Best Quadratic Unviased Estimation of Variance Components from Unbalanced Data in the l-way Classification $1,2 /$
E. C. Townsend ${ }^{3 /}$ and S. R. Searle

Biometrics Unit, Cornell University, Ithaca, N.Y.

Abstract

Rest quadratic unbiased estimators (BQUE's) of variance components from unbalanced data in the oneway classification randon model are derived under zero mean and normality assumptions. An estimator of the between-class variance is also developed for the non-zero mean case from analogy with the zero mean zituation. These estimators are functions of the ratio of the population variances, $\rho=\sigma_{\mathrm{a}}^{2} / \sigma_{\mathrm{e}}^{2}$. Numerical studies indicate that for bady unbalanced data and for values of larger than one, estimators of σ_{a}^{2} having variance less than that of the analysis of variance estimator can be obtained by substituting even a rather inaccurately predetermined value of p into the BQUE of σ_{a}^{2}.

1/ Paper Number BU-215 in the Biometrics Unit and Number 599 in the Department of Plant Breeding and Biometry, Cornell University.
2) The results in this paper are from a thesis submitted by the senior author in partial fulfillment of the Ph.D. degree
3) Present address: Dept. of Statistics and Conputer Science, University of West Virginia, Morgantown, West Virginia.

1. Introduction

Groybill [1961] has showe that the usual analysis of wariance procedures produce best quadratic unbiased estimators (BQUE's) of variance components when data are balanced, i.e., have the same number of observations in each subclass. Choosing among unbiased estimators when data are unbalanced is more difficult, Several estimators have been suggested but there is relatively little information upon which to base a decision to use one rather than another. This paper attempts to alleviate this situation by developing BQUE's of variance components for the l-way classification random model, with unbalanced data. Two cases are considered: when the overall mean in the model is assumed zero, and when it is assumed non-zero.

Although the practical value of the BOUE's is limited by the fact that they are functions of the unknown variance components, investigation of their behavior as various limits are approached permits evaluation of different procedures. In addition, if an experimenter has some prior knowledge, or even a reasonable guess, about the relative magnitudes of the unknown components, approximate BOUS procedures may be useful in yielding estimators that have smaller variances than the usual analysis of variance (ANOVA) estimators. Evidence of this is available from numerical studies.

2. Zero Mean Model

The simplest variance component model for data in a one-way classification is where the linear model for an observation, $y_{i j}$, is

$$
\begin{equation*}
y_{i j}=\alpha_{i}+e_{i j}, \tag{1}
\end{equation*}
$$

with $i=1,2, \ldots, c$ and $j=1,2, \ldots, n_{i}$. The α_{i} and $e_{i j}$ are assumed to be independent random samples from two normal populations with zero means and variances σ_{a}^{2} and σ_{e}^{2}, respectively. It is also assumed that no relationship exists between the number of observations in a subclass (n_{i}) and the subclass effects $\left(\alpha_{i}\right)$, a form of the model considered by Harville [1967].

Suppose the vector of observations is written as

$$
\underline{y}^{\prime}=\left(\begin{array}{ll}
\mathrm{y}_{11} & \mathrm{y}_{12} \cdots \mathrm{y}_{1 n_{1}} \cdots \mathrm{y}_{\mathrm{il}} \cdots \mathrm{y}_{\mathrm{in}_{\mathrm{i}}} \cdots \mathrm{y}_{\mathrm{cl}} \cdots \mathrm{y}_{\mathrm{cn}}
\end{array}\right) .
$$

Then $E(y)=\underline{0}$, where E denotes expectation over repeated sampling with the same values of the n_{i}. The variance-covariance matrix of \underline{y} shall be denoted by \underline{V}. It is a diagonal matrix of submatrices \underline{V}_{i}, of order n_{i}, and can be written as

$$
\begin{equation*}
\underline{V}=\operatorname{diag}\left\{\underline{V}_{1} \quad \underline{V}_{2} \cdots \underline{V}_{c}\right\} \equiv{ }_{i=1}^{\sum_{1}^{+}} \underline{V}_{i} \tag{2}
\end{equation*}
$$

where Σ^{+}denotes the operation of taking the direct sum of matrices. The form of V_{i} is

$$
\begin{equation*}
\underline{v}_{i}=\sigma_{a-i}^{2} \underline{J}_{i}+\sigma_{e}^{2} I \tag{3}
\end{equation*}
$$

with I_{i} being an identity matrix of order n_{i} and ${\underset{-}{i}}$ being a matrix of order $n_{i} \times n_{i}$, with every element unity.

2a: Estinators of σ_{a}^{2} and σ_{e}^{2}
A best quadratic unbiased estimator ($B Q U E$) of a variance σ^{2} is defined as that quadratic form of the observations which is an unbiased estinator of σ^{2}, which from among all such quadratic forms has minimum variance. Consider

$$
\begin{equation*}
\hat{\sigma}^{2}=\underline{y}^{\prime} \underline{A} \underline{y} \tag{4}
\end{equation*}
$$

where, without loss of generality, $\underset{-}{ }$ is symmetric. It can be shown (e.g., Graybill [1961, problems 17.6 and 17.7. If, that, the mean and variance of y' Ay are respectively $\operatorname{tr}\left(\underline{\text { VA }}\right.$) and $2 \operatorname{tr}(\underline{V})^{2}$. The estimator in (4) will therefore be a BQUE of σ^{2} provided A is chosen so thet $2 \operatorname{tr}(\underline{V})^{2}$ is minimized subject to $\sigma^{2}=\operatorname{tr}(\underline{V} A)$. Derivation in this manner, of the BAXE's (and their variances) of the variance components σ_{a}^{2} and σ_{e}^{2} of the model (1), based on V given in (2) and (3), is shown in the Appendix. On defining

$$
F=\sigma_{a}^{2} / \sigma_{e}^{2} \text { and } N=n=\sum_{i=1}^{c} n_{i}
$$

and
$r=\sum_{i=1}^{c} l /\left(1+n_{i} \rho\right)^{2}+N-c, s=\sum_{i=1}^{c} n_{i}^{2} /\left(1+n_{i} \rho\right)^{2}$ and $t=\sum_{i=1}^{c} n_{i} /\left(1+n_{i}\right)^{2}$
we have, from (A17) - (A20) of the appendix, the BQUE of σ_{ϵ}^{2} as

$$
\hat{B}_{e}^{2}=\left(r s-t^{2}\right)^{-1}\left\{\sum_{i=1}^{c}\left(s-t n_{i}\right)\left(1+n_{i} p\right)^{-2}\left(y_{i}^{2} / n_{i}\right)+s_{\sum_{i=1}^{c} \sum_{j=1}^{c} \sum_{i j}^{n} \sum_{i=1}^{2} y_{i}^{2} / n_{i} / i}^{c}\right\},(6)
$$

with variance

$$
\begin{equation*}
\operatorname{var}\left(\hat{\sigma}_{B}^{2}\right)=2 s \sigma_{e}^{4} /\left(r s-t^{2}\right) \tag{7}
\end{equation*}
$$

and the BQUE of σ_{a}^{2} is
$\hat{B_{a}} \hat{\sigma}_{a}^{2}=\left(r s-t^{2}\right)^{-1}\left\{\sum_{i=1}^{c}\left(r n_{i}-t\right)\left(1+n_{i} \rho\right)^{-2}\left(y_{i .}^{2} / n_{i}\right)-t\left(\sum_{i=1}^{c} \sum_{j=1}^{n_{i}} y_{i j}^{2}-\sum_{i=1}^{c} y_{i .}^{2} / n_{i}\right)\right\}$
with variance

$$
\begin{equation*}
\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)=2 r \sigma_{e}^{4} /\left(r s-t^{2}\right) . \tag{9}
\end{equation*}
$$

It should be noted that (7) and (9) can be shown equal to the equivalent expressions given by Crump [1951] and Searle [1956] for the large sample variances of maximum likelihood estimators of σ_{e}^{2} and σ_{a}^{2} when a general mean μ is included in the model.

