̂)(y0−A0x̂) − Q(ŷ0−A0x̂)(ŷ0−A0x̂)

(34)

(iv) Minimum error variance: The BIEP is a mini-
mum error variance integer equivariant unbiased
predictor.

(v) Mean squared error: The MSEs of the BIEP, BEP
and BLUP are equal to the traces of their error
variance matrices. Their MSEs are related as

MSE(BEP) = MSE(BIEP) + E||ŷ0BEP

−ŷ0BIEP||2
MSE(BLUP) = MSE(BIEP) + E||ŷ0BLUP

−ŷ0BIEP||2 (35)

(vi) Predicting a function: The BIEP of a linear func-
tion of y0 is the linear function of the BIEP of
y0.

(vii) Predicting the observable: An observable is its
own BIEP.

(viii) Independence: The BIEP reduces to the BIEE if
y0 and y are independent.

Proof see Appendix. ��
The Gaussian case will be treated separately in the next
section. As was pointed out in relation to the BP and the
BLP, one can—in a similar fashion—also take the above
two properties, E(ê0) = 0 and Qê0H(x̂,t) = 0, as the defi-
ning principle for best integer equivariant prediction.

6 Best mixed equivariant prediction

6.1 Best mixed equivariant predictor

So far, we have considered the all-integer and all-real
cases. In most applications, however, e.g. GNSS and
InSAR, a part of the unknown parameters will be
integer-valued (i.e., ambiguities), while the other part
will be real-valued (e.g., baseline or troposphere).

To treat this mixed case, we again consider the linear
model of Eqs. (14) and (15), but now with x = (xT

1 , xT
2 )T,

x1 ∈ Zp, x2 ∈ Rn−p and a likewise partitioning of the
matrices, A = (A1, A2), A0 = (A01, A02). Thus, the first
p entries of x are assumed to be integer-valued, while
the last n − p entries are assumed to be real-valued.
The results of Sects. 4 and 5 can now be used as buil-
ding blocks for studying the mixed case. The defini-
tion of mixed equivariant prediction follows then quite
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naturally from combining the definitions of equivariant
and integer equivariant prediction.

Definition 4 (Mixed equivariant prediction) The pre-
dictor G(y) is said to be a mixed equivariant predictor
(MEP) of y0, with respect to the linear model as defined
in Eqs. (14) and (15), if

G(y + A1z1 + A2α2)

= G(y) + A01z1 + A02α2

∀y ∈ Rm, z1 ∈ Zp, α2 ∈ Rn−p (36)

Also the MEP-representation follows then quite natu-
rally.

Lemma 11 (MEP representation) Let G(y) be a MEP
of y0. Then a function H : Rp × Rm−n 	→ Rm0 exists such
that

G(y) = A0x̂ + H(x̂1, t) (37)

where H(x̂1 + z1, t) = H(x̂1, t), ∀z1 ∈ Zp.

Proof The proof goes along the same lines as the proof
of Lemma 10, so will not be presented here. ��
This representation is also very useful for deriving the
best mixed equivariant predictor.

Theorem 7 (Best mixed equivariant predictor) Given
the linear model as defined in Eqs. (14) and (15), a predic-
tor ŷ0 = Ĝ(y) is said to be the best mixed equivariant pre-
dictor (BMEP) of y0, if E||y0 − ŷ0||2W ≤ E||y0 − G(y)||2W
for any G, which is of the form given in Eq. (37). The
BMEP is given as

ŷ0 =
∑

z1∈Zp

∫
Rn−p

∫
Rm0 [A01z1 + A02β2 + e0] fe0y(e0, y + A1(x1 − z1) + A2(x2 − β2))de0dβ2
∑

z1∈Zp

∫
Rn−p fy(y + A1(x1 − z1) + A2(x2 − β2))dβ2

=
∑

z1∈Zp

∫
Rn−p

∫
Rm0 [A01z1 + A02β2 + e0] fe0x̂1x̂2|t(e0, x̂1 + x1 − z1, x̂2 + x2 − β2|t)de0dβ2
∑

z1∈Zp

∫
Rn−p fx̂1x̂2|t(x̂1 + x1 − z1, x̂2 + x2 − β2|t)dβ2

(38)

Proof The proof goes along the same lines as the proof
of Theorem 6. The second expression in Eq. (38) follows
from the first by noting that fe0y(e0, y + A1(x1 − z1) +
A2(x2 − β2)) ∝ fe0x̂1x̂2|t(e0, x̂1 + x1 − z1, x̂2 + x2 − β2|t).

��
Note that the difference between the two expressions
of Eq. (38) lies in the way the input is specified. The
first expression requires the original data vector y, whe-
reas the second expression requires the BLUE x̂ and the
misclosure vector t. Thus, to draw a parallel with GNSS
ambiguity resolution, one can base the mixed equiva-
riant prediction and estimation on the ‘float’ solution
x̂, t. We have also given the two expressions to make an
easy comparison possible with our earlier results. Note

that, if p = n, A2 = 0, and A02 = 0, the BMEP takes
the form of the BIEP (see Theorem 6). Similarly, the
BMEP takes the form of the BEP if no integer-valued
parameters are present in the linear model, that is, if
p = 0, A1 = 0, and A01 = 0 (see Theorem 5).

The BMEP inherits its properties quite naturally from
the BEP and the BIEP (see Corollaries 4 and 6). As to
its MSE performance, we have, since EP ⊂ MEP ⊂
IEP, that MSE(BIEP) ≤ MSE(BMEP) ≤ MSE(BEP).
The same ordering holds true for their error variance
matrices. Thus, the BMEP also outperforms the BLUP.

We have seen that the BLUP, BEP and BIEP of
y0 = A0x + e0, can be written as the sum of the corres-
ponding estimator of A0x and predictor of e0. An almost
similar decomposition also holds true for the BMEP.
From the structure of the two expressions given for the
BMEP in Eq. (38), one can easily identify the best mixed
equivariant estimator (BMEE) of x and the BMEP of
e0. Note, however, that the BMEE of x1 is identical to
the BIEE of x1, while the BMEE of x2 is not identical
to the BEE of x2. This shows that knowing that x2 is
real-valued does not help us to improve the BIEE of x1,
but the knowledge that x1 is integer-valued does allow
us to improve the BEE of x2 to the BMEE of x2.

