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Best Proximity Point and Best Proximity Coupled Point

in a Complete Metric Space with (P)-Property
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Abstract. In this paper, we utilize the concept of (P)-property, weak (P)-property and the comparison
function to introduce and prove an existence and uniqueness theorem of a best proximity point. Also, we
introduce the notion of a best proximity coupled point of a mapping F : X × X→ X. Using this notion and
the comparison function to prove an existence and uniqueness theorem of a best proximity coupled point.
Our results extend and improve many existing results in the literature. Finally, we introduce examples to
support our theorems.

1. Introduction

Let A be a nonempty subset of a metric space (X, d). Let T be a mapping from X into X. A point x ∈ X is
called a best proximity point of T if d(x,Tx) = d(A, x), where

d(A, x) := inf{d(a, x) : a ∈ A}.

Note that if x ∈ A, then x is a fixed point of T. Thus the best proximity point plays a crucial role in fixed
point theory, and many authors studied this notion. In [1], the existence of a best proximity point for a cyclic
contraction map in a reflexive Banach space is proved. Also, the authors introduce a new class of mappings,
the cyclic ϕ-contractions, and they prove convergence and existence results for those class of mappings.
The notion of proximal pointwise contraction and results regarding the existence of a best proximity point
on a pair of weakly compact convex subset of a Banach space are obtained in [2]. In [3], there are stated
contraction type existence results for a best proximity point and an algorithm to find a best proximity
point for a mapping in the context of a uniformly convex Banach space. In [4], there is introduced the
notion of cyclic orbital Meir-Keeler contraction, and there are given sufficient conditions for the existence
of fixed points and best proximity points of such a map. The proximity and best proximity pair theorems
in hyperconvex metric spaces and in Hilbert spaces are presented in [5], providing optimal approximate
solutions for the situation when a mapping does not have fixed points. Paper [6] applies a convergence
theorem in order to prove the existence of a best proximity point, without the use of Zorns lemma. In
[7], the authors study a mapping which satisfies a cyclical generalized contractive condition related to a
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pair of altering distance functions. Paper [8] introduces the class of p-cyclic ϕ-contractions, larger than
the p-cyclic contraction mappings and presents convergence and existence results of best proximity points
for mappings from this class are obtained. In [9], Sankar Raj studied a fixed point theorem for weakly
contractive nonselfmappings based on the notion of (P)-property. For some interesting examples of pairs
having the (P)-property, we address the reader to [9], [10], [11]. For some work in almost contraction see
[12]-[20].

In this paper, we introduce the notion of the generalized almost (ϕ, θ)-contraction and the notion of a
best proximity coupled point of a mapping F : X × X → X. Also, we utilize our notions to introduce and
prove a best proximity point theorem and a best proximity coupled point theorem. Our results extend and
improve many existing results in literature.

2. Preliminaries

To introduce our new results, it is fundamental to recall the definition of a best proximity point of a
nonselfmapping T and the notion of (weak) (P)-property.

Let A and B be nonempty subsets of a metric space. To facilitate the arguments let

A0 = {a ∈ A : d(a, b) = d(A,B), for some b ∈ B},

B0 = {b ∈ B : d(a, b) = d(A,B), for some a ∈ A},

and
d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.

Definition 2.1 ([10]). Let A and B be two nonempty subsets of a metric space (X, d). An element u ∈ A is
said to be a best proximity point of the nonselfmapping T : A→ B iff it satisfies the condition

d(u,Tu) = d(A,B).

Definition 2.2 ([9]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d) with A0 , Ø. Then,
pair (A,B) is said to have the weak (P)-property if, for each x1, x2 ∈ A, and y1, y2 ∈ B, the following implication
holds

(

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

)

⇒ d(x1, x2) ≤ d(y1, y2).

If we replace relation d(x1, x2) ≤ d(y1, y2) by d(x1, x2) = d(y1, y2) we obtain a less general notion, that of a
pair endowed with the (P)-property.

In his elegant paper [10], Samet studied a nice best proximity point theorem of the form almost contrac-
tion for a pair of sets endowed with the (P)-property. Before we present the main result of Samet, we recall
the following

Definition 2.3 ([13]). A map ϕ : [0,+∞)→ [0,+∞) is called a c-comparison function if it satisfies:

1. ϕ is a monotone increasing,
2.

