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BEST SIMULTANEOUS DIOPHANTINE APPROXIMATIONS. I. 
GROWTH RATES OF BEST APPROXIMATION DENOMINATORS 

BY 

J, C, LAGARIAS 

ABSTRACT. This paper defines the notion of a best simultaneous Diophantine 
approximation to a vector a in R n with respect to a norm II . II on Rn. Suppose a is 
not rational and order the best approximations to a with respect to II . II by 
increasing denominators I = ql < q2 < '" . It is shown that these denominators 
grow at least at the rate of a geometric series, in the sense that 

g(a,II'II) =liminf(qd/k;;"1 +_1_. 
k~oo 2n+ 1 

Let g(1I . II) denote the infimum of g( a, II . II) over all a in R n with an irrational 
coordinate. For the sup norm II . lis on R2 it is shown that g(1I . IIJ;;" (J = 1.270+ 
where (J4 = (J2 + 1. 

1. Introduction. The problem of simultaneous Diophantine approximation is that 
of approximating a vector of two or more real numbers by a vector of rational 
numbers having the same denominator. Two of the most fundamental questions in 
this subject concern how well such vectors can be approximated, and how often 
good approximations occur. It is well known that the analogous questions for the 
approximation of a single real number 0 can be answered in terms of the continued 
fraction expansion of O. Concerning simultaneous Diophantine approximation 
Davenport [7] remarks: "In any deeper investigation of the problem of simultaneous 
Diophantine approximation we are greatly handicapped by the absence of a full 
analogue of the continued fraction process. There are several analogues, but they all 
suffer from one of two defects: either they give much poorer approximations than 
we known to exist, or they involve a series of operations that can be carrjed out on 
given 01" •• ,On but cannot be used to define 0 I" , • ,On' because we do not know the 
limitations to which any such sequence is subject." As a consequence much less is 
known than in the one-dimensional case. For example, it remains a notoriously 
difficult unsolved problem to determine the two-dimensional Diophantine ap-
proximation constant (see [1, 3, 4, 6]). 

This paper considers the notion of a best simultaneous approximation to a vector 
0' in R n with respect to a norm II . II on Rn. To define this notion precisely, let 
0' = (O'I""'O'n) and let II . II denote a norm on Rn. Given an integer denominator 
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546 J. C. LAGARIAS 

q > 0 we measure the closeness of approximation possible by rationals of denomina-
tor q by 

(1.1 ) 

The best simultaneous approximation denominators (BSAD's) qk = qk(ex) to the vector 
ex (with respect to the norm II . II) are inductively defined by ql = I and by taking qk 
to be the least positive integer such that 8qk < 8qk _ l • The corresponding best simulta-
neous approximations (BSA's) vk are the integer vectors 

(1.2) 

in zn+1 where (Pk,I"" 'Pk,n) achieves the minimum in (1.1) for qn' (In case more 
than one vector (PI"" ,Pn) achieves the minimum in (1.1) for a given qk' we simply 
choose one in an arbitrary manner to obtain (1.2). This situation can occur for only 
finitely many BSAD's; see the discussion at the beginning of §2.) In general we call 
any vector v = (q, PI" .. ,Pn) minimizing (1.1) an approximation vector, and 

(1.3) 

its corresponding vector of approximation remainders. Most previous work on 
simultaneous approximation measures closeness of approximation using the sup 
norm II . II, given by 

(1.4) 

The Euclidean norm II . II e' given by 

(1.5) 

has also been considered, cf. [2, 8, 13]. 
Various notions of "best approximation" have previously appeared in the litera-

ture. Davenport and Schmidt [9, 10] introduced and successfully made use of an 
analogous notion of a best approximation to a single linear form. More recently 
Cusick [5] and Dubois [11] considered the problem of finding such approximations 
for a ternary linear form. Brentjes [2], Dubois and Rhin [12], and Jurkat, Kratz and 
Peyerimhoff [13] have recently considered best simultaneous approximations in R2 
with respect to the Euclidean norm. 

This paper is the first of a series of papers studying properties of best simulta-
neous approximations. In this paper we consider the problem of how often best 
approximations occur, as measured by the rate of growth of the best approximation 
denominators. 