With the estimators of x1 and x2, and the predictor of
e0 identified, we can thus decompose the BMEP of y0
to

ŷ0BMEP = A01x̂1BIEE + A02x̂2BMEE + ê0BMEP (39)

with

⎧
⎪⎨

⎪⎩

x̂1BIEE = ∑
z1∈Zp z1ωz1 (y),

∑
z1∈Zp ωz1 (y) = 1

x̂2BMEE = ∫
β2∈Rn−p β2ωβ2 (y)dβ2,

∫
β2∈Rn−p ωβ2 (y)dβ2 = 1

ê0BMEP = ∫
e0∈Rm0 e0ωe0 (y)de0,

∫
e0∈Rm0 ωe0 (y)de0 = 1

(40)

and

ωz1 (y) =
∫

β2

ωz1β2 (y)dβ2, ωβ2 (y) = ∑
z1

ωz1β2 (y)

ωz1β2 (y) =
∫

e0

ωe0z1β2 (y)de0, ωe0 (y) = ∑
z1

∫
β2

ωe0z1β2 (y)dβ2

(41)
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where

ωe0z1β2(y)

= fe0y (e0, y+A1(x1−z1)+A2(x2−β2))∑
z1

∫
fy (y+A1(x1−z1)+A2(x2−β2)) dβ2

(42)

6.2 The Gaussian case

In our derivation of the BMEP, we have not yet made a
particular choice for the joint PDF of y0 and y. Hence,
the results obtained up to now hold true for any PDF
that y0 and y might have. In many applications, howe-
ver, it is assumed that the joint PDF is Gaussian. The
following corollary shows how the BMEP is derived for
the Gaussian case.

Corollary 7 (BMEP in Gaussian case) If y0 and y have
a joint normal distribution, then

ŷ0BMEP = A0x̂BMEE + Qy0yQ−1
yy (y − Ax̂BMEE) (43)

with x̂BMEE = (x̂T
1BIEE, x̂T

2BMEE)T, where

x̂1BIEE =
∑

z1∈Zp

z1

exp

{

− 1
2 ||x̂1 − z1||2Q−1

x̂1 x̂1

}

∑
z1∈Zp exp

{

− 1
2 ||x̂1 − z1||2Q−1

x̂1 x̂1

} (44)

and

x̂2BMEE = x̂2 − Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 − x̂1BIEE) (45)

Proof see Appendix. ��
Thus, in the Gaussian case, the BMEP has the same
structure as the BLUP, the difference being that, in the
expression of the BLUP, the BLUE x̂ gets replaced by
the BMEE of x. Note that, since x̂ and t are independent
in the Gaussian case, the BIEE (cf. Eq. 44) is now not
dependent on t. This in contrast to the general case (see
Eq. 32).

We now give some examples of the BMEP and the
BMEE.

Example 9 (GNSS ambiguity resolution) Any
linear(ized) GNSS model can be cast in the following
system of linear equations: E(y) = Aa+Bb, with a ∈ Zp,
b ∈ Rn−p. The data vector y, which is usually assumed to
be normally distributed, will then consist of the ‘obser-
ved minus computed’ single- or multi-frequency double-
difference carrier phase and/or pseudorange (code)
observables accumulated over all observation epochs.
The entries of the integer vector a are the double dif-
ferences of the carrier phase ambiguities, expressed in
units of cycles, while the entries of the real-valued vec-
tor b will consist of the remaining unknown parameters,

such as increments of the baseline components (coordi-
nates) and atmospheric delay parameters (troposphere,
ionosphere).

It is the goal of GNSS ambiguity resolution to exploit
the integerness of the ambiguity vector a when estima-
ting the parameters of interest, which are usually the
components of b. The GNSS model is a prime example
of a linear model of the mixed type. Hence, if the MSE
or the variance is used as the criterion for estimation,
the optimal estimator of b will be given as b̂BMEE = b̂ −
Qb̂âQ−1

ââ (â − âBIEE). The precision of this unbiased esti-

mator will be better than the precision of the BLUE b̂.
As was pointed out in Teunissen (2003), the expres-

sion for the âBIEE is identical to its Bayesian counter-
part as given in Betti et al. (1993) and Gundlich and
Koch (2002); also see Teunissen (2001) and Gundlich
and Teunissen (2004). This equivalence nicely bridges
the gap between the present nonBayesian approach and
the Bayesian approach. Despite this similarity, however,
there are important differences in the probabilistic eva-
luation of the solution, as described in Teunissen (2003).

Example 10 (Prediction of a random vector with unk-
nown mixed real/integer mean) Let y = Ax′ + e, where
x′ is a random vector with unknown mixed real/integer
mean x, and e is a zero-mean random vector that is inde-
pendent of x′. Both x′ and e are assumed to have a joint
normal distribution. The goal is to predict x′ on the basis
of y.

If we use the settings e 	→ A(x′ − x) + e, y0 	→ x′,
A0 	→ I and e0 	→ x′ − x in the linear model defined in
Eqs. (14) and (15), we have Qy0y = Qx′x′AT and Qyy =
AQx′x′AT+Qee. With the use of Eq. (43), the BMEP of x′
then follows as x̂′

BMEP = x̂BMEE + Qx′x′AT(AQx′x′AT +
Qee)

−1(y − Ax̂BMEE). This representation of the BMEP
is referred to as the variance form. Using the well-known
matrix inversion lemma (e.g., Teunissen et al. 2005), the
corresponding information form follows as x̂′

BMEP =
x̂BMEE +(Q−1

x′x′ +ATQ−1
ee A)−1ATQ−1

ee (y−Ax̂BMEE). ��
Example 11 (The linear model with derived
observables) In some applications, the original data vec-
tor y is not used to set up the observation equations, but
rather linear functions of y (e.g., in the case of GNSS,
the double-difference carrier phase observations rather
than the undifferenced phase observations, or in the case
of levelling, the observed height difference of a levelling
line rather than the individual readings). This is often
done to reduce the number of unknowns by eliminating
so-called nuisance parameters. The linear model with
derived observables has the form BTy = Ax+BTe, with
e the error component of y and where BTy is the vector
of derived observables. Although one works in this set
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up with BTy, one could still have the need to recover the
error component of y itself.

If we use the settings y 	→ BTy, e 	→ BTe, y0 	→
e, A0 	→ 0, e0 	→ e in the linear model defined in
Eqs. (14) and (15), we have Qy0y = QeeB and Qyy =
BTQeeB. Hence, if y is normally distributed and x is a
mixed real/integer vector of unknown parameters, appli-
cation of Eq. (43) gives the BMEP of e as êBMEP =
QeeB(BTQeeB)−1(BTy − Ax̂BMEE). Note that the linear
model reduces to the model of condition equations when
A = 0. In that case, êBMEP reduces to the BLUP of e.