∑+∞
n=0 ϕ

n(t) converges for all t ≥ 0.

If we replace the second condition by limn→+∞ ϕ
n(t) = 0, ∀n ∈ N, we obtain the notion of comparison

function, which is more general than the one of c-comparison function.
It is known that if ϕ is a comparison function, then ϕ(t) < t for all t > 0 and ϕ(0) = 0.
Works involving either (c)-comparison functions or comparison functions are, for instance, [14] and [20].

In the following, denote [0,+∞) × [0,+∞) × [0,+∞) × [0,+∞) by [0,+∞)4.

Let Θ be the set of all continuous functions θ : [0,+∞)4
→ [0,+∞) such that

θ(0, t, s,u) = 0 for all t, s,u ∈ [0,+∞)

and
θ(t, s, 0,u) = 0 for all t, s,u ∈ [0,+∞).
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Example 2.4 ([10]). Define θ1, θ2, θ3 : [0,+∞)4
→ [0,+∞) by the formulas

θ1(t, s,u, v) = τ inf{t, s,u, v}, τ > 0,

θ2(t, s,u, v) = τ ln(1 + tsuv), τ > 0,

and
θ3(t, s,u, v) = τtsuv, τ > 0.

Then θ1, θ2, θ3 ∈ Θ.

Samet [10] introduced the following definition.

Definition 2.5 ([10]). Let ϕ be a c-comparison function, and θ ∈ Θ. A mapping T : A→ B is called an almost
(ϕ, θ)-contraction if, for each x, y ∈ A,

d(Tx,Ty) ≤ ϕ(d(x, y)) + θ(d(y,Tx) − d(A,B), d(x,Ty) − d(A,B),

d(x,Tx) − d(A,B), d(y,Ty) − d(A,B)).

The main result of Samet is

Theorem 2.6 ([10]). Let A and B two closed subsets of a complete metric space (X, d) such that A0 is nonempty.
Suppose that T : A→ B satisfies the following conditions:

1) T is an almost (ϕ, θ)-contraction;
2) TA0 ⊆ B0;
3) Pair (A,B) has the P-property.
Then, there exists a unique element x∗ ∈ A such that

d(x∗,Tx∗) = d(A,B).

Moreover, for any fixed element x0 ∈ A0, any iterative sequence (xn) satisfying

d(xn+1,Txn) = d(A,B)

converges to x∗.

3. Main Results

Our first aim in the paper is to introduce and prove a best proximity point theorem for a more general
case. For this instance, we introduce the notion of a generalized almost (ϕ, θ)-contraction, as follows

Definition 3.1. Let ϕ be a comparison function, and θ ∈ Θ. Mapping T : A→ B is called a generalized almost
(ϕ, θ)-contraction if, for each x, y ∈ A,

d(Tx,Ty) ≤ ϕ(d(x, y)) + θ(d(y,Tx) − d(A,B), d(x,Ty) − d(A,B),

d(x,Tx) − d(A,B), d(y,Ty) − d(A,B)).

Our first result is

Theorem 3.2. Consider A and B two closed subsets of a complete metric space (X, d) for which A0 is nonempty. Let
T : A→ B be a mapping which satisfies the following conditions:

1) T is a generalized almost (ϕ, θ)-contraction;
2) TA0 ⊆ B0;
3) Pair (A,B) has the weak P-property.
Then, there exists a unique best proximity point of T, x∗ ∈ A.
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Proof. Consider x0 ∈ A0. Since TA0 ⊆ B0, then Tx0 ∈ B0, and there is x1 ∈ A0 such that d(x1,Tx0) = d(A,B).
By continuing this procedure, we obtain a sequence (xn) ⊆ A0,

d(xn+1,Txn) = d(A,B), ∀n ∈N ∪ {0}.

