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ABSTRACT

If a continuous function is strictly quasi~convex on a convex set
I’ , then every local minimum of the function must be a global minimum,
Furthermore, every local maximum of the function on the interior of T
must also be a global minimum. Here, we prove that any minimax rational
approximation problem defines a strictly quasi-convex function‘ with the
property that a best approximation (if one exists) is a minimum of that
function. The same result is not true in general for best rational

approximation in other norms.



BEST RATIONAL APPROXIMATION
AND
STRICT QUASI-CONVEXITY

I. Barrodale

It is natural to attempt to solve nonlinear best approximation problems
using numerical minimization techniques. One obvious drawback is that
local optima may be encountered which are not global minima. Thus, in
investigating this possibility for a given type of nonlinear approximating
function, the concept of strict quasi-convexity is important.

We shall assume throughout that all functions are real-valued, con-
tinuous, and defined on subsets of Euclidean spaces. (Some of our results
do not require these assumptions, but this is the normal setting for best
approximation problems),

1. Preliminary results concerning strictly quasi-convex functions.

Definition 1: 6(c) is a strictly quasi-convex function on a convex set

I if and only if, forevery c,, c_e T, e(cl) < G(cz) =>

1’ 72
Cl+C2

o( > )<9(02).

Definition 2: 6(c) is a quasi-convex function on a convex set I if

and only if, for every Cys c2 e T, e(clj < e(cz) =
Cl + C2 <
G [ 9 .

o( > ) (Cz)

Theorem 1: 8(c) is a quasi-convex function on a convex set T if
and only if Ka ={c Ic e I', 6(c) < « } is a convex

set for every real a.
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Theorem 2: If 6(c) is a strictly quasi~convex function on a convex
set T then 6(c) is a quasi-convex function on T.
Theorem 3: If 6(c) is a strictly quasi~convex function on a convex
set T then every local minimum is a global minimum of
8(c)on T.
The proofs of these theorems are given in Mangasarian [3]; the converse of
Theorem 2 is not valid, and Theorem 3 does not hold in general if 8(c) is
only quasi-convex,
The remainder of this section contains some new results concerning
strictly quasi-convex functions.
Theorem 4: If 6(c) is a strictly quasi-convex function on a convex

c, +c

1 2
C2 eI, G(Cl) < 9(——'"—)2 .

set T then for every Cyo

c_+c

e(—l—z-—?") < G(CZ).

c, +¢C

Proof (by contradiction). Assume either (i) e(—l—z—';) = G(CZ)
C1 + C2

or (ii) e(—-—z—-—) > e(cz).

Cl + C2 C1 + C
(1) G(cl) < 6(""—5——) => e(cl) < 06(c.) (since 9(—4) =06(c_))

2 2 2
Cl + C2
= 8(—5—5) < 6(c,), which

contradicts (i).

C C
1+

(i1) Put 6(——>—2) + max {6(c,), 6(c,)} = 2 a>0, and define

'Ka = {clceT, 6(c) < @}.
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c, +c¢
1

Clearly c >

¢ K and 2 /X ,and so K is nota convex set.
o o a

c
1’ 72

Thus 6(c) is not quasi~-convex on I', and so it is not strictly quasi-convex
either. This contradicts the hypothesis, and the proof is complete. |
Theorem 5: If 68(c) is a strictly quasi-convex function on a convex
set I" then every local maximum of 8(c) on the interior
of I" is a global minimum of 6(c) on T .

k. s . .
Proof If ¢ is an interior local maximum, then for some real &6 > 0

&k

there exists an open ball B_ (c*) C I" such that ¢ ¢ B6(c*)' => 0{c) < o(c").

6

Now if 8(c) = 6(c™) for every ¢ e Bg (c'*) it follows that c¥ is also a local

minimum, and by Theorem 3 it is therefore a global minimum of 6(c) on I.
It remains to show that 0(c) % 8(c*) for any ¢ ¢ BB(C*). Suppose

) < 6(c*); then there also

there does exist Ccp € B6(c*) such that 6(c

1
4 + c,

exists c. € Ba(c*) for which c* = >

2

located a distance Hc1 - c* H from c¢* on the ray through c

(Obviously, c, (£ cl) is
, and c*). But,
by Theorem 4, 6(c™) < e(cz) and so c¢* is not a local maximum. This con-
tradiction completes the proof.

We observe that both Theorem 4 and Theorem 5 may not be true if
either 6(c) is not continuous or 8(c) is only quasi-convex. |

Theorem 6: Let X be compact, TI' be convex, and let 8(x,c) be defined

on X X I so that,

(i) for every x € X, 6(x,c) is a strictly quasi-convex

functionon I,

and (ii) for every ¢ ¢ T', 6(x,c) is a continuous function on X,

#1157 -3 -



Then y(c) = max 08(x,c) is strictly quasi-convexon I,

XeX
C:l + C2 Cl + C:2 )
Proof Assume Y~ = e(x*, —35—") for some x* e X.
c, +c¢ c, +c¢
1 2 R 1 2 %
Now $(=5—) 2 ylc,) = (x™, 9 2 o7, c))
A + <,
= o(x™, cl) > o(x*, ——=) (by Theorem 4)
c. +c¢C
1 2
= ylo)) 2 41(———-2 )

c, +c

e I, 41(—13—2') > LIJ(CZ') = L'J(Cl) > q;(cz) and

Thus, for every o c2

the desired result follows from the contrapositive of this implication,
Remark: In general, the sum or integral of 6(x,c) over X is not a
strictly quasi-convex function on I".
Finally, let k~dimensional Euclidean space be denoted by Ek, and its

(strictly) positive orthant by Ek

+.
Theorem 7: ¢(u,v) = h\j—[ is a strictly quasi~convex function on
uy | |
Proof ¢(u1,v1) < ¢(u2,v2) = .
1 2
_>|u1|+lu|<IUI
v1 + v2 v2
u, +u u
byl ey
v1 + v2 v2
u, +u vV, + Vv
1 2 1 2
=> ¢ > , ) < ¢(u2,v2) .
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Mangasarian [ 4 ] has shown how to calculate global minima of
certain nonlinear fractional programming problems. His results are a ,
consequence of the fact that ¢*(u,v) = %‘ is a pseudo~convex function;

see also Mangasarian [5].

