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BEST TESTS FOR TESTING HYPOTHESES ABOUT A RANDOM
PARAMETER WITH UNKNOWN DISTRIBUTION!

By GLEN MEEDEN

Iowa State University

1. Introduction and summary. Let X be a random variable with a family of
possible distributions for X indexed by AeQ. A is the realization of a random
variable A taking values in the space Q. For each A, let f; denote the conditional
density of X given A = A with respect to some o-finite measure p. Let 4 be a family
of possible a priori distributions G for A. After observing X, we wish to test H:
Aew against K: 1€ @’ where w is a subset of Q and o' its complement. To determine
good tests for this problem, we use an analysis similar to the one of the Neyman-
Pearson theory of hypothesis testing. Analogous to the type I and type II errors of
the Neyman—Pearson theory are:

type (i) error: Aew’ decided and A e w occurs,
type (ii) error: A ew decided and A ew’ occurs.

Analogous to the problem of finding uniformly most powerful level o tests is the
problem:

subject to: Pg(type (i) error) < « for all Ge¥
minimize Pg(type (ii) error) uniformly for Ge %.

A test which achieves this is called a uniformly most powerful (UMP) level « test
relative to 4.

The existence of such UMP level o tests is proved for this hypotheses testing
problem for various choices of the family of a priori distributions 4. As might be
expected these results are closely related to the Neyman—Pearson theory of hypo-
theses testing. The second section gives four simple situations where the problem
of finding UMP level « tests relative to a family of a priori distributions ¢ reduces
to an ordinary testing problem. In the third section, Theorem 1 gives for this testing
problem an analogue of the concept of a least favorable distribution from the
classical theory of hypotheses testing. Theorem 1 is used to prove Theorem 2 which
gives the existence of a UMP level « test when X is real-valued, Q is a subset of the
real numbers, the family of distributions indexed by A € Q has a monotone likelihood
ratio in x, and the family ¥ satisfies a certain condition. The two theorems are
applied to several examples.

In the following, as always, a test (randomized) is a function & defined on the
range of X which takes on values in the interval [0, 1]. If X = x is observed, K is
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decided to be true with probability 6(x) and H with probability 1 —d(x). For any
test 6 and Ge¥ we have

() Pg(type (i) error of &) = |, 8(x)f(x) dG(A) du and
(2) Pg(type (ii) error of 8) = [ [, (1 —0d(x))f2(x)dG(2) du

where the integral involving X is over the entire space of X.

It will often be convenient to think of 1 as a fixed but unknown parameter and
the test 0 as a test for the classical testing problem H: lew against K: lew’.
Changing the order of integration in (1) by Fubini’s theorem, we have for the test §
the following relationship between the type I error of J, considered as a test for the
classical problem, and the type (i) error of 9, considered as a test for the problem of
this paper:

3) P (type (i) error of 8) = |, P, (type I error of 8) dG(4).
In the same way, we have
) " Pg(type (ii) error of 6) = |, P, (type II error of §) dG(A).

We will now prove the existence of UMP level o tests for various families of «
priori distributions.

2. Some simple examples. If 4 contains only one distribution G, the simplest
case, then the testing problem considered here is a Bayesian hypotheses testing
problem with known a priori distribution G. Since

P (type (i) error of 8) = Pg(Aew) [(x)f,,6(x)du and
P (type (ii) error of 6) = Pg(Aew’) [(1—8(x))f, o(x)du

where f, ; and f,, ; denote the conditional densities of X given Aew and Aew’
respectively, the problem of finding a most powerful test relative to G is mathe-
matically equivalent to the problem of finding a most powerful test when testing a
simple hypothesis against a simple alternate. Therefore, there exists a constant k,
depending on «, such that a most powerful test, d, relative to G is given by:

6(X) = 1 When fm’.G(x) > kfw,G(x)
=0 when fu(x) < ko)

Note that if G is such that P;(A e w) £ o then the test which is identically one is a
most powerful level « test relative to G.