Example 12 (Ionospheric prediction) In Example 6 no
use was made of the fact that x1 is integer-valued. Hence,
one can improve the predictor by using the principle of
equivariance. The improved predictor, being the BMEP
of s0, is given as

ŝ0BMEP = σs0s/σ
2
1

1 + σ 2
s /σ 2

1 + σ 2
s /σ 2

2

×
[
(y1−λx̂1BIEE−x̂2BMEE)− σ 2

1

σ 2
2

(y2−x̂2BMEE)

]

with x̂2BMEE = x̂2 + λ
2σ 2

s +σ 2
2

4σ 2
s +σ 2

1 +σ 2
2
(x̂1 − x̂1BIEE).

In the Gaussian case, we can give an explicit expression
for the difference of the error variance matrices of the
BLUP and the BMEP.

Corollary 8 (BLUP and BMEP compared)

(i) Error variance: If y0 and y have a joint normal
distribution, then the error variance matrices of the
BLUP and the BMEP are related by

QBLUP
ê0ê0

= QBMEP
ê0ê0

+ B01|yQεεBT
01|y (46)

where ε = x̂1 − x̂1BIEE, B01|y = A01|y + A02|yQx̂2x̂1

Q−1
x̂1x̂1

, A0|y = (A01|y, A02|y), and A0|y = A0 −
Qy0yQ−1

yy A.
(ii) Mean squared error: The MSEs of the BLUP and

the BMEP are related by

MSE(BLUP) = MSE(BMEP) + E||ŷ0BLUP

−ŷ0BMEP||2 (47)

Proof see Appendix. ��
Compare Corollaries 8 and 2. Equation (46) shows that
the difference of the error variance matrices is driven by
the difference of the BLUE and the BIEE of x1. These
two estimators will differ less, the less peaked the PDF
of x̂1 is in relation to the integer grid size of Zn (see
Lemma 12).

6.3 Weighted integer least-squares prediction

We have seen that the WLSP is a LUP and that it
becomes identical to the BLUP if the weight matrix
is taken as the inverse of the joint variance matrix of
y0 and y. We will now introduce the weighted integer
least-squares predictor and show how it relates to the
BLUP and the BMEP, respectively. We start from the
same objective function F(y, y0, x) considered before (cf.
Eq. 21), but now with the stipulation that x ∈ Zp ×Rn−p.

Theorem 8 (Weighted integer least-squares prediction)
The unique pair x̂WILSE, ŷ0WILSP satisfying F(y, ŷ0WILSP,
x̂WILSE) ≤ F(y, y0, x), for all x ∈ Zp × Rn−p, y0 ∈ Rm0 , is
said to be the weighted integer least-squares estimator–
predictor (WILSE–WILSP) pair of x, y0. The WILSP of
y0 is given as

ŷ0WILSP = A0x̂WILSE − W−1
y0y0

Wy0y(y − Ax̂WILSE) (48)

and the WILSE of x = (xT
1 , xT

2 )T is given as

x̂1WILSE = arg min
z1∈Zp

||x̂1WLSE − z1||2W11|2 (49)

and

x̂2WILSE = x̂2WLSE + W−1
22 W21(x̂1WLSE − x̂1WILSE) (50)

respectively, where W11|2 = (ĀT
1 Wyy|y0Ā1), Ā1 = (I −

PA2)A1, PA1 = A1(AT
1 Wyy|y0A1)

−1AT
1 Wyy|y0 , Wyy|y0 =

Wyy − Wyy0W−1
y0y0

Wy0y, W22 = AT
2 Wyy|y0A2 and W21 =

AT
2 Wyy|y0A1.

Proof see Appendix. ��
Compare Theorem 8 with Corollary 7. Note that the
WILSP is a member of the class of MEPs, just like
the WLSP is a member of the class of LUPs. Howe-
ver, unlike the WLSP, which becomes identical to the
BLUP if the weight matrix is set equal to the inverse of
the joint variance matrix of y0, y, the WILSP does not
become identical to the BMEP in this case. Thus, the
WILSP will then still have a poorer MSE-performance
than the BMEP.

For the WILSE, however, it can be shown that if
W11|2 =Q−1

x̂1x̂1
, then x̂1WILSE has the highest possible pro-

bability of correct integer estimation (Teunissen 1999).
The current GNSS standard for computing the integer
least-squares estimator is provided by the LAMBDA-
method (Teunissen 1995).

Although the WILSP differs from the BMEP in case
the weight matrix is chosen as the inverse of the variance
matrix, one can expect that the difference between these
two predictors will get less, the more peaked the PDF of
x̂ becomes in relation to the integer grid size. Similarly,
if the integer grid size gets smaller in relation to the
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size and extent of the PDF of x̂, then one can expect the
difference between the BMEP and the BLUP to become
smaller. This is made precise in the following lemma.

Lemma 12 (WILSP and BLUP as limits of the BMEP)
Let y0, y have a joint normal distribution, let the weight
matrix of the WILSP be equal to the inverse of their
joint variance matrix, and let the variance matrix of x̂ be
factored as Qx̂x̂ = σ 2Gx̂x̂. Then

lim
σ 	→∞ ŷ0BMEP = ŷ0BLUP and

lim
σ 	→0

ŷ0BMEP = ŷ0WILSP (51)

Proof see Appendix. ��

7 Summary and conclusions

In this contribution, we developed the theory of best
prediction for linear models with mixed real-integer
unknowns and showed how it compares to the existing
theory of best prediction. We spoke of prediction if a
function of an observable random vector y, say G(y),
is used to guess the outcome of another random, but
unobservable, vector y0. Prediction was called ‘best’ if
it minimizes the mean squared error (MSE). Since one
can minimize the MSE within different classes of pre-
dictors, there are different predictors that one can call
‘best’.

The first three classes of predictors that were consi-
dered, are P, LP and LUP, respectively,

P : G(y) (arbitrary)

LP : G(y) = L0y + l0 (linear)
LUP : G(y)=L0y+l0, L0A=A0, l0 =0 (constrained

linear)

The LUP-class was defined with respect to the linear
model given in Eqs. (14) and (15). The P-class is the lar-
gest and the LUP-class the smallest. The best predictors
of these three classes are given as

BP : ŷ0 = E(y0|y)

BLP : ŷ0 = E(y0) + Qy0yQ−1
yy (y − E(y))

BLUP : ŷ0 = A0x̂ + Qy0yQ−1
yy (y − Ax̂)

The BP requires the conditional PDF fy0|y(y0|y) and is
generally a nonlinear predictor. The BP takes the form
of the BLP in case y0 and y have a joint normal distribu-
tion. The BLP requires the first- and (central) second-
order moments of y0, y, whereas the BLUP only requires
their (central) second-order moments. For the BLUP to
be applicable, however, the unknown means of y0 and
y need to be linked by a known linear relationship [cf.
Eqs. (14) and (15)]. This is true for many applications

in the spatial and Earth science disciplines. The BLUP
follows from the BLP by replacing the unknown means
E(y0) and E(y), by their BLUEs, A0x̂ and Ax̂, respecti-
vely. The BLUP of y0 = A0x + e0 is equal to the sum of
the BLUE of E(y0) and the BLUP of e0.

