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1 Introduction

The paper considers estimating the integrated variance using high frequency asset price
data. A salient feature of high frequency data is the presence of market microstructure
noise. This feature renders both the classical quadratic variation estimator (e.g. Ander-
son, Bollersllev, Diebold and Labys (2003), Bardor�-Nielsen and Shephard (2002)) and
the kernel-based estimators (e.g. Zhou (1996), Hansen and Lunde (2006, hereafter HL))
inconsistent for the integrated variance. To tackle the inconsistency problem, Zhang, Myk-
land, A��t-Sahalia (2005, hereafter ZMA) propose a subsampling-based estimator, which
is consistent and subsequently re�ned by Zhang (2006). In practice, sparse sampling has
been recommended to reduce the market microstructure contamination. Optimal sampling
schemes have been investigated by Bandi and Russell (2004a, 2004b, hereafter BR) and
ZMA (2005).

In this paper, we consider a class of quadratic estimators that includes all the above
existing estimators as special cases. Given a sequence of high frequency asset returns
r = (r1; r2; :::; rm); a quadratic estimator is a linear function of the cross-products frirjg :
In other words, it can be written as a quadratic form V̂Q = r

0Wr :=
Pm
i=1

Pm
j=1W (i; j)rirj

whereW is a symmetric and positive de�nite matrix with elementsW (i; j): Our objective is
to choose W to minimize the variance of V̂Q subject to some unbiasedness conditions. The
resulting estimator is a best quadratic unbiased (BQU) estimator. We consider two sets of
unbiasedness conditions. The �rst set uses prior information on model parameters while
the second does not. Di�erent unbiasedness conditions lead to di�erent BQU estimators. In
this paper, we establish explicit multi-window representations of the two BQU estimators
and provide a geometric interpretation of both estimators. More speci�cally, let h(k) =

(h
(k)
1 ; :::; h

(k)
j ; :::; h

(k)
m ) where h

(k)
j =

p
2=(m+ 1) sin(�kj=(m+ 1)) be an orthonormal basis

in Rm and �(k)h(k) be the projection of r onto the subspace spanned by h(k): Then each BQU
estimator is a weighted sum of (�(k))2; the squared lengths of the projections. Interestingly,
the classical quadratic variation estimator can be written as the simple unweighted sum of
these squared lengths.

The two BQU estimators are infeasible, as they depend on the unknown parameter �;
the signal-to-noise ratio. Replacing the unknown � by a consistent pilot estimate yields
the feasible best quadratic unbiased estimators. Under the assumption of constant volatil-
ity, we establish the asymptotic normality of the two feasible BQU estimators and show
that they converge to the true realized variance at the rate of m�1=4; the best attainable
rate for nonparametric variance estimators. More importantly, when the market noise is
normally distributed, one of the feasible BQU estimators is asymptotically as e�cient as
the maximum likelihood estimator but computationally much simpler and more robust to
model mis-speci�cations.

Quadratic estimators have been employed in estimating variance components in the
statistical literature. The monograph of Rao and Kle�e (1988) provides an extensive survey
of this literature. In the time series literature, quadratic estimators have been used in
estimating the variance of a sample mean; see Song and Schmeiser (1993). The multi-taper
estimator of a spectral density (e.g. Percival and Walden (1993, Ch 7)) also belongs to
the class of quadratic estimators. Some long run variance estimators in the econometrics
literature can be written as quadratic estimators (see Sun (2004)). Therefore, the idea of
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best quadratic unbiased estimators has a long history but its usage in the present context is
new. We provide a systematic analysis of the BQU estimators under the in�ll asymptotics,
the type of asymptotics that is suitable for high frequency �nancial data. The use of the
in�ll asymptotics has a great number of technical implications and makes the analysis far
from trivial. We show that the class of quadratic estimators not only uni�es the previous
literature on the integrated variance estimation but also leads to a new estimator that
dominates the existing ones.

The paper that is closest to this paper is Bardor�-Nielsen, Hansen, Lunde, and Shephard
(2006, hereafter BNHLS) where a weighted sum of autocovariances (or modi�ed autocovari-
ances) is used as the estimator of the integrated variance. BNHLS consider choosing the
weights optimally to minimize the asymptotic variance of their estimator, subject to some
unbiasedness conditions. It is easy to see that the BNHLS method amounts to solving the
BQU-type problem but restricting the weighting matrix to be a symmetric Toeplitz matrix.
This restriction is not innocuous at least in �nite samples because the optimal weighting
matrix given in this paper is not a Toeplitz matrix. In particular, for one of the BQU esti-
mators, the optimal weighting matrix is the sum of a Toeplitz matrix and a Hankel matrix.
As a result, the BNHLS estimator is not optimal under the constant volatility assumption
maintained in this paper.

In this paper, we compare the �nite sample performances of the BQU estimators with
those of the HL, ZMA, BNHLS estimators and the multi-scale estimator (hereafter MS
estimator) of Zhang (2006). The HL and ZMA estimators are implemented using their
respective optimal truncation lags given in BR (2005). We consider two di�erent levels
of microstructure noise contaminations and three di�erent noise distributions: normal, �21
and t5: We employ three sets of parameter values that are representative of the S&P 100
stocks. Both constant volatility models and stochastic volatility models are considered.
Our simulation results show that, under the assumption of constant volatility, one of the
BQU estimators has the smallest root mean squared error (RMSE) among all the estimators
considered. This BQU estimator reduces the RMSEs of the HL and ZMA estimators by
30% to 40% and the RMSE of the BNHLS and MS estimators by 5% to 10%: What is
perhaps surprising is that the same BQU estimator also performs very well in stochastic
volatility models. It dominates the HL and ZMA estimators and is outperformed by the
BNHLS and MS estimators only when the noise contamination is very large.

The rest of the paper is organized as follows. Section 2 outlines the basic assumptions
and introduces the quadratic estimator. Section 3 proposes a BQU estimator and estab-
lishes its multi-window representation. The next section investigates the BQU estimator
under alternative unbiasedness conditions. Section 5 compares the BQU estimators with
the existing estimators via Monte-Carlo experiments. Section 6 concludes. Proofs are given
in the appendix.

2 The Model and Estimator

Following BR (2004b, 2005), we assume that the log-price process is given by:

pt = p
e
t + �t; t 2 [0; T ]; (1)
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where pet is the e�cient logarithmic-price process and �t is the noise process. Denote a
trading day by h = [0; 1]; which is divided into m subperiods ti � ti�1 with i = 1; 2; :::;m
so that t0 = 0 and tm = 1: Now de�ne

pti � pti�1| {z }
ri

= peti � p
e
ti�1| {z }

rei

+ �ti � �ti�1| {z }
"i

(2)

where ri is an observed continuously-compounded intra-daily return, r
e
i is an e�cient

continuously-compounded intra-daily return, "i is a market microstructure contamination.
As in the previous literature, we maintain the following assumptions:

Assumption 1 The e�cient logarithmic-price process pet is a stochastic volatility local
martingale, de�ned by

pet =

Z t

0
�sdBs (3)

where fBt; t � 0g is a standard Brownian motion that is independent of the c�adl�ag spot
volatility process f�s; s � 0g :

Assumption 2 The logarithmic price contaminations �t are iid(0; �
2
�) with a bounded

fourth moment and independent of pet :

The empirical validity of Assumption 2 depends on, for example, the sampling frequency
and the nature of price measurements. When transaction prices are sampled at more than
moderate frequencies such as every 15 ticks, there is little evidence against this assumption.
See Bandi and Russell (2005) for more detailed discussions.

The object of interest is the integrated price variance over the trading day, i.e.

V =

Z 1

0
�2sds: (4)

The problem of estimating V is, in some ways, similar to the estimation of the long run
variance in time series analysis. It is not surprising that kernel-based estimators have been
suggested in the literature. For a given sequence of weights w0; w1; :::; wq; kernel-based
estimators are de�ned as

V̂K = w0
̂0 + 2

qX
s=1

ws
̂s; where 
̂s =

m�sX
i=1

riri+s: (5)

Examples of the kernel-based estimators include Zhou (1996), HL (2006) and BNHLS
(2006). The HL estimator is based on the Bartlett-type kernel and is given by1

V̂HL =

�
m� 1
m

q � 1
q

�

̂0 + 2

qX
s=1

�
1� s

q

�

̂s: (6)

1Hansen and Lunde propose several estimators of the integrated variance. The estimator that is usually
associated with HL is de�ned by

V̂ = 
̂0 + 2

qX
s=1

m

m� s 
̂s:

See Hansen and Lunde (2004). In this paper, we call the Bartlett-kernel-based estimator the HL estimator
as it is almost identical to the estimator applied by HL (2005).
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The subsampling-based estimator of ZMA (2005) can be regarded as a modi�ed version of
the above estimator (see BR (2005) and BNHLS (2006)). It is de�ned as

V̂ZMA =

�
1� m� q + 1

mq

�

̂0 + 2

qX
s=1

�
1� s

q

�

̂s �

1

q
#q (7)

where the modi�cation term #q satis�es

#1 = 0; #q = #q�1 + (r1 + :::+ rq�1)
2 + (rm�q+2 + :::+ rm)

2 ; for q � 2: (8)

It is the modi�cation term, which the subsampling approach entails by construction, that
makes the ZMA estimator consistent. In a recent paper, BR (2005) consider choosing q to
minimize the mean squared error of V̂HL and V̂ZMA:

The BNHLS estimator is based on the class of 
at top kernels where a unit weight is
imposed on the �rst autocovariance. The estimator can be represented as

V̂BNHLS = ~
0 +

qX
s=1

k

�
s� 1
q

�
(~
s + ~
�s) where ~
s =

m�qX
i=q+1

riri+s (9)

and k (�) is a kernel function. BNHLS (2006) propose using the following modi�ed Tukey-
Hanning kernel and bandwidth selection rule2:

kMTH(x) =
�
1� cos� (1� x)2

�
=2; (10)

q = 5:74
p
m��=V: (11)

A closely related estimator is the multi-scale (MS) estimator by Zhang (2006). BNHLS
(2006) show that the multi-scale estimator is asymptotically equivalent to the BNHLS
estimator based on the cubic kernel

kMS(x) = 1� 3x2 + 2x3: (12)

The corresponding bandwidth selection rule is

q = 3:68
p
m��=V: (13)

In the sequel, we use V̂MS to denote the multi-scale estimator and use V̂BNHLS to refer to
the modi�ed-Tukey-Hanning-kernel-based BNHLS estimator.