2b. Comparisons of BQUE's with other estimators
The BQUE of σ_{e}^{2} is first compared to the ANOVA estimator $\hat{\sigma}_{e}^{2}$, where

$$
\begin{equation*}
\hat{\sigma}_{e}^{2}=\left(\sum_{i=1}^{c} \sum_{j=1}^{n_{i}} y_{i j}^{2}-\sum_{i=1}^{c} y_{i \cdot}^{2} / n_{i}\right) /(N-c) \tag{10}
\end{equation*}
$$

The most obvious relationship is that

$$
\hat{\sigma}_{e}^{2}=\left(r s-t^{2}\right)^{-1}\left\{\sum_{i=1}^{c}\left(s-t n_{i}\right)\left(1+n_{i} \rho\right)^{-2}\left(y_{i .}^{2} / n_{i}\right)+s(N-c) \hat{\sigma}_{e}^{2}\right\}
$$

Therefore, in some sense it can be said that the first term of $\hat{\sigma}_{\mathrm{\sigma}}^{2}$ provides
information about σ_{e}^{2} which is not utilized in the ANOVA estinator. When this additional infornation is irportant, and what extent its inclusion in $\hat{\sigma}_{\mathrm{\sigma}}^{2}$ affects the variance of the estimator can be partially answered by noting that

$$
\lim _{p \rightarrow \infty}\left(\hat{\sigma}_{e}^{2}\right)=\hat{\sigma}_{e}^{2}
$$

as shown in Townsend [1968]. Hence the difference between $\hat{\sigma}_{c}^{2}$ and $\hat{\sigma}_{e}^{2}$ diminishes as σ_{a}^{2} becomes large compared to σ_{e}^{2}.

Further comparison of \hat{B}^{2} and $\hat{\sigma}_{e}^{2}$ is nade by looking at their variances. That for $\hat{\sigma}_{\mathrm{G}}^{\mathrm{G}}$ is given in (7) and

$$
\begin{equation*}
\operatorname{var}\left(\hat{\sigma}_{e}^{2}\right)=2 \sigma_{e}^{4} /(N-C) \tag{11}
\end{equation*}
$$

in the usual way. To facilitate discussion we define

$$
\begin{equation*}
\therefore p_{e}=\frac{\operatorname{var}\left(\hat{\sigma_{e}^{2}}\right)-\operatorname{var}\left(\frac{\left.\hat{B} \hat{\sigma_{e}^{2}}\right)}{\operatorname{var}\left(\hat{\sigma}_{e}^{2}\right)} . .\right.}{\therefore} \tag{12}
\end{equation*}
$$

This is e measure of the extent to which the variance of an estinator of σ_{e}^{a} is increascd by using the ANOVA estimator rather than the BQUE, this increase in variance being measured as a fraction of the minimum variance, namely that of the BQUE. p_{e} therefore represents the penalty incurred, in this variance sense, by using the ANOVA estimator rather than the BQUE .

Since the BQUE tends to the ANOVA estimator when $\rightarrow \infty$ look at the other extreme, ramely when $\rho=0$. In this case, putting $0=0$ in (5) gives $r=N$,

$$
-7-
$$

$s=\sum_{i=1}^{c} n_{i}^{2} \equiv s_{2}$ and $t=N$, thus allowing (0) to be rewritten as

$$
\begin{equation*}
\left(\left.\hat{B}_{\mathrm{G}}^{\mathrm{e}}\right|_{c}=0\right)=\left(S_{2} \sum_{i=1}^{c} \sum_{j=1}^{n_{i}} y_{i j}^{2}-N \sum_{i=1}^{c} y_{i .}^{2}\right) / N\left(\hat{b}_{2}-N_{j}^{\prime}\right. \tag{13}
\end{equation*}
$$

with its variance, from (7), being

$$
\begin{equation*}
\operatorname{var}\left(\hat{\sigma}_{B}^{2} \mid \rho=0\right)=2 S_{2} \sigma_{e}^{4} / N\left(S_{2}-N\right) \tag{14}
\end{equation*}
$$

Since $\hat{\sigma}_{e}^{2}$ is unaffected by differing values of o its variance is as in (11). Using that and (14) in (12) gives

$$
\begin{equation*}
p_{e}(p=0)=\frac{c S_{2}-N^{2}}{(N-c) S_{2}} \tag{15}
\end{equation*}
$$

For given c and N, (15) is maximum when S_{2} is maximum which, it can be proved (using integer algebra), is maximum when all groups except one have only one observation, i.e., when the $n_{i}^{\prime} s$ are ($1,1, \ldots, 1, N-c+1$) . This maximum value of S_{2} is $(c-1)+(N-c+1)^{2}=(N-c)^{2}+2 \mathbb{N} C$, in whioh cesc the exirum vailue of p_{e} reduces to

$$
\begin{equation*}
\max _{n_{i}} p_{e}(\rho=0)=\frac{(c-1)(N-c)}{(N-c)^{2}+(2 N-c)} \tag{16}
\end{equation*}
$$

For given N, it can be readily shown that (16) is nexinize over a when $c=N+1-\sqrt{N}$, which makes

$$
\begin{equation*}
\max _{c, n_{i}} p_{e}(\rho=0)=\frac{\sqrt{N} \cdot 1)^{2}}{\sqrt{N-1}} \tag{17}
\end{equation*}
$$

It should be emphasized that $\hat{B}^{\sigma_{e}^{2}}$ of (6) is a function of ρ, which is unknown in most practical cases. Therefore $\hat{B}_{\mathrm{B}}^{\mathrm{\sigma}} \mathrm{e}^{2}$ cannot be used directly but only approximated, by using a value for ρ which is somehow felt to be reasonable. Of course this increases the variance of the procedure because it is no longer best. Since in practice ρ is neither zero nor known, and because sets of n_{i}-values as extreme as used in (16) and (17) rarely occur, the usual ANOVA procedure would seem to be a fairly good choice for estimating σ_{e}^{2}.

Returning to the case when $\rho=0$ it can be noted from (13) that ($\hat{\sigma}_{\mathrm{a}}^{2} \mid c=0$) is the same as an estimator suggested by Koch [1967]. The same is true for σ_{a}^{2}. Putting $\rho=0$ in (8) gives

$$
\begin{equation*}
\left(\hat{B}_{a}^{2} \mid \rho=0\right)=\left[\sum_{i=1}^{c}\left(n_{i}^{2}-n_{i}\right) \bar{y}_{i .}^{2}-(N-c) \hat{\sigma}_{e}^{2}\right] /\left(S_{2}-\mathbb{N}\right) \tag{18}
\end{equation*}
$$

which will be found identical to the estimator of σ_{a}^{2} put forward by Koch [1967] for the zero mean model.

The usual ANOVA estimator of σ_{a}^{2} for the one-way classification does not utilize the zero mean assumption being used here. When this assumption is made, the ANOVA estimator of σ_{a}^{2} is

$$
\begin{equation*}
\hat{o}_{a}^{2}=\left(\sum_{i=1}^{c} n_{i} \bar{y}_{i}^{2}-\hat{c} \hat{\sigma}_{e}^{2}\right) / N \tag{19}
\end{equation*}
$$

with variance

$$
\begin{equation*}
\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)=2 \sigma_{e}^{4}\left[\rho^{2} S_{2}+2 \rho N+c N /(N-c)\right] / N^{2} \tag{20}
\end{equation*}
$$

Although, as noted previously, the limit of the BQUE of σ_{e}^{2} as $\rho \rightarrow \infty$ is the ANOVA estimator of σ_{e}^{2}, the same kind of limiting result does not hold for the BQUE of σ_{a}^{2}. Indeed

$$
\begin{equation*}
\lim _{م \rightarrow \infty} \hat{\sigma}_{a}^{2}=\left(\sum_{i=1}^{c} \bar{y}_{i}^{2} . \sum_{i=1}^{c} n_{i}^{-1} \hat{\sigma}_{e}^{2}\right) / c \tag{21}
\end{equation*}
$$

as shown in Townsend [1968]. Furthermore, because the terms $\left(1+n_{i} p\right)^{2}$ occur in demonimators of summations in $\hat{\sigma}_{a}^{2}$, and because both $\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)$ and $\operatorname{var}\left(\hat{\sigma}_{B}^{2} \mid \rho=0\right)$
bear no simple relation to one another as they do in the case of σ_{e}^{2} [see (15), for example], it is difficult to exanine the behaviour of $\hat{\sigma}_{a}^{a}$ for ρ varying between zero and infinity. However, $\left(\hat{B}_{\sigma_{a}^{2}}^{2} \mid \rho=0\right)$ of (18), $\hat{\sigma}_{a}^{2}$ of (19) and the limit of $\hat{B}_{a}^{\sigma_{a}^{2}}$ as $\rho \rightarrow \infty$ of (21) can be compared to some extent, by considering the terms in \bar{y}_{i}^{2}. in each - i.e., the terms in \bar{y}_{i}^{2}. over and above their occurrence in $\hat{\sigma}_{\mathrm{e}}^{2}$ in each case.