Since LUP ⊂ LP ⊂ P, the minimum MSEs of their
best predictors are ordered as

MSE(BP) ≤ MSE(BLP) ≤ MSE(BLUP)

Since all three best predictors are unbiased, the same
ordering holds true for their error variance matrices. It
was pointed out that the BLUP-theorem (Theorem 3)
generalizes the classical Gauss–Markov theorem of best
linear unbiased estimation. If e0 in y0 = A0x + e0 is
assumed identically zero, the BLUP of y0 reduces to the
BLUE of E(y0) and the minimum error variance of the
BLUP becomes a minimum variance of the BLUE.

Apart from the minimum MSE property and the
minimum error variance property, the above three best
predictors (BP, BLP, BLUP) can also be characterized
by the class of data-functions that are uncorrelated with
the best prediction errors. For the covariance matrix of
the best prediction error and functions of the data, we
have for the three cases

BP : Qê0H1(x̂,t) = 0,
BLP : Qê0H2(x̂,t) = 0,
BLUP : Qê0H3(t) = 0

in which H1 is any function of x̂, t, H2 is any linear func-
tion of x̂, t, and H3 is any linear function of only t. Thus,
since x̂, t stands in a one-to-one linear relationship with
the data vector y, the BP prediction error is uncorre-
lated with any function of y, the BLP prediction error
is uncorrelated with any linear function of y, and the
BLUP prediction error is uncorrelated with any linear
function of only the vector of misclosures t. This also
shows that the more restrictions are put on the class
of predictors, the smaller the class of functions the best
prediction error is uncorrelated with.

We also gave a deterministic least-squares-based
interpretation of the BLUP. The weighted least-squares
estimator–predictor pair of x, y0 is given as

x̂WLSE = (ATWyy|y0A)−1ATWyy|y0y and

ŷ0WLSP = A0x̂WLSE − W−1
y0y0

Wy0y(y − Ax̂WLSE)

respectively, with W being an arbitrary positive-definite
weight matrix. The WLSP is a LUP for any choice of
W. The WLSP becomes identical to the BLUP, if W is
chosen as the inverse of the joint variance matrix of y0
and y.

For the linear model defined by Eqs. (14) and (15),
the class of LUPs is a natural follow-up if one starts



Best prediction in linear models with mixed integer/real unknowns 775

from the class of LPs. That is, when one starts from
the class of LPs, one has to enforce the unbiasedness
condition in order to ensure that predictors are obtained
that are independent of the unknown parameter vector
x. As it was shown, however, this is not needed, and
moreover, it does not do justice to the linear model in
case all parameters are integer-valued, instead of real-
valued. It is not needed, since instead of starting from
the class of linear predictors, one can start from a larger
class of predictors and one that still does justice to the
equivariance that is present in the linear model.

For real-valued parameters, this has led us to the
introduction of a new class of predictors, the class of
equivariant predictors (EP). Predictors from this class
satisfy the property G(y + Aα) = G(y) + A0α, ∀y ∈
Rm, α ∈ Rn. Similarly, we introduced for the case of
integer-valued parameters, the new class of integer equi-
variant predictors (IEP). Predictors from this class
satisfy the property G(y + Az) = G(y) + A0z, ∀y ∈
Rm, z ∈ Zn. This class is larger than the class of EPs,
which in turn is larger than the class of LUPs. It was
shown that the predictors from these three classes can
be represented as

LUP : G(y)=A0x̂+Ht (linear in t)
EP : G(y)=A0x̂+H(t) (possibly nonlinear in t)
IEP : G(y)=A0x̂+H(x̂, t) (possibly nonlinear in x̂, t;

periodic in x̂)

The best predictors of these three classes are given as

BLUP : ŷ0 = A0x̂ + Qy0tQ
−1
tt t

BEP : ŷ0 = A0x̂ + E
(
E
(
y0 − A0x̂|x̂, t

) |t)
BIEP : ŷ0 = A0x̂ + E′ (E

(
y0 − A0x̂|x̂, t

) |t)

in which E′(.|t) is a discretized version of E(.|t). Just like
the BLUE is a special case of the BLUP, the best equiva-
riant estimator (BEE) and the best integer equivariant
estimator (BIEE) are special cases of the BEP and the
BIEP, respectively. Similarly to the BLUP’s decomposi-
tion, the BEP resp. BIEP of y0 = A0x+e0 is equal to the
sum of the BEE resp. the BIEE of E(y0) and the BEP
resp. the BIEP of e0. In case y0 and y have a joint normal
distribution, the BEP takes the form of the BLUP and
the BIEP takes a form which is similar to the BLUP,
namely ŷ0 = A0x̂BIEE + Qy0yQ−1

yy (y − Ax̂BIEE), with

x̂BIEE =
∑

z∈Zn

z
exp

{
1
2 ||x̂ − z||2

Q−1
x̂x̂

}

∑
z∈Zn exp

{
1
2 ||x̂ − z||2

Q−1
x̂x̂

} (52)

Since LUP ⊂ EP ⊂ IEP, the minimum MSEs of their
best predictors are ordered as

MSE(BIEP) ≤ MSE(BEP) ≤ MSE(BLUP)

Since all three best predictors are unbiased, the same
ordering holds true for their error variance matrices.
Hence, the error variance of the BIEP is smaller than
that of the BLUP and the variance of the BIEE is smaller
than that of the BLUE. Apart from the minimum MSE
property and the minimum error variance property, the
above three best predictors can also be characterized by
the class of data-functions that are uncorrelated with the
best prediction errors. For the covariance matrix of the
best prediction error and functions of the data, we have
for the three cases,

BIEP : Qê0H5(x̂,t) = 0,
BEP : Qê0H4(t) = 0,
BLUP : Qê0H3(t) = 0

in which H3 is any linear function of t, H4 is any function
of t and H5 is any function of x̂, t, that is invariant for
integer pertubations in its first slot.