If there is n ∈N ∪ {0}, for which d(xn+1, xn) = 0, it follows

d(A,B) ≤ d(xn,Txn) ≤ d(xn, xn+1) + d(xn+1,Txn) = d(xn+1,Txn) = d(A,B),

hence d(A,B) = d(xn,Txn), so xn is a best proximity point of T.
Without loss of generality, in the following we may assume that d(xn, xn+1) > 0, for each n ∈N ∪ {0}.
(A,B) satisfies the weak (P)-property, so d(xn, xn+1) ≤ d(Txn−1,Txn), n ∈N.
Using the almost (ϕ, θ)-contraction property of T, we have

d(xn, xn+1) ≤ d(Txn−1,Txn)

≤ ϕ(d(xn−1, xn)) + θ(d(xn,Txn−1) − d(A,B), d(xn−1,Txn) − d(A,B),

d(xn−1,Txn−1) − d(A,B), d(xn,Txn) − d(A,B))

= ϕ(d(xn−1, xn)) + θ(0, d(xn−1,Txn) − d(A,B),

d(xn−1,Txn−1) − d(A,B), d(xn,Txn) − d(A,B))

= ϕ(d(xn−1, xn)), n ∈N ∪ {0}.

Applying repeatedly this inequality, and using the monotone of ϕ, we get

d(xn, xn+1) ≤ ϕn(d(x0, x1)), n ∈N ∪ {0}.

But ϕ is a comparison function, so, taking n→ +∞, we obtain limn→+∞ d(xn, xn+1) = 0.
Taking into account the inequalities

d(A,B) ≤ d(xn,Txn) ≤ d(xn, xn+1) + d(xn+1,Txn),

and letting n→ +∞, we obtain

lim
n→+∞

d(xn,Txn) = d(A,B). (1)

Let ε > 0. Since limn→+∞ d(xn, xn+1) there exists n0 ∈N such that for each n > n0, we have

d(xn, xn+1) <
1

2
(ε − ϕ(ε)). (2)

We shall prove that d(xn, xm) < ε, for each m > n > n0 by induction on m.
For m = n + 1, we obtain

d(xn, xn+1) <
1

2
(ε − ϕ(ε)) < ε.

Suppose the inequality is satisfied for m = k, and we shall prove that the relation holds for m = k + 1. The
triangular inequality leads us to

d(xn, xk+1) ≤ d(xn, xn+1) + d(xn+1, xk+1). (3)

Since d(xn+1,Txn) = d(A,B), and d(xk+1,Txk) = d(A,B), applying the weak (P)-property, it follows that
d(xn+1, xk+1) ≤ d(Txn,Txk). The almost (ϕ, θ)-contraction property of T, we obtain

d(xn+1, xk+1) ≤ d(Txn,Txk)

≤ ϕ(d(xn, xk)) + θ(d(xk,Txn) − d(A,B), d(xn,Txk) − d(A,B), (4)

d(xn,Txn) − d(A,B), d(xk,Txk) − d(A,B))
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Since θ is a continuous function and limn→+∞ d(xn,Txn) = d(A,B), we have

lim sup
n→+∞

θ(d(xk,Txn) − d(A,B), d(xn,Txk) − d(A,B),

d(xn,Txn) − d(A,B), d(xk,Txk) − d(A,B)) = 0.

Thus, we may consider that n0 is large enough so for each n > n0,

θ(d(xk,Txn) − d(A,B), d(xn,Txk) − d(A,B), (5)

d(xn,Txn) − d(A,B), d(xk,Txk) − d(A,B)) <
1

2
(ε − ϕ(ε))

Using inequalities (2), (4), and (5) into (3), we get

d(xn, xk+1) ≤
1

2
(ε − ϕ(ε)) + ϕ(ε) +

1

2
(ε − ϕ(ε)),

hence d(xn, xk+1) < ε, and we proved that d(xn, xm) < ε, m > n > n0. We got that (xn) is a Cauchy sequence
in A, which is a closed subset of (X, d), a complete metric space. Therefore, there exists x ∈ A such that
limn→+∞ xn = x∗.

Using the triangle inequality, it follows

d(x∗,Tx∗) ≤ d(x∗, xn) + d(xn,Txn) + d(Tx∗,Txn). (6)

Letting n→ +∞ in the inequality

d(Tx∗,Txn) ≤ ϕ(d(x∗, xn)) + θ(d(xn,Tx∗) − d(A,B), d(x∗,Txn) − d(A,B),

d(xn,Txn) − d(A,B), d(x∗,Tx∗) − d(A,B)),

it follows limn→+∞ d(Txn,Tx∗) = 0. Taking n→ +∞ in relation (6), it follows that d(x∗,Tx∗) = d(A,B), so x∗ is
a best proximity point of T.

