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Abstract

Generative Adversarial Networks (GANs) are most popular generative
frameworks that have achieved compelling performance. They follow an
adversarial approach where two deep models generator and discriminator compete
with each other In this paper, we propose a Generative Adversarial Network with
best hyper-parameters selection to generate fake images for digits number 1 to 9
with generator and train discriminator to decide whereas the generated images
are fake or true. Using Genetic Algorithm technique to adapt GAN
hyper-parameters, the final method is named GANGA:Generative Adversarial
Network with Genetic Algorithm. Anaconda environment with tensorflow library
facilitates was used, python as programming language also used with needed
libraries. The implementation was done using MNIST dataset to validate our
work. The proposed method is to let Genetic algorithm to choose best values of
hyper-parameters depending on minimizing a cost function such as a loss function
or maximizing accuracy function. GA was used to select values of Learning rate,
Batch normalization, Number of neurons and a parameter of Dropout layer.

Keywords: Generative Adversarial Networks (GAN), MNIST dataset, Image
synthesis, Generator,Discriminator, Genetic Algorithm1
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1 Introduction3

Many machine learning systems look at some kind of complicated input (say, an4

image) and produce a simple output (a categorical label like, ”cat” or numeric5

label like 1, 2, or any other number that represent a class). By contrast, the goal6

of a generative model is something like the opposite: take a small piece of input-7

perhaps a few random numbers or vector of noise-and produce a complex output,8

like an image of a realistic-looking face. A generative adversarial network (GAN) is9

an especially effective type of generative model, introduced only a few years ago,10

which has been a subject of intense interest in the machine learning community [1].11

The idea of a GAN is creating realistic images from scratch can seem like magic,12

but GANs use special method to turn a vague, seemingly impossible goal into re-13

ality. The method is to use randomness as an ingredient. At a basic level, it would14

not be very exciting if we build a system that produce the same face each time15

it ran. Thinking in terms of probabilities, it also helps us translate the problem16

of generating realistic images into a natural mathematical framework. The system17
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should learn about which images are likely to be faces, and which are not. Math-18

ematically, this involves modeling a probability distribution on images, that is, a19

function that tells us which images are likely to be faces and which are not. This20

type of problem modeling a function on a high dimensional space is exactly the sort21

of thing neural networks are made for. GAN must set up this modeling problem22

as a kind of contest. This is where the ”adversarial” part of the name comes from.23

The key idea is to build not one, but two competing networks: a generator and a24

discriminator. The generator tries to create random synthetic outputs, while the25

discriminator tries to tell these apart from real outputs. The hope is that as the26

two networks will both get better and better with the end result being a generator27

network that produces realistic outputs. Figure 1 below explains GAN simply:28

[Figure 1 about here.]

Generative adversarial networks are neural networks that learn to get samples29

from a special distribution (the ”generative” part of the name) as input, and they do30

this by setting up a competition (hence ”adversarial”). So the main concept behind31

this project is the generative adversarial network. GAN is about creating stuff32

and this is hard to compare other deep leaning fields. In other words, Generative33

adversarial networks (GANs) are deep neural net architectures included of two nets,34

pitting one against the other35

In machine learning, a hyper-parameter is a parameter whose value is used to36

control the learning process. By contrast, the values of other parameters (typically37

node weights) are derived via training. Hyper-parameters can be classified as model38

hyper-parameters, that cannot be inferred while fitting the machine to the training39

set because they refer to the model selection task, or algorithm hyper-parameters,40

that in principle have no influence on the performance of the model but affect41

the speed and quality of the learning process. The choice of hyper-parameters can42

significantly affect the resulting models performance, but determining good values43

can be complex [2].44

Figure 2 below explains hyper-parameters and default model parameters45

[Figure 2 about here.]