The rate of growth of best approximation denominators is well understood in the 
one-dimensional case. Given an irrational number (), let vk = (qk' Pk) denote the 
kth best approximation vector in the sup norm (the only norm that exists on RI). It 
is well known (Lang [17, p. 10]) thatpdqk isjust the kth convergent of the ordinary 
continued fraction expansion of (). In particular 

( 1.6) 
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and as a consequence 

(1.7) 
Ilk 1 + {5 

g(8) = liminf(qk) ;;;. 2 . 
k-->oo 

This inequality asserts that the one-dimensional best approximation denominators 
grow at least at the rate of a geometric progression. The value g(8) = (1 + 15)/2 is 
attained for 8 = (l + 15)/2 (and in fact for uncountably many other real numbers). 

It is easy to prove that a geometric growth rate occurs in all dimensions. 

THEOREM 1.1. There is a constant gn> 1 depending only on n, such that for any 
norm II . lion R n and any a ERn with a f£. Qn, 

(1.8) g(a,II·II) = Iiminfqk(a)llk;;;.gn > 1. 
k-->oo 

We can take gn = 1 + I/2n + l . 

This theorem allows us to define the growth rate constant G(II . II) for a norm II . II 
by 
(1.9) G(II·II) = inf g(a,II·II) 

aER" 

and the n-dimensional growth rate constant 

(1.10) G(n) = inf G(II· II). 
11·llonR" 

The main result of this paper is an improvement of the lower bound of Theorem 
1.1 for the growth rate constant of the sup norm II . II son R2. We show that 
(1.11) G(II . IIJ ;;;. 8 = 1.2720+ , 

where 8 is the largest real root of 84 = 82 + 1. In the course of establishing (1.11) we 
prove an "isolation" result which restricts the values of consecutive best approxima-
tion denominators which are close together. 

THEOREM 1.2. Let a E R2 have both coordinates irrational. Let qk' qk+I' qk+2' qk+3 
be four consecutive best approximation denominators to a with respect to the sup norm 
II . II s' and suppose that 

(1.12) qk+3 < qk+1 + qk· 
Then 

(1.13) qk+3 = qk+2 + qk+1 - qk· 
There exist a E R2 for which (1.12) occurs. (See Lagarias [14, Table II] for an 

analogous example of (1.12) in the case of Euclidean norm best approximations.) 
Theorem 1.2 may be compared to the one-dimensional situation, where for three 
consecutive best approximation denominators one has qk+2 = aqk+ I + qk for some 
positive integer a. 

Brentjes [2, Example 4] and Lagarias [16] show that 

( 1.14) 

where II . II e is the Euclidean norm and.,., is the real root of .,.,3 = .,., + 1. This fact, 
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together with the form of Theorem 1.2 and a variety of other evidence, suggests the 
following conjecture. 

Conjecture. G(2) = 1/ = 1.3247+ where 1/ is the real root of 1/3 = 1/ + 1. 
Some results of this paper were announced in [14]. Other results on best simulta-

neous Diophantine approximations appear in [14]- [16]. 

2. Growth rates for best simultaneous approximations. We first make some 
preliminary remarks about norms and the uniqueness of best approximation vectors. 
A function II . II: R n ~ R n is a norm provided 

(i) IIxll ;;;. 0, and Ilxll = 0 ~ x = o. 
(ii) Ilxl + x 2 11 .;;;; Ilxlll + IIx211. 
(iii) II Axil = I i\ Illxll for i\ E R. 

The unit ball B = {x I II xii < I} of a norm is a centrally symmetric convex body. 
Conversely, any such body B determines a unique norm on Rn for which it is the 
unit ball. The norms II . II and i\ II . II for any i\ > 0 determine the same set of 
BSAD's and BSA's. Therefore we may when necessary deal without loss of general-
ity with scaled norms having the properties 

(2.1) (i) x E zn and x =1= 0 ~ Ilxll ;;;. 1, 
(ii) there is an x E zn with Ilxll = 1. 

Both the Euclidean and sup norms are scaled norms. 

LEMMA 2.1. (i) For a scaled norm, a vector a, and any denominator q with 8i a ) < t 
there is a unique choice of approximation vector v = (q, PI' . .. ,Pn) with denominator 
q. 

(ii) For any norm II . II and any e > 0 there is a bound K = K(II . II) such that 
8q( a) < e for all a and all best simultaneous approximation denominators q > K. 