We shall focus now on the uniqueness of the best proximity point of T. Suppose there are x∗ , y∗ two
best proximity points of T. We obtain

d(x∗, y∗) ≤ d(Tx∗,Ty∗)

≤ ϕ(d(x∗, y∗)) + θ(d(y∗,Tx∗) − d(A,B), d(x∗,Ty∗) − d(A,B),

d(x∗,Tx∗) − d(A,B), d(y∗,Ty∗) − d(A,B))

= ϕ(d(x∗, y∗)) + θ(d(y∗,Tx∗) − d(A,B), d(x∗,Ty∗) − d(A,B),

0, d(y∗,Ty∗) − d(A,B))

≤ ϕ(d(x∗, y∗)),

which is impossible, since x∗ , y∗. The uniqueness part has been proved now.

Let us take the particular case of ϕ : [0,+∞)→ [0,+∞), ϕ(t) = kt, where k ∈ [0, 1), and

θ : [0,+∞)4 → [0,+∞), θ(t1, t2, t, 3, t4) = L min{t1, t2, t3, t4},

for some L ≥ 0. We obtain the following corollary.

Corollary 3.3. Let A and B be two closed subsets of a complete metric space (X, d) for which A0 is nonempty. Let
T : A→ B be a mapping which satisfies the following conditions:

1) TA0 ⊆ B0;
2) Pair (A,B) has the weak (P)-property.
Suppose there exist k ∈ [0, 1) and L ≥ 0 such that

d(Tx,Ty) ≤ kd(x, y) + L min{d(y,Tx) − d(A,B), d(x,Ty) − d(A,B),

d(x,Tx) − d(A,B), d(y,Ty) − d(A,B)}

holds for all x, y ∈ A. Then, there exists a unique best proximity point of T, x∗ ∈ A.
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By considering A = B in Theorem 3.2, we get the next corollary

Corollary 3.4. Let A be a closed subsets of a complete metric space (X, d). Let T : A→ A be a mapping such that

d(Tx,Ty) ≤ ϕ(d(x, y)) + θ(d(y,Tx), d(x,Ty), d(x,Tx), d(y,Ty))

holds for all x, y ∈ A. Then T has a unique fixed point u ∈ A; that is Tu = u.

Our second aim in this paper is to present a best proximity coupled point of a mapping T : X × X→ X.
Before we present our second result we introduce the following definition.

Definition 3.5. Let A and B be closed subsets of a metric space (X, d). An element (u, v) ∈ X × X is called
a best proximity coupled point of a mapping F : X × X → X if u ∈ A, v ∈ B and d(u,F(u, v)) = d(A,B) and
d(v,F(v,u)) = d(A,B).

Theorem 3.6. Let A and B be two closed subsets of a complete metric space (X, d) for which A0 and B0 are nonempty.
Let F : X × X→ X be a continuous mapping which satisfies the following conditions:

1) F(A0 × B0) ⊆ B0;
2) F(B0 × A0) ⊆ A0;
3) Pair (A,B) has the (P)-property.
Also, suppose there exist functions ϕ and θ ∈ Θ such that

d(F(x, y),F(u, v))

≤ ϕ(max{d(x,u), d(y, v)}) + θ(d(u,F(x, y)) − d(A,B), d(v,F(y, x)) − d(A,B),

d(x,F(x, y)) − d(A,B), d(y,F(y, x)) − d(A,B)) (7)

holds for all x, y,u, v ∈ X.
Then, there exists a unique best proximity coupled point of F of the form (u,u).