Hyper-parameter Optimization or Hyper-parameter Tuning can be defined as46

choosing the right set of values in building a machine learning model, in our case47

the machine learning model is GAN.48

Any GAN hyper-parameters can be summarized to:49

• Learning rate50

• Batch size51

• Number of epochs52

• Generator optimizer53

• Discriminator optimizer54

• Number of layers55

• Number of units in a dense layer56

• Activation function57

• Loss function58
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• Properties such as: keep probability of dropout layer and Batch Normalization59

momentum60

GANs potential is very huge because they can learn to mimic any data. So use61

of GAN we create worlds similar to our own in any domain: image, anime, news62

anchor, speech.63

1.1 GAN Applications64

GAN has interesting applications that are commonly used in the industry right65

now.66

• GANs for Image Editing: Most image editing software these days do not give67

us much flexibility to make creative changes in pictures. For example, let us68

say we want to change the appearance of a 90-year-old person by changing69

his/her hairstyle. This can not be done by the current image editing tools out70

there. Another similar application is image de-raining (or literally removing71

rainy texture from images [3].72

• Using GANs for Security: A constant concern of industrial applications is73

that they should be robust to cyber attacks. There is a lot of confidential74

information on the line! GANs are proving to be of immense help here, directly75

addressing the concern of adversarial attacks. These adversarial attacks use76

a variety of techniques to fool deep learning architectures. GANs are used to77

make existing deep learning models more robust to these techniques. How?78

By creating more such fake examples and training the model to identify them.79

Pretty clever stuff [4].80

• Generating Data with GANs: The availability of data in certain domains81

is a necessity, especially in domains where training data is needed to model82

supervision deep learning algorithms. The health care industry comes to mind83

here. GANs shine again as they can be used to generate synthetic data for84

supervision. That is right! You know where to go next time you need more85

data [5].86

• GANs for 3D Object Generation: Game designers work countless hours recre-87

ating 3D avatars and backgrounds to give them a realistic feel. It certainly88

takes a lot of effort to create 3D models by imagination. GAN has incredible89

power to be used to automate the entire process and create 3D models. [6].90

There are also other applications, So Gan is very important, interesting, and useful91

tool to be understood and studied well.92

2 Background and Related work93

There are many works related to GAN hyper-parameters tunning.94

In [7], the authors tried to find the appropriate structure more conveniently and95

efficiently. A method with multi-objective algorithm was proposed to obtain the op-96

timal structure for the GANs. In the proposed method, the non dominated sorting97

genetic algorithm II (NSGA II) is utilized to optimize the hyper-parameters and98

structure of deep convolution generative adversarial network (DCGAN). The exper-99

iments are conducted on MNIST and Malware datasets demonstrate the efficiency100

and high performance of proposed method.101

In [8], authors proposes the use of Conditional Generative Adversarial Networks102

(cGANs) for trading strategies calibration and aggregation. They provide a full103
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methodology on: (i) the training and selection of a cGAN for time series data;104

(ii) how each sample is used for strategies calibration; and (iii) how all generated105

samples can be used for ensemble modeling. They have designed an experiment106

with multiple trading strategies, encompassing 579 assets. They compared cGAN107

with an ensemble scheme and model validation methods, both suited for time series.108

The results suggest that cGANs are a suitable alternative for strategies calibration109

and combination, providing out performance when the traditional techniques fail110

to generate any alpha. Their problem can be decomposed into two tasks model111

validation and hyper-parameter optimization. For each hyper-parameter, they have112

a space of values, they hope the desire that this space contains the best value of113

hyper-parameter. Best value will give a max value of accuracy or min value of loss114

function or error.115

In [9], conditional version of Generative Adversarial Networks (cGAN) is used to116

approximate the true data distribution and generate data for the minority class of117

various imbalanced datasets. The performance of cGAN is compared against mul-118

tiple standard oversampling algorithms. They present empirical results that show a119

significant improvement in the quality of the generated data when cGAN is used as120

an oversampling algorithm. The hyper-parameters of cGAN are the dimension of121

the noise space, the hyper-parameters related to the G (Generator) and D (Discrim-122

inative) networks architecture as well as their training options.The hyper-parameter123

tuning of the classifiers and the various oversampling algorithms was done in order124

to maximize the AUC: Area Under the Curve of the validation set.125

In [10], authors propose and study an architectural modification (self-modulation),126

which improves GAN performance across different data sets, architectures, losses,127

regularizers, and hyper-parameter settings. They found that self-modulation allows128

the intermediate feature maps of a generator to change as a function of the input129

noise vector. While reminiscent of other conditioning techniques, it requires no130

labeled data. They also observe a relative decrease of 5% to 35% in FID (Frechet131

