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  BET Proteins    as Targets for Anticancer    
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 aBstract  Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that 

regulate gene expression and are involved in cancer pathogenesis. Over the last 

years, several BET inhibitors have been developed and clinically tested. Results from the fi rst clinical 

trials show limited single-agent activity in a small subset of patients with hematologic malignancies 

and in NUT carcinoma. Adverse events have been observed and may limit treatment compliance. Here, 

we review the preclinical rationale for targeting BET proteins in cancer and the preliminary results from 

clinical trials, and outline future directions for the use of BET inhibitors as antitumor agents. 

  Signifi cance:  BET inhibitors represent a new class of anticancer agents. Results from the fi rst clinical 

trials confi rm the antitumor potential of BET inhibitors, but their effi cacy as single agents seems to be 

limited. Based on preclinical data, combination therapies with other anticancer agents and the devel-

opment of a new generation of compounds may open new possibilities for targeting BET proteins as 

effective anticancer strategies.  Cancer Discov; 8(1); 24–36. ©2017 AACR.       
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  Bet Proteins as ePigenetic reaDers 

 Human cells contain tens of thousands of active promoter 
regions and enhancer regions that are highly cell-type depend-
ent, and a few hundred superenhancers, which are clusters of 
enhancers characterized by a very high binding of Mediator 
complexes and master transcription factors ( 1–3 ). For exam-
ple, in a multiple myeloma cell line, Loven and colleagues have 
identifi ed approximately 10,000 annotated active transcription 
start sites, 8,000 enhancers, and 308 superenhancers ( 1 ). Super-
enhancer-associated transcripts comprise the key cell identity 
genes and are expressed at higher levels than genes associated 
with normal enhancers ( 2–4 ). 

 Bromodomain and extraterminal domain (BET) proteins are 
epigenetic readers characterized by the presence of two tandem 
bromodomains (BD1 and BD2), an extraterminal domain (ET), 
and a C-terminal domain (CTD; ref.  5 ). They comprise the 
ubiquitously expressed BRD2, BRD3, and BRD4 and the testis-
restricted BRDT, and mainly recognize acetylated lysine of his-
tone 4 ( 5, 6 ). BET proteins also recognize acetylated nonhistone 
proteins, including different transcription factors ( 5–8 ). Exam-
ples are the binding of BRD4 to the acetylated transcription 

factor TWIST, involved in mesoderm formation ( 9 ); to acet-
ylated RelA, regulating the transcriptional activity of NF-
kappaB ( 10 ); or to acetylated ERG in acute myeloid leukemia 
(AML) cells ( 8 ). BET proteins can also bind other proteins, 
including transcription factors, in a bromodomain-independent 
manner, such as the binding of BRD4 to FLI1, MYB, SPI1 
(PU.1), CEBPA, CEBPB ( 8 ), or p53 ( 11 ). Finally, BET can also 
have kinase activity ( 9 ), a function not yet fully understood. 

 The fundamental role of BET proteins is demonstrated 
by the fact that homozygous deletion of BRD2 or BRD4 is 
embryonic lethal ( 12–15 ). BET proteins, acting as scaffolds 
to recruit other proteins, are localized at promoters and 
especially at enhancers of active genes, participating with the 
Mediator complex, as master transcription elongation factors 
(refs.  4, 5, 7, 16 ,  17 ;  Fig. 1 ). BET proteins match the chromatin 
acetylation status with transcriptional elongation via dis-
placing HEXIM1/7SK snRNP from the transcription elonga-
tion factor b Cyclin T1/CDK9 complex (P-TEFb), allowing 
the latter to activate RNA polymerase II via phosphorylation 
at serine 2 (refs.  4, 7, 16, 18 ;  Fig. 1 ). In addition, especially at 
enhancers, BET proteins also recruit the demethylase JMJD6, 
which induces degradation of 7SK snRNP and P-TEFb acti-
vation ( 7, 9, 19 ). However, the exact role of BET proteins 
in the transcription machinery has yet to be elucidated. 
Data obtained studying BRD4 in AML cells show that the 
recruitment of BET proteins at promoters and enhancers is 
mediated by transcription factors mainly due to the binding 
of BRD4 to p300/CBP acetyltransferase–mediated acetylated 
lysine residues ( 8 ). Moreover, a recent publication provided 
evidence that BRD4 is fundamental for the creation of the 
productive transcription elongation factor complex but not 
for the direct recruitment of P-TEFb ( 4 ).  
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Preclinical rationale for targeting 
Bet Proteins in Human cancer