Proof. Choose x0 ∈ A0 and y0 ∈ B0. Since F(x0, y0) ∈ B0, we choose x1 ∈ A such that d(x1,F(x0, y0)) = d(A,B).
Also, since F(y0, x0) ∈ A0 we choose y1 ∈ B such that d(y1,F(y0, x0)) = d(B,A). As F(x1, y1) ∈ B0, we
choose x2 ∈ A such that d(x2,F(x1, y1)) = d(A,B). Also, since F(y1, x1) ∈ A0 we choose y2 ∈ B such that
d(y2,F(y1, x1)) = d(B,A). Continuing this process, we construct two sequences (xn) in A and (yn) in B such
that

d(xn+1,F(xn, yn)) = d(A,B)

and

d(yn+1,F(yn, xn)) = d(B,A)

hold for all n ∈N ∪ {0}.
Suppose there exists n ∈N such that d(xn, xn+1) = 0 and d(yn, yn+1) = 0. Thus

d(A,B) ≤ d(xn,F(xn, yn))

≤ d(xn, xn+1) + d(xn+1,F(xn, yn))

= d(A,B).

Thus we have d(A,B) = d(xn,F(xn, yn)). Similarly, we obtain d(A,B) = d(yn,F(yn, xn)). Therefore, (xn, yn) is a
best proximity coupled point of F.

So, we may assume that d(xn, xn+1) > 0 or d(yn, yn+1) > 0.
Since pair (A,B) has the (P)-property, d(xn,F(xn−1, yn−1)) = d(A,B), and d(xn+1,F(xn, yn)) = d(A,B), we

have

d(xn, xn+1) = d(F(xn−1, yn−1),F(xn, yn)).
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By (7), we obtain

d(xn, xn+1)

= d(F(xn−1, yn−1),F(xn, yn))

≤ ϕ(max{d(xn−1, xn), d(yn−1, yn)} + θ(d(xn,F(xn−1, yn−1)) − d(A,B),

d(yn,F(yn−1, xn−1)) − d(A,B), d(xn−1,F(xn−1, yn−1)) − d(A,B),

d(yn−1,F(yn−1, xn−1)) − d(A,B))

= ϕ(max{d(xn−1, xn), d(yn−1, yn)}. (8)

Also, since pair (A,B) has the (P)-property, d(yn,F(yn−1, xn−1)) = d(A,B), and d(yn+1,F(yn, xn)) = d(A,B),
we have

d(yn, yn+1) = d(F(yn−1, xn−1),F(yn, xn)).

Again by (7), we get

d(yn, yn+1)

= d(F(yn−1, xn−1),F(yn, xn))

≤ ϕ(max{d(yn−1, yn), d(xn−1, xn)}) + θ(d(yn,F(yn−1, xn−1)) − d(A,B),

d(xn,F(xn−1, yn−1)) − d(A,B), d(yn−1,F(yn−1, xn−1)) − d(A,B),

d(xn−1,F(xn−1, yn−1)) − d(A,B))

= ϕ(max{d(yn−1, yn), d(xn−1, xn)}). (9)

Combining (8) and (9), we get

max{d(xn, xn+1), d(yn, yn+1)} ≤ ϕ(max{d(xn−1, xn), d(yn−1, yn)}). (10)

Repeating (10) n-times, we obtain

max{d(xn, xn+1), d(yn, yn+1)} ≤ ϕ(max{d(xn−1, xn), d(yn−1, yn)})

≤ ϕ2(max{d(xn−2, xn−1), d(yn−2, yn−1)})

...

≤ ϕn(max{d(x0, x1), d(y0, y1)}).

Thus
lim

n→+∞
d(xn, xn+1) = lim

n→+∞
d(yn, yn+1) = 0.

On other hand,

d(A,B) ≤ d(xn,F(xn, yn))

≤ d(xn, xn+1) + d(xn+1,F(xn, yn))

= d(xn, xn+1) + d(A,B).

Letting n→ +∞ in the above inequalities, we get

lim
n→+∞

d(xn,F(xn, yn)) = d(A,B).

Similarly, one can show that
lim

n→+∞
d(yn,F(yn, xn)) = d(A,B).

Consider ǫ > 0. Since ϕn(max{d(x0, x1), d(y0, y1)} → 0 as n→ +∞, there exists n0 ∈N such that

d(xn, xn+1) <
1

2
(ǫ − ϕ(ǫ))
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and

d(yn, yn+1) <
1

2
(ǫ − ϕ(ǫ))

hold for all n ≥ n0.
Now, we use the induction on m to prove that

max{d(xn, xm), d(yn, ym)} < ǫ ∀ m > n ≥ n0. (11)

Note that (11) holds for m = n + 1 because max{d(xn, xm), d(yn, ym)} < 1
2 (ǫ − ϕ(ǫ)) < ǫ holds for all n ≥ n0.