Inception Distanc). They made a modification to the generator and that leads to132

improved performance (86%) of the studied settings.133

authors found that most models can reach similar scores with enough hyper-134

parameters optimization and random restarts. They suggested that improvements135

can arise from a higher computational budget and tuning more than fundamen-136

tal algorithmic changes. To overcome some limitations of some metrics, they also137

proposed several data sets on which precision and recall can be computed. Their138

experimental results suggested that future GAN research should be based on more139

systematic and objective evaluation procedures.140

3 Our Work141

In this paper, we studied the effects of hyper-parameters in GAN, how the affect142

the generator and discriminator. So our work is distinguished by:143

• Choosing best Learning rate for GAN144

• Choosing best dropout keep probability145

• Choosing best batch size146

• Choosing best number of neurons in dense layers147
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4 Methods148

Here, the concept of our work is explained in details, Genetic algorithm was used149

to get best values of some hyper-parameters.150

4.1 Genetic Algorithm151

According to [11]. Genetic algorithm (GA) is a metaheuristic a inspired by the pro-152

cess of natural selection that belongs to the larger class of evolutionary algorithms153

(EA). Genetic algorithms are commonly used to generate high-quality solutions to154

optimization and search problems by relying on biologically inspired operators such155

as mutation, crossover and selection. Genetic Algorithms are used to provide qual-156

ity solutions for optimization problems and search problems. To get more details157

about GA, see [12].158

4.2 GAN159

GAN consists of two main part Generator and Discriminator. The training phase160

of the discriminator and generator are kept separate. In other words, the weights161

of the generator remain fixed while it produces examples for the discriminator to162

train on, and vice versa when it is time to train the generator163

The discriminator training process is comparable to that of any other neural164

network. The discriminator classifies both real samples and fake data from the gen-165

erator. The discriminator loss function penalizes the discriminator for misclassifying166

a real instance as fake or a fake instance as real, and updates the discriminator’s167

weights via back-propagation, discriminator has loss and accuracy function to be168

validated.169

Similarly, the generator generates samples which are then classified by the discrim-170

inator as being fake or real. The results are then fed into a loss function which171

penalizes the generator for failing to fool the discriminator and back-propagation is172

used to modify the generator’s weights, generator has loss function.173

As the generator improves with training, the discriminator performance gets worse174

because the discriminator fails to distinguish between real and fake. If the generator175

succeeds perfectly, then the discriminator has a 50% accuracy (no better than ran-176

dom chance). The later poses a real problem for convergence of the GAN as a whole.177

If the GAN continues training past the point when the discriminator is giving com-178

pletely random feedback, then the generator starts to train on junk feedback, and179

its own performance may be affected. The generator is typically a de-convolutional180

neural network, and the discriminator is a convolutional neural network [13] when181

generator is very accurate; i.e its loss function ends to zero, discriminator has bad182

accuracy and vice versa.183

Figure 3 shows Generator (de-convolutional neural network) and Discriminator184

(convolutional neural network)185

[Figure 3 about here.]

4.3 hyper-parameters tuning186

Tuning process with GA needs a term to be minimization during GA running. From187

the above description of GAN, we have Generator loss: g loss, Discriminator loss:188
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d loss and Discriminator accuracy: d acc189

g loss Minimization → d acc Minimization ↔ d loss Maximization190

d acc Maximization ↔ d loss Minimization → 5 g loss Maximization191

5 Implementation and Results192

5.1 Programming environment193

According to many references, Anaconda is a free and open-source distribution of194

the Python and R programming languages for scientific computing (data science,195

machine learning applications, data processing, predictive analytics, etc.), that aims196

to simplify package management and deployment. The distribution includes data197

science packages suitable for Windows, Linux, and macOS. It is developed and main-198

tained by Anaconda, Inc., which was founded by Peter Wang and Travis Oliphant199

in 2012. Details about python version is show next200

[Figure 4 about here.]

With tensorflow version 1.14.0 and python version 3.7.4. Keras version 2.2.5 was201

used for implementation. Keras is an open-source library that provides a Python202

interface for artificial neural networks. Keras acts as an interface for the TensorFlow203

library. Keras is an API designed for human beings, not machines. Keras follows204

best practices for reducing cognitive load: it offers consistent and simple APIs,205

it minimizes the number of user actions required for common use cases, and it206

provides clear and actionable error messages. It also has extensive documentation207

and developer guides [13].208

5.2 Basic Model209

Basic Generator in GAN model is show in Figure 5:210

[Figure 5 about here.]

while each layer in the generator is shown in the Figure 6:211

[Figure 6 about here.]