Suppose now that ¥ is the set of all possible a priori distributions of A. Assuming
that all singletons of Q are measurable, it follows from (3) and (4) that ¢’ is a UMP
level « test relative to ¢ if and only if & is a UMP level « test for the classical
testing problem. This is still true if & is any class of a priori distributions which
includes all the distributions which put probability one on some point. If 4 is just
the set of all one point distributions then the testing problem considered here is just
the classical hypotheses testing problem. If for all tests 8, P,(type (i) error of §)
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and P,(type (ii) error of ) are continuous functions of A, then the preceding
remark is true if 4 contains distributions which put arbitrarily high probability in
arbitrarily small neighborhoods of every point of Q.

These two examples are the two extreme situations in hypotheses testing when
the parameter A is assumed to be a random variable. In the preceding one, 4 is a
random variable with known distribution. In the latter, A is a random variable with
nothing known about its distribution. The rest of this paper deals with examples
where the family of possible distributions falls between these two extremes.

The case where Pg(Aew) =7y for all Ge¥ where y is a known constant corre-
sponds to the situation where the amount of probability assigned to w and o’ is
known but the distribution in @ and @’ is not known. This problem is very similar
to the preceding one. For if ¢ is such that for each e @ there exists a Ge ¥ with
Pg(A = 2) =y then § is a UMP level « test relative to ¢ if and only if 6 is a UMP
level o' test for the classical testing problem where a’ = minimum (o/y and 1).

The next case, in contrast to the previous one, corresponds to the situation
where the distribution in w and @’ is known but the probabilities assigned to w and
' are not known. If H and H’ are a priori distributions of A such that Py(Aew) =
Py(Aew)=1 then ¥ =(G: G=yH+(1—y)H' for 0 <y =1). For any test 6
and G = yH+(1—y)H' we have

Pg (type (i) error of 8) =y [ d(x)fu(x) dp and
Pg (type (ii) error of ) = (1—y) [ (1—0(x))fp(x)du

where fy and fy. are the marginal densities of X when A has distributions H and
H' respectively. Hence ¢’ is a UMP level o test relative to ¢ if and only if it is a
most powerful level « test for the simple problem of testing f}; against fy..

3. % is a parametric family of a priori distributions. We consider in this section
several examples where the class of possible a priori distributions is indexed by a
parameter in Euclidian space. Two theorems are proved which give the existence
of a UMP level « test in the examples considered. The first theorem shows that an
analogue of the least favorable a priori distribution concept from the Neyman-
Pearson theory holds for the problem considered here.

THEOREM 1. Let 4 be a family of possible a priori distributions for A. For each G’
let ¢g. be a solution, if it exists, for the problem

(5) (a) subject to: P (type (i) error) < o

(b) minimize Pg(type (ii) error) uniformly for Ge%.
If G* is a distribution such that ¢g. exists and
(6) Pg(type (i) error of pge) S o0 for Ge¥%

then ¢g« is a UMP level o test relative to 4. If, in addition, ¢ exists for each G'€ 9
then G* is a least favorable distribution, i.e., for each G'€ 9.

Pg (type (i) error of ¢pgs) = Pg (type (ii) error of ¢g) for Ge 9.
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Note that Theorem 1 is just a statement of the usual theorem about a least
favorable distribution (e.g. Theorem 7 on page 91 of Lehmann [1]) in this new
context.

In the following example, we will use Theorem 1 to find a UMP level « test. In
all the examples that follow, we assume that « is a fixed number between zero and
one since the cases « = 0 and « = 1 are trivial.

ExaMpPLE 1. Let the distribution of X given A be uniform on (0,1] where
Ae(0, + ) = Q. Let ¢ be the class of uniform distributions on (0, 6], § > 0 and
let w = (0, A,]. We will show that 6 = 4, is a least favorable distribution for this
problem.

If 6 is the test which is one for x > ¢ and zero otherwise where ¢ is chosen so that
a = P,, (type (i) error of ) then J is a solution of (5) with G’ taken as A,. It is
enough to show that J is best among all tests which reject when x is too large.
(Since if 8, with power function f4(4), is any test not of this form then there exists
a test 0., with power function (1), of this form such that ,(1) < f,(1) for 1 £ 4,
and f,(4) = Bo(4) for A > 1, and by (3) and (4), we have that ¢, is as good as J,
for each 0.) Let ¢’ be a test which rejects when x > ¢’. If ¢’ < ¢ then ¢’ does not
satisfy (5a). If ¢’ > ¢ then &'(x) < d(x) for all x and it follows by (4) that § is better
then &’ for all 0. Finally, it is easily seen that § satisfies (6) by calculating the
derivative with respect to 6 of P, (type (ii) error of d) and J is a UMP level o test
relative to 4.