Assume inequality (11) holds for m = k. Now, we prove relation (11) for m = k + 1. By using the triangular
inequality, we have

d(xn, xk+1) ≤ d(xn, xn+1) + d(xn+1, xk+1). (12)

Since pair (A,B) has the (P)-property, d(xn+1,F(xn, yn)) = d(A,B), and

d(xk+1,F(xk, yk)) = d(A,B)

we have
d(xn+1, xk+1) ≤ d(F(xn, yn),F(xk, yk)).

Using the contraction condition (7), we have

d(xn+1, xk+1)

= d(F(xn, yn),F(xk, yk))

≤ ϕ(max{d(xn, xk), d(yn, yk)}) + θ(d(xk,F(xn, yn)) − d(A,B),

d(yk,F(yn, xn)) − d(A,B), d(xn,F(xn, yn)) − d(A,B), d(yn,F(yn, xn)) − d(A,B)),

(13)

and

d(yn+1, yk+1)

= d(F(yn, xn),F(yk, xk))

≤ ϕ(max{d(xn, xk), d(yn, yk)}) + θ(d(yk,F(xn, xn)) − d(A,B),

d(xk,F(xn, yn)) − d(A,B), d(yn,F(xn, xn)) − d(A,B), d(xn,F(xn, yn)) − d(A,B)),

(14)

Using the properties ofθ, and the fact that limn→+∞ d(xn,F(xn, yn)) = d(A,B), and limn→+∞ d(yn,F(yn, xn)) =
d(A,B) we have

lim sup
n→+∞

θ(d(xk,F(xn, yn)) − d(A,B), d(yk,F(yn, xn)) − d(A,B),

d(xn,F(xn, yn)) − d(A,B), d(yn,F(yn, xn)) − d(A,B)) = 0,

and

lim sup
n→+∞

θ(d(yk,F(yn, xn)) − d(A,B), d(xk,F(xn, yn)) − d(A,B),

d(yn,F(yn, xn)) − d(A,B), d(xn,F(xn, yn)) − d(A,B)) = 0,

Thus for n0 large enough, we have

θ(d(xk,F(xn, yn)) − d(A,B), d(yk,F(yn, xn)) − d(A,B),

d(xn,F(xn, yn)) − d(A,B), d(yn,F(yn, xn)) − d(A,B)) <
1

2
(ǫ − ϕ(ǫ)).

(15)



W. Shatanawi, A. Pitea / Filomat 29:1 (2015), 63–74 71

and

θ(d(yk,F(yn, xn)) − d(A,B), d(xk,F(xn, yn)) − d(A,B),

d(yn,F(yn, xn)) − d(A,B), d(xn,F(xn, yn)) − d(A,B)) <
1

2
(ǫ − ϕ(ǫ)).

(16)

From relation (11)-(16), we get

max{d(xn, xk+1, d(yn, yk+1))} ≤
1

2
(ǫ − ϕ(ǫ)) + ϕ(ǫ) +

1

2
(ǫ − ϕ(ǫ)) < ǫ. (17)

Thus (11) holds for m = k + 1. Thus (11) holds for all m ≥ n ≥ n0. Thus (xn) and (yn) are Cauchy sequences
in A and B respectively. Since (X, d) is complete, there exist u, v ∈ X such that

lim
n→+∞

xn = u

and

lim
n→+∞

yn = v.

Since A and B are closed, we get u ∈ A and v ∈ B.
Letting n→ +∞ in

d(xn+1,F(xn, yn)) = d(A,B)

and using the continuity of F, we get

d(u,F(u, v)) = d(A,B).

Similarly, we get

d(v,F(v,u)) = d(A,B).

Thus, (u, v) is a best proximity coupled point of F. Now, we show that u = v. Using the (P)-property of pair
(A,B), we get

d(u, v) = d(F(u, v),F(v,u)).