PROOF. (i) Suppose v is one such approximation vector, so that IIR(v)11 = 8q < t. 
For any other v*, IIR(v*)11 = R(v) + x for some nonzero x E zn. Then by the 
triangle inequality 

(2.2) IIR(v*)11 = Ilx + R(v)11 ;;;. Ilxll - IIR(v)11 > t 
since Ilxll > 1. Hence II R(v*)11 =1= 8q , and v is unique. 

(ii) It is well known that any norm II . lion Rn is compatible with the sup norm 
II· lis in the sense that there are positive constants cl , C2 (depending on II . II) such 
that 

(2.3) clllxli .;;;; Ilxll s .;;;; c211xll 

for all x ERn. Dirichlet's theorem on simultaneous approximation asserts that for 
the sup norm II . II s and any a E R n for any given integer K there is some q with 
1 .;;;; q .;;;; K such that 

(2.4) 

Choosing K = (eclt n in (2.4) and applying (2.3) shows there is some q < K with 
8q < e. This implies (ii). 0 
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In view of Lemma 2.1, whenever 8q < 1 we may unambiguously use the notations 

(2.5) v(q) = (q, PI, ... ,Pn), R(q) = (qal - PI,···,qan - Pn) 
for the approximation vector and approximation remainder vector, respectively. 

The lower bound of Theorem 1.1 is a consequence of the following result, which 
gives "local" inequality satisfied by the best simultaneous approximation denomina-
tors. It is analogous to (1.6). The proof is that of a referee, and sharpens the author's 
original result, cf. [14]. 

THEOREM 2.2. For any norm II . II on Rn, and any vector a ERn - Qn, the best 
simultaneous approximation denominators qk to a satisfy 
(2.6) 

PROOF. We argue by contradiction. Suppose 

(2.7) 

We examine the approximation vectors vk+j (mod2) for O:s;;;,j:s;;;, 2n+l. By the 
pigeonhole principle there exist i,j with i > j such that 

(2.8) 

Then v = 1(Vk+i - Vk+) E zn has denominator q = 1(qk+i - qk+) and by (2.7) we 
have 

(2.9) 
But 

(2.10) 
8q :s;;;, IIR(v)II :s;;;, HIIR(vk+;)II + IIR(vk+)II) 

:s;;;, H 8k+i + 8k+j) :s;;;, H8k + 8k+1) < 8k • 

This contradicts the definition of qk+l. 0 
PROOF OF THEOREM 1.1. Let q, be the largest positive root of 

(2.11 ) f(x) = x 2n+' - 2x - 1 = O. 

Then q, > 1 + 1/2n +1 = /l since /l2 n+' < e < 2/l + 1, so f(/l) < o. Pick Ko as in 
Theorem 2.3 and choose a positive E small enough that 

(2.12) 

Then using (2.6) of Theorem 2.2, we conclude 

(2.13) 

holds for all j ;;;. 0, using (2.12) and induction on j. Then (2.13) implies 

(2.14) 

completing the proof. 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



550 J. C. LAGARIAS 

THEOREM 2.3. Let II . lis be the sup norm on Rn. For any vector a ERn - Qn, its 
best simultaneous approximation denominators satisfy 
(2.15) 

for all sufficiently large k, depending on a. If a has no rational coordinates, then (2.15) 
is true for all k ;;;. 1. 

PROOF. Associate to each approximation remainder vector R( q) a vector of signs 
± 1 via 

sgnR(q) = (sgn(qa l - PI),···,sgn(qan - Pn)). 
If some qai - Pi = 0, its sign may be chosen arbitrarily. 

There are 2n possible distinct sign vectors, so by the pigeonhole principle there 
must be two denominators among the 2n + 1 denominators qk' qk+I'··· ,qk+2" which 
have identical sign vectors. Call these qi' qj and order them so that qi > qj. 

We suppose qi < qj+1 + qj so that 

(2.16) q = qi - qj < qj+1 

and derive a contradiction. We use the notation ri(q) = qai - Pi for the ith 
component of the approximation remainder vector R( q). Since the signs of rk ( q;), 
rk ( q) agree for all k, 

(2.17) 1 rk(q) 1=1 rk(q;) - rk(q) I,,;; MAX(I rk(qJ 1,1 rk(q) I) ,,;; 8q). 