In this paper, we consider an estimator of the form:

V̂Q = r
0Wr where r = (r1; r2; :::; rm)

0 (14)

and W is a symmetric and positive de�nite matrix. This estimator includes the estimators
V̂HL, V̂ZMA, V̂BNHLS and V̂MS as special cases. Some algebraic manipulations show that
the respective weighting matrices for these four estimators are

WHL(i; i) =
m� 1
m

q � 1
q
;

WHL(i; j) =

�
1� ji� jj

q

�
fji� jj � qg ; i 6= j; (15)

2BNHLS consider various kernels in their paper. The modi�ed Tukey-Hanning kernel delivers the smallest
asymptotic variance among all the kernels considered for the simple Brownian motion plus noise model.
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WZMA(i; i) = 1�
m� q + 1
mq

� [q � i] fi � q � 1g � [q �m� 1 + i] fi � m� q + 2g ;

WZMA(i; j) =

�
1� ji� jj

q

�
fji� jj � qg � 1

q
[q �max(i; j)] fi � q � 1g fj � q � 1g

� 1
q
[q �m� 1 + min(i; j)] fi � m� q + 2g fj � m� q + 2g ; i 6= j;

(16)

WBNHLS(i; j) = 1; (17)

WBNHLS(i; j) = fq + 1 � i � m� qg fi� q � j � i+ qg kMTH

�
ji� jj � 1

q

�
; i 6= j;

and

WMS(i; j) = 1; (18)

WMS(i; j) = fq + 1 � i � m� qg fi� q � j � i+ qg kMS

�
ji� jj � 1

q

�
; i 6= j:

In the preceding equations, f�g is the indicator function.
What is more interesting is that the kernel-based estimator with an optimal sampling

scheme is also a special case of the quadratic estimator. As an example, consider m = 6;
r = (r1; r2; r3; r4; r5; r6) and

W =

0@ W (1; 1) W (1; 2) W (1; 3)
W (2; 1) W (2; 2) W (2; 3)
W (3; 1) W (3; 2) W (3; 3)

1A
 � 1 0
0 0

�
(19)

Then the quadratic estimator V̂Q = r0Wr uses only the observations fr1; r3; r5g. The
underlying sampling scheme is to sample every other observations. Obviously, the basic
idea applies to any sample size and sampling scheme.

The next theorem characterizes the �nite sample bias and variance of the quadratic
estimator3.

Theorem 1 Assume that �0s are mean zero random variables with E�4=�4� = �4, then

EV̂Q = tr(W
) and var
�
V̂Q

�
= 2tr (W
W
) + �4�(�4 � 3)

m+1X
i=1

!2ii (20)

where 
 = Err0, !ij is the (i,j)-th element of the matrix D0WD and D is the m� (m+1)
matrix:

D =

0BBB@
1 �1 0 ::: 0
0 1 �1 0 :::

:::
. . .

. . .
. . . 0

0 ::: 0 1 �1

1CCCA : (21)

3All population moments are made conditional on the stochastic volatility process �2(s); s 2 [0; 1]: For
notational convenience, we write E(�) := E

�
�j�2(s); s 2 [0; 1]

�
: Var(�) and Cov(�) are similarly de�ned.
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If we assume that � is normal as in BR (2005), we have �4 = 3 and var(V̂Q) =
2tr (W
W
) : When �4 > 3;

�4�

m+1X
i=1

!2ii � �4�
m+1X
i=1

m+1X
j=1

!2ij = tr
�
�4�D

0WDD0WD
�
� tr (W
W
) (22)

and thus
var(V̂Q) � �tr (W
W
) (23)

for some � that depends on �4 but does not depend on the matrix W: In the next section,
we assume that �4 = 3 and select the weighting matrix to minimize tr (W
W
) : When
�4 > 3; our procedure amounts to minimizing an upper bound of the �nite sample variance.

It can be shown that the formula EV̂Q�V = tr(W
)�V is the same as that given in BR
(2005, Theorems 1 and 2) for the HL and ZMA estimators. However, the variance formula
is di�erent. The main di�erence is that Q =

R 1
0 �

4
sds; the so-called quarticity introduced in

Barndor�-Nielsen and Shephard (2002), appears in BR's formula while our formula does not
involve the quarticity. The di�erence can be explained by noting that BR (2005) employ the
additional approximation: plimm!1 (1=3)mE

Pm
i=1 (r

e
i )
4 = Q while we employ the exact

relationship (1=3)mE
Pm
i=1 (r

e
i )
4 = m

Pm
i=1(E (r

e
i )
2)2: In general Q 6= m

Pm
i=1(E (r

e
i )
2)2:

Strictly speaking, the bias and variance obtained by BR (2005) are not the exact �nite
sample ones as they use large-m approximations in their proofs. In contrast, Theorem 1
gives the exact �nite sample mean and variance under the conditional normal assumption
(3).

3 The Best Quadratic Unbiased (BQU) Estimator

In this section, we �rst �nd the optimal weighting matrix for the quadratic estimator
under the �rst choice of the unbiasedness condition and then establish the multi-window
representation of the BQU estimator.

3.1 Optimal Weighting Matrix

Given Theorem 1, we seek to minimize the variance of V̂Q subject to an unbiasedness con-
dition. More speci�cally, we assume �4 = 3 and solve the following optimization problem:

min tr (W
W
) s.t. tr(W
) = V and W > 0: (24)

Here `W > 0' signi�es the positive de�niteness of W: Using the theorem by Rao (1973)
given in the appendix, we �nd that the solution is

WBQU =
V

m

�1 (25)

and the minimum variance is

var(V̂Q) =
2V 2

m
: (26)

We call the quadratic estimator with the optimal weight WBQU a best quadratic unbiased

(BQU) estimator and denote it as V̂BQU :
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If we seek a quadratic estimator with minimum mean squared error, we �rst solve the
problem:

min tr (W
W
) s.t. tr(W
) = b and W > 0; (27)

for any b: The solution is W = m�1b
�1: The bias of the resulting quadratic estimator
is b � V and the variance is 2b2=m: To minimize the MSE, we then choose b to minimize
(b� V )2 + 2b2=m: The optimal b is b0 = mV=(m + 2). The optimal W and the minimum
MSE are

W 0 =
V

m+ 2

�1; MSE0 =

2V 2

m+ 2
; (28)

respectively. Comparing the optimal MSE with the minimum variance in (26), we �nd that
the di�erence is very small when m is large. Therefore, when m is large, it does not make
much di�erence whether one uses the minimum MSE estimator or the BQU estimator. In
the rest of the paper, we focus on the BQU estimator.

Assume that �2i := Er
2
i = V=m for all i; then


 =

0BBB@
1
mV 0 � � � 0
0 1

mV � � � 0

� � � � � � . . . � � �
0 0 � � � 1

mV

1CCCA+
0BBB@
2�2� ��2� � � � 0

��2� 2�2� ��2� � � �

� � � � � � . . . � � �
0 � � � ��2� 2�2�

1CCCA ; (29)

and thus
WBQU = m

�1V 
�1 = �� (A(�))�1 (30)

where � = V=(m�2�) is the signal-to-noise ratio and

A(�) =

0BBBB@
� (�+ 2) 1 � � � 0

1 � (�+ 2) 1 � � �
::: ::: ::: :::
� � � � � � ::: 1
0 1 � (�+ 2)

1CCCCA (31)

is a m �m matrix that depends only on �: To emphasize the dependence of WBQU and

V̂BQU on �; we sometimes write them as WBQU (�) and V̂BQU (�), respectively.
The next theorem gives an explicit expression for WBQU under the assumption �

2
i =

V=m for i = 1; 2; :::;m: This assumption is realistic when volatility does not change much
within the day or the sampling is conducted in business time (e.g. Oomen (2005)). We
use this assumption to derive a closed form solution for the optimal weighting matrix. BR
(2005) also make this assumption in their derivations.

Theorem 2 Assume that �0s are mean zero random variables with �4 = 3 and �
2
i = V=m

for i = 1; 2; :::;m: The weighting matrix for the BQU estimator is given by

WBQU (i; j) =
�p

� (�+ 4)

cosh f[m+ 1� ji� jj]�g � cosh f[m+ 1� i� j]�g
sinh ((m+ 1)�)

; (32)

where

� = log

�
1

2
�+

1

2

p
4�+ �2 + 1

�
: (33)
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To understand the BQU estimator, we write

WBQU =
�
W 1
BQU +W

2
BQU

�
�
�
W 3
BQU +W

4
BQU

�
;

V̂BQU =
�
V̂ 1BQU + V̂

2
BQU

�
�
�
V̂ 3BQU + V̂

4
BQU

�
; (34)

where V̂ kBQU = r
0W k

BQUr and the elements of W
k
BQU are:

W 1
BQU (i; j) =

�p
� (�+ 4)

1

1� exp(�2 (m+ 1)�) exp (� ji� jj�) ;

W 2
BQU (i; j) =

�p
� (�+ 4)

exp(�2 (m+ 1)�)
1� exp(�2 (m+ 1)�) exp (ji� jj�) ;

W 3
BQU (i; j) =

�p
� (�+ 4)

1

1� exp(�2 (m+ 1)�) exp(�(i+ j)�);

W 4
BQU (i; j) =

�p
� (�+ 4)

exp(�2 (m+ 1)�)
1� exp(�2 (m+ 1)�) exp ((i+ j)�) : (35)

It now follows that WBQU (i; j) =WBQU (m+1� i;m+1� j); which ensures the invariance
of the BQU estimator to data reversibility. This invariance property means that the BQU
estimator has the same value no matter whether it is applied to the original sample frig
or its reversed version fsig with si = rm+1�i: If ri is covariance stationary, then invariance
property is desirable because cov(ri; rj) = cov(si; sj) for all i and j:

The sum W 1
BQU + W

2
BQU is a Toeplitz matrix while the sum of W 3

BQU + W
4
BQU is

a Hankel matrix. Note that a Toeplitz matrix is a matrix with constant values along
negative-sloping diagonals while the Hankel matrix is a matrix with constant values along
positive-sloping diagonals. A quadratic estimator with a Toeplitz matrix as the weight can
be written as a kernel-based estimator. To see this, we use V̂ 1BQU as an example. Some
algebraic manipulations show that

V̂ 1BQU =
m�1X

s=�(m+1)
w(s)
̂s (36)

where

w(s) =
�p

� (�+ 4)

exp (�� jsj)
1� exp(�2 (m+ 1)�) : (37)

Therefore, V̂ 1BQU is a kernel-based estimator with an exponential type kernel, i.e. k�(x) =
1=(2�) exp(�� jxj) for � > 0: The exponential kernel k�(x) is positive de�nite because
k�(r � s) is the covariance kernel of the OU process fZtg de�ned by dZt = ��Zt + dBt
where Bt is the standard Brownian motion. In other words, k�(r � s) = EZrZs: Similarly,
we can show that V̂ 2BQU is a kernel-based estimator with an exponential type kernel.