2. Best rational approximation.

Given a compact set X, and functions Pl(x), P2 (2),0.., Pm(x) and

Ql(x), Q2 x)yeee, Qn(x) defined on X , we define a convex set

n
m+n
Tr = <c|c = (pl,pz,..., pm’ql’qz""’ qn) ¢ E y Z quj(x) >0

j=1
on X} .

Then, for a given function y(x) on X, let

m n
o(x,c) = |ylx) - ) p, P, (x)/ ), 4.Q.(x) |
i=1 j=17

be defined on X X I, (Notice that we can normalize the rational approxi-

mation function while preserving the convexity of I"; for example, put g, = 1),

1

Our principal result concerns the general minimax rational approxima-
tion problem:

min max 8(x,c). (1)
cel xeX

Problem (1) includes multivariate approximation on a discrete set or on a
continuum. It also includes weighted approximation using any positive
weight function w(x); for we can assume in the above definition of 8(x,c)
that w(x) has been absorbed within the absolute-value signs.

In addition, we have a negative result concerning best rational

#1157 -5 -



approximation in other norms. It is sufficient to consider the cases,
in El, where X = {Xl’XZ’ . ..,xN} or X =[a,b]. For 0 <p<w, thefp
rational approximation problem is:
N p
min ), [e(x,¢)]", (2)
cel t=1

and the Lp rational approximation problem is:

b
min [ [6(x,c)]® dx. (3)
ce I a

3. Principal result .

Using the notation of the previous section, the following result is

established for problem (1).

Theorem 8 : y(c) = max 6(x,c) is a strictly quasi-convex function
xeX

on I'.

n m
Proof It is convenient to put f(x, c) = y(x) ). 9,Q,(x) - D p.P, (x)

J:l izl
n
and g(x, c) = Z quj(x), and to define ¢(f(x, c), g(x, c)) :.’f(;c(x, C)CL) .

j=1
Then if e(x) = {f(x, c) f cel'} and e+(x) = {g(x, ¢) f ceI'}, Theorem 7

asserts that for any xe¢ X the function $(f(x, c), g(x, c)) is strictly quasi-

+(x) CE1XE1.

convex in f(x,c) and g(x,c) on the convex set e(x) X e N

Since both f(x, ¢) and g(x, c) depend linearly upon c, we can show
easily that 8(x,c) = $(f(x, c), g(x, c)) is a strictly quasi-convex funtion

incon I' , forevery x ¢ X.

-6- #1157




For 6(x, cl) <e(x, c,) => ¢(i(x, cl), g(x, cl)) < o(f(x, c.), glx, CZ))

2 2

f(x, cl) + f(x, cz) g(x, cl) + g(x, CZ)
=> 9l 2 ; > ) < $lf(x, c,), alx, c,)
c, +cC cl + C2
=>¢(f(x, =), 9, 7)) < ¢lilx, c,), 9(x, c,))
c, + c2
=> 0(x, 5 ) < 0(x, CZ) .

Finally, for ceI', the continuity of 6(x, c) on X follows from the continuity
of y(x), Pi(x), and Qj(x). Thus Theorem 6 can be applied, and the result is
proved.

Corollary: Any minimax rational approximation problem defines a strictly
quasi-convex function with the property that a best approxi-
mation (if one exists) is a minimum of that function.

However, problems (2) and (3) do not in general lead to the minimization

of a strictly quasi-convex function. For any xe X the function [6(x, c)]p
is also strictly quasi-convex on I', but the remark following the broof of
Theorem 6 is relevant here. For rational approximation other than in the

minimax sense, local optima may exist in the interior of I" which are not

best approximations. The following example illustrates this possibility.

Example: For X = {0, 0.1, 0.2, ..., 1.0}, put

2
pl+p2x+p3x |
l+q2x

6(x, c) = l(x3 - 0.5) -

#1157 / -7 -



and, for c = (pl, P,y Pys I, qz)', define Lpp(c) = Z [6(x, c)]p . Then, for
xe X

p=1.8,1.9, 2.0, and 2.05, and
¢, = (.88203, -.46447, .52825, 1, .22910),

c, = (.59354, .84698, .54733, 1, .96951),

we have c +CZ
¢p(cl) qqup(cZ) and yet pr( 5 ) >max{¢p(cl), pr(cz)} .

4., Remarks.

As yet, we have not experimented numerically with this direct approach
to minimax rational af:proximation. (In Barrodale, Powell, and Roberts [1] an
algorithm is provided which calculates a minimax rational approximation on a
discrete set (if a best approximation exists), and its rate of convergence is
quadratic under certain conditions).

The numerical example of the previous section shows that, for rational
approximation, the minimax criterion sometimes leads to’an easier minimization

problem than do other popular norms. Nevertheless, for p =1 and p = 2,

c.tc
2

this example is one of only six such cases where J(

> ) > max{Lp(cl), LL;(CZ)}

c. used in test problems of

out of 45,000 randomly generated pairs ) )

various sizes and degrees. . (This observation is consistent with the reported

behavior of the algorithm described in Barrodale, Roberts, and Hunt [2]).

Acknowledgement. It is a pleasure to acknowledge the programming skills of

Mr. Fred Crary in connection with this work.
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