The weight given to $\overline{\mathrm{y}}_{\mathrm{i}}^{2}$. when ρ is zero is seen in (18) to be proportional to ($n_{i}^{2}-n_{i}$) and as ρ approaches infinity, in (21), equal weights are given. The AROVA estimator (19) always gives weights proportional to subclass size. Therefore, $\hat{\sigma}_{a}^{2}$ gives too much weight to small groups and not enough to large groups when ρ is small whereas the converse is true when ρ is large. These results correspond closely to the conclusions drawn by Robertson [1962] for small ρ and Tukey [1957] for large ρ.

Because the largest difference between the variance of $\hat{\sigma}_{e}^{2}$ and $\hat{\sigma}_{B}^{2}$ occurred at $p=0$, it was readily established that in most practical situations the difference is rather small. This type of comparison between $\hat{\sigma}_{a}^{2}$ and $\hat{\sigma}_{a}^{2}$ is more difficult because the maximum difference does not occur at the same value of ρ for all sets of n_{i}-values. Therefore the practical value of using the estimator $\hat{\sigma}_{a}^{2}$ on actual data has yet to be considered. However, in order to use $\hat{B}_{B_{2}^{2}}^{2}$, a numerical value is needed for ρ. Since ρ is unknown, an estimate is required, implying that any practical procedure based on $\hat{B}_{\mathrm{B}}^{2} \mathrm{a}$ will not actually be a BQUE of ${\hat{\sigma_{a}^{2}}}_{a}^{2}$. Hence one asks how accurate must the estinate of o be to give an estimator whose variance is less than that of the ANOVA procedure and how much less will it be? Some empirical ansvers to these questions follow.

2c. An approximate $B Q U E$ of σ_{a}^{2}
A prior estimate of ρ, say ρ_{0}, is substituted into $\hat{\sigma}_{B}^{\sigma_{a}^{2}}$ of (8) and thie resulting estimator designated as $\tilde{B}_{\mathrm{O}^{2}}^{2}$, with variance

$$
\begin{equation*}
\operatorname{var}\left(\tilde{\sigma}_{B}^{2}\right)=2\left(r_{0} s_{0}-t_{0}^{2}\right)^{-2} \sigma_{e}^{4}\left[\sum_{i=1}^{c}\left(r_{0} n_{i}-t_{0}\right)^{2}\left(1+n_{i} \rho\right)^{2}\left(1+n_{i} \rho_{0}\right)^{-4}+(N-c) t_{0}^{2}\right] \tag{22}
\end{equation*}
$$

where r_{0}, s_{0} and t_{0} are r, s and t of (5) computed using ρ_{0}. Thus the variance of the approximate BQUE is a function of both the true ρ and the prior estimate, ρ_{0}. The intractability of (22) forces numerical comparisons between $\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)$ and $\operatorname{var}\left(\tilde{B}^{\tilde{3}}{ }_{a}^{2}\right)$.

Analogous to p_{e} of (12) the ratio

$$
\begin{equation*}
\mathrm{F}_{a}=\left[\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{var}\left(\tilde{\sigma}_{\mathrm{\sigma}}^{2}\right)\right] / \operatorname{var}\left(\tilde{\mathrm{\sigma}}_{\mathrm{a}}^{2}\right) \tag{23}
\end{equation*}
$$

is defined to aid the comparisons. It represents the extent to which the variance of $\hat{\sigma}_{a}^{2}$ differs from that of $\tilde{B}_{\mathcal{B}_{a}^{2}}^{2}$, relative to the variance of $\hat{B}^{2} a$. When $p_{a}=0$, both estimators have the same variance, and when p_{a} is positive, \bar{B}_{a}^{2} is batten than $\hat{\sigma}_{a}^{2}$ where "better" means smaller variance. The converse is true when p_{a} is negative, because p_{a} negative means $\tilde{A}_{\mathcal{\sigma}_{a}^{2}}$ is poorer than $\hat{\sigma}_{a}^{2}$.

Comparisons made over a range of ρ and ρ_{o} for selected n-patterns (sets of n_{i}-values) are summarized in Figures 1-5. Figures 1, 2, and 4 are for cases of $N=25$ and $c=5$, Figures la and $2 a$ being extensions of Figures 1 and 2 . Figure 3 has n_{i}^{\prime} s that are double those of figures 1 and 2, Figure 4 has $N=25$ and $c=10$, and Figure 5 is a case of $N=380$ and $c=50$. Each figure
\therefore is for a particular n-pattern with the abscissa showing values of $\rho=\sigma_{a}^{2} / \sigma_{e}^{2}$ and the ordinates giving values of ρ_{0}, the prior value of ρ. Each curve is for a given value of $p_{a}, e . g$, a curve labeled $p_{a}=0$ connects those points (a, 0_{0}) at which $p_{a}=0$. These points were determined by solving

$$
\begin{equation*}
\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)-\left(p_{a}-1\right) \operatorname{var}\left(\tilde{B}_{a}^{2}\right)=0 \tag{24}
\end{equation*}
$$

for σ_{0}, given the n-pattern and ρ. As the expression for $\operatorname{var}\left({ }_{B} \tilde{\sigma}_{a}^{2}\right)$ in (22) is particularly intractable, (24) was solved numerically for ρ_{0} using the method of reguli falsi (Conte, 1965).

In each figure, two curves for $p_{a}=0$ are given, since for a given n-pattern and 0 , two values of ρ_{o} satisfy (24). In general, one of the $p_{a}=0$ curves lies above the line $\rho_{0}=\rho$ and the other below it. This is because $\tilde{\sigma}^{2}$ a is BQUE When $\tilde{\sigma}_{0}=\rho$ and, as ρ_{0} deviates from ρ in either direction, the variance of $B_{B} \tilde{\sigma}_{a}^{2}$ increases until it equals that of $\hat{\sigma}_{a}^{2}$, at which time $p_{a}=0$. Thus the ypper p_{a} oboundary indicates how much ρ_{o} can be larger than ρ without making $\tilde{\sigma}_{a}^{2}$ poorer than $\hat{\sigma}_{a}^{2}$. Similarly the lower $p_{a}=0$ boundary shows how much ρ_{0} can be smaller than ρ without making $\tilde{\sigma}_{a}^{2}$ poorer than $\hat{\sigma}_{a}^{2}$. For example, in Figure 1 , with $\rho=0.4$ we may overestimate ρ by as much as 0.349 ($\rho_{0}=0.749$) or underestimate it by as much as $0.167\left(\rho_{0}=0.233\right)$ without causing the approximate BQUE to be poorer (have a larger variance) than the ANOVA estinator.

The region between the two $\mathrm{p}_{\mathrm{a}}=0$ curves in any figure is the set of points $\therefore \because_{n}$) for which $\tilde{\sigma}_{a}^{2}$ is better than $\hat{\sigma}_{a}^{2}$. (Remaining parts of the quadrant are where $\tilde{\sigma}_{a}^{2}$ is poorer than $\hat{\sigma}_{a}^{2}$. In all cases this region has approximately the same forr. Its lower boundary first rises sharply, until it reaches afo
corresponding to the value of ρ at which the ANOVA estimator cones nearest to being the BlUE of σ_{a}^{2}, at which point the lower boundary levels off. Conversely, as ρ increases from zero, the upper boundary of the region remains nearly constand, at approximately the same value of ρ_{0}° as the level portion of the lower boundary, until that value of p at which the lower boundary levels off is reached. The upper boundary then climbs sharply. Although these two boundaries (the $p_{a}=0$ curves) do not touch in Figure 1, they do so in some situations (for other n-patterns) as is discussed subsequently.

The region between the two $p_{a}=0$ curves in Figure 1 is very large. This means that when ρ is larger than approximately 0.7 a very inaccurate ρ_{0} (so far as being close to ρ is concerned) used in \tilde{B}_{a}^{2} gives an estimator whose variance is smaller than that of $\hat{\sigma}_{a}^{2}$. For example, with $\rho>0.6$, any $\rho_{0}>0.24$ makes the variance of $\mathcal{B}_{a}^{\tilde{\sigma}_{a}^{2}}$ less than that of the ANOVA estimator. It is not much less, however, as can be seen in Figure la which is an extension of Figure 1 for ρ and ρ_{o} extending (on a different scale) up to 10 and 13 , well beyond their limits of 1.0 and 1.3 on Figure 1. And in Figure la the presence of the $p_{a}=0.05$ curve when $\rho \geq 2$ indicates that the penalty incurred by using the ANOVA estimator rather than the approximate BQUE can be only 5% or a little greater for large values of p, and the line $p_{a}=0.10$ does not appear. In many instances, for data as moderately unbalanced as is the n-pattern of Figures 5\% 1 and la, this/penalty does not seem sufficiently large to warrant using $\tilde{B} \tilde{\sigma}_{a}^{2}$ rather than $\hat{\sigma}_{a}^{2}$.