Exponential kernels of this type have not been used before in long run variance estima-
tion and appear in spectral density estimation only in the Abel estimate (c.f. Hannan, 1970,
p. 279). The long run variance estimator that is closest to V̂ 1BQU and V̂

2
BQU is the kernel-

based estimator proposed by Phillips, Sun and Jin (PSJ, 2005a, 2005b). PSJ exponentiate
the conventional kernels and use the resulting kernels in the long run variance estimation
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without truncation. As the PSJ estimator, the kernel weight w (s) used in V̂ 1BQU decays to
zero at an exponential rate and there is no truncation lag. Note that �! 0 as m!1: It
is easy to show that w(s) becomes more concentrated around zero as � decreases. In e�ect,
the action of � shrinking to zero plays a role similar to that of a bandwidth parameter in
that very high order autocovariances are progressively downweighted as m!1:

Note thatW 3
BQU+W

4
BQU is a special Hankel matrix as its (i; j)-th entry can be expressed

as aiaj for some ai: Given this, V̂
3
BQU and V̂

4
BQU can be written as

V̂ 3BQU =
�p

� (�+ 4)

1

1� exp(�2 (m+ 1)�)

 
mX
i=1

ri exp(��i)
!2
;

V̂ 4BQU =
�p

� (�+ 4)

1

1� exp(�2 (m+ 1)�)

 
mX
i=1

ri exp(�(m+ 1� i)�)
!2
: (38)

So both V̂ 3BQU and V̂
4
BQU are squares of a weighted sum of the observed returns. In V̂ 3BQU

more weights are attached to the �rst few observations while in V̂ 4BQU more weights are

attached to the last few observations. As a result, the sum V̂ 3BQU+ V̂
4
BQU e�ectively ignores

the middle part of the observations and captures mainly the edge e�ect.
We proceed to relate the BQU estimator to the maximum likelihood estimator when

the noise is normal. Under the normality assumption, the log-likelihood function (ignoring
the constant term) is

logL = �1
2
log j
j �

�
1

2
r0
�1r

�
: (39)

It can be rewritten as

logL = �m
2
log �2� �

1

2
log j�A(�)j+

�
1

2�2�
r0 (A(�))�1 r

�
; (40)

or

logL = �m
2
logmV �� 1

2
log j�A(�)j+

�
1

2mV �
r0 (A(�))�1 r

�
: (41)

As a result, the MLE's of �2� and V satisfy:

�̂2�;MLE = �m�1r0
�
A(�̂MLE)

��1
r (42)

V̂MLE = ��̂MLEr
0
�
A(�̂MLE)

��1
r (43)

where �̂MLE = V̂MLE=(m�̂
2
�;MLE): The above equations are highly nonlinear and di�cult

to solve explicitly. However, they could be solved iteratively by using the following steps:

(i) Choose a starting value �(0) for � and plug it into (42) and (43) to get V (1) and
�
�2�
�(1)

:

(ii) Compute �(1) = V (1)=(m
�
�2�
�(1)
) and plug �(1) into (42) and (43) to get updated values

V (2) and
�
�2�
�(2)

: (iii) Repeat (ii) until the sequence (V (k);
�
�2�
�(k)

) converges. It is now
obvious that the BQU estimator is the �rst iterative step in solving the MLE problem when
the true value of � is used as the starting value. The feasible BQU estimator given at the
end of this section is the �rst iterative step when a consistent estimate of � is used.
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3.2 Multi-Window Representation

Recall that WBQU = m
�1V 
�1: Since 
�1 is a positive de�nite symmetric matrix, it has

a spectral decomposition:


�1 =
mX
k=1

��1k h(k)
�
h(k)

�0
(44)

where �k is the eigenvalue of 
 and h
(k) is the corresponding eigenvector. It now follows

that the BQU estimator V̂BQU can be written as

V̂BQU = m
�1V

mX
k=1

��1k r0h(k)
�
h(k)

�0
r: (45)

With analytical expressions for the eigenvalues and eigenvectors, we can obtain an
alternative representation of the BQU estimator in the next theorem.

Theorem 3 Assume that �0s are mean zero random variables with �4 = 3 and �
2
i = V=m

for i = 1; 2; :::;m: The BQU estimator V̂BQU can be represented as

V̂BQU =

mX
k=1

wBQU;k

 
mX
`=1

r`h
(k)
`

!2
(46)

where

wBQU;k =
��

�+ 2� 2 cos k�
(m+1)

� (47)

and

h(k) = (h
(k)
1 ; :::; h

(k)
m )

0 =

 r
2

m+ 1
sin

�k

m+ 1
; :::;

r
2

m+ 1
sin `

�k

m+ 1
; :::

!0
(48)

is an eigenvector of 
 with the corresponding eigenvalue

�k = �
2
�

�
�+ 2� 2 cos k�

(m+ 1)

�
: (49)

In addition,
�
h(k)

	m
k=1

forms a complete orthonormal system in Rm:

Theorem 3 shows that the BQU estimator has a multi-taper or multi-window represen-
tation, a term we now clarify. For a given stationary and mean zero time series x1; x2; :::; xT ;
a multi-window estimator of its spectral density at frequency �0 is de�ned to be

Ŝ(�0) =

KX
k=1

!k

�����
TX
t=1

xtv
(k)
t exp(��0

p
�1)

�����
2

(50)

where !k is a constant, v
(k) = (v

(k)
1 ; v

(k)
2 ; :::; v

(k)
T ) is a sequence of constants called a data

window (or taper), and K is the number of data windows used. In the multi-window

10



spectral analysis of Thomas (1982), K is normally chosen to be much less than the sample
size. According to this de�nition, the BQU estimator V̂BQU is a multi-window estimator at
frequency �0 = 0. The underlying data window is h

(k) and the number of data windows is
m. Since the window weight wBQU;k depends on the data generating process, V̂BQU belongs
to the class of multi-window estimators with adaptive weighting.

The geometrical interpretation of the multi-window representation is that the return
series r is projected onto the subspace spanned by the windows h(k); k = 1; 2; :::;m: Since�
h(k)

	m
k=1

is a complete orthonormal system in Rm; we may write

r =

mX
k=1

�(k)h(k); where �(k) =
�
r; h(k)

�
(51)

and (�; �) is the usual inner product in Rm: By Parseval's identity, we have
Pm
i=1 r

2
i =Pm

k=1

�
�(k)

�2
: Note that

Pm
i=1 r

2
i is the classical quadratic variation estimator of the real-

ized volatility. So the quadratic variation estimator is the simple unweighted summation

of
�
�(k)

�2
: In contrast, the BQU estimator is a weighted sum of

�
�(k)

�2
; i.e.

V̂BQU =

mX
k=1

wBQU;k

�
�(k)

�2
: (52)

Some simple algebraic manipulations show that

E
�
�(k)

�2
= tr(h(k)0
h(k)) = �ktr

�
(h(k)0(h(k)0

�
= �k (53)

and when �4 = 3;

var

��
�(k)

�2�
= 2tr

�
h(k)h(k)

0

h(k)h(k)

0


�
= 2

�
tr(h(k)0
h(k))

�2
= 2�2k (54)

and

cov

 �
�(k1)

�2
;

��
�(k2)

�2�2!
(55)

= Er0h(k1)h(k1)0rr0h(k2)h(k2)0r �
�
Er0h(k1)h(k1)0r

��
Er0h(k1)h(k1)0r

�
= 2tr(h(k1)h(k1)0
h(k2)h(k2)0
) + tr(h(k1)h(k1)0
)tr(h(k2)h(k2)0
)� �k1�k2
= 0;

where we have used: for any two m�m matrices W1 and W2;

E
�
r0W1r

� �
r0W2r

�
= 2tr(W1
W2
) + tr(W1
)tr(W2
): (56)

Therefore, f
�
�(k)

�2g are uncorrelated and each of them has mean �k and variance 2�
2
k: So,

for each k; mwBQU;k
�
�(k)

�2
is a unbiased estimator of V but it is inconsistent because its

variance does not die out as m ! 1: By averaging over the m uncorrelated terms, the
BQU estimator becomes consistent.
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A great virtue of the multi-window formulation is that V̂BQU may be computed in real
time using fast Fourier transforms. It follows from Theorem 3 that

V̂BQU =
1

2 (m+ 1)

mX
k=1

wBQU;k

 
2m+2X
`=1

~r
(k)
` sin `

2�k

2 (m+ 1)

!2
(57)

where

~r(k) =

�
(r1; r2; :::; rm; 0;�r1;�r2; :::;�rm; 0) k is odd,
(r1; r2; :::; rm; 0; r1; r2; :::; rm; 0) k is even.

(58)

Note that
P2m+2
`=1 ~r

(k)
` sin `2�k=(2(m + 1)) is the imaginary part of the discrete Fourier

transform of the augmented sequence ~r(k): To compute V̂BQU ; we can �rst obtain the
discrete Fourier transforms of the two series given in (58) and then take the weighted sum
of these discrete Fourier transforms.

The BQU estimator V̂BQU depends on the unknown quantity �; the signal-to-noise
ratio. In practice, we can employ a consistent estimator ~� of � to implement the BQU
estimator. We denote the resulting feasible BQU estimator as V̂BQU (~�). Let ~V and ~�2� be

consistent estimators of V and �2�; respectively, we can take
~� to be ~� = ~V =(m~�2�): When

~V � V = Op
�
m�1=4� and ~�2� � �2� = Op �m�1=2� ; we have ~� � � = O �m�5=4� : Using the

multi-window representation, we can establish the asymptotic normality of V̂BQU (�) and

V̂BQU (~�) in the next theorem.

Theorem 4 Assume that �0s are mean zero random variables with �4 = 3 and �
2
i = V=m

for i = 1; 2; :::;m: If ~�� � = O
�
m�5=4� ; then as m!1

(i)
p
m(V̂BQU (�)� V )!d N(0; 2V

2);

(ii) 4
p
m(V̂BQU (~�)� V ) = 4

p
m
�
~V � V

�
+ op (1) :

Theorem 4(i) shows that the infeasible BQU estimator converges to V at the rate of
1=
p
m: This rate is faster than the best nonparametric rate 1= 4

p
m: Unfortunately and not

surprisingly, this rate can not be achieved in practice. Theorem 4(ii) shows that the feasible
estimator V̂BQU (~�) converges to V at the rate of only 1= 4

p
m: In addition, 4

p
m(V̂BQU (~�)�V )

and 4
p
m( ~V (�) � V ) are asymptotically equivalent in large samples. This suggests that

there is no asymptotic gain in using the feasible BQU estimator V̂BQU (~�). However, in

�nite samples, the feasible BQU estimator V̂BQU (~�) may have a smaller variance than the
initial estimator ~V : Simulation results not reported here show that this is the case when ~V
is the ZMA estimator.