Several lines of evidence coming from preclinical studies 
indicate a role of BET proteins in human cancer and have pro-
vided the rationale for targeting BET proteins as a strategy for 
the development of new anticancer drugs. Genetic screening 
programs performed in different tumor types have recurrently 
identified the genes encoding BET proteins as genes on which 
neoplastic cells depend for their survival (20–23). Overexpres-
sion of BRD2/BRD4 genes also occurs in human cancers (23, 24). 
Finally, the most direct and clear evidence of the involvement 
of BET proteins in the pathogenesis of human cancer derives 
from NUT carcinoma, a rare and aggressive form of undiffer-
entiated squamous cell carcinoma that mainly affects midline 
structures. Initially thought of as a disease of children and 
adolescents, NUT carcinoma can actually occur at any age. 
NUT carcinoma is genetically defined by chromosomal rear-
rangements involving the NUT gene on chromosome 15q14 
fused to the BET gene BRD4 on chromosome 19p13.1, or less 
commonly to other genes, including BRD3 and NSD3BRD 
(25, 26). The translocation creates an in-frame BRD4–NUT 
 oncogene driven by the BRD4 promoter that is considered 

a major pathogenetic driver of cellular transformation (26). 
Silencing of the BRD4–NUT fusion gene results in differen-
tiation and growth arrest of NUT carcinoma cells (26). More 
importantly, the displacement of the BRD4 oncoprotein from 
chromatin using the BET inhibitor JQ1 has antiproliferative 
activity with squamous differentiation in BRD4-dependent 
cell lines and patient-derived xenograft models (27).

Exposure of tumor cells to BET inhibitors results in a 
genome-wide reduction of the levels of BRD4 at enhanc-
ers and at promoters with important changes at the gene 
expression level, largely represented by a downregulation of 
transcripts (refs. 1, 4, 17, 27–30; Fig. 1). Downregulation of 
key oncogenes that are associated with superenhancers, such 
as MYC, represents a possible mechanism of the antitumor 
activity of BET inhibitors (1). Biomarkers of exposure to 
BET inhibitors have been proposed, such as transcriptional 
modulation of MYC and HEXIM1 (31, 32) and CCR1 and 
IL1RN (33).

Signatures of exposure to BET inhibitors are relatively 
similar among different tumor types (31, 34, 35), but specific 
changes predominate in different cellular contexts in which 
BET inhibitors directly affect key tissue- or cancer-specific 
genes, mainly transcription factors (1, 4, 8, 28, 29, 31, 36–42). 

figure 1.  Schematic representation of the mechanism of action of BET inhibitors. BET proteins recognize acetylated lysine of histone 4 and act 
as scaffolds to recruit many other proteins to promoters and at enhancers of active genes, especially at the superenhancers of key genes, driving the 
transcription process. Exposure of tumor cells to BET inhibitors reduces the levels of BRD4 at enhancers and at promoters at a genome-wide level, but 
the reduction is more marked at superenhancers, and the genes associated with superenhancers undergo stronger and faster downregulation than genes 
regulated by standard enhancers. Examples of such genes are MYC, NMYC, IL7R, FOSL1, AR, ER, BCL2, BCL6, PAX5, CDK4, and CDK6. BET-i, BET inhibi-
tor; Med, mediator; TF, transcription factor.
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Examples of key genes are  MYC  ( 4, 20, 22, 24 ,  35–38, 43–47 ), 
AR  and  TMPRSS2 – ETS  fusion genes ( 48, 49 ),  FOSL1  ( 50, 51 ), 
E2F2  ( 38 ),  ITK  ( 31 ),  IL7R  ( 35, 38, 44, 50 ),  TERT  ( 24, 46 ),  BCL2  
( 22, 24, 43, 46 ),  CDK6  ( 17, 22, 38, 43 ),  IRF4  ( 24, 37, 45 ), and 
IKZF1  ( 24, 45 ). There are data indicating that the reduction 
in BRD4 binding is more marked at superenhancers and 
that their corresponding genes undergo stronger and faster 
downregulation than genes regulated by standard enhancers 
( 1, 17, 37, 52 ).  