Figure 1 also illustrates situations in which $p_{a}<0$, meaning that the variance of $\hat{\sigma}_{a}^{2}$ is less than that of an approximate BQUE. For example, at $\left(\rho, \rho_{0}\right)=(0.4,0.065), p_{a}=-0.05$, indicating that the ANOVA estimator has a
variance equal to 95% of the approximate BGUE at that point.
Figures 2 and 2a are for an n-pattern more unbalanced ($n_{i}=1,1,1,11,11$) than is that of Figures 1 and $l a\left(n_{i}=3,4,5,6,7\right)$. A noticeable difference between these two pairs of figures is that in Figures 2 and $2 a$ the two $p_{a}=0$ curves appear to cross instead of just approaching one another as in Figures 1 and la. The point at which the curves appear to cross is $\left(\rho, \rho_{0}\right)=(0.337,0.337)$. At this point, the approximate $B Q U E$ is the exact $B Q U E$ (because $\rho_{0}=\rho$) and for this n-pattern has variance equal to that of the ANOVA estimator when $\rho=0.337$. Therefore, for $\rho=0.337$, there are no values of ρ_{o} for which the approximate BQUE is better than the ANOVA estimator. Hence, the two boundaries of the region in which \tilde{B}_{a}^{2} is better than $\hat{\sigma}_{a}^{2}$, touch at the point $\left(\rho, \rho_{0}\right)=(0.337,0.337)$. Although in Figures 2 and $2 a$ the boundaries appear to be crossing at this point they are, in effect, just touching. Their behaviour can be envisaged by thinking of the two $p_{a}=0$ curves in Figures 1 and $1 a$ as being moved toward each other until they have a point in common. This occurrs for some n-patterns and not for others.

Additional to the tangential property just discussed, Figures 2 and $2 a$ display considerably larger differences between the variances of \mathcal{F}_{a}^{2} and $\hat{\sigma}_{a}^{2}$ than are to be found in Figures 1 and la. This is evidenced by the curves $p_{a}=0.25$ and $p_{a}=0.50$ in Figure $2 a$. The $p_{a}=0.25$ curve of Figure $2 a$ is considerably closer to the $p_{a}=0$ curves than is the $p_{a}=0.05$ curve of Figure la, indicating that the penalty incurred by using the ANOVA estimator rather than the approximate $B Q U E$ is not only greater but is more quickly encountered as one moves away from the $p_{a}=0$ boundaries. For example, at the point $\left(\rho, \rho_{0}\right)=(2.25,1.0)$ the penalty in Figure la is approximately 5% but in Figure 2a it exceeds 25%. Also, in Figure 2a, when ρ is large, 4.5 say, and ρ_{0} is chosen
as 1.5 , the penalty for using the ANOVA estimator rather than the approximate BQUE is more than 50%. [This is not to be confused with the upper limit of 50% indicated in (17). That is for estimating σ_{e}^{2} and pertains to using the exact $B Q U E$ and not an approximate $B Q U E$ as is being discussed here for σ_{a}^{2}.]

An example of the effect on p_{a} of increasing the number of observations in the data while leaving the relative values of the n_{i} undisturbed is illustrated in the comparison of Figures 2 and 3. The n-pattern in Figure 3 is that of Figure 2 but with every n_{i} doubled. In Figure 3 the p_{a} curves have shifted down and to the left compared to those in Figure 2. Consequently the region in which the approximate BQUE is better than the ANOVA estimator now extends over a wider range of (ρ, p_{o}) values. Also, the penalty for not using it is larger for any given point in the region. For example, at $\left(0, \rho_{0}\right)=(0.9,0.6)$ the penalty is 10% in Figure 2 but it exceeds 25\% in Figure 3.

In contrast to Figure 3, the p_{a}-curves of Figure 4 are shifted up and to the right, compared to Figure 2. The change in the n-pattern has been one of holding N constant, $N=25$ and increasing the number of classes, to have $n_{i}-$ values $=1, I, I, 1,1,4,4,4,4,4$. The $p_{a}=0$ curves now touch at $\left(\rho, p_{0}\right)=(0.64,0.64)$ approximately, compared to ($0.16,0.16$) in Figure 3 and ($0.337,0.337$) in Figure 2. This means that the lower left portion of the region bounded by the $p_{a}=0$ curves is larger in Figure 4 than in Figures 2 or 3, whereas the upper right portion is smaller. Consequently, for small values of ρ, a less accurate ρ_{c} can be used without causing p_{a} to be negative, but for large values of p a more accurate ρ_{0} is needed if the approximate BQUE is to be better than the ANOVA estimator.

An n-pattern considerably larger than those of Figures $1-4$ is used in Figure 5; it is for $N=380$ and $c=50$. The principal consequence is that greater gains and losses can occur when using \hat{a}_{a}^{2} rather than $\hat{\sigma}_{a}^{2}$. For example, the penalty incurred through using $\hat{\sigma}_{a}^{2}$ can be as much as 100%, as evidenced by the presence of $a p_{a}=1.00$ curve. Conversely, the presence of $p_{a}=-0.50$ curves indicates that the variance of the ANOVA estimator can be 50% smaller that that of the approximate BQUE. However, the $\mathrm{p}_{\mathrm{a}}>0$ region is very large when ρ is greater than. 3 or .4 indicating that quite inaccurate values of ρ_{0} may be used"in $\tilde{\sigma}_{a}^{2}$ with its variance still being less than the variance of $\hat{\sigma}_{a}^{2}$. In view of the substantial reduction which may be obtained when ρ is moderately large and the fact that ρ_{0} need not be very accurate to obtain these reductions, \mathcal{B}_{a}^{2} would seem to be useful as a practical procedure for this type of n-pattern if ρ is moderately large.

Interesting conclusions regarding the practicality of $\mathcal{C}_{\mathrm{a}}^{2}$ may be drawn from Figures 1-5. Despite the fact that $B_{a}^{\sigma^{2}}$ requires a prior estimate of $\rho=\sigma_{a}^{2} / \sigma_{e}^{2}$, it is clear that in many situations its use can provide estimates of ρ having smaller variance than the ANOVA estimator, even when the prior estimate, ρ_{o}, is not close to ρ. This is especially true when ρ is very small or very large, and the n-pattern is badly unbalanced. Under these conditions the variances of $\mathcal{B}_{z} \tilde{\sigma}_{z}^{2}$ can not only be less, but substantially less, than the variance of $\hat{\sigma}_{a}^{2}$. Furthermore, the presence of the $p_{a}=1.0$ curve in Figure 5 shows that having many groups and a large total number of observetions does not automatically imply that the choice of an estimator is unimportant.

Although we have not specifically investigated iterative techniques using successive approximate BQUE's, some inference about this class of procedures can also be made from figures 1-5. Figure 2, for example, clearly indicates
that when $:=.337$ an iterative procedure cannot be as gooc as the ANOVA procedure. This is so true because $\tilde{\sigma}_{a}^{2}$ is the BQUE of σ_{a}^{2} when ρ_{0} has this value and therefore has the smallest variance possible for unbiased quadratic estinators. On the other hand, when ρ is very small or very large, it seens likely that iterative procedures might lead to estimators whose variances would be sialler than the ANOVA estinaior.

3. Non-zero mean

The nean and variance of $\underline{y}^{\prime} \underline{A y}$ when \underline{y} is normally distributed with vector of means $\underline{\mu}$ and variance-covariance matrix \underline{V} are

$$
\begin{equation*}
E\left(\underline{y}^{\prime} \underline{A y}\right)=\operatorname{tr}(\underline{A V})+\underline{\mu}^{\prime} \underline{A} \underline{\underline{\mu}} \tag{25}
\end{equation*}
$$

and

$$
\operatorname{var}\left(\underline{y}^{\prime} \underline{A} \underline{\underline{V}}\right)=2 \operatorname{tr}(\underline{A V})^{2}+4 \underline{\mu}^{\prime} \underline{A V A} \underline{\underline{\mu}}
$$

Utilization of these results in the procedure for deriving B UE's of σ_{a}^{2} and σ_{e}^{2} have so far proven intractable in the case of the non-zero nean model $y_{i j}$ $=\mu+\alpha_{i}+e_{i j}$. This is so despite the fact that μ of (25) takes the slightly simpler form $\mu \underline{1}$. Nevertheless, the preceding study of the zero mean model provides information which can be applied to the general class of unbiased estimators suggested by Tukey [1957] to investigate an approximate BQUE of σ_{a}^{2} along the lines of that for the zero mean case.