4 The BQU Estimator Under Alternative Unbiasedness Con-

ditions

The unbiasedness condition tr(W
) = V in the previous section relies crucially on prior
information on �2� and V: When we employ some preliminary estimates ~�

2
� and

~V to im-

plement the BQU estimator V̂BQU ; the unbiasedness condition becomes tr(W ~
) = ~V : Due
to the estimation uncertainty, the resulting BQU estimator is not unbiased any more. In

12



this section, we take advantage of the structure of 
 and impose alternative unbiasedness
conditions. These new conditions ensure the unbiasedness of the BQU estimator regardless
of the values of �2� and V:

When �2i = V=m for i = 1; 2; :::;m; the �nite sample mean of the quadratic estimator
V̂Q can be written as

V
1

m

mX
i=1

W (i; i)�
 

mX
i=2

W (i; i� 1) +
m�1X
i=1

W (i; i+ 1)� 2
mX
i=1

W (i; i)

!
�2�

= 1=mtr(W ) � V � tr(W�) � �2� (59)

where � = A(0) is a constant matrix and A (�) is de�ned in (31). To ensure unbiasedness
without using any information on V and �2�; we can let

tr(W ) = m and tr(W�) = 0: (60)

We now minimize tr(W
W
) overW subject to the positive de�niteness ofW and the
above two conditions. Using the Theorem of Rao (1973) given in the appendix, we �nd the
solution is

W �
BQU = 


�1�2� (c1I + c2�)�
2
�


�1; (61)

where c1 and c2 satisfy

c1�
4
�tr(


�1
�1) + c2�
4
�tr(


�1�
�1) = m; (62)

c1�
4
�tr
�

�1
�1�

�
+ c2�

4
�tr
�

�1�
�1�

�
= 0:

We call the quadratic estimator with weight W �
BQU the BQU

� estimator and denote it

as V̂ �BQU : The next theorem gives a representation of this estimator.

Theorem 5 Assume that �0s are mean zero random variables with �4 = 3 and �
2
i = V=m

for i = 1; 2; :::;m: The BQU� estimator can be represented as

V̂ �BQU =
mX
k=1

w�BQU;k

 
mX
`=1

r`h
(k)
`

!2
(63)

where

w�BQU;k =

�
�+ 2� 2 cos k�

(m+ 1)

��2 �
c1 � c2

�
2� 2 cos k�

(m+ 1)

��
(64)

c1 =
m�2;2

�2;0�2;2 � �22;1
; c2 =

m�2;1�
�2;0�2;2 � �22;1

� (65)

and

�2;j =
mX
k=1

�
�+ 2� 2 cos k�

(m+ 1)

��2�
2� 2 cos k�

(m+ 1)

�j
; j = 0; 1; 2: (66)
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Theorem 5 shows that the BQU� estimator V̂ �BQU is also a multi-window quadratic

estimator. The di�erence between V̂ �BQU and V̂BQU is that they impose di�erent weights

on the data windows. All the qualitative results for V̂BQU in Section 3.2 remain valid for

V̂ �BQU : In particular, V̂
�
BQU can be computed using fast Fourier transforms.

As the BQU estimator V̂BQU ; the BQU
� estimator V̂ �BQU also depends on the unknown

quantity �: Plugging in a consistent estimator ~� of �; we can obtain the feasible version
of V̂ �BQU : We denote the feasible estimator as V̂

�
BQU (

~�): The next theorem establishes the

asymptotic normality of both V̂ �BQU (�) and V̂
�
BQU (

~�):

Theorem 6 Assume that �0s are mean zero random variables with �4 = 3 and �
2
i = V=m

for i = 1; 2; :::;m: If ~�� � = O
�
m�5=4� ; then, as m!1

(i) m1=4
�
V̂ �BQU (�)� V

�
!d N(0; 8V

2
q
V=�2�);

(ii) m1=4
�
V̂ �BQU (

~�)� V
�
!d N(0; 8V

2
q
V=�2�):

It follows from Theorem 6 that the feasible estimator V̂ �BQU (
~�) converges to the true

realized variance at the rate of m�1=4; the best attainable rate in the present context.
Furthermore, the theorem shows that the feasible and infeasible estimators are asymptot-
ically equivalent. The estimation uncertainty in the pilot estimator ~� does not a�ect the
asymptotic distribution of V̂ �BQU (

~�): This result is analogous to that for a two-step estima-
tor where the estimation uncertainty in the �rst step does not factor into the asymptotic
variance of the second step estimator.

Under the normality assumption, it can be shown that the MLE satis�es

m1=4
�
V̂MLE � V

�
!d N(0; 8V

2
q
V=�2�): (67)

See, for example, BNHLS (2006). Comparing this with Theorem 6(ii), we �nd that the
feasible BQU estimator V̂ �BQU (

~�) has the same asymptotic variance as the MLE. There-

fore, the estimator V̂ �BQU (
~�) is asymptotically as e�cient as the MLE under the normality

assumption. The advantage of V̂ �BQU (
~�) is that it is computationally simpler and does not

rely on the normality assumption.

5 Finite Sample Performance

In this section, we �rst compare the �nite sample performances of the BQU and BQU�

estimators with those of the HL, ZMA, BNHLS and MS estimators when the model is
correctly speci�ed and model parameters are assumed to be known. This comparison is
used as a benchmark. We then compare the �nite sample performances of these estimators
when the model is possibly misspeci�ed and model parameters have to be estimated. The
second comparison allows us to evaluate the performances of di�erent estimators in realistic
situations.
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5.1 Theoretical Comparison

For the theoretical comparison, we assume

pt =
p
V Bt + ��� (68)

where Bt is a standard Brownian motion and �t is iid N(0,1) and independent of Bt:
We calibrate the parameters V and �2� and the sample size based on the following three
stocks: Goldman Sachs (GS), SBC communications (SBC) and EXXON Mobile Corpora-
tion (XOM). These three stocks are also considered in BR(2005) and are thought to be
representative of the median and extreme features of the S&P100 stocks. Using the TAQ
data set, BR (2004b) obtain parameter values for �2� and V and sample size m: They are
reproduced in Table 1 and assumed to be the true parameter values in this subsection.

Table 1: Parameter Values for GS, SBC and XOM

GS SBC XOM

�2� 0:87� 10�7 1:89� 10�7 2:10� 10�7
V 0:00042 0:00041 0:00018
m 2247 2034 2630

We compare six estimators: HL, ZMA, BNHLS, MS, BQU and BQU� estimators. For
the HL and ZMA estimators, we use Theorem 1 and choose q to minimize

q� = argmin
q
(tr(W
)� V )2 + 2tr (W
W
) (69)

where W is given in (15) and (16), respectively. The minimum value of the objective
function gives us the minimum MSE. For the BNHLS and MS estimators, we choose q
according to equations (11) and (13), respectively. By construction, the biases of these two
estimators are zero and their minimum MSE's are 2tr (W
W
). To obtain the BQU and
BQU� estimators, we plug the values of � and m into Theorems 3 and 5, respectively. The
minimum MSE of V̂BQU is 2V

2=m while that of V̂ �BQU is 2mc1�
4
�:

Table 2 reports the biases, standard deviations and root mean squared errors (RMSE)
of the six di�erent estimators. The table shows that the BQU estimator V̂BQU has the

smallest RMSE among the six estimators. The RMSE of V̂BQU is less than 1/3 of those
of the HL and ZMA estimators for all three stocks. In terms of RMSE, the second best
estimator is the BQU� estimator V̂ �BQU ; whose RMSE is smaller than that of the BNHLS
estimator by 15:75%; 11:90% and 5:55%; respectively for GS, SBC and XOM. The BNHLS
estimator outperforms the MS estimator by a small margin. Finally, the table shows that
the BNHLS and MS estimators dominate the HL and ZMA estimators.

The RMSE's in Table 2 are close to those in BR (2005). The data-driven optimal
truncation lags are also close to those given there. While the optimal q's for both the HL
and ZMA estimators in BR(2005) are 13, 14 and 15 respectively, the optimal q's we obtain
for these two estimators are 15, 15 and 16, respectively. The small di�erence in q does
not matter very much as the RMSE as a function of q is very 
at in the neighborhood of
q = 14: These observations suggest that the di�erence in the variance formulae is of little
practical importance.
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Table 2: Finite Sample Performances of Di�erent Estimators (�10�4)
GS SBC XOM

Bias STD RMSE Bias STD RMSE Bias Std RMSE
HL -0.2817 0.3962 0.4862 -0.2752 0.4093 0.4932 -0.1131 0.1679 0.2025
ZMA -0.3044 0.3950 0.4987 -0.2997 0.4077 0.5060 -0.1221 0.1672 0.2071

BNHLS 0.0000 0.2946 0.2946 0.0000 0.3306 0.3306 0.0000 0.1483 0.1483
MS 0.0000 0.2996 0.2996 0.0000 0.3380 0.3380 0.0000 0.1497 0.1497

BQU 0.0000 0.1253 0.1253 0.0000 0.1286 0.1286 0.0000 0.0496 0.0496
BQU� 0.0000 0.2624 0.2624 0.0000 0.2978 0.2978 0.0000 0.1430 0.1430

It is important to point out that the RMSE comparison is not feasible as we do not
know the true values of �2� and V . In practice, we have to obtain preliminary estimates of
�2� and V before implementing each of the six estimators. The use of preliminary estimates
introduces additional randomness into each estimator in �nite samples.