Basic Discriminator in GAN model is show in Figure 7:212

[Figure 7 about here.]

The Optimizer was Adam: Adaptive Moment Estimation; Adam is an algorithm213

for first-order gradient-based optimization of stochastic objective functions, based214

on adaptive estimates of lower-order moments. It works better (faster and more215

reliably reaching a global minimum) when minimizing the cost function in training216

[14].217

Discriminator and Generator loss function is ”binary crossentropy”; Also called218

Sigmoid Cross-Entropy loss. It is a Sigmoid activation plus a Cross-Entropy loss, it219

is independent for each vector component (class), meaning that the loss computed220

for every Discriminator output vector component is not affected by other component221

values. That is why it is used for multi-label classification; MNIST dataset is multi-222

label classification , were the insight of an element belonging to a certain class should223
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not influence the decision for another class. It is called Binary Cross Entropy Loss224

because it sets up a binary classification problem between C=2 classes for every225

class in C.226

5.2.1 Layers Details227

For LeakReLU activation function, Alpha was chosen to be 0.2, where LeakReLU228

activation function is as follow:229

f(x) = α ∗ x, if : x < 0

f(x) = x, if : x >= 0
230

Default value of α is 0.3231

For Batch Normalization, momentum is the importance given to the moving average232

or it is the lag in learning mean and variance, so that noise due to mini-batch can233

be ignored as described in the equation:234

µnew = β ∗ µold + (1− β) ∗ µcurrent

σ2

new
= β ∗ σ2

old
+ (1− β) ∗ σ2

current

β = momentum

235

By default, momentum would be set a high value about 0.99, meaning high lag236

and slow learning. When batch sizes are small, the no. of steps run will be more.237

So high momentum will result in slow but steady learning (more lag) of the moving238

mean. So, in this case, it is helpful. But when the batch size is bigger, as I have239

used, i.e 5K images (out of 50K) in single step, the number of steps is less. Also, the240

statistics of mini-batch are mostly same as that of the population. At these times,241

momentum has to be less, so that the mean and variance are updated quickly. Hence242

a ground rule is that:243

• Small batch size =¿ High Momentum (0.9 to 0.99)244

• Big batch size =¿ Low Momentum (0.6 to 0.85)245

Dropout layer can be also added to Discriminator, dropout refers to dropping246

out units (both hidden and visible) in a neural network. Dropout refers to ignoring247

neurons during the training phase of certain set of neurons by a term named Keep248

Probability, which is chosen at random. By ignoring; i.e. these units are not con-249

sidered during a particular forward or backward pass [15]250

251

5.2.2 Genetic algorithm implementation252

Using geneticalgorithm library to implement Genetic algorithm, Table 1 show the253

main code of implementation254

[Table 1 about here.]

dimension refers to number of variables that the GA will find best values of255

them256

variable type refers to types of variables that the GA will find best values of them257
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variable boundaries refers to min and max of area limits of variables that the258

GA will find best values of them259

Other parameters can be set using algorithm param [16].260

6 Experiments Results261

6.1 Tuning for Discriminator Loss262

In this test, mission for GA was to minimize Discriminator Loss, so the returned263

value from the f(X) function in GA was the Discriminator Loss (Table 1); We can264

also minimize the value (1-Discriminator accuracy).265

6.1.1 Learning Rate266

First of all, learning rate was chosen to be tunned, after setting all needed parame-267

ters, results gave some values of learning rate that helped to get Discriminator Loss268

0 and Discriminator accuracy 100%. Figure 8 show some results during training:269

[Figure 8 about here.]

Filter results for only accuracy 100% are shown in Figure 9270

[Figure 9 about here.]

max Generator loss was 12.89 and min value was 8.06.271

For max loss of generator, learning rate had some values: 0.013,0.019,0.09,0.08,0.00019,272

most repeated value was: 0.00019. For min loss of generator, learning rate had value:273

0.3.274

6.1.2 Other parameters results275

Repeating previous test to get best values of other parameters (keep probability,276

Dense neurons, batch size), best values are show in next table277

[Table 2 about here.]