Hence 8q ,,;; 8q). We will sharpen this to 

(2.18) 8q < 8qj • 

Equality can occur in the set of inequalities leading to (2.17) only if rk ( q;) = ° for at 
least one of the k for which 1 rk(q) 1 attains its maximum. This requires ak E Q, so 
(2.18) always holds when all coordinates of a are irrational. In the remaining case, 
we recall that Dirichlet's principle gives 

(2.19) 8q)«qjt/n. 

Let M be the greatest common denominator of all the rational coordinates a k of a. 
For a rational ak either rk(q) = ° or 1 rk(q) I> M- 1• If qj > M n then (2.17) together 
with (2.19) forces rk(q) = 0. Henceforth suppose qj > Mn, a condition eliminating a 
finite number of qj" In this case rk(qi) = ° implies rk(q) = 0, so that 8q) = ° (since k 
was chosen to maximize 1 rk(q) I) and a E Qn, a contradiction. So (2.18) holds in 
this case as well. But (2.16) implies 8q ;;;' 8q , and this contradicts (2.18). Hence 
q;;;. qj+1 + qj. Finally 

qk+2";;;' qj;;;' qj+1 + qj;;;' qk+1 + qk· 0 

REMARK. This proof also shows that two consecutive best approximations with 
denominators qk' qk+ 1 must have different sign vectors sgn R( qk)' sgn R(qk+ I)· 

The following corollary has a proof similar to that of Theorem 1.1. 

COROLLARY 2.4. For the sup norm II . II s on R n , the minimal growth rate of best 
simultaneous approximation denominators satisfies G(II . II s) ;;;. () where () > 1 satisfies 
()2" = () + 1. 
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3. Gfowth fates: 2-dimensional sup norm case. The object of this section is to 
improve on Theorem 2.3 in the two-dimensional sup norm case. To accomplish this 
we first prove a result which implies Theorem 1.2 of the introduction. 

THEOREM 3.l. Consider the best simultaneous approximation denominators qk to 
a = (aI' ( 2 ) with respect to the sup norm. 

(i) If a has exactly one irrational coordinate, then for all sufficiently large k 
depending on a, 
(3.1) qk+2 ;;. qk+1 + qk· 

(ii) If a has both coordinates irrational, then 
(3.2) qk+3 < qk+1 + qk 

can only occur when 

(3.3) qk+3 = qk+2 + qk+1 - qk· 

Furthermore (3.2) can never hold for two consecutive values of k. 

PROOF. (i) Suppose a has exactly one rational coordinate. Without loss of 
generality we may suppose this is aI' and that it has denominator M. From the proof 
of Theorem 2.3, rl(qk) = 0 whenever qk ;;. M2. We suppose this is true and specify 
sgn r/qk) = + l. Then any three consecutive best approximations Vk , Vk + l , Vk+2 
have two with the same sign vector. The proof of Theorem 2.3 applies to give 
qk+2 ;;. qk+ I + qk' the desired result. (In general if a d-vector a has k rational 
entries, the inequality (2.15) of the n = d - k dimensional case applies.) 

(ii) Assume both coordinates of a are irrational. Let qk' qk+I' qk+2' qk+3 be four 
consecutive best approximation denominators, and suppose that (3.2) holds. In that 
case the sign vectors sgn R( qk+;) for 0 ,,;;;; i ,,;;;; 3 must assume all four possible sets of 
signs. If not the proof of Theorem 2.3 would yield 

(3.4) qk+3 ;;. qk+1 + qk' 

contradicting (3.2). 
The four approximation remainders R( qk+i) (i = 1, ... ,4) lie in the four different 

quadrants. Let f]> ... ,f4 be these four remainders, reordered such that fi lies in the 
ith quadrant. Then put WI = -f3, w2 = f2' W3 = -f3, W4 = f4' so that Wi again lies in 
the ith quadrant. 

(-X2• Y2) 

(Xl' YI) 

(-X 3 , -Y3) (X 4• -Y4) 

FIGURE 1. Approximation remainder vectors 
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As pictured in Figure 1, we have 

(3.5) w\ = (x\, y\), w2 = (-X2' Y2)' 
with positive Xi' Yi. (None can be equal to 0 because aI' a2 are both irrational.) 
These four points Wi are the approximation remainder vectors corresponding to 
denominators -q\, q2' -q3' q4' respectively. 

Consider the quadrants I and II. Set q = I-q\ + q21 . Then 

(3.6) 0 < q 0;;; qk+3 - qk < qk+\. 