To deepen our understanding of the quadratic estimators, we plot the weighting matrix
W (i; j) for each estimator against (i; j). We choose SBC as an example since it represents
the median of the S&P 100 stocks in terms of the ratio �2�=V . The optimal q for both
the HL and ZMA estimators is q� = 15 while the optimal q's for the BNHLS and MS
estimators are q� = 5 and 3; respectively. Since the surfaces are symmetric front to back,
Figures 1(a){3(b) plot the front of each surface. Four observations can be made from these
�gures. First, most of the diagonal elements of W are close to one for the estimators
V̂HL; V̂ZMA, V̂BNHLS ; V̂MS and V̂

�
BQU : This observation remains valid for other parameter

con�gurations. In contrast, for the BQU estimator V̂BQU ; the diagonal elements of WBQU

are less than 0.5. Figures not reported here reveal that these diagonal elements are very
sensitive to the parameter con�guration. This is not surprising as the BQU estimator V̂BQU
relies on precise information on � to ensure its unbiasedness and consistency. Second, most
of the volume of the surface lies in the ridge whose center is the straight line from (1; 1) to
(m;m). The surface of the BQU� estimator is more concentrated than the HL and ZMA
estimators but less concentrated than the BNHLS and MS estimators. De�ne the e�ective
truncation lag as q such that W (i; j) is essentially zero for ji� jj > q; then the e�ective
truncation lag for the �ve estimators V̂MS ; V̂BNHLS ; V̂

�
BQU ; V̂HL and V̂ZMA are 3, 5, 8,

15 and 15, respectively. Third, these �gures illustrate that the kernel weight in the HL,
ZMA, BNHLS and MS estimators decays polynomially and becomes zero after certain lag
while the weight in the BQU� estimator decays exponentially and only approaches zero.
The di�erence in the decaying rate and e�ective truncation lag implies that the HL, ZMA,
BNHLS and MS estimators may be suboptimal. Finally, compared with the HL estimator
which entails no edge e�ect, the ZMA estimator entails a large edge e�ect with the weights
assigned to the �rst few cross products (rirj for i; j � 15) being substantially smaller.
In contrast, the edge e�ect entailed by the BNHLS, MS, BQU and BQU� estimators is
relatively small as it applies to fewer observations at the beginning and towards the end of
the time series.
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5.2 Simulation Evidence

To compare the �nite performance of di�erent estimators in more realistic situations, we
consider the following stochastic volatility model:

dpet = �dt+ �tdB1t; �t =
p
V exp(�0 + �1�t);

d�t = ��t + dB2t; cov(dB1t; dB2t) = �;

pt = p
e
t + ���t

where B1t and B2t are correlated standard Brownian motions. This model is also simulated
in Goncalves and Meddahi (2004), Huang and Tauchen (2005), and BNHLS (2006).

In our simulation experiment, we consider two sets of parameter values for �; �; �0; �
and � :

� = 0; �1 = 0; � = �0:025; �0 = 0; � = �0:3:

and
� = 0:03; �1 = 0:125; � = �0:025; �0 = �21=2�; � = �0:3:

Under the �rst set of parameter values, the model reduces to a model with constant volatil-
ity. Under the second set of parameter values, which is taken from BNHLS (2006), the
model is a genuine stochastic volatility model. The constant volatility model satis�es the
assumptions of the two BQU estimators while the stochastic volatility model does not. The
stochastic volatility model is used to check the robustness of the BQU estimators to the
deviation from maintained assumptions.

As in the theoretical comparison, the values of V and �2� are chosen to match those in
Table 1. It is easy to show that for the DGP considered, E(�2t ) = V: For each value of V
in Table 1; we also set the corresponding �2� to be 10 times those in Table 1 and obtain
models with di�erent levels of noise contaminations. The sampling frequency is chosen to
match the m values in Table 1. More speci�cally, we normalize one second to be 1=23400
and simulate over the unit interval [0,1], which is thought to cover 6:5 hours. The e�cient
log-process pet is generated using an Euler scheme based on 23400 intervals. Given the price
process pt; t = 1; 2; :::; 23400; we sample every ` points and obtain the sample observations
p1; p1+`; p1+2`; ::::: where l = [23400=m]:

To check the robustness of the BQU and BQU� estimators to the noise distribution,
we consider three distributions for �t : �t s iidN(0; 1), �t s iid

�
�21 � 1

�
=
p
2 where �21

is the �2 distribution with one degree of freedom and �t s iid t5=
p
5=3 where t5 is the

t distribution with �ve degrees of freedom. The latter two distributions are considered
because they exhibit asymmetry and heavy tails, respectively.

To implement the HL and ZMA estimators, we �rst obtain pilot estimates of V and
�2�: The pilot estimate

~V we use is the ZMA estimate with q set equal to 10. The pilot
estimate ~�2� is obtained as follows:

~�2� =
1

2m

mX
t=1

r2t �
~V

2m
: (70)

The consistency of ~�2� for �
2
� follows immediately from the consistency 1=(2m)

P
r2t for �

2
�

as m ! 1. The second term in the above expression is a �nite sample adjustment and
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vanishes as m ! 1: Next, we plug the pilot estimates ~�2� and ~V into (69) and solve the
minimization problem to obtain ~q� for the HL and ZMA estimators. We compute the HL
and ZMA estimators using their respective data-driven q's:

To implement the BNHLS and MS estimators, we use the formulae in equations (9){
(13). These formulae call for pilot estimates of V and �2�: In the simulation study, we use

the ZMA estimate V̂ZMA as the pilot estimate of V and obtain the pilot estimate of �2�
by plugging V̂ZMA into (70). Finally, given the data-driven BNHLS estimate V̂BNHLS ; we
estimate the signal-to-noise ratio by

�̂BNHLS =
V̂BNHLS

m� 1=(2m)
�Pm

t=1 r
2
t � V̂BNHLS

� = 2V̂BNHLS�Pm
t=1 r

2
t � V̂BNHLS

� : (71)

The feasible BQU and BQU� estimators are given by V̂BQU (�̂BNHLS) and V̂
�
BQU (�̂BNHLS);

respectively.
We use 10000 replications. Tables 3-4 report the �nite sample bias, standard deviation

and RMSE of each estimator. We report the cases when the noises follow normal and t
distributions. To save space, we omit the table for chi-squared noises as the performance
ranking of di�erent estimators is the same as that in Tables 3-4. The reported statistics
are computed by binning the estimates according to the value of

R 1
0 �

2
sds; calculating bias,

standard deviation and RMSE within each bin, and then averaging across the bins, weighted
by the number of elements in each bin.

We now discuss the simulation results. First, under the assumption of constant volatil-
ity, the BQU� estimator V̂ �BQU (�̂BNHLS) has the smallest RMSE among all estimators and
for all model parameters considered. Compared with the HL and ZMA estimators, the
BQU� estimator achieves a RMSE reduction of 30% to 40% regardless of the level of noise
contaminations and their distributions. Compared with the BNHLS, MS and BQU estima-
tors, the BQU� estimator achieves a RMSE reduction of 5% to 10% under di�erent model
con�gurations. The superior RMSE performance arises because the BQU� estimator has a
smaller absolute bias and variance than other estimators. Comparing with Table 1, we �nd
that the RMSE of the BQU� estimator is close to that of the infeasible RMSE, re
ecting
the asymptotic result given in Theorem 6. Simulation results not reported here show that
the BQU� estimator is not sensitive to the plug-in value of � used. More speci�cally, let
�̂ZMA be de�ned in the same way as �̂BNHLS but with V̂BNHLS replaced by V̂ZMA in equa-
tion (71), then the �nite sample RMSEs of V̂ �BQU (�̂ZMA) and V̂

�
BQU (�̂BNHLS) are almost

indistinguishable.
Second, among the stochastic volatility models, the BQU� estimator outperforms other

estimators in terms RMSE in 10 out of 12 cases reported in Tables 3-4. The two exceptions
are stochastic volatility models with higher level of noise contaminations and with model
parameters calibrated to XOM. In these two cases �� = 1:449 1 � 10�3; so the standard
deviation of the noise is 0.1% of the value of the asset price. This level of noise contamina-
tions may be regarded as high indeed. Even in the two worst scenarios, the RMSE of the
BQU� estimator is lower than those of the HL and ZMA estimators and is at most 15%
higher than those of the BNHLS and MS estimators.

Third, for both constant volatility models and stochastic volatility models, the RMSE
performances of the BNHLS, MS and BQU estimators are close to each other in almost
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all cases. Comparing the results for constant volatility models with Table 1, we �nd that
the estimation uncertainty in q̂ has a very small e�ect on the variances of the BNHLS and
MS estimators. This result is consistent with the �nding in BNHLS (2006). However, due
to the estimation uncertainly in �̂BNHLS ; the variance of V̂BQU (�̂BNHLS) is substantially
in
ated. This is consistent with Theorem 4.

6 Conclusions

In this paper we have investigated the best quadratic unbiased estimators of the integrated
variance in the presence of market microstructure noise. It is shown that the feasible BQU
estimators are asymptotically normal with convergence rate m�1=4; the best attainable rate
for nonparametric variance estimators. More importantly, we show that one of our feasible
BQU estimators is asymptotically as e�cient as the maximum likelihood estimator in the
constant volatility plus normal noise model.

The present study can be extended in several ways, and we brie
y discuss some possi-
bilities as follows. First, our results are obtained under the assumption that the mean of
the intra-daily return is zero. To obtain a BQU estimator that is invariant to the unknown
but time invariant mean, we need to impose the conditions that each row of the weighting
matrix sums up to zero. Using the Theorem of Rao (1973), we can easily �nd the optimal
weighting matrix for this case. Second, throughout the paper, we have assumed that the
market microstructure noise is independent across time. Our theoretical framework can be
extended to allow for serial dependence but an analytical expression for the optimal weight-
ing matrix and an explicit multi-window representation of the resulting BQU estimator may
not be readily available. Alternatively, if the noise is assumed to be k-dependent, we can
�rst sample every k data points, construct the BQU estimator based on each subsample,
and then take an average of the subsampled BQU estimators. Finally, we have assumed
constant volatility throughout the paper. Although the assumption may be realistic for
some stocks when the sampling is conducted in calendar time and for all stocks when the
sampling is conducted in business time, it is desirable to relax this assumption.
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Figure 1(a): Graph of WHL(i; j) against (i; j)
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Figure 1(b): Graph of WZMA(i; j) against (i; j)

20



0
10

20
30

40
50

0
10

20
30

40
50

0

0.2

0.4

0.6

0.8

1

ij

W
(i,

j)

Figure 2(a): Graph of WBNHLS(i; j) against (i; j)
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Figure 2(b): Graph of WMS(i; j) against (i; j)
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Figure 3(a): Graph of WBQU (i; j) against (i; j)
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Figure 3(b): Graph of W �
BQU (i; j) against (i; j)
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Table 3: Finite Sample Performances of Di�erent Estimators with Normal Noise (10�4)
GS SBC XOM

Bias Std RMSE Bias Std RMSE Bias Std RMSE

Constant Volatility, Lower Contamination

HL -0.2514 0.4052 0.4768 -0.2626 0.4011 0.4794 -0.0876 0.1756 0.1962
ZMA -0.2336 0.4115 0.4731 -0.2376 0.4124 0.4759 -0.0884 0.1715 0.1929