THEOREM 2. Let X be a real-valued random variable with a family of possible
probability distributions indexed by 1eQ, which is a set of real numbers. Let the
Sfamily of probability densities f, have monotone likelihood ratio inx. A is the realiza-
tion of a random variable A with a fan ily of possible a priori distributions 4. Let
o= (A A2 L) and o' = (A: A > Ay) where Ay is a fixed number of Q.

Then for each Ge ¥, if G is the known a priori distribution, there exist constants
y and ¢ and a function d; which is of the form

og(x)=1 for x>c¢
(7 =7y for x=c¢
=0 for x<¢

such that s is a most powerful level o test relative to G.
If there exists a member G* of 4 such that

(8) Og(x) = infg g 0g(x) forall x

then g« is a UMP level a test relative to 9. If for each G' € Y there exists a solution
for the problem

subject to: Pg. (type (i) error) <o
minimize Pg (type (ii) error) uniformly for Ge ¥

then G* is a least favorable distribution.
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PRrOOF. Let 6 be any test with power function f5(4). If ¢q = B5(4,) then by Theorem
2 on page 68 of Lehmann [1], we have that there exists a UMP level «, test, d,, of
H: Jew against K: Ae ' which has the form

do(x) =1 for x>c¢
)] =y for x=c¢
=0 for x<c¢

and which satisfies Bo(1q) = ag, fo(4) = f5(4) for 1 = Ay, and By(2) = B5(4) for
A > Ay where B,(A) is the power function of §,. By (3) and (4), it follows that for each
G Pg (type (i) error of 3,) < Pg (type (i) error of 6) and Py (type (ii) error of 3,) < Pg
(type (ii) error of ) and J, is as good a test as J relative to G.

If G is the known a priori distribution for the testing problem then by Section 2
there exists a most powerful level « test, d, relative to G. By the previous remark,
we can assume that d¢ is given by (7) for some ¢ and y and the first part of the
theorem is proved. In addition, we can assume that if ¢’ is any test of form (9) with
9'(x) = dg(x) for all x and u(x : 6'(x) # dg(x)) > 0 then P (type (i) error of §") > «.

Let G* satisfy (8) and d4. be given by (7). To prove that d;. is a UMP level o test
relative to ¥, it is enough to show that ds. is a solution for the problem given by
(5) with G’ = G* and that d. satisfies (6). Clearly ds. satisfies (5a). Let 8, be any
other test which satisfies (5a). By the first remark in the proof, we can assume that
0, is of form (9). Since §, satisfies (5a), it follows that u(x: §,(x) > dg«(x)) = 0.
Therefore, P (type (ii) error of dg.) < Pg (type (ii) error of 4,) for Ge¥ and d. is
a solution of (5). For each G, we have that d¢g.(x) < d4(x) for all x and (6) holds and
by Theorem 1, the second part of the theorem is proved.

Note that the existence of a G* satisfying (8) is not necessary. If there exists a
6* which is of the form (7) and satisfies

supg . ¢ Pg (type (i) error of 6*) =«

then 6* is a UMP level « test relative to 4.

Next four examples will be given where Theorem 2 gives the existence of a UMP
level « test relative to a family of a priori distributions . In these examples, only
hypothesis (8) of Theorem 2 will be verified since the others are easily checked.

EXAMPLE 2. Let X given A = A have the hypergeometric (n, 4, m) distribution
where Ae(0,1,:--,n) =Q and m and » are known positive integers such that
0 <m < n. G is the class of binomial (n,p) distributions for pe M where M is a
closed subset of [0, 1].