The above treatment is based on the all-integer case.
In most applications, however, e.g. those of GNSS and
InSAR, a part of the unknown parameters will be
integer-valued, while the other part will be real-valued.
For this mixed integer/real parameter case, with x =
(xT

1 , xT
2 )T, x1 ∈ Zp, x2 ∈ Rn−p, the class of mixed equiva-

riant predictors is characterized by G(y + A1z + A2α) =
G(y) + A01z + A02α, ∀y ∈ Rm, z ∈ Zp, α ∈ Rn−p. Such
predictors can be represented as G(y) = A0x̂ + H(x̂1, t),
for some H that is invariant for integer pertubations in
its first slot. The class of MEPs is smaller than the class
of IEPs, but it is still larger than the class of EPs and
the class of LUPs, respectively. Hence, the above given
ordering of the MSEs and error variance matrices still
holds true when the BIEP is replaced by the BMEP. The
class of data-functions that are uncorrelated with the
prediction error gets reduced, however, to functions of
the form H(x̂1, t).

We presented the BMEP solution for the general case
and showed that, if y0 and y have a joint normal distri-
bution, it reduces to

ŷ0BMEP = A0x̂BMEE + Qy0yQ−1
yy (y − Ax̂BMEE)

with x̂2BMEE = x̂2 −Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 − x̂1BIEE) and x̂1BIEE

given by Eq. (52), with x̂, z and Qx̂x̂ replaced by x̂1,
z1 and Qx̂1x̂1

, respectively. Since integer estimators are
members of the class of integer equivariant estimators,
we also studied the relation between the BMEP and the
integer-based WLSP. For the mixed integer/real para-
meter case, the WILSP is given as

ŷ0WILSP = A0x̂WILSE − W−1
y0y0

Wy0y(y − Ax̂WILSE)

with x̂2WILSE = x̂2 + W−1
22 W21(x̂1 − x̂1WILSE) and

x̂1WILSE = arg minz1∈Zp ||x̂1−z||2W11|2 . Thus, although the
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WILSP is a member of the class of MEPs for any choice
of the weight matrix, the WILSP is not identical to the
BMEP in case the weight matrix is chosen equal to the
inverse of the joint variance matrix of y0 and y. This is
opposed to the WLSP, which does become identical to
the BLUP if the proper weight matrix is chosen. It was
shown that the WILSP (with a properly chosen weight
matrix) and the BLUP could be seen as two limiting
cases of the BMEP. If the integer grid size gets smal-
ler in relation to the size and extent of the PDF of x̂1,
then the difference between the BMEP and the BLUP
also gets smaller. As the other extreme, if the PDF of
x̂1 gets more peaked (i.e. improved precision), then the
difference between the BMEP and the WILSP becomes
smaller.

Appendix

Proof of Lemma 3 (MSE decomposition) Since Eq. (6)
is a direct consequence of Eq. (5), we only prove Eq.
(5). With Ĝ(y) being the best predictor of class � and

G′(y) = Ĝ(y) + λ
(

G(y) − Ĝ(y)
)

∈ � for any λ ∈ R, we

have E||y0−G′(y)||2W ≥ E||y0−Ĝ(y)||2W and thus E||y0−
G′(y)||2W −E||y0 −Ĝ(y)||2W =−2λE

(
êT

0 W[G(y)−Ĝ(y)])+
λ2E||G(y)−Ĝ(y)||2W ≥0 for any λ∈R. Hence, as function
of λ, the function must be nonnegative for any λ. Since

this is possible if and only if E
(
êT

0 W[G(y)−Ĝ(y)]
)

=
0, the result follows. ��
Proof of Theorem 1 (Best predictor) Since both funct-
ions in the integral of E||y0 − G(y)||2W = ∫

E
(||y0 −

G(y)||2W |y)fy(y)dy are nonnegative, the integral is mini-
mized if E

(||y0 − G(y)||2W |y) is minimized for every y.
This conditional mean square can be written, with the
use of the ‘variance-plus-squared-bias’ decomposition,
as E

(||y0−G(y)||2W |y) = E
(||y0−E(y0|y)||2W |y)+||G(y)−

E(y0|y)||2W . This shows that the conditional mean square
is minimized for every y, when G(y) is chosen equal to
the conditional mean E(y0|y). ��
Proof of Theorem 2 (Best linear predictor) We first
write the MSE in a more convenient form. With G(y) =
L0y + l0, ȳ0 = E(y0) and ȳ = E(y), we have E||y0 −
G(y)||2W = E||(y0 − ȳ0)− L0(y − ȳ)+ (ȳ0 − L0ȳ − l0)||2W ,
from which it follows that

E||y0 − G(y)||2W = E||(y0 − ȳ0) − L0(y − ȳ)||2W
+||ȳ0 − L0ȳ − l0||2W (53)

This objective function needs to be minimized as a func-
tion of the matrix L0 and the vector l0. Note that the
second square on the right-hand side of Eq. (53) can be

made zero for any L0. Hence, the optimal l0 is related
to the optimal L0 as

l̂0 = ȳ0 − L̂0ȳ (54)

To minimize the first square on the right-hand side of Eq.
(53), we recognize that E||(y0 − ȳ0) − L0(y − ȳ)||2W =
trace

([Qy0y0 − 2L0Qyy0 + L0QyyLT
0 ]W)

, which can be
written as

E||(y0−ȳ0)−L0(y−ȳ)||2W
= trace

(
[Qy0y0 − Qy0yQ−1

yy Qyy0 ]W
)

+ trace
([

L0−Qy0yQ−1
yy

]
Qyy

×
[
L0−Qy0yQ−1

yy

]T
W
)

(55)

Hence, the optimal L0 follows as the minimizer of the
second term,

L̂0 = Qy0yQ−1
yy (56)

Substitution of Eqs. (54) and (56) into ŷ0 = L̂0y + l̂0
gives the result of Eq. (10). ��
Proof of Corollary 1 (BP and BLP properties)

(i) The unbiasedness of the BP follows from
E (E(y0|y)) = E(y0) and the unbiasedness of the
BLP follows from applying the mean propagation
law to Eq. (10).

(ii) It is not difficult to verify that the conditions of
Lemma 3 are satisfied for the class of arbitrary
predictors, as well as for the class of linear pre-
dictors. Hence, for the BP it follows from Eq. (5)
that for any W ≥ 0, E(êT

0BPWH(y)) = 0 for any
H and therefore Qê0BPH(y) = 0 for any function
H. Similarly, for the BLP it follows from Eq. (5)
that for any W ≥ 0, E(êT

0BLPWH(y)) = 0 for any
linear function H and therefore Qê0BLPH(y) = 0
for any linear function H.