BNHLS -0.0168 0.2824 0.2829 -0.0292 0.3145 0.3158 -0.0158 0.1458 0.1466
MS -0.0112 0.2949 0.2950 -0.0214 0.3227 0.3234 -0.0110 0.1456 0.1460

BQU -0.0138 0.2792 0.2795 -0.0240 0.3129 0.3138 -0.0132 0.1478 0.1484
BQU� 0.0027 0.2577 0.2577 0.0033 0.2888 0.2888 0.0009 0.1388 0.1388

Constant Volatility, Higher Contamination
HL -0.2352 0.4379 0.4970 -0.3354 0.4861 0.5905 -0.0640 0.6032 0.6065

ZMA -0.2225 0.4375 0.4908 -0.1935 0.4988 0.5350 -0.0450 0.2650 0.2688
BNHLS -0.0596 0.4046 0.4089 -0.0874 0.4704 0.4784 -0.0472 0.2399 0.2445

MS -0.0429 0.4094 0.4116 -0.0649 0.4775 0.4818 -0.0339 0.2445 0.2468
BQU -0.0509 0.4108 0.4139 -0.0776 0.4777 0.4839 -0.0431 0.2433 0.2470
BQU� -0.0037 0.3882 0.3882 -0.0022 0.4580 0.4580 0.0007 0.2346 0.2346

Stochastic Volatility, Lower Contamination
HL -0.2030 1.0015 1.0226 -0.2110 1.0123 1.0351 -0.0300 0.4258 0.4265

ZMA -0.1732 1.0295 1.0440 -0.1737 1.0347 1.0492 -0.0300 0.4210 0.4217
BNHLS -0.0018 0.4961 0.4965 -0.0072 0.5404 0.5405 0.0116 0.2364 0.2367

MS 0.0025 0.4993 0.4995 0.0006 0.5420 0.5420 0.0159 0.2390 0.2396
BQU -0.0336 0.6012 0.6040 -0.0038 0.5386 0.5387 0.0131 0.2357 0.2360
BQU� 0.0138 0.4784 0.4792 0.0256 0.5288 0.5294 0.0341 0.2276 0.2302

Stochastic Volatility, Higher Contamination
HL -0.1652 1.0377 1.0508 -0.3043 1.3822 1.4176 -0.1217 1.1695 1.1757

ZMA -0.1520 1.0463 1.0570 -0.1105 1.0785 1.0833 0.0456 0.5106 0.5128
BNHLS -0.0103 0.6540 0.6541 -0.0154 0.7332 0.7329 0.0422 0.3523 0.3547

MS 0.0029 0.6528 0.6528 0.0051 0.7455 0.7458 0.0561 0.3538 0.3580
BQU -0.0041 0.6540 0.6540 -0.0085 0.7348 0.7344 0.0441 0.3566 0.3592
BQU� 0.0477 0.6326 0.6342 0.0731 0.7037 0.7072 0.1025 0.3957 0.4089
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Table 4: Finite Sample Performances of Di�erent Estimators with t-Noise (10�4)

GS SBC XOM
Bias Std RMSE Bias Std RMSE Bias Std RMSE

Constant Volatility, Lower Contamination
HL -0.2504 0.4015 0.4731 -0.2611 0.3981 0.4760 -0.0881 0.1752 0.1961

ZMA -0.2343 0.4105 0.4726 -0.2388 0.4111 0.4754 -0.0890 0.1723 0.1939
BNHLS -0.0204 0.2782 0.2789 -0.0305 0.3218 0.3232 -0.0166 0.1468 0.1477

MS -0.0149 0.2900 0.2903 -0.0219 0.3282 0.3289 -0.0120 0.1464 0.1468
BQU -0.0172 0.2753 0.2758 -0.0254 0.3201 0.3211 -0.0139 0.1487 0.1494
BQU� 0.0008 0.2592 0.2592 0.0016 0.2973 0.2973 -0.0002 0.1403 0.1403

Constant Volatility, Higher Contamination
HL -0.2314 0.4358 0.4934 -0.3571 0.5189 0.6299 -0.0488 0.6163 0.6182

ZMA -0.2214 0.4379 0.4906 -0.1922 0.5035 0.5389 -0.0483 0.2696 0.2739
BNHLS -0.0568 0.4047 0.4087 -0.0862 0.4845 0.4921 -0.0496 0.2404 0.2455

MS -0.0433 0.4063 0.4085 -0.0625 0.4937 0.4976 -0.0363 0.2461 0.2488
BQU -0.0482 0.4106 0.4134 -0.0763 0.4914 0.4972 -0.0457 0.2434 0.2477
BQU� 0.0003 0.3911 0.3910 -0.0023 0.4711 0.4710 -0.0032 0.2333 0.2333

Stochastic Volatility, Lower Contamination
HL -0.2055 0.8528 0.8771 -0.2144 0.8491 0.8759 -0.0324 0.3510 0.3525

ZMA -0.1805 0.8745 0.8926 -0.1797 0.8599 0.8782 -0.0330 0.3491 0.3506
BNHLS 0.0039 0.4303 0.4304 -0.0010 0.4674 0.4675 0.0167 0.2174 0.2183

MS 0.0085 0.4315 0.4318 0.0054 0.4698 0.4700 0.0202 0.2192 0.2203
BQU -0.0031 0.5473 0.5476 0.0024 0.4648 0.4650 0.0182 0.2163 0.2173
BQU� 0.0242 0.4149 0.4157 0.0310 0.4394 0.4407 0.0386 0.1984 0.2023

Stochastic Volatility, Higher Contamination
HL -0.1666 0.8832 0.8988 -0.3082 1.1115 1.1536 -0.0917 0.9461 0.9512

ZMA -0.1566 0.8961 0.9095 -0.1099 0.9388 0.9453 0.0411 0.4263 0.4289
BNHLS -0.0043 0.6018 0.6021 -0.0093 0.6838 0.6842 0.0491 0.3239 0.3281

MS 0.0088 0.6125 0.6128 0.0105 0.6779 0.6782 0.0610 0.3248 0.3310
BQU 0.0019 0.5993 0.5996 -0.0022 0.6863 0.6867 0.0516 0.3284 0.3329
BQU� 0.0546 0.5386 0.5418 0.0770 0.6368 0.6418 0.1073 0.3510 0.3676
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7 Appendix of Proofs

Theorem A.1 (Rao (1973)) Let W , 
, and fUi; i = 1; 2; ::; kg be positive de�nite and
symmetric matrices. Let B be any arbitrary matrix and fpi; i = 1; :::; kg be constants. The
solution to the following minimization problem minW�0 trW
W
 subject to

WB = 0;

T r(WUi) = pi; i = 1; 2; :::; k; (A.1)

is

W =

kX
i=1

�iC
0
�1Ui


�1C (A.2)

where �1; :::; �k are roots of

kX
i=1

�itr
�
C 0
�1Ui


�1CUj
�
= pj ; j = 1; 2; :::; k (A.3)

and
C = I �B

�
B0
�1B

��1
B0
�1: (A.4)

Proof of Theorem 1. It is easy to see that the mean of V̂Q is

EV̂Q = Etr(r
0Wr) = tr(EWrr0) = tr(W
): (A.5)

Let � = (�t0 ; �t1 ; :::; �tm)
0; re = (re1; r

e
2; :::; r

e
m)

0 and " = ("1; :::; "m)0: Then

" = D�, r = re + " and 
 = 
e +
": (A.6)

where 
e = Erere0 and 
" = E""0 = �2�DD
0. To prove the variance formula, we �rst

compute

E
�
"0W"

� �
"0W"

�
= E

�
�0D0WD�

� �
�0D0WD�

�
= var(�0D0WD�) +

�
E
�
�0D0WD�

��2
= �4�(�4 � 3)

m+1X
i=1

!2ii + 2�
4
�tr
�
D0WDD0WD

�
+
�
tr
�
�2�D

0WD
��2

= �4�(�4 � 3)
m+1X
i=1

!2ii + 2tr (W
"W
") + (tr (W
"))
2 ; (A.7)

where we have used the following result: for any (m+ 1) � (m + 1) matrix G = (gij); it
holds that

var(�G0�) = �4�(�4 � 3)
m+1X
i=1

g2ii + 2�
4
�tr(GG

0): (A.8)
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To prove this result, we note that

var(�G0�) = cov

0@m+1X
i=1

m+1X
j=1

gij�i�j ;

m+1X
k=1

m+1X
l=1

gkl�k�l

1A
=

m+1X
i=1

m+1X
j=1

m+1X
k=1

m+1X
l=1

gijgklcov(�i�j ; �k�l)

=
m+1X
i=1

g2iicov(�
2
i ; �

2
i ) + 2

m+1X
i=1

m+1X
j 6=i

g2ijcov(�i�j ; �i�j)

=

m+1X
i=1

g2ii

�
E�4i �

�
E�2i

�2�
+ 2

�
E�2i

�2 m+1X
i=1

m+1X
j 6=i

g2ij

=
m+1X
i=1

g2ii

�
E�4i � 3

�
E�2i

�2�
+ 2

�
E�2i

�2 m+1X
i=1

m+1X
j=1

g2ij

= �4�(�4 � 3)
m+1X
i=1

g2ii + 2�
4
�tr(GG

0) (A.9)

as desired. Now,

E
�
r0Wr

� �
r0Wr

�
= E

�
re0Wre + "0W"+ 2"0Wre

� �
re0Wre + "0W"+ 2"0Wre

�
= E

�
re0Wre

� �
re0Wre

�
+ 2

�
Ere0Wre

� �
E"0W"

�
+ 4E"0Wre"0Wre + E

�
"0W"

� �
"0W"

�
= 2tr (W
eW
e) + (tr(W
e))

2 + 2tr(W
e)tr(W
") + 4tr (W
eW
")

+ �4�(�4 � 3)
m+1X
i=1

!2ii + 2tr (W
"W
") + (tr (W
"))
2

= 2tr (W
W
) + (tr(W
))2 + �4�(�4 � 3)
m+1X
i=1

!2ii: (A.10)

As a result

var
�
r0Wr

�
= E

�
r0Wr

� �
r0Wr

�
� (tr(W
))2

= 2tr (W
W
) + �4�(�4 � 3)
m+1X
i=1

!2ii (A.11)

which completes the proof of the theorem.