Using inequality (7), we get

d(u, v) = d(F(u, v),F(v,u))

≤ ϕ(max{d(u, v), d(v,u)}) + θ(d(v,F(u, v)) − d(A,B),

d(u,F(v,u)) − d(A,B), d(u,F(u, v)) − d(A,B), d(v,F(v,u)) − d(A,B))

= ϕ(d(u, v)) + θ(d(v,F(u, v)) − d(A,B), d(u,F(v,u)) − d(A,B), 0, 0)

= ϕ(d(u, v)).

Since ϕ(t) < t for all t > 0, we conclude that d(u, v) = 0. Thus u = v.
To prove the uniqueness of the best proximity coupled point of F, we assume that w is another best

proximity coupled point of F; that is, d(u,F(u,u)) = d(A,B) and d(w,F(w,w)) = d(A,B). Using the (P)-property
of pair (A,B), we get d(u,w) = d(F(u,u),F(w,w)). Now using (7), we get

d(u,w) = d(F(u,u),F(w,w))

≤ ϕ(d(u,w)) + θ(d(w,F(u,u)) − d(A,B),

d(w,F(u,u)) − d(A,B), d(u,F(u,u)) − d(A,B), d(u,F(u,u)) − d(A,B))

= ϕ(d(u, v)) + θ(d(w,F(u,u)) − d(A,B), d(w,F(u,u)) − d(A,B), 0, 0)

= ϕ(d(u,w)).

Again, since ϕ(t) < t for all t > 0, we conclude that d(u,w) = 0. Thus u = w.
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Define ϕ : [0,+∞)→ [0,+∞) via ϕ(t) = kt, where k ∈ [0, 1) and

θ : [0,+∞)4 → [0,+∞), θ(t1, t2, t, 3, t4) = L min{t1, t2, t3, t4},

for some L ≥ 0. The following results are corollaries of Theorem 3.6.

Corollary 3.7. Let A and B be two closed subsets of a complete metric space (X, d) for which A0 and B0 are nonempty.
Let F : X × X→ X be a continuous mapping which satisfies the following conditions:

1) F(A0 × B0) ⊆ B0;
2) F(B0 × A0) ⊆ A0;
3) The pair (A,B) has the (P)-property.
Also, suppose there exist k ∈ [0, 1) and L ≥ 0 such that

d(F(x, y),F(u, v))

≤ k max{d(x,u), d(y, v)} + L min{d(u,F(x, y)) − d(A,B), d(v,F(y, x)) − d(A,B),

d(x,F(x, y)) − d(A,B), d(y,F(y, x)) − d(A,B)}

holds for all x, y,u, v ∈ X Then, there exists a unique best proximity coupled point of F of the form (u,u).

Take B = A in Theorem 3.6, we have the following result.

Corollary 3.8. Let A a closed subsets of a complete metric space (X, d). Let F : X×X→ X be a continuous mapping
with F(A × A) ⊆ A. Suppose there exists a comparison function ϕ and θ ∈ Θ such that

d(F(x, y),F(u, v))

≤ ϕ(max{d(x,u), d(y, v)}) + θ(d(u,F(x, y)), d(v,F(y, x)),

d(x,F(x, y)), d(y,F(y, x)))

holds for all x, y,u, v ∈ X Then F has a unique coupled fixed point of the form (u,u); that is F(u,u) = u.

4. Examples and concluding remark

Now we shall provide an example to substantiate our Theorem 3.2. Function ϕwhich will be used here
is a comparison, but not a c-comparison, proving that Theorem 2.6 from the work of Samet [10] cannot be
applied in our case.

Example 4.1. Consider

X =
{

0, 1,
1

2
,

1

3
, . . .

}

, A =
{

0,
1

2
,

1

4
, . . .

}

, B =
{

0,
1

3
,

1

5
, . . .

}

.

We endow X with the metric

d : X × X→ X, d(x, y) =

{

0, if x = y;
max{x, y}, if x , y.

Let T : X → X, Tx =
x

1 + x
, θ : [0,+∞)4 → [0,+∞), θ(t, s,u, v) = inf{t, s,u, v}, and ϕ : [0,+∞) → [0,+∞),

ϕt =
t

1 + t
. Then

1. TA0 ⊆ B0.

2. Pair (A,B) has the (P)-property.

3. T is an almost (ϕ, θ)-contraction.
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Proof. Here, A0 = {0}, B0 = {0} and d(A,B) = 0. So the proofs of (1) and (2) are clear.