Comparison of $\hat{\sigma}_{\mathrm{\sigma}}^{2}$ in (6) to Tukey's [1957] class of esti. ators of σ_{e}^{2} indicates that the latter is not sufficiently general to include $\widehat{B_{C}} \hat{\sigma_{e}^{2}}$. However, since for
the zero nean case we have seen that little reduction in the variance of an estimator of σ_{e}^{2} can be anticipated by using $\hat{\sigma}_{B}^{2}$ rather than $\hat{\sigma}_{e}^{2}$, it is not unreasonable to conjecture that the gain may be even less in the non-zero mean case. We therefore accept the ANOVA estinator $\hat{\sigma}_{e}^{2}$ in the non-zero nean case and proceed to investigate an estimator alternative to $\hat{\sigma}_{a}^{2}$ for σ_{a}^{2}.

3a. An alternative estimator for σ_{a}^{2}
The general class of estimators for σ_{a}^{2} given by Tukey [1957] is
$\hat{\sigma}_{a}^{2}=\left[\sum_{i=1}^{c} w_{i}\left(\bar{y}_{i}-\sum_{i=1}^{c} w_{i} \bar{y}_{i}\right)^{2}-\hat{\sigma}_{e}^{2} \sum_{i=1}^{c} w_{i}\left(1-w_{i}\right) / n_{i}\right] /\left(1-\sum_{i=1}^{c} w_{i}^{2}\right)$
where the w_{i} are a set of weights which can be assumed, without loss of generality, to sum to unity. Recalling $\hat{\sigma}_{e}^{2}$ of (10) we now notice that the BQUE of σ_{a}^{2} given in (8) can be rewritten as

$$
\begin{equation*}
\hat{\sigma}_{a}^{2}=\left[\sum_{i=1}^{c}\left(r n_{i}^{2}-t n_{i}\right)\left(1+n_{i} \rho\right)^{-2} \bar{y}_{i_{0}}^{2}-t(N-c) \hat{\sigma}_{e}^{2}\right] /\left(r s-t^{2}\right) \tag{27}
\end{equation*}
$$

In comparing (26) and (27) we see that, except for subtracting a mean in (26), the first term of both estimators is a weighted sum of squared group means. Also, the second term in each is a multiple $\hat{\boldsymbol{v}}_{\mathrm{e}}^{2}$, whose purpose is to remove σ_{e}^{2} from the expectation of the first term; and a denominator occurs in both expressions to make the estinators unbiased with respect to σ_{a}^{2}. Therefore Tukey's estimator with

$$
\begin{equation*}
w_{i}=\left(r n_{i}^{2}-t n_{i}\right)\left(r s-t^{2}\right)^{-1}\left(1+n_{i} \rho\right)^{-2} \tag{28}
\end{equation*}
$$

is considered as an estimator of σ_{a}^{2}.

Further inspeetion of the first term of (26) reveals that the mean subtracted from each group mean is a weighted mean, $\overline{\mathrm{y}}_{\mathrm{w}}$ say. This is effectively an estimator of the mean μ and as such can be improved upon, i.e., values w_{i} can be found such that the variance of \bar{y}_{V} is smaller than when (28) is used for w_{i}. There appears to be no reason, other than simplicity, for using the same weighting when estimating the mean as is used when summing the squared deviations of the group means from that estimated mean. Therefore in the place of \bar{y}_{w} we use

$$
\begin{equation*}
\bar{y}_{u}=\sum_{i=1}^{c} u_{i} \bar{y}_{i} \tag{29}
\end{equation*}
$$

e
with $\sum_{i=1} u_{i}=1$, and define the u_{i}^{\prime} s so as to minimize $\operatorname{var}\left(\bar{y}_{u}\right)$. Since

$$
\operatorname{var}\left(\bar{y}_{i}\right)=\left(i+n_{i} \rho\right) / n_{i} \sigma_{e}^{2}
$$

we take

$$
\begin{equation*}
u_{i}=\frac{\operatorname{var}\left(\bar{y}_{i_{0}}\right)}{\sum_{i=1}^{c} \operatorname{var}\left(\bar{y}_{i .}\right)}=\frac{n_{i}}{1+n_{i} p} / \sum_{i=1}^{c} \frac{n_{i}}{1+n_{i} p} \tag{30}
\end{equation*}
$$

in (29) and use that value of \bar{y}_{u} in place of $\sum_{i=1}^{e} w_{i} \bar{y}_{i}$. in (26). The resulting estimator we suggest is therefore

$$
\begin{equation*}
\hat{\hat{\sigma}}_{a}^{2}=\left[\sum_{i=1}^{c} w_{i}\left(\bar{y}_{i},-\bar{y}_{u}\right)^{2}-\hat{c}_{2} \hat{\sigma}_{e}^{2}\right] / c_{1} \tag{31}
\end{equation*}
$$

where C_{1} and C_{2} are yet to be chosen, to make $\hat{\sigma}_{a}^{2}$ an unbiased estirator. It is not difficult to show that
$E\left[\sum_{i=1}^{c} w_{i}\left(\bar{y}_{i},-\bar{y}_{u}\right)^{2}\right]=\sigma_{a}^{2} \sum_{i=1}^{c}\left(w_{i}-2 u_{i} w_{i}+u_{i}^{2}\right)+\sigma_{e}^{2} \sum_{i=1}^{c}\left(w_{i}-2 u_{i} w_{i}+u_{i}^{2}\right) / n_{i}$
so that C_{1} and C_{2} are taken as

$$
\begin{equation*}
C_{1}=\sum_{i=1}^{c}\left(w_{i}-2 u_{i} w_{i}+u_{i}^{2}\right) \quad \text { and } \quad C_{2}=\sum_{i=1}^{c}\left(w_{i}-2 u_{i} w_{i}+u_{i}^{2}\right) / n_{i} \tag{32}
\end{equation*}
$$

The estimator we suggest is therefore (31) using w_{i} of (28), \vec{y}_{u} of (29), u_{i} of (30) and c_{1} and c_{2} of (32). With these substitutions its variance can, efter a little algebraic simplification (as in Townsend [1968]), be written as follows. Define
and

$$
\begin{aligned}
\theta_{i} & =\left(w_{i}-2 u_{i} w_{i}+u_{i}^{2}\right) / n_{i}^{2}, \\
k_{i j} & =\left(u_{i} u_{j}-u_{i} w_{j}-u_{j} w_{i}\right) / n_{i} n_{j} \quad \text { for } i \neq j=k, 2, \ldots, c, \\
\gamma & =c_{2} /(N-c) \quad .
\end{aligned}
$$

Then

$$
\begin{align*}
\operatorname{var}\left(\hat{\hat{\sigma}}_{a}^{2}\right) & =2 \sigma_{a}^{4}\left(\sum_{i=1}^{c} n_{i}^{4} \theta_{i}^{2}+\sum_{i=1}^{c} \sum_{j \neq i}^{c} n_{i}^{2} n_{j}^{2} k_{i j}^{2}\right) \\
& +2 \sigma_{a}^{2} \sigma_{e}^{2}\left[2 \sum_{i=1}^{c} n_{i}^{3} \vartheta_{i}^{2}+\sum_{i=1}^{c} \sum_{j \neq i}^{c} n_{i} n_{j}\left(n_{i}+n_{j}\right) k_{i j}^{2}\right] \tag{33}\\
& +2 \sigma_{e}^{4}\left[\sum_{i=1}^{c} n_{i}^{2} \vartheta_{i}^{2}+(N-c) Y^{2}+\sum_{i=1}^{c} \sum_{j \neq i}^{c} n_{i} n_{j} k_{i j}^{2}\right]
\end{align*}
$$

It seems clear that (33) is intractable for analytic study for comparison with the ANOVA estimator, which in this case of the non-zers mean i.s the

Its variance is
$\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)=\left[\frac{2 \sigma_{e}^{4}(N-1)}{(c-1)(N-c)}+\frac{4 \sigma_{e}^{2} \sigma_{a}^{2}\left(N^{2}-S_{2}\right)}{N(c-1)^{2}}+\frac{2 \sigma_{a}^{4}\left(N^{2} S_{2}+S_{2}^{2}-2 N S_{3}\right)}{N^{2}(c-1)^{2}}\right] / f^{2}$
where $S_{2}=\sum_{i=1}^{c} n_{i}^{2}$ as before, $S_{3}=\sum_{i=1}^{c} n_{i}^{3}$ and $f=\left(N-S_{2} / N\right) /(c-1)$ as, for example, in Searle [1956].