For each p when the known a priori distribution is binomial (n, p) there exist
constants ¢, and y, such that a most powerful level o test d, is of form (7). In
particular, we will take d4(x) = 1 for x > 0 and 6,(0) = « and 6,(x) = 1 for all x
since then for each x d,(x) is a continuous function of p on the interval [0, 1]. Let
X, be the smallest x such that inf,., 6,(x) > 0. By the continuity of J,(x,), there
exists a p*eM such that §,.(x,) = inf, 6,(xo) and J,. is a UMP level o test
relative to ¢ since ¢, satisfies (8).
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It is possible to find J,. approximately without too much difficulty. For a fixed p
it is easy to find J, exactly. Since for 0 S x <A< n

P(X=x,A=1)=P,(A=A|X=x)P(X =x)
=GIDp (L= py AT P (L~ pyn

all the probabilities needed for the computation of §, can be found in a binomial
table. By calculating §, for various values of p in M 6. can be found approximately.

ExAMPLE 3. Let the distribution of X given A = A be normal (4,0,7%) and the
distribution of A be normal (0, ¢,2) where 0,2 and 0,2 are known and 0e M, a
closed set of real numbers, is unknown.

For each e M when the known a priori distribution is normal (0, g,?), there
exists a constant ¢, such that a most powerful level « test d, is given by d4(x) = 1 for
Xx 2 cgand §4(x) = 0 otherwise. Since ¢, is a continuous function of 0, the existence
of a 8% e M such that dg(x) = infy.y dg(x) for all x follows from (i) ¢ > — o0 as
0 — + o0 and (ii) ¢, —» — o0 as 6 - —o0. Since lim,_, , ., Po(A ew) =0, (i) is true. To
prove (ii), it is enough to show that for each real number a, lim,_, _ , Po(X € [a, + o)
and A e w) = 0. This follows from the fact that lim,_,_ , Po(X €[a, + 0 )) = 0 since
for each 0 the marginal density of X is normal (0, 6,2+ 6,?).

EXAMPLE 4. Let the distribution of X given A = A be Poisson with parameter 1.
The family of distributions for A is given by the density functions (1/¢) exp (—4/t)
for A > 0 where 7 is not known and te M, a set of positive real numbers which
contains all its limit points except possibly zero.

Let 8, denote the best test when ¢ is known. The only difficulty in showing the
existence of a 1* € M such that ¢, satisfies (8) is to check that the inf does not occur
as t approaches zero. This follows by considering the test 6 which is given by
0(x) =1 for x > 0 and 6(0) = « and verifying that lim,_y+a(t) = o« and a’(t) > 0
for ¢ sufficiently close to zero where a(t) = P, (type (i) error of ).

EXAMPLE 5. Let the distribution of X given A = 1 be binomial (n, 1) where n is a
known positive integer. The family of distributions for A is a family of beta distri-
butions with parameters r and s where (r,s)€ M, a set in the first quadrant of the
plane.

If M is the entire first quadrant, then a UMP level « test of H: A < A, against
K: 2> Ay isa UMP level « test relative to M since the family M contains distribu-
tions which put arbitrarily high probability in arbitrarily small neighborhoods of
every point in (0, 1).

If M is compact then by the continuity of d, (x) for each x there exists a point
(r*,s*)e M such that §,. « satisfies (8). Suppose now M = ((r,s):r=s and 0 <
r £ r') where r' is a fixed positive number and assume we are testing H: 1< %
against K: A > 4. 9, is a UMP level « test relative to M since for every test ¢ of
form (9) P,, (type (i) error of d) is a nondecreasing function of r. The preceding is
obvious if « = § because then 4, (x) = 1 for all x since P, (A€[0,3]) = 3.

If we assume that o < % and let M = ((r,s): r =5 and 0 < r < +00) then it is
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easily seen that if 6* is a UMP level « test of H: 1 < 4 against K: A >  then §*
is a UMP level « test relative to M. Note that 6* does not correspond to a least
favorable distribution in M.

4. Concluding remark. The testing problem in this paper can be considered as a
special case of the following two-set prediction problem. Let X and Y be random
variables with a family of possible joint probability distributions indexed ty e ©
and consider the problem of predicting from X whether or not Y lies in a specified
subset w of the space of values of Y. (In this paper, A corresponds to Y, G to 6,
and ¢ to ©.) If no uniformly most powerful level o predictors exist for this problem
then unbiased predictors, invariant predictors, and most stringent predictors
defined as in hypotheses testing can be considered.
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