6.2 Tuning for Generator Loss278

In this test, mission for GA was to minimize Generator Loss, so the returned value279

from the f(X) function in GA was the Generator Loss (Table 1).280

6.2.1 Learning Rate281

First of all, learning rate was chosen to be tunned, after setting all needed parame-282

ters, results gave some values of learning rate that helped to get Generator Loss 0.283

Figure 10 show some results during training:284

[Figure 10 about here.]

Filter results for only loss 0.0 are shown in Figure 11285

[Figure 11 about here.]

max Discriminator loss was 7.97 and min value was 4.78.286

For max loss of Discriminator, most repeated value was: 0.171924. For min loss of287

generator, learning rate had value: 0.0154.288
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6.2.2 Other parameters results289

Repeating previous test to get best values of other parameters (keep probability,290

Dense neurons, batch size), best values are show in next table291

[Table 3 about here.]

Figure 12 below shows results during Generator learning when all best parameters292

were set293

[Figure 12 about here.]

6.3 Discussion294

From the results, it can be said that GAN with GA (GANGA) is more useful295

to be used in all fields. In our case, it is applied to MNIST dataset, but it can be296

implemented to any other dataset such as fingerprints dataset or any other datasets.297

Once the user has all details about application, GANGA can be applied tp get best298

parameters. Comparing with [17], the author validate the value 0.0001 for learning299

rate and 16 for batch size, with seam loss type, max Discriminator accuracy was300

96.25% using ACGAN: Auxiliary classifier generative adversarial network. In our301

case the Discriminator accuracy was 100% for learning rate 0.00019984 and batch302

size 64 and keep probability 0.812.303

7 Conclusion304

A Generative Adversarial Network is presented in this study to to generate fake305

images for digits from 1 to 9, and train it to classify the results into fake or real.306

Genetic Algorithm was used to select best values for some hyper-parameters of307

GAN, results showed the importance of GA in selecting hyper-parameters. As a308

future work, the structure and design of GAN can be edited with best values of309

hyper-parameters to make GAN as robust as possible.310
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Endnote333
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incomplete or imperfect information or limited computation capacity.336
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Figure 1 . Simple GAN

Figure 2 . hyper-parameters vs default parameters

Figure 3 . Generator vs Discriminator

Figure 4 . Python version

Figure 5 . Generator design
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Figure 6 . Generator details

Figure 7 . Discriminator details

Figure 8 . Dataset to Model stages.

Figure 9 . Results for Discriminator Loss minimization.

Figure 10 . Top results of Discriminator test.

Figure 11 . Results for Generator Loss minimization.

Figure 12 . Top results of Generator test.

Figure 13 . Generator results of final testing.

Table 1 Implementation of GAN with GA

Main code

def f(X):
gan = GAN(X)
g loss=gan.train(epochs=10, batch size=10, sample interval=100)
return g loss

algorithm param = ’max num iteration’: None,
’population size’:100
’mutation probability’:0.1,
’elit ratio’: 0.01,
’crossover probability’: 0.5,
’parents portion’: 0.3,
’crossover type’:’uniform’,
’max iteration without improv’:20

if name == ’ main ’:
varbound = np.array([[0.01,0.2]])
model = ga(function=f, dimension=1, variable type=’real’, variable boundaries=varbound,function timeout=300)
model.run()

Table 2 Best parameters for minimization Discriminator loss

keep probability Batch normalization Neurons
0.812 64 Generator: 256,512,1024

Discriminator: 512,256
Learning Rate: 0.00019948

Tables370

Additional Files371

Additional file 1 — Figure 1.docx372

Additional file 2 — Figure 2.docx373

Additional file 3 — Figure 3.docx374

Additional file 4 — Figure 4.docx375

Additional file 5 — Figure 5.docx376

Additional file 6 — Figure 6.docx377

Additional file 7 — Figure 7.docx378

Additional file 8 — Figure 8.docx379

Additional file 9 — Figure 9.docx380

Additional file 10 — Figure 10.docx381

Additional file 10 — Figure 11.docx382
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Table 3 Best parameters for minimization Generator loss

keep probability Batch normalization Neurons
0.63 64 Generator: 256,512,1024

Discriminator: 512,256
Learning Rate: 0.171924
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Figure 8

Dataset to Model stages.
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Figure 9

Results for Discriminator Loss minimization.
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Figure 10

Top results of Discriminator test.
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Results for Generator Loss minimization.



Figure 11

Results for Generator Loss minimization.



Figure 12

Top results of Generator test.
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