3b. Comparisons with the ANOVA estimator
The suggested estimator (31), through its dependence on w_{i} and $u_{i} \circ f(28)$ and (30), depends on $\rho=\sigma_{e}^{2} / \sigma_{e}^{2}$ which is unknow. Therefore, to assess its value we use a prior estimate for ρ, ρ_{0} say, in place of ρ in $\hat{\sigma}_{a}^{2}$, calling the resulting estimator $\tilde{\tilde{\sigma}}_{a}^{2}$. Numeric comparison of $\tilde{\tilde{\sigma}}_{a}^{2}$ with the ANOVA estimator $\hat{\sigma}_{a}^{2}$ is made by'means of variances of the estimators, using

$$
p_{a}=\frac{\operatorname{var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{var}\left(\tilde{\tilde{\sigma}}_{a}^{2}\right)}{\operatorname{var}\left(\tilde{\sigma}_{a}^{2}\right)}
$$

in the same manner as previously. Figures $6-8$ show some results of these comparisons, portrayed in exactly the same manner as Figures $1-5$.

The n-patterns of Figures 6,7,8 are identical to those of figures 1,2 and 5 respectively. Gross comparison between the two sets of figures indicates great similarity, suggesting that $\tilde{\tilde{\sigma}}_{a}^{2}$ is near the true BGUE of σ_{a}^{2} when $\rho_{0}=p$.

One
/ salient difference, illustrated by a comparison of Figures 2 and 7 , is that the two $\mathrm{p}_{\mathrm{a}}=0$ curves never touch. This means that the ANOVA estinator is never as good as the suggested procedure when $\rho_{0}=\rho$ and thus is never the BQUE of σ_{a}^{2}. Maybe this is true generally. In the zero mean case when the ANOVA procedure was BQUE, it occurred only for some value of ρ other than $\rho=0$. Yet in the nonzero mean case, the estimator of the mean used in the ANOVA procedure is $\bar{y}_{\ldots}=\sum_{i=1}^{c} n_{i} \bar{y}_{i .} / N$, which is the minimum variance unbiased best estimator of μ when $\rho=0$. Now, when σ_{a}^{2} and σ_{e}^{2} are know, the best estimator of μ is $\underline{S}^{\prime} \underline{V}^{-1} \underline{y} / \underline{1}^{\prime} \underline{V}^{-1}=$, equal to \bar{y}_{u} of (29) and (30), and equal to \bar{y}.. when $\rho=0$. Furthermore, the best estimator of μ when simultaneously estimating σ_{a}^{2} and σ_{e}^{2} is unknown, but whatever it is it seems reasonable to conclude that it is not \bar{y}.. as used in the ANOVA estimator. If so, it follows that the ANOVA estimator of σ_{a}^{2} for the non-zero mean case is never the BQUE.

4. Conclusions

Figures 1-7 and the preceding discussions thereof lead one to tender the following conclusions.

For the zero mean case:
(a) The BQUE of σ_{e}^{2} has little practical advantage over the ANOVA estimator, except for very unbalanced data and very small (close to zero) values of p. [Equation (16)]
(b) The ANOVA estimator of σ_{a}^{2} approaches the $B \cap U E$ for some value of ρ and actually is BQUE for some designs n-patterns. [Figures 1 and 2.]
(c) When ρ is moderately large a rather inaccurate pre-determined o may be used in an approximate $B Q U E$ of σ_{a}^{2} to yield an estimator with smaller variance than the ANOVA estimator. [Figures 1-5.]

$$
\begin{aligned}
& \because 20 \text { आक्ष } \\
& \because 6 \\
& \text { in - } 24
\end{aligned}
$$

(d) Data which are not badly unbalanced offer little opportunity for reducing the variance of the approximate BQ UE of $\sigma_{\dot{2}}^{2}$ below that of the ANOVA estimator. [Figure 1.]
(e) Increasing the number of observations, while holding the number of groups constant, extends the region in which the approximate $B \cap U E$ of σ_{a}^{2} is better than the ANOVA estimator. [Figures 2.and 3.]
(f) Increasing the number of groups while holding the total number of observations constant curtails the region in which the approxinate BQUE of σ_{a}^{2} is better than the ANOVA estimator. [Figures 2 and 4.]
(g) An increase in both total number of observations and number of groups does not guarantee that the ANOVA estimator will compare fevorably with the BQUE. [Figure 5.]

For the non-zero mean
(h) The suggested estimator of σ_{a}^{2}, whilst not a BQUE nor even a direct approximation, thereto appears close to it for $\rho_{0}=\rho$; and it is better than the ANOVA estimator over a wide range of values. [Figures 6-8.]

References
Conte, S. D. (1965). "Elementary Numerical Analysis". McGraw-Hill Book Co., New York, N. Y.

Crump, S. Lee (1951). The present status of variance component analysis. Biometrics 7:1-16.

Graybill, Franklin A. (1961). "An Introduction to Iinear Statistical Models". McGraw-Hill Book Co., New York, N.Y.

Harville, David A. (1967). Statistical dependence between random effects and the numbers of observations on the effects for the unbalanced one-way random classification. J. Amer. Stat. Assoc. 62:1375-1386.

Koch, Gary G. (1967). A general approach to the estimation of variance components. Technometrics 9:93-118.

Lancaster, H. O. (1965). The Helmert Matrices. Ann. Math. Monthly, 72, 4-12.

Robertson, Alan (1962). Weighting in the estimation of variance components in the unbalanced single classification. Biometrics 18:413-417.

Searle, S. R. (1956). "Matrix methods in componento of variance and covariance analysis. Ann. Math. Stat. 27:737-748.

Searle, S. R. (1966). "Matrix Algebra for the Biological Sciences". John Wiley and Sons, Inc., New York, N.Y.

Townsend, E. C. (1968). Unbiased estimators of variance components in single unbalanced designs. Unpublished Ph.D. Thesis, Cornell University, Ithaca, N.Y.

Tukey, J. W. (1957). Variances of variance components: II. The unbalanced single classification. Ann. Math. Stat. 28:43-56.
5. APPENDIX

The equation of the model, (1), can be written as $\underline{y}=\underline{Z} \underline{\alpha}+\underline{e}$ where $\underline{\alpha}$ is the cxl vector of $\alpha_{i}^{\prime} s$ and \underline{Z} is the corresponding incidence matrix, a diagonel matrix of vectors ${\underset{i}{i}}$, for ${\underset{\sim}{=}}_{i}$ being a vector of n_{i} ones. Thus

$$
\ddot{i}_{i}^{\prime}=\left(\begin{array}{llll}
1 & 1 & 1 & \ldots
\end{array}\right) \text {, of } n_{i} \text { elements }
$$

and

Consequently \underline{V}, the variance-covariance matrix of \underline{y} is

$$
\begin{equation*}
\underline{V}=\alpha Z Z^{\prime}+e \underline{I}=\sum_{i=1}^{c}\left(\alpha J_{i}+e I_{i}\right) \tag{A2}
\end{equation*}
$$

as in (2) and (3), except for writing

$$
\alpha \equiv \sigma_{a}^{2} \text { and } e \equiv \sigma_{\mathrm{e}}^{2}
$$

for notational convenience.
BOUE's of e and α are derived by obtaining $\underset{\sim}{A}$ such that $2 \operatorname{tr}(\underline{\text { VA }})^{2}$ is minimized subject to $\sigma^{2}=\operatorname{tr}(\underline{\mathrm{VA}})$ for $\sigma^{2}=\mathrm{e}$ and $\sigma^{2}=\alpha$ in turn. This would be easily achieved if V were diagonal. To attain this form we make the transformation $\underline{x}=\underline{P}^{\prime} \underline{y}$ where \underline{P} is an orthogonal matrix such that $\underline{P}^{\prime} \underline{\underline{P}}=\underline{D}$, the diagonal matrix of latent roots of $\underline{V} \cdot \hat{\sigma}^{2}$ of (4) is then $\hat{\sigma}^{2}=x^{\prime} \underline{P}^{\prime} \underline{A P x}=\underline{x}^{\prime} \underline{\underline{Q}}$ for $\underline{\underline{Q}}=\underline{P}^{\prime} A P$ and we have to minimize

$$
\begin{equation*}
2 \operatorname{tr}(\mathrm{VA})^{2}=2 \operatorname{tr}\left(\underline{P D} \underline{P}^{\prime} \underline{A}\right)^{2}=2 \operatorname{tr}\left(\underline{P}^{\prime} \mathrm{APD}\right)^{2}=2 \operatorname{tr}(\underline{D})^{2} \tag{A3}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sigma^{2}=\operatorname{tr}(\underline{\mathrm{VA}})=\operatorname{tr}(\underline{Q D}) . \tag{A4}
\end{equation*}
$$

Having found Q to achieve this, the BQUE of σ^{2} is
with variance

$$
\begin{equation*}
\hat{a}^{2}=\underline{x}^{1} \underline{\alpha_{x}}=\underline{y}^{\top} P Q P \cdot \underline{y} \tag{A5}
\end{equation*}
$$

This is done in turn for $\sigma^{2}=\mathrm{e}$ and $\sigma^{2}=\alpha$. We first find the latent roots and vectors of \underline{V} and use thereto derive $\underline{D}=\underline{P} \underline{P}$, and \underline{P}.