  Bet inHiBitors 

 After the initial description done by Yoshitomi Pharmaceu-
ticals (then Mitsubishi Tanabe Pharma) of thienotriazolodi-
azepines with antitumor activity and the ability to inhibit the 
binding between acetylated histone and bromodomain-con-
taining proteins (patent PCT/JP2008/073864), in 2010 there 

were two seminal papers demonstrating that BET inhibitors 
can induce terminal differentiation and apoptosis in pre-
clinical NUT carcinoma models ( 27 ) and can have important 
anti-infl ammatory activity ( 53 ). Many other publications fol-
lowed describing novel BET inhibitors and, more importantly, 
demonstrating that pharmacologic BET inhibition has clear 
preclinical antitumor activity in a variety of solid tumors 
and hematologic cancers ( 54, 55 ). BRD2 and BRD4 have 80% 
homology, and their different specifi cities are believed to 
mainly depend on their ET and CTD domains ( 5 ). Because all 
of the currently available BET inhibitors target the bromodo-
mains, they are to be considered pan-BET inhibitors, although 
they can differ in their capacity to bind both BD1 and BD2 or 
preferentially one of the two bromodomains ( 56–58 ). 

 Several compounds have entered clinical development in 
phase I or II studies for patients with solid tumors and hemato-
logic malignancies ( Table 1 ). Although results of most of these 

 table 1.    BET inhibitors in clinical trials, from ClinicalTrials.gov ( https://clinicaltrials.gov/ ), 
last accessed on September 10, 2017   

 Drug (administration) 

 ClinicalTrials.gov # 

(start date)  Phase  Tumor type  Status  Results 

GSK525762 (oral) NCT01587703 

(March 2012)

I Solid tumors, NUT carcinoma Ongoing/recruiting 

patients

Abstract ( 67 )

NCT01943851 

(May 2014)

I Hematologic malignancies Ongoing/recruiting 

patients

Not reported

NCT02706535 

(May 2016)

I Advanced malignancies, effects of 

itraconazole and rifampicin on the 

pharmacokinetics of GSK525762

Completed Not reported

NCT03150056 

(May 2017)

I Prostate cancer, in combination with 

androgen deprivation

Ongoing/recruiting 

patients

Not reported

NCT02964507 

(February 2017)

II Estrogen receptor–positive breast 

cancer, in combination with ful-

vestrant

Ongoing/recruiting 

patients

Not reported

OTX015/MK-8628 

(oral)

NCT01713582 

(December 2012)

I Hematologic malignancies Completed Reported 

( 60, 61 )

NCT02259114 

(October 2014)

I Solid tumors Completed Abstract ( 65 )

NCT02296476 

(October 2014)

I Glioblastoma Terminated Abstract ( 69 )

NCT02698176 

(May 2016)

I Solid tumors Terminated Not reported

CPI-0610 (oral) NCT01949883 

(September 2013)

I Non-Hodgkin lymphomas Ongoing/recruiting 

patients

Abstract ( 62 )

NCT02157636 

(July 2014)

I Multiple myeloma Ongoing/recruiting 

patients

Not reported

NCT02158858 

(June 2014)

I Myelodysplastic syndrome, leukemia Ongoing/recruiting 

patients

Not reported

RO6870810/TEN-010 

(subcutaneous injection)

NCT01987362 

(October 2013)

I Solid tumors Ongoing/not 

recruiting patients

Abstract ( 66 )

NCT02308761 

(November 2014)