(iii) Since ŷ0 is a nonlinear function of y in case of
the BP and a linear function of y in case of the
BLP, it follows from Eq. (11) that in both cases
Qê0ŷ0 = 0 and thus Qy0ŷ0 = Qŷ0ŷ0 . Substitution
into Qê0ê0 = Qy0y0 − Qy0ŷ0 − Qŷ0y0 + Qŷ0ŷ0 gives
Qê0ê0 = Qy0y0 − Qŷ0ŷ0 .

(iv) Follows from a direct application of Lemma 5.
(v) Follows from an application of Lemma 3, cf Eq.

(6), with G as the BLP and Ĝ as the BP.
(vi) Follows from an application of Lemma 2.

(vii) Let y0 be the ith entry of y. Then yi = E(yi|y),
which shows that an observable is its own BP. For
the BLP, we have in that case, Qy0yQ−1

yy = cT
i ,
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where ci is the canonical unit vector having a 1 as
its ith entry and zeros otherwise. When substitu-
ted into Eq. (10), the result follows.

(viii) If y0 and y are independent, then fy0y(y0, y) =
fy0(y0)fy(y) and therefore E(y0|y) = E(y0). If y0
and y are uncorrelated, then Qy0y = 0 and the
result follows from Eq. (10).

(ix) If y0 and y have a joint normal distribution, with
means ȳ0 and ȳ, then the conditional distribu-
tion of y0 given y is known to be given as y0|y ∼
N
(
E(y0|y), Qy0y0|y

)
, with E(y0|y) = E(y0) + Qy0y

Q−1
yy (y − E(y)). ��

Proof of Theorem 3 (Best linear unbiased predictor)
With Eq. (16), we may write the MSE as E||y0 −G(y)||2W= E||(y0 − A0x̂) − Ht||2W . This objective function needs
to be minimized as function of H. Note that since E(y0 −
A0x̂) = 0 and E(t) = 0, this objective function has the
same structure as the function of L0 in Eq. (53). Hence,
in parallel with Eq. (54) and since x̂ and t are uncorrela-
ted, the optimal H follows as Ĥ = Qy0tQ

−1
tt . Substitution

into Eq. (16) gives the first expression of Eq. (18). To
determine the second expression of Eq. (18) from its
first, we note that Qy0tQ

−1
tt t = Qy0yB(BTQyyB)−1BTy.

With the use of the projector identity
QyyB(BTQyyB)−1BT = Im −A(ATQ−1

yy A)−1ATQ−1
yy , we

obtain Qy0tQ
−1
tt t = Qy0yQ−1

yy (y − Ax̂), which proves the
second expression of Eq. (18). ��

Proof of Theorem 4 (Weighted least-squares predictor)
First note that the weight matrix can be given the block-
triangular decomposition
[

Wyy Wyy0

Wy0y Wy0y0

]
=
[

I Wyy0W−1
y0y0

0 I

] [
Wyy|y0 0

0 Wy0y0

]

[
I 0

W−1
y0y0

Wy0y I

]
(57)

where Wyy|y0 = Wyy − Wyy0W−1
y0y0

Wy0y. Hence, the qua-
dratic form in Eq. (21) can be written as a sum of two
squares, F(y, y0, x) = ||y − Ax||2Wyy|y0

+ ||y0 − A0x +
W−1

y0y0
Wy0y(y − Ax)||2Wy0y0

. Since x̂WLSE, ŷ0WLSP set the

second positive term on the right-hand side equal to
zero, while x̂WLSE minimizes the first positive term, it
follows that Eq. (22) is indeed the solution sought. ��

Proof of Theorem 5 (Best equivariant predictor) With
Eq. (24), we have E||y0 − G(y)||2W = E||y0 − A0x̂ −
H(t)||2W = E||y0 − A0x̂||2W + �(H(t)), where �(H(t)) =
−2E

(
(y0 − A0x̂)TWH(t)

) + E||H(t)||2W . The task is to
find the function H that minimizes �. If we write � in
integral form, we obtain

�(H(t))

=
∫

Rm−n

∫

Rn

∫

Rm0

[
−2(y0 − A0x̂)TWH(t)

+ ||H(t)||2W
]

fy0x̂t(y0, x̂, t)dy0dx̂dt

=
∫

Rm−n

[
− 2

(∫

Rn

∫

Rm0

(y0 − A0x̂)fy0x̂|t(y0, x̂|t)dy0dx̂
)T

×WH(t) + ||H(t)||2W
]

ft(t)dt

=
∫

Rm−n

[
||E(y0 − A0x̂|t) − H(t)||2W − ||E(y0

− A0x̂|t)||2W
]

ft(t)dt

from which the optimal H follows as Ĥ(t) = E(y0 −
A0x̂|t). Hence, the best equivariant predictor is given as
ŷ0 = A0x̂ + Ĥ(t) = A0x̂ + E(y0 − A0x̂|t). The second
expression of Eq. (25) follows from noting that E(y0 −
A0x̂|t) = ∫

Rn

∫
Rm0 (y0 − A0x̂)fy0|x̂t(y0|x̂, t)fx̂|t(x̂|t)dy0dx̂ =∫

Rn Ey0|x̂t(y0 − A0x̂|v, t)fx̂|t(v|t)dv, since Ey0|x̂t(y0
− A0x̂|v, t) = ∫

Rm0 (y0 − A0v)fy0|x̂,t(y0|v, t)dy0. ��

Proof of Corollary 4 (BEP and BLUP properties)

(i) The unbiasedness of the BEP follows from an
application of the mean propagation law to Eq.
(25), noting that E(A0x̂) = A0x = E(y0) and
E
(
E(y0 − A0x̂|t)) = 0. Similarly, the unbiased-

ness of the BLUP follows from an application of
the mean propagation law to Eq. (18), noting that
E(t) = 0.

(ii) It is not difficult to verify that the conditions of
Lemma 3 are satisfied for the class of EPs and
the class of LUPs. Hence, for the BEP it follows
from Eq. (5), since the difference between the
BEP and any EP is an arbitrary function of t, that
for any W ≥ 0, E(êT

0BEPWH(t)) = 0 for any H
and therefore QBEP

ê0H(t) = 0 for any function H.
Similarly, for the BLUP it follows from Eq. (5),
since the difference between the BLUP and any
LUP is an arbitrary linear function of t, that for
any W ≥ 0, E(êT

0BLUPWH(t)) = 0 for any linear
function H and therefore QBLUP

ê0H(t) = 0 for any
linear function H.