We spill the proof of (3) into three cases.

Case 1. x =
1

n
, y =

1

m
, n < m and n,m are even (the situation n > m is similar to this one).

We obtain

ϕ
(

d
(1

n
,

1

m

)

)

+ θ
(

d
( 1

m
,

1

n + 1

)

, d
(1

n
,

1

m + 1

)

, d
(1

n
,

1

n + 1

)

, d
( 1

m
,

1

m + 1

)

)

= ϕ
(1

n

)

+ θ
( 1

n + 1
,

1

n
,

1

n
,

1

m

)

=
1

n + 1
+

1

m

≥
1

n + 1
= d

( 1

n + 1
,

1

m + 1

)

= d
(

T
1

n
,T

1

m

)

,

so the almost (ϕ, θ)-contraction inequality is satisfied.

Case 2. x = y = 0. This case is straightforward.

Case 3. x = 0, and y =
1

m
, where m is even (which is similar to y = 0, and x =

1

m
).

We get

d
(

0,T
1

m

)

= d
(

0,
1

m + 1

)

=
1

m + 1

≤ ϕ
( 1

m

)

= ϕ
(

d
(

0,
1

m

)

)

≤ ϕ
(

d
(

0,
1

m

)

)

+ θ
(

d
( 1

m
, 0

)

, d
( 1

m
, 0

)

, d(0, 0), d
( 1

m
,

1

m + 1

)

)

.

Therefore, T is an almost (ϕ, θ)-contraction. This end the proof of part (3).

By using Theorem 3.2, we conclude that T has a best proximity point in A, x∗ = 0.

Example 4.2. Let X = {0, 2, 3, 4, 5}, define a metric d : X × X → X by d(x, y) = 1
2 |x − y|. Take A = {0, 3} and

B = {2, 4, 5}. Define a mapping T : A → B by T0 = 5 and T3 = 4. Also, define ϕ : [0,+∞) → [0,+∞) by
ϕ(t) = t

1+t and θ : [0,+∞)4 → [0,+∞), by θ(t1, t2, t3, t4) = inf{t1, t2, t3, t4}. Then

1. TA0 ⊆ B0.

2. Pair (A,B) has the weak (P)-property.

3. T is a generalized almost (ϕ, θ)-contraction.

Proof. Here A0 = {3}, B0 = {2, 4} and d(A,B) = 1
2 . Thus TA0 ⊆ B0. To prove that (A,B) has the weak

P-property, let d(x1, y1) = d(A,B) and d(x2, y2) = d(A,B). Then d(x1, y1) = 1
2 and d(x2, y2) = 1

2 . Thus
(x1, y1), (x2, y2) ∈ {(3, 2), (3, 4)}. Therefore d(x1, x2) = 0 ≤ d(y1, y2). Hence pair (A,B) has the weak (P)-
property. To prove (3), let x, y ∈ A. We have only the following cases:

Case 1: x = y. Here d(Tx,Ty) = 0 and hence

d(Tx,Ty) ≤ ϕ(d(x, y)) + θ(d(y,Tx) − d(A,B), d(x,Ty) − d(A,B),

d(x,Tx) − d(A,B), d(y,Ty) − d(A,B)).
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Case 2: x , y. Here (x = 0
∧

y = 3)
∨

(x = 3
∧

y = 0). Without loss of generality, we assume x = 1 and
y = 3. and hence

d(T0,T3) = d(5, 4) =
1

2
= ϕ(1)

≤ ϕ(d(0, 3))

≤ ϕ(d(x, y)) + θ(d(y,Tx) − d(A,B), d(x,Ty) − d(A,B),

d(x,Tx) − d(A,B), d(y,Ty) − d(A,B)).

Thus T is a generalized almost (ϕ, θ)-contraction. By Theorem 3.2, we conclude that T has a unique best
proximity point in A. Here x∗ = 3 is the best proximity point of T.

Remark 4.3. Theorem 2.6 of [10] is a special case of our result Theorem 3.2.
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