Proof of Theorem 2. We want to �nd the analytic expression for the inverse of them�m
matrix A(�): To re
ect the dimension of the matrix, we write A(�) := Am(�) := Am: In
view of the formula A�1m = A�m=det(Am); where A

�
m is the adjoint matrix of Am; it su�ces

to �nd the cofactor of each element and the determinant of Am:
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First, it is easy to see that

det(Am) = adet(Am�1)� det(Am�2) (A.12)

and det(A1) = a; det(A2) = a
2 � 1 where a = �(� + 2): To solve the di�erence equation

(A.12), we write it as

[det(Am)� k1 det(Am�1)] = k2 [det(Am�1)� k1 det(Am�2)] (A.13)

where
k1 + k2 = a and k1k2 = 1: (A.14)

In other words,

k1 =
1

2
a+

1

2

p
a2 � 4, k2 =

1

2
a� 1

2

p
a2 � 4: (A.15)

Solving (A.13) recursively, we get

[det(Am)� k1 det(Am�1)] = [det(A2)� k1 det(A1)] km�22 : (A.16)

But
det(A2)� k1 det(A1) = (k1 + k2)2 � 1� k1(k1 + k2) = k22 (A.17)

and thus
[det(Am)� k1 det(Am�1)] = km2 : (A.18)

It now follows from (A.18) that

det(Am) = k
m�1
1 a+

m�2X
i=0

km�i2 ki1 = k
m�1
1 a+ km2

m�2X
i=0

k�2i2

= k�m+12 (k�12 + k2) + k
m
2

1�
�
k�22

�m�1
1� k�22

=
km+12 � k�(m+1)2

k2 � k�12
: (A.19)

Second, we compute the cofactors of matrix Am: Direct calculations show that, when
i � j, the (i; j)-th cofactor satis�es

A�m(i; j) = (�1)
i+j det(Ai�1) det(Am�j): (A.20)

By symmetry, the (i; j)-th cofactor for i � j is

A�m(i; j) = (�1)
i+j det(Aj�1) det(Am�i): (A.21)

Finally, let Bm = A
�1
m ; then when i � j; the (i; j)-th element of Bm is

Bm(i; j) = (�1)i+j det(Ai�1) det(Am�j)=det(Am)

= (�1)i+j
�
ki2 � k�i2

� �
km�j+12 � k�(m�j+1)2

�
�
k2 � k�12

� �
km+12 � k�(m+1)2

� (A.22)

= (�1)i+j
�
km+i�j+12 + k

�(m+i�j+1)
2

�
�
�
km�i�j+12 + k

�(m�i�j+1)
2

�
�
k2 � k�12

� �
km+12 � k�(m+1)2

� :
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Similarly, we can �nd the (i; j)-th element of Bm when i � j: A uni�ed expression for
Bm(i; j) for any i and j is then given by

Bm(i; j) = (�1)i+j
�
k
m�ji�jj+1
2 + k

�(m�ji�jj+1)
2

�
�
�
km�i�j+12 + k

�(m�i�j+1)
2

�
�
k2 � k�12

� �
km+12 � k�(m+1)2

�
= �

�
km�ji�jj+1 + k�(m�ji�jj+1)

�
�
�
km�i�j+1 + k�(m�i�j+1)

�
(k � k�1)

�
km+1 � k�(m+1)

� (A.23)

where

k = �k2 =
1

2
(�+ 2) +

1

2

p
�2 + 4� � 0: (A.24)

In view of k = exp(�); we get

Bm(i; j) = �
1p

� (�+ 4)

cosh f[m+ 1� ji� jj]�g � cosh f[m+ 1� i� j]�g
sinh ((m+ 1)�)

; (A.25)

from which we obtain

WBQU (i; j) = ��Bm(i; j) (A.26)

=
�p

� (�+ 4)

cosh f[m+ 1� ji� jj]�g � cosh f[m+ 1� i� j]�g
sinh ((m+ 1)�)

as desired.

Proof of Theorem 3. We start by �nding analytic expressions for the eigenvalues and
eigenvectors of matrix A = Am(�). Let � be an eigenvalue and h = (h1; h2; :::; hm) be the
corresponding eigenvector, then Amh = �h and det(Am � �) = 0:

First, we compute the eigenvalues of A: Following the same procedure as in the proof
of Theorem 2, we have

det(Am � �) =
�m+1 � ��(m+1)

�� ��1 ; (A.27)

where

� =
1

2
(a� �)� 1

2

q
(a� �)2 � 4: (A.28)

Now det(Am � �) = 0 implies that �2(m+1) = 1 but �2 6= 1: As a result

� = exp
j�

(m+ 1)
i; j = 1; 2; :::;m;m+ 2; :::; 2m+ 1; (A.29)

where i =
p
�1: Let

1

2
(a� �) + 1

2

q
(a� �)2 � 4 = exp j�

(m+ 1)
i; (A.30)

for j = m+ 2; :::; 2m+ 1; we �nd that

� = a+ 2 cos
j�

(m+ 1)
; j = 1; 2; :::;m: (A.31)
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Next, we compute the eigenvectors of Am: It follows from Amh = �h that

ah1 + h2 =

�
a+ 2 cos

j�

(m+ 1)

�
h1;

hk�1 + ahk + hk+1 =

�
a+ 2 cos

j�

(m+ 1)

�
hk; k = 2; 3; :::;m� 1 (A.32)

hm�1 + ahm =

�
a+ 2 cos

j�

(m+ 1)

�
hm:

Equation (A.32) can be rewritten as

hk+1 � 2 cos
j�

(m+ 1)
hk + hk�1 = 0; k � 2: (A.33)

Let

�1 = exp

�
� j�

(m+ 1)
i

�
and �2 = exp

�
j�

(m+ 1)
i

�
(A.34)

then
[hk+1 � �1hk] = �2 [hk � �1hk�1] = [h2 � �1h1] �k�12 : (A.35)

But

h2 � �1h1 =
�
2 cos

j�

(m+ 1)

�
h1 � �1h1 = �2h1;

and thus
hk+1 � �1hk = �k2h1: (A.36)

It now follows from (A.36) that

hk+1 = �
k
1h1 +

 
k�1X
i=0

�i1�
k�i
2

!
h1 =

�k1�2 � �k1��12 + �k+12 � ��k+12

�2 � ��12
h1

=
�k+12 � ��(k+1)2

�2 � ��12
h1 = sin

�
j�(k + 1)

(m+ 1)

�
sin�1

j�

(m+ 1)
h1 (A.37)

Let h1 = sin
j�

(m+1) ; then

hk = sin
j�k

(m+ 1)
for k = 1; :::;m� 1: (A.38)

It is easy to see that hm = sin j�m
(m+1) satis�es hm�1 + ahm =

�
a+ 2 cos j�

(m+1)

�
hm: As a

result, the eigenvalues of A are

�j = a+ 2 cos
j�

(m+ 1)
; j = 1; 2; :::;m (A.39)

and the corresponding eigenvectors are

hj =

�
sin

j�

(m+ 1)
; sin

2j�

(m+ 1)
; :::; sin

mj�

(m+ 1)

�
: (A.40)

29



Since
mX
k=1

sin2
j�k

(m+ 1)
=
m+ 1

2
; j = 1; 2; :::;m; (A.41)

the orthonormal eigenvectors are

hj =
2p
m+ 1

�
sin

j�

(m+ 1)
; sin

2j�

(m+ 1)
; :::; sin

mj�

(m+ 1)

�
: (A.42)

Note that (45) can be rewritten as

V̂BQU = ��
mX
j=1

��1j r
0hj
�
hj
�0
r = ��

mX
j=1

��1j
�
r0hj

�2
(A.43)

Plugging �j and h
j into the above expression completes the proof of the theorem.

Proof of Theorem 4. (i) Since V̂BQU (�) is a weighted summation of
�
�(k)

�2
;
�
�(k)

�2
is

not correlated with
�
�(j)

�2
for any k 6= j; and each �(k) is asymptotically normal, we obtain

the asymptotic normality of V̂BQU (�) immediately. It remains to compute the asymptotic

variance of V̂BQU (�) : But the variance of V̂BQU (�) is

mX
k=1

2�2kwBQU;k = 2�
2�2� = 2V

2=m; (A.44)

which implies p
m
�
V̂BQU (�)� V

�
! N(0; 2V 2): (A.45)

(ii) The feasible BQU estimator V̂BQU (~�) can be written as

V̂BQU (~�) =
~V

m

mX
k=1

~��1k

 
mX
`=1

r`h
(k)
`

!2
(A.46)

where ~�k = ~�
2
�

�
~�+ 2� 2 cos k�

(m+1)

�
. Using the consistency of ~�2� and

~V , we have

�k
~�k
=
�2�

�
�+ 2� 2 cos k�

(m+1)

�
~�2�

�
~�+ 2� 2 cos k�

(m+1)

� = �+ 2� 2 cos k�
(m+1)

�+ 2� 2 cos k�
(m+1) +Op

�
m�5=4

� (1 + op (1))
=

"
1 +Op

 
m�5=4

�
�+ 2� 2 cos k�

(m+ 1)

��1!#
(1 + op (1))

= 1 + op (1) (A.47)
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uniformly over k = 1; 2; :::;m: Now consider

p
m

 
V̂BQU (~�)

~V
� 1
!
=

1p
m

mX
k=1

24��k~��1k � ��1k
 

mX
`=1

r`h
(k)
`

!2
� 1

35
=

1p
m

mX
k=1

24(1 + op (1)) ��1k
 

mX
`=1

r`h
(k)
`

!2
� 1

35
=

1p
m

mX
k=1

24��1k
 

mX
`=1

r`h
(k)
`

!2
� 1

35 (1 + op (1))
!d N(0; 2): (A.48)

Consequently,
p
m
�
V̂BQU (~�)� ~V

�
!d N(0; 2V

2) and

m1=4
�
V̂BQU (~�)� V

�
= m1=4

�
~V � V

�
+m1=4

�
V̂BQU (~�)� ~V

�
= m1=4

�
~V � V

�
+ op

�
m�1=4

�
as stated.

Proof of Theorem 5. Let H = (h(1); h(2); :::; h(m)) and

�
 = diag(�+ 2� 2 cos (j�=(m+ 1)));
�� = diag(�2 + 2 cos (j�=(m+ 1))): (A.49)

then

��2� = �A(�) = H�
H 0 and � = A(0) = H��H

0: (A.50)

As a result

W �
BQU = 


�1�2� (c1I + c2�)�
2
�


�1

= H��1
 H
0(c1I + c2H��H

0)H��1
 H
0

= H��1
 (c1I + c2��)�
�1

 H

0

= H
�
diag(w�BQU;1; :::; w

�
BQU;m)

��1
H 0: (A.51)

Hence

V̂ �BQU = r
0W �

BQUr =
mX
k=1

w�BQU;k

 
mX
`=1

r`h
(k)
`

!2
as desired.

In view of (A.50) and H 0H = I; it is easy to see that equations in (62) is equivalent to

c1�20 � c2�21 = m
�c1�21 + c2�22 = 0: (A.52)
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Solving the above equation system leads to the stated formula.