(iii) The proof of Eq. (27) goes along similar lines as
the one given in (iii) of Corollary 1.

(iv) Follows from a direct application of Lemma 5.
(v) Follows from an application of Lemma 3, cf Eq.

(6), with G as the BLUP and Ĝ as the BEP.
(vi) Follows from an application of Lemma 2.
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(vii) If we replace in Eq. (18), A0 by A and Qy0y by Qyy,
we obtain ŷ0BLUP = y. Similarly, if we replace
A0 by A and y0 by y in Eq. (25), and recall that
y − Ax̂ = Ct, with C = QyyB(BTQyyB)−1, we
obtain, with the use of t = E(t|t), that ŷ0BEP =
Ax̂ + Ct = y.

(viii) If y0 and x̂ are both independent of t, then E(y0 −
A0x̂|t) = 0 and therefore ŷ0BEP = A0x̂. If y0
and t are uncorrelated, then Qy0t = 0 and thus
ŷ0BLUP = A0x̂.

(ix) Makes use of the fact that if two random vectors
a and b have a joint normal distribution, then the
mean of the conditional distribution of b given a,
is given as E(b|a) = E(b) + QbaQ−1

aa (a − E(a)).

��
Proof of Theorem 6 (Best integer equivariant predic-
tor) With Eq. (30), we have E||y0 − G(y)||2W = E||y0 −
A0x̂ − H(x̂, t)||2W = E||y0 − A0x̂||2W + �(H(x̂, t)), where
�(H(x̂, t))=−2E

(
(y0 − A0x̂)TWH(x̂, t)

)+E||H(x̂, t)||2W .
The task is to find the function H that minimizes �. If
we write � in integral form, we obtain

�(H(x̂, t))

=
∫

Rm−n

∫

Rn

∫

Rm0

[
− 2(y0 − A0x̂)TWH(x̂, t)

+ ||H(x̂, t)||2W
]

fy0x̂t(y0, x̂, t)dy0dx̂dt

=
∫

Rm−n

∫

Rn

[
− 2

( ∫

Rm0

(y0 − A0x̂)fy0x̂t(y0, x̂, t)dy0

)T

× WH(x̂, t) + ||H(x̂, t)||2Wfx̂t(x̂, t)
]

dx̂dt

If we replace
∫

x̂∈Rn by
∑

z∈Zn

∫
x̂∈Sz

, where the Sz’s form a
partition of Rn, apply the change of variables α = x̂−z ∈
S0 and make use of te property H(α +z, t) = H(α, t), we
can write

�(H(x̂, t))

=
∫

Rm−n

∑

z∈Zn

∫

α∈S0

⎡

⎢
⎣−2

⎛

⎝
∫

Rm0

(y0−A0(α + z))fy0 x̂t(y0, α+z, t)dy0

⎞

⎠

T

× WH(α, t) + ||H(α, t)||2Wfx̂t(α + z, t)
]

dαdt

=
∫

Rm−n

∫

α∈S0

⎡

⎣−2

(∑
z∈Zn

∫
Rm0(y0−A0(α+z))fy0 x̂t(y0, α+z, t)dy0

∑
z∈Zn fx̂t(α + z, t)

)T

× WH(α, t) + ||H(α, t)||2W
] ∑

z∈Zn

fx̂t(α + z, t)dαdt

=
∫

Rm−n

∫

α∈S0

[
||Ĥ(α, t) − H(α, t)||2W − ||Ĥ(α, t)||2W

]

×
∑

z∈Zn

fx̂t(α + z, t)dαdt

where

Ĥ(α, t)

=
∑

z∈Zn

∫
Rm0 (y0 − A0(α + z))fy0x̂t(y0, α + z, t)dy0

∑
z∈Zn fx̂t(α + z, t)

=
∑

v∈α+Zn

∫
Rm0 (y0 − A0v)fy0|x̂t(y0|v, t)dy0fx̂|t(v|t)

∑
v∈α+Zn fx̂|t(v|t)

=
∑

v∈α+Zn Ey0|x̂t(y0 − A0x̂|v, t)fx̂|t(v|t)
∑

v∈α+Zn fx̂|t(v|t) (58)

This shows that � is minimized if H is chosen equal to
Ĥ. With ŷ0BIEP = A0x̂ + Ĥ(x̂, t), the result follows. ��
Proof of Corollary 6 (BIEP properties)

(i) The BIEP is given as ŷ0 = A0x̂ + Ĥ(x̂, t), with
Ĥ given by Eq. (58). Hence, the BIEP is unbia-

sed if we can prove that E
(

Ĥ(x̂, t)
)

= 0. We have

E
(

Ĥ(x̂, t)
)

= ∫
Rm−n

∫
Rn Ĥ(x̂, t)fx̂t(x̂, t)dx̂dt =

∫
Rm−n

[∑
z∈Zn

∫
x̂∈Sz

Ĥ(x̂, t)fx̂t(x̂, t)dx̂
]
dt = ∫

Rm−n
[∫

α∈S0

∑
z∈Zn Ĥ(α, t)fx̂t(α, t)dα

]
dt. From Eq. (58)

follows that
∑

z∈Zn Ĥ(α, t)fx̂t(α + z, t) = ∑
z∈Zn∫

Rm0

[
y0 − A0(α + z)

]
fy0x̂t(y0, α+z, t)dy0. Hence,

we have E
(

Ĥ(x̂, t)
)

= ∫
Rm−n

∑
z∈Zn

∫
α∈S0

∫
Rm0[

y0 − A0(α + z)
]

fy0x̂t(y0, α + z, t)dy0dαdt and

therefore E
(

Ĥ(x̂, t)
)

= ∫
Rn

∫
Rm0

[
y0 − A0x̂

]
fy0x̂

(y0, x̂)dy0 dx̂ = E(y0 − A0x̂) = 0.
(ii) It is not difficult to verify that the conditions of

Lemma 3 are satisfied for the class of IEPs. Hence,
for the BIEP it follows from Eq. (5), since the
difference between the BIEP and any IEP is any
function H(x̂, t) for which H(x̂+z, t) = H(x̂, t) for
all z ∈ Zn, that for any W ≥ 0, E(êT

0BIEPWH(x̂, t))

= 0 for any such H and therefore QBIEP
ê0H(x̂,t) = 0

for any such H.
(iii) The proof of Eq. (34) goes along similar lines as

the one given in (iii) of Corollary 1.
(iv) Follows from a direct application of Lemma 5.
(v) Follows from an application of Lemma 3, cf Eq.