4a. Latent roots of \underline{V} 4. \quad whmossox.

From (A2), the latent roots of $\underline{\text { V }}$ are the solutions for λ to

$$
|\underline{V}-\lambda I|=\prod_{i=1}^{c}\left|\alpha_{-i} \tilde{J}_{i}+(e-\lambda) I_{i}\right|=\prod_{i=1}^{c}(e-\lambda)^{n_{i}-I}\left(n_{i} \alpha+e-\lambda\right)=0
$$

using, for example, Searle (1966, p. 198) for the expansion of the determinants. Hence

$$
(e-\lambda)^{\mathbb{N}-c} \prod_{i=1}^{c}\left(n_{i} \alpha+e-\lambda\right)=0
$$

and the latent roots of \underline{V} are e with multiplicity $\mathbb{N}-\mathrm{C}$, and $n_{i} \alpha+e$ for $i=1, \ldots, c$. We denote these by

$$
\begin{equation*}
\lambda_{k}=n_{k} \alpha+e \text { for } k=1,2, \ldots, c \text { and } \lambda_{k}=e \text { for } k=c+1, \ldots, N \tag{A7}
\end{equation*}
$$

and have

$$
\begin{equation*}
\underline{D}=\operatorname{diag}\left\{\lambda_{k}\right\} \text { for } k=1,2, \ldots, c, c+1, \ldots, N \tag{AB}
\end{equation*}
$$

4b. Latent vectors of V

Let

$$
\underline{U}=\left(\underline{U}_{-1} \vdots \underline{U}_{-2}\right)=\left(\begin{array}{ll}
u_{-1} & \underline{u}_{-2}
\end{array}, \ldots, u_{c} \vdots u_{c+1}{\underset{-c}{ }}_{u_{c}}, \ldots, u_{-N}\right)
$$

De the matrix of N latent vectors corresponding to the latent roots in (A7). We seek a value for \underline{U} such that its columns are pair-wise orthogonal; column normalization of \underline{U} then yields \underline{P}, required in (A5) and (A6).

Note first that \underline{Z} is a satisfactory value for \underline{U}_{1}; i.e., that columns of \underline{Z} are latent vectors of \underline{V} corresponding to the latent roots $\lambda_{k}=n_{k} \alpha+e$ for $k=1,2, \ldots, c$. This is so because from (Al) and (A2)

which, on comparison with (A2) is \underline{Z} with its i^{\prime} th column muftiplicd by $\alpha n_{i}+\in$. Furthermore, from (A2), it $i, s, c l e a r$ that $\underset{\sim}{Z} \underset{\sim}{Z}=\operatorname{diag}\left\{n_{i}\right\}$ for $i=1,2, \ldots, c$; hence columns of Z are pair-wise orthogonal. Thus we take $\mathbb{U}_{-1}=\underline{Z}$ and write $\underline{U}=\left(\underline{Z} \underline{U}_{2}\right)$. For the columns of \underline{U} to be pair-wise orthogonal we want $\underline{U}_{2}^{U} \mathbb{U}$ diagonal and $\underline{Z}^{\prime} \underline{U}_{2}=0$; and for them to also be latent vectors of \underline{V} corresponding to the $N-C$ latent roots e of (A7) we must have $\underline{U U}_{-2}=\mathrm{eU}_{-2}$. Using (A2) for \underline{V} this means $\underset{Z}{Z Z} \underline{U}_{2}=\underline{0}$, which is satisfied when $\underset{Z^{\prime}}{U_{2}}=\underline{0}$. Hence it is sufficient that $\mathbb{U}_{2} \mathrm{U}_{2}$ be diagonal and $\underline{Z}^{\prime} \mathrm{U}_{2}=0$. We show that

$$
U_{-2}=\sum_{i=1}^{c} E_{i} \text { with } E_{i i}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
-1 & 1 & 1 & \ldots & 1 \\
0 & -2 & 1 & \ldots & 1 \\
0 & 0 & -3 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & & & -\left(n_{i}-1\right)
\end{array}\right] \text {, of order } n_{i} \times\left(n_{i}-1\right)
$$

satisfies these conditions. We have, by the nature of E_{-i},
which is diagonal; and from (Al)

$$
Z_{Z_{2}^{\prime}}^{1} U_{2}=\sum_{i=1}^{c} 1_{1}^{1} 1 E_{i}=\underline{0} .
$$

Hence

$$
\underline{U}=\left(\underline{Z} \underline{U}_{2}\right)=\left[\begin{array}{cc}
\sum_{i=1}^{+} & \sum_{i=1}^{c} \mathbb{E}_{i}
\end{array}\right]
$$

is a matrix of latent roots of \underline{V}. Normalizing the columns of \underline{U} yields \underline{P} as

$$
\underline{P}=\left[\begin{array}{cc}
\sum_{i=1}^{+} \sqrt{n_{i}^{-1}}= & \sum_{i=1}^{c} G_{i} \tag{AP}
\end{array}\right]
$$

where

$$
\left.\begin{array}{rl}
G_{i} & =E_{i}\left[\begin{array}{lllll}
\operatorname{diag} & \sqrt{2} & \sqrt{6} & \ldots & \sqrt{j(j+1})
\end{array} \ldots \sqrt{n_{i}\left(n_{i}-1\right.}\right) \tag{ADO}
\end{array}\right]^{-1}
$$

We may note that 2 rearrangement of the coluns of \underline{P} gives a natrix $\sum_{i=1}^{c}\left[\sqrt{n_{i}^{-1}-i} \quad G_{i}\right]$, where $\left[\sqrt{n_{i}^{-1}}{ }_{-i}^{\prime} \quad G_{i}^{\prime}\right]$ is a Helmert matrix in the "strict sense," as given by Lancaster [1965] .
$\underline{\text { BQUE of } \sigma_{e}^{2}}$
Using \underline{P} of (A9), the BNUE of σ_{e}^{2} cones from (A3) and (A4) by choosing \cong_{-}so as to ninimize, for D of (A8),

$$
\operatorname{atr}(Q D)^{2}=2 \sum_{k, k^{\prime}} \lambda_{k} \lambda_{k^{\prime}} q_{k k^{\prime}}^{2}
$$

subject to

$$
e=\operatorname{tr}(Q D)=\sum_{k=1}^{N} \lambda_{k} q_{k k}=\alpha \sum_{k=1}^{c} n_{k} q_{k k}+e \sum_{k=1}^{N} q_{k k} .
$$