Proof of Theorem 6. It is easy to show that

EV̂ �BQU (�) = V and V ar(V̂ �BQU (�)) = 2mc1�
4
�:

To evaluate the order of magnitude of V ar(V̂ �BQU (�)); we start by establishing the orders
of magnitude of �2;j , for j = 0; 1; 2: First, approximating the sum by integral, we get

�2;0 =
mX
k=1

1�
�+ 2

�
1� cos k�

m+1

��2
= m

Z 1�1=m

1=m

1

(�+ 2 (1� cos�x))2
dx(1 + o(1))

= m

Z 1�1=m

1=m

1

(�+ �2x2)2
dx(1 + o(1)) (A.53)

where the last line holds because 2(1� cos�x) = �2x2(1+ o(1) as x! 0: Now we compute
the above integral explicitly:Z 1�1=m

1=m

1

(�+ �2x2)2
dx

= � 1

4�3x2�+ 4��2

 
2�x�

�
�2 + �2x2�

�
� 2
r
1

�3
arctan

 p
�

�x

!!
x=1=m

(1 + o(1))

= � 1

4��2

 
2�

m
� 2
p
� arctan

m
p
�

�

!
(1 + o(1))

= � 1

4��2

�
2�

m
� 2
p
�

�
�

2
� �

m
p
�

��
(1 + o(1))

=
1

4�2

p
�(1 + o(1) =

1

4

�
V

�2�

��3=2
m3=2(1 + o(1)): (A.54)

Combining (A.53) and (A.54) yields

�2;0 =
1

4

�
V

�2�

��3=2
m5=2(1 + o(1)): (A.55)
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Second, using a similar approach, we get

�2;1 = m

Z 1�1=m

1=m

�2x2

(�+ �2x2)2
dx(1 + o(1))

=
m(1 + o(1))

4� (�2x2 + �)

 
2�x+ 2

�
�2x2 + �

�r 1

�
arctan

 p
�

�x

!!
x=1=m

=
m

4��

 
2�

m
+ 2
p
� arctan

m
p
�

�

!
(1 + o(1))

=
m

4��

�
2�

m
+ 2
p
�

�
�

2
� �

m
p
�

��
(1 + o(1))

=
m

4
p
�
(1 + o(1)) =

1

4

 
�2�
V

!1=2
m3=2(1 + o(1)): (A.56)

Finally, it is easy to see that

�2;2 = m

Z 1�1=m

1=m

(1� cos�x)2

(�+ 2(1� cos�x))2
dx(1 + o(1))

= m(1 + o(1)): (A.57)

Now

c1 =
m�2

�0�2 � �21
=

m�m(1 + o(1))�
�2�=V

�3=2
m5=2m=4�

�
�2�=V

�
m3=16

= 4�3=2(1 + o (1)) = 4m� 3
2
�
V=�2�

� 3
2 (1 + o(1)); (A.58)

and
c2 = c1�1=�2 = � (1 + o (1)) = m

�1 �V=�2�� (1 + o(1)): (A.59)

It follows from (A.58) that

lim
m!1

var
�
m1=4

�
V̂ �BQU � V

��
= 8V 2

�
�2�=V

� 1
2 : (A.60)

The asymptotic normality of m1=4
�
V̂ �BQU � V

�
follows from that of

Pm
`=1 r`h

(k)
` and the

asymptotic independence between
Pm
`=1 r`h

(k1)
` and

Pm
`=1 r`h

(k2)
` for any k1 6= k2:

(ii) A Taylor expansion gives

m1=4
�
V̂ �BQU (~�)� V

�
= m1=4

�
V̂ �BQU (�)� V

�
+
1

m

�
@

@�
V̂ �BQU (�)

�
m5=4

�
~�� �

�
+ op (1) (A.61)

where �� is between � and ~�:
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We now compute the probability limit of 1m

�
@
@� V̂

�
BQU (�)

�
: The mean of 1m

@
@� V̂

�
BQU (�)

is

1

m
E

�
@

@�
V̂ �BQU (�)

�
=
1

m
Er0

@W �
BQU (�)

@�
r

=
1

m2
tr

�
@W �

BQU (�)

@�

�
V � 1

m
tr

�
@W �

BQU (�)

@�
�

�
�2�

=
1

m2

�
@

@�
tr
�
W �
BQU (�)

��
V � 1

m

�
@

@�
tr
�
W �
BQU (�) �

��
�2�

= 0; (A.62)

where the last equality follows because by de�nition tr(W �
BQU (�)) = m and tr(W

�
BQU (�) �) =

0:The variance of 1
m

@
@� V̂

�
BQU (�) is

2m�2
mX
k=1

�
@w�BQU;k
@�

�k

�2
=

2

m2

mX
k=1

4

�
�+ 2� 2 cos k�

(m+ 1)

��4 �
c1 � c2

�
2� 2 cos k�

(m+ 1)

��2
+

2

m2

mX
k=1

�
�+ 2� 2 cos k�

(m+ 1)

��2 �@c1
@�

� @c2
@�

�
2� 2 cos k�

(m+ 1)

��2
� 2

m2

mX
k=1

4

�
�+ 2� 2 cos k�

(m+ 1)

��3 �
c1 � c2

�
2� 2 cos k�

(m+ 1)

��
�
�
@c1
@�

� @c2
@�

�
2� 2 cos k�

(m+ 1)

��
=

2

m2

�
4c21�4;0 + 4c

2
2�4;2 � 8c1c2�4;1 + _c21�2;0 + _c22�2;2

�2 _c1 _c2�2;1 � 4�3;0c1 _c1 � 4�3;2c2 _c2 + 4�3;1c1 _c2 + 4�3;1 _c1c2g (A.63)

where

�i;j =
mX
k=1

�
�+ 2� 2 cos k�

(m+ 1)

��i �
c1 � c2

�
2� 2 cos k�

(m+ 1)

��j
for i = 2; 3; 4; j = 0; 1; 2 and for a variable, say c; we denote _c = @c(�)=@�:

To evaluate the variance of 1
m

@
@� V̂

�
BQU (�) ; we �rst establish the asymptotic approxi-
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mation for �0i;js: Approximating the sum by integral, we get

�4;0 =

mX
k=1

�
�+ 2� 2 cos k�

(m+ 1)

��4
= m

Z 1�1=m

1=m

1

(�+ �2x2)4
dx (1 + o(1))

=
m (1 + o(1))

96��3 (�2x2 + �)3

n
30�5x5 + 80�3x3�+ 66�x�2

+2
�
15�6 + 45�2x2�5 + 45�4x4�4 + 15�6x6�3

�r 1

�7
arctan

 p
�

�x

!)
x=1=m

(A.64)

= m
1

96��6

 
66�x�2 + 2

�
15�6

�r 1

�7

�
�

2
� �

m
p
�

�!
(1 + o(1))

=
5

32
m

r
1

�7
(1 + o(1)) ;

�4;1 =
mX
k=1

�
�+ 2� 2 cos k�

(m+ 1)

��4�
2� 2 cos k�

(m+ 1)

�

= m

Z 1�1=m

1=m

�2x2

(�+ �2x2)4
dx (1 + o (1))

=
�m (1 + o (1))

96��2 (�2x2 + �)3

n
6�5x5 + 16�3x3�� 6�x�2 (A.65)

�2
�
3�5 + 9�2x2�4 + 9�4x4�3 + 3�6x6�2

�r 1

�5
arctan
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�

�x

!)
x=1=m

=
�m
96��5
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�
3�5
�r 1

�5

�
�

2
� �

m
p
�

�!
(1 + o (1))

=
1

32
m

r
1

�5
(1 + o (1)) ;

�4;2 =

mX
k=1

�
�+ 2� 2 cos k�

(m+ 1)

��4�
2� 2 cos k�

(m+ 1)

�2
= m

Z 1�1=m

1=m

�4x4

(�+ �2x2)4
dx (1 + o(1)) (A.66)

= � m

96�� (�2x2 + �)3

n
16�3x3�� 6�5x5 + 6�x�2

+2
�
3�4 + 3�6x6�+ 9�2x2�3 + 9�4x4�2

�r 1

�3
arctan

 p
�

�x

!)
(1 + o(1))

=
m

96�4

 
6�4
r
1

�3
1

2

!
(1 + o(1))

=
m

32

r
1

�3
(1 + o(1)) :
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Similarly,

�3;0 =
3

16
m

r
1

�5
(1 + o(1)) ;

�3;1 =
m

16

r
1

�3
(1 + o(1)) ; (A.67)

�3;2 =
m

16

r
1

�3
(1 + o(1)) :

To summarize the asymptotic approximations of the �0i;js; we get, up to a multiplicative
factor (1 + o(1)) :

�4;0 =
5

32
m

r
1

�7
; �3;0 =

3

16
m

r
1

�5
; �2;0 =

1

4
m

r
1

�3
;

�4;1 =
1

32
m

r
1

�5
; �3;1 =

1

16
m

r
1

�3
; �2;1 =

1

4
m

r
1

�
; (A.68)

�4;2 =
1

32
m

r
1

�3
; �3;2 =

3

16
m

r
1

�
; �2;2 = m:

Next, we establish the asymptotic approximations for _c1 and _c2: Note that

_c1 =
m _�2;2

�2;0�2;2 � �22;1
�
m�2;2

�
_�2;0�2;2 + �2;0 _�2;2 � 2�2;1 _�2;1

�
�
�2;0�2;2 � �22;1

�2
= � 2m�3;2

�2;0�2;2 � �22;1
+
2m�2;2 (�3;0�2;2 + �2;0�3;2 � 2�2;1�3;1)�

�2;0�2;2 � �22;1
�2 : (A.69)

Using results in (A.68), we have

� 2m�3;2
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= �
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�
3
16m
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�
�
1
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q

1
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(1 + o(1)) = �3

2
� ((1 + o(1))) (A.70)

and

2m�2;2 (�3;0�2;2 + �2;0�3;2 � 2�2;1�3;1)�
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As a result,

_c1 =
�
6
p
�� �

�
(1 + o(1)) = 6

p
�(1 + o(1)): (A.72)
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Similarly, we can show that
_c2 = 1 + o(1): (A.73)

Combining (A.68) with (A.72) and (A.73), we get:
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Therefore
1

m

�
@

@�
V̂ �BQU (�)

�
= op (1) : (A.75)

In view of the above result and m5=4
�
~�� �

�
= Op (1) ; we get

m1=4
�
V̂ �BQU (~�)� V

�
= m1=4

�
V̂ �BQU (�)� V

�
+ op (1) (A.76)

as stated.
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