This implies 

(3.7) 

But /}q = MAX(I r\(q) 1 ,I rz{q) D, and 
(3.8) 1 r\(q) 10;;;1 X\ - x 2 1< MAX(/}\, /}2) 0;;; /}q •• 

Then (3.7) forces 
(3.9) 

Since Y\' Yz lie on squares of sides /}\, /}2 we obtain 
(3.10) 
Putting these last two inequalities together we have 

(3.11) 

Identical arguments for the other three sets of adjacent quadrants give 
(3.12) 

(3.13) 
(3.14) 

/}q. + /}qk+1 ;;;;. X 2 + X3 ;;;;. /}q.' 

/}q. + /}qk+1 ;;;;. Y3 + Y4 ;;;;. /}q., 

/}q. + /}qk+1 ;;;;. X 4 + XI ;;;;'/}q •• 

We proceed to sharpen some of (3.11)-(3.14) to strict inequalties. Three of the 
left-hand inequalities of (3.11)-(3.14) are strict, because such an inequality can be an 
equality only when /}i' /}i+ I are /}q., /}qk+ I and this can happen for at most one pair of 
adjacent quadrants. Suppose this occurs. We show the right-hand inequality of the 
equation corresponding to the opposite pair of quadrants must then be strict. The 
opposite pair of quadrants must have /}q '/}q ,so that the corresponding q in (3.6) 

k+2 k+3 

has q 0;;; qk+3 - qk+2 < qk. Consequently 

/}q;;;;' /}q.-I > /}qk' 

and that sharpens the right side of the corresponding (3.10) to strict inequality. 
Next set 

(3.15) 

Now 
(3.16) 
by hypothesis (3.2). Suppose q > o. Then 

(3.17) /}q ;;;;'/}qk+l. 
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On the other hand 

(3.18) 
1 rl(q) 10;;;;1 XI - X2 - X3 + X41=11 XI + X41 -I X2 + X311 

using (3.12), (3.14). The preceding remarks about strict inequalities were used to 
guarantee strict inequality in the last line. Similarly 

(3.19) 
1 r2(q) 100000IYI + Yz - Y3 - Y41=IIYI + Y21-IY3 + Y411 

using (3.11) and (3.l3). Then (3.18) and (3.19) contradict (3.17). 
Consequently we must have q = 0 in (3.15). Now qk < qk+1 < qk+2 < qk+3 im-

plies 

qk+3 + qk+2 - qk+1 - qk > 0, 
Hence q = 0 can occur only if 
(3.20) 

which gives (3.3). 
To complete the proof of (ii), we note further that in the case q = 0 comparing 

the definition (3.15) with (3.20) shows that the remainder vectors R(qk) and R(qk+l) 
must be in adjacent quadrants. It also shows the remainder vectors R(qk+l) and 
R(qk+2) must be in opposite quadrants. As a consequence, if (3.2) holds for k, it 
cannot hold for k + 1, for then R(qk+l) and R(qk+2) would have to be in adjacent 
quadrants, a contradiction. (Here note the remainder vectors R(qk+I)' R(qk+2) 
cannot be on the quadrant boundarie~ because a has both coordinates irrational.) 
D 

The proof of the following corollary is due to A. M. Odlyzko. 

COROLLARY 3.2. For the sup norm II . II s on R2 the minimal growth rate for best 
simultaneous approximation denominators satisfies 

(3.21 ) G(II . IIJ ~ 8 

where 8 = 1.2720+ is the largest real root of 8 4 = 8 2 + 1. 

PROOF. If a E R2 - Q2 has one irrational coordinate, then by Theorem 3.1(i) its 
sup norm BSAD's have growth rate at least cp = 1.6180+ , the golden ratio. If a has 
both coordinates irrational then using Theorem 3.1(ii) it is easy to establish by 
induction that 

(3.22) 

where UI = 1, u2 = 2, u3 = 3, U4 = 4, and Uk = Uk- 2 + Uk- 4. To see this, Theorem 
3.1(ii) asserts for each k that either 

(3.23) 

holds, or else 

(3.24) 
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both hold. Since the qk are increasing, both (3.23) and (3.24) imply 

(3.25) qk;;;' qk-2 + qk-4' 

The induction follows via (3.25). Then 

liminf(qk)l/k ;;;.liminf(uk)l/k = () 
k~oo k~oo 

where () = # is the largest real root of ()4 = ()2 + 1. 0 
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