This last equation implies

$$
\begin{equation*}
\sum_{k=1}^{c} n_{k} a_{k k k}=0 \quad \text { and } \quad \sum_{k=1}^{N} q_{k k}=1 \tag{All}
\end{equation*}
$$

so that we have to mininize

$$
\theta=2 \sum_{k, k^{\prime}=1}^{N} \lambda_{k}{ }^{\prime} k^{\prime} q_{k k^{\prime}}^{2}+4 m_{1}\left(\sum_{k=1}^{i N} q_{k k}-1\right)+4 m_{2} \sum_{k=1}^{c} n_{1} q_{k k},
$$

where $4 m_{1}$ and $4 m_{2}$ are Lagrange nultipliers. Equating to zero the derivatives of θ with respect to $q_{k k^{\prime}}$ for $k \neq k^{\prime}$ gives $8 i_{k^{\prime} k^{\prime}} q_{k^{\prime}}=0$. Since none of the $\therefore s$ are zero [see (A7)] this means $q_{k k^{\prime}}=0$ for $2 l l k \neq k^{\prime}$. Hence \underline{a}^{a} is diagonel. Equating to zero the derivatives of θ with respect to m_{1} and m_{2} yields (All); and with respect to $q_{k k}$ yields

$$
\begin{equation*}
4 \lambda_{k}^{2} q_{k k}+4 n_{1}+4 n_{2} n_{k}=0 \text { for } k \leq c \tag{Ale}
\end{equation*}
$$

and

$$
4 \lambda_{k}^{2} q_{k k}+4 n_{1}=0 \quad \text { for } k>c
$$

Substituting for $a_{k k}$ from these equations into (All) then gives

$$
\begin{equation*}
u m_{1}+w m_{2}=-1 \tag{AIS}
\end{equation*}
$$

and

$$
m_{1}+v m_{2}=0
$$

where

$$
\begin{equation*}
u=\sum_{k=1}^{N} 1 / \lambda_{k}^{2}, \quad v=\sum_{k=1}^{c} n_{k}^{2} / \lambda_{k}^{2} \quad \text { and } \quad v=\sum_{k=1}^{c} n_{k} / \lambda_{k}^{2} . \tag{A14}
\end{equation*}
$$

With

$$
\Delta=u v-w^{2}
$$

(A lB) have solutions

$$
\begin{equation*}
m_{1}=-v / \Delta \text { and } m_{2}=w / \Delta \text {. } \tag{A15}
\end{equation*}
$$

Hence from (Ale)

$$
\begin{equation*}
q_{k k}=\left(v-w n_{k}\right) /\left(\Delta \lambda_{k}^{2}\right) \quad \text { for } k=1,2, \ldots, c \tag{A16}
\end{equation*}
$$

and

$$
=v /\left(e^{\Sigma_{\Delta}}\right) \quad \text { for } k=c+1, \ldots, \mathbb{N} .
$$

Substituting these values for the elements of the (diagonal) matrix \underline{Q}_{-}in (A5) it can be shown, after a little algebraic simplification, that the BQUE of σ_{e}^{2} is
$\left.\hat{B}_{e}^{2}=\left(r s-t^{2}\right)^{-1}\left\{\sum_{i=1}^{a}\left(s-\operatorname{tn}_{i}\right)\left(1+n_{i} \hat{\rho}\right)^{-2}\left(y_{i}^{2} / n_{i}\right)+s_{i=1}^{c} \sum_{j=1}^{n_{i}} \sum_{i j}^{2}-\sum_{i=1}^{c} y_{i}^{2} / n_{i j}\right\rangle\right\}$
where $\rho=\sigma_{a}^{2} / \sigma_{e}^{2}, N=\sum_{i=1}^{c} n_{i}$ and r, s, and t are as given in (5), derived from (A14) by multiplying by σ_{e}^{2} and using (A7) and c. Also, the variance of this ostimator, derived from (AE) using (Al5) for and (A7) for D reduces to

$$
\begin{equation*}
\operatorname{var}\left(\hat{B}_{B}^{2}\right)=2 s \sigma_{e}^{4} /\left(r s-t^{2}\right) \tag{A18}
\end{equation*}
$$

BQUE of σ_{a}^{2}
The EQUE of σ_{a}^{2} is derived exactly as is that of σ_{e}^{2} save for ininizing $2 \operatorname{tr}(\underline{Q D})^{2}$ subject to

$$
\alpha=\operatorname{tr}(Q D)=\alpha \sum_{k=1}^{Q} n_{k} q_{k k}+\sum_{k=1}^{N} q_{k k}=1
$$

The effect of this is to interchange the 0 and l on the right-hand sides of the equations in (AlI). Consequently the right-hand sides of (AI3) get interchanged so that solutions of the resultine equations are

$$
m_{I}=v / \Delta \quad \text { and } \quad a_{2}=-u_{1} / \Delta
$$

Compared to (Al5) this means replacing $-v$ by w and w by $-v$, or equivalently -s by t and t by $-r$, in the numerator of $\hat{B}^{\sigma^{2}}$ to obtain $\hat{\sigma}^{2}{ }_{a}^{a}$. Hence the EQUE of σ_{2}^{2} is
and its variance is

$$
\begin{equation*}
\operatorname{ver}\left(\hat{\sigma}_{a}^{a}\right)=2 r \sigma_{e}^{4} /\left(r s-t^{2}\right) \tag{A2O}
\end{equation*}
$$

Figure 1
Relationship Between Variance of ANOVA Estimator and Variance of Approximate BQUE of σ_{a}^{2}

$$
\begin{aligned}
\mu & =0 \\
n_{i} & =3,4,5,6,7 \\
p_{a} & =\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\tilde{o}}_{\mathrm{a}}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}_{\mathrm{a}}^{2}\right)
\end{aligned}
$$

Figure la
Relationship Between Variance of ANOVA Estimator and Variance of Approximate BQUE of σ_{a}^{2}

$$
\begin{aligned}
\mu & =0 \\
n_{i} & =3,4,5,6,7 \\
p_{a} & =\left[\operatorname{Var}\left(\hat{\sigma}_{\mathrm{a}}^{2}\right)-\operatorname{Var}\left(\tilde{\dot{\sigma}}_{\mathrm{a}}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}_{\mathrm{a}}^{2}\right)
\end{aligned}
$$

Relationship Between Variance of ANOVA Estimator and Variance of Approximate BQUE of σ_{a}^{2}

$$
\begin{aligned}
\mu & =0 \\
n_{i} & =1,1,1,11,11 \\
p_{a} & =\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)
\end{aligned}
$$

Figure $2 a$

Relationship Between Variance of ANOVA Estimator and Variance of Approximate BQUE of σ_{a}^{2}

$$
\begin{aligned}
\mu & =0 \\
n_{i} & =1,1,1,11,11 \\
p_{a} & =\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)
\end{aligned}
$$

Figure 3
Relationship Between Variance of ANOVA Estimator and Variance of Approximate BQUE of σ_{a}^{2}

$$
\begin{aligned}
\dot{\mu} & =0 \\
n_{i} & =2,2,2,22,22 \\
p_{a} & =\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)
\end{aligned}
$$

Figure 4

Relationship Between Variance of ANOVA Estimator and Variance of Approximate BQUE of σ_{a}^{2}

$$
\begin{aligned}
\mu & =0 \\
n_{i} & =1,1,1,1,1,4,4,4,4,4 \\
p_{a} & =\left[\operatorname{Var}\left(\hat{\sigma}^{2}\right)-\operatorname{Var}\left(\tilde{\sigma}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}^{2}\right)
\end{aligned}
$$

Relationship Between Variance of ANOVA Estimator and Variance of Approximate BQUE of σ_{a}^{2}

$$
\mu=0
$$

$$
\begin{aligned}
n_{i}= & 1,1,1,1,1,1,1,1,1,1, \\
& 2,2,2,2,2,2,2,2,2,2, \\
& 3,3,3,3,3,3,3,3,3,3, \\
& 4,4,4,4,4,5,5,5,5,5, \\
& 6,8,10,12,14,35,40,45,50,55 \\
p_{a}= & {\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right) }
\end{aligned}
$$

Figure 6
Relationship Between Variance of ANOVA Estimator and Variance of Suggested Estimator of σ_{a}^{2}

$$
\begin{aligned}
\mu & \neq 0 \\
n_{i} & =3,4,5,6,7 \\
p_{a} & =\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)
\end{aligned}
$$

Figure 7

Relationship Between Variance of ANOVA Estimator and Variance of Suggested Estimator of σ_{a}^{2}
$\mu \neq 0$
$n_{i}=1,1,1,11,11$
$p_{a}=\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\tilde{\sigma}}_{a}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\tilde{\sigma}}_{a}^{2}\right)$

Relationship Between Variance of ANOVA Estimator and Variance of Suggested Estimator of σ_{a}^{2}
$\mu \neq 0$

$$
\begin{aligned}
n_{i}= & 1,1,1,1,1,1,1,1,1,1, \\
& 2,2,2,2,2,2,2,2,2,2, \\
& 3,3,3,3,3,3,3,3,3,3, \\
& 4,4,4,4,4,5,5,5,5,5, \\
& 6,8,10,12,14,35,40,45,50,55 \\
p_{a}= & {\left[\operatorname{Var}\left(\hat{\sigma}_{a}^{2}\right)-\operatorname{Var}\left(\tilde{\sigma}_{a}^{2}\right)\right] / \operatorname{Var}\left(\tilde{\tilde{\sigma}}_{\mathrm{a}}^{2}\right) }
\end{aligned}
$$