(6), with G as the BEP and Ĝ as the BIEP.
(vi) Follows from an application of Lemma 2.

(vii) If y0 = y, then A0 = A and fy0|y(y0|y) = δ(y0 −
y), and therefore Ey0|x̂t(y0 − A0x̂|v, t) = y − Ax̂.
Substitution into Eq. (31), gives ŷ0 = y.

(viii) If y0 and y are independent, then Ey0|x̂,t(y0 −
A0x̂|v, t) = A0(x − v). Substitution into Eq. (31)
gives Eq. (32). ��
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Proof of Corollary 7 (BMEP in Gaussian case) We will
first prove the first expression of (44). According to the
transformation rule for PDFs we have fy(y + A1(x1 −
z1)+A2(x2 −β2)) ∝ fx̂1x̂2t(x̂1 +x1 −z1, x̂2 +x2 −β2, t) ∝
fx̂1x̂2(x̂1 + x1 − z1, x̂2 + x2 − β2)ft(t), where use has been
made of the fact that x̂ and t are independent in the
Gaussian case. We therefore have

ωz1(y)

=
∫

fx̂1x̂2(x̂1 + x1 − z1, x̂2 + x2 − β2)dβ2∑
z1

∫
fx̂1x̂2(x̂1 + x1 − z1, x̂2 + x2 − β2)dβ2

= fx̂1
(x̂1 + x1 − z1)∑

z1
fx̂1

(x̂1 + x1 − z1)
=

exp

{

− 1
2 ||x̂1 − z1||2Q−1

x̂1 x̂1

}

∑
z1

exp

{

− 1
2 ||x̂1 − z1||2Q−1

x̂1 x̂1

}

since x̂1 ∼ N(x1, Qx̂1x̂1
). With x̂1BIEE = ∑

z1
z1ωz1(y),

the first expression of Eq. (44) follows. We now prove
the second expression of Eq. (44). We have

ωβ2(y) =
∑

z1
fx̂1x̂2(x̂1 + x1 − z1, x̂2 + x2 − β2)

∑
z1

∫
fx̂1x̂2(x̂1 + x1 − z1, x̂2 + x2 − β2)dβ2

=
∑

z1
fx̂1x̂2(x̂1 + x1 − z1, x̂2 + x2 − β2)
∑

z1
fx̂1

(x̂1 + x1 − z1)

=
∑

z1

fx̂2|x̂1
(x̂2 + x2 − β2|x̂1 + x1 − z1)ωz1(y)

Therefore x̂2BMEE = ∫
β2ωβ2(y)dβ2 = ∫

(x̂2 + x2 − γ2)∑
z1

fx̂2|x̂1
(γ2|x̂1 + x1 − z1)ωz1(y)dγ2 = x̂2 + x2 −∑

z1
E(x̂2|x̂1 + x1 − z1)ωz1(y). Since E(x̂2|x̂1) = x2 +

Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 − x1) is the conditional mean in the

Gaussian case, we have E(x̂2|x̂1 + x1 − z1) = x2 + Qx̂2x̂1

Q−1
x̂1x̂1

(x̂1 − z1) and therefore x̂2BMEE = x̂2 − Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 −∑z1

z1ωz1(y)), which proves the second expression
of Eq. (44).

To prove the last expression of Eq. (44), we first
write ê0BMEP in terms of a conditional mean, ê0BMEP =∑

z1

∫
E(e0|y + A1(x1 − z1) + A2(x2 − β2))ωz1β2(y)dβ2.

Since E(e0|y) = Qy0yQ−1
yy (y−A1x1 −A2x2) is the condi-

tional mean in the Gaussian case, we have E(e0|y +
A1(x1 −z1)+A2(x2 −β2)) = Qy0yQ−1

yy (y−A1z1 −A2β2)

and therefore ê0BMEP = ∑
z1

∫
Qy0yQ−1

yy (y − A1z1 −
A2β2)ωz1β2(y)dβ2 =Qy0yQ−1

yy(y−A1x̂1BIEE−A2x̂2BMEE),
which proves the last expression of Eq. (44). ��
Proof of Corollary 8 (BLUP and BMEP compared)

(i) To prove Eq. (46), we first write the prediction
error of the BMEP in terms of the prediction
error of the BLUP. This gives ê0BMEP = ê0BLUP −
B01|y(x̂1 − x̂1BIEE). Since ê0BMEP is uncorrelated

with any function H(x̂1, t) which is invariant for
an integer pertubation in its first slot, ê0BMEP is
also uncorrelated with x̂1 − x̂1BIEE. Application
of the variance propagation law gives therefore
QBMEP

ê0ê0
= QBLUP

ê0ê0
− B01|yQεεBT

01|y.
(ii) Follows from an application of Lemma 3 (cf. Eq.

6), with G as the BLUP and Ĝ as the BMEP. ��

Proof of Theorem 8 (Weighted integer least-squares
prediction) We start by decomposing the objective func-
tion F(y, y0, x) of Eq. (21) into a sum of squares. It will
be decomposed into a constant term and three variable
terms. We have

F(y, y0, x) = ||y − Ax||2Wyy|y0
+ ||y0 − A0x

+ W−1
y0y0

Wy0y(y − Ax)||2Wy0y0

= ||y − Ax̂WLSE||2Wyy|y0
+ ||x̂WLSE − x||2Wx̂x̂

+ ||y0 − A0x + W−1
y0y0

Wy0y(y − Ax)||2Wy0y0

= ||y − Ax̂WLSE||2Wyy|y0
+ ||x̂1WLSE − x1||2W11|2

+ ||x̂2WLSE − x2 +
− W−1

21 W11(x̂1WLSE − x1)||2W22
+ ||y0

− A0x + W−1
y0y0

Wy0y(y − Ax)||2Wy0y0
(59)

with Wx̂x̂ = (ATWyy|y0A). Note that the last term in the
third equality can be made zero for any x ∈ Zp × Rn−p

and that the before last term can be made zero for any
x1 ∈ Zp. Hence, the sought-for minimizer is indeed given
by Eqs. (50) and (48). ��
Proof of Lemma 12 (WILSP and BLUP as limits of the
BMEP) Since, in the Gaussian case, the BLUP, WILSP
and BMEP have the same structure, it suffices to show
that the BLUE x̂1 and the WILSE x̂1WILSE are the cor-
responding limits of x̂1BIEE, the proof of which is given
in Teunissen (2003, p. 410). ��
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