I Myelodysplastic syndrome, leukemia Ongoing/recruiting 

patients

Not reported

NCT03068351 

(June 2017)

I Multiple myeloma, single agent and in 

combination with daratumumab

Ongoing/recruiting 

patients

Not reported

NCT03255096 

(August 2017)

I Lymphomas, in combination with 

venetoclax and rituximab

Ongoing/recruiting 

patients

Not reported

(continued)
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 Drug (administration) 

 ClinicalTrials.gov # 

(start date)  Phase  Tumor type  Status  Results 

BAY1238097 (oral) NCT02369029 

(February 2015)

I Solid tumors, non-Hodgkin lympho-

mas

Terminated Abstract ( 70 )

GS-5829 (oral) NCT02392611 

(March 2015)

I Solid tumors and lymphomas; expan-

sion cohort in breast cancer in 

combination with exemestane or 

fulvestrant

Ongoing/not re-

cruiting patients

Not reported

NCT02607228 

(December 2015)

I/II Prostate cancer, single agent and in 

combination with enzalutamide

Ongoing/recruiting 

patients

Not reported

NCT02983604

(January 2017)

I/II Breast cancer, in combination with 

exemestane or fulvestarant

Ongoing/recruiting 

patients

Not reported

ABBV-075 (oral) NCT02391480 

(April 2015)

I Solid tumors and hematologic 

malignancies; expansion cohorts in 

combination with venetoclax

Ongoing/recruiting 

patients

Not reported

FT-1101 (oral) NCT02543879 

(September 2015)

I Hematologic malignancies Ongoing/recruiting 

patients

Not reported

INCB054329 (oral) NCT02431260 

(May 2015)

I/II Solid tumors, non-Hodgkin lympho-

mas, acute leukemia, chronic my-

eloid leukemia, multiple myeloma

Ongoing/not re-

cruiting patients

Not reported

BMS-986158 (oral) NCT02419417 

(June 2015)

I/II Solid tumors Ongoing/recruiting 

patients

Not reported

BI 894999 (oral) NCT02516553 

(July 2015)

I Solid tumors, non-Hodgkin 

lymphomas

Ongoing/not re-

cruiting patients

Not reported

N-methyl pyrrolidone 

(oral)
NCT02468687 

(August 2015)

I Multiple myeloma Ongoing/recruiting 

patients

Not reported

PLX51107 (oral) NCT02683395 

(March 2016)

I Solid tumors, hematologic 

malignancies

Ongoing/recruiting 

patients

Not reported

GSK2820151 (oral) NCT02630251 

(April 2016)

I Solid tumors Ongoing/recruiting 

patients

Not reported

ZEN-3694 (oral) NCT02705469 

(April 2016)

I Prostate cancer Ongoing/recruiting 

patients

Not reported

NCT02711956 

(December 2016)

I Prostate cancer, in combination with 

enzalutamide

Ongoing/not re-

cruiting patients

Not reported

INCB057643 (oral) CT02711137 

(May 2016)

I/II Solid tumors, hematologic 

malignancies

Ongoing/recruiting 

patients

Not reported

ODM-207 (oral) NCT03035591 

(December 2016)

I/II Solid tumors Ongoing/recruiting 

patients

Not reported

table 1. BET inhibitors in clinical trials, from ClinicalTrials.gov (https://clinicaltrials.gov/), 
last accessed on September 10, 2017 (Continued)

studies are only preliminary, some fi rst signals of clinical activity 
have emerged and together with the adverse events observed may 
direct their further clinical development ( Fig. 2 ). In the following 
sections, we have summarized information on the preliminary 
clinical activity of BET inhibitors and their toxicity profi les.    

  Leukemia and Lymphoma 

 The fi rst published clinical results of a BET inhibitor 
derive from the thienotriazolodiazepine   OTX015 (MK-8682). 
In preclinical experiments, OTX015 resulted in cell growth 
inhibition, cell-cycle arrest, and apoptosis in acute leukemia 
cell lines in which it also decreased the expression of BRD2, 

BRD4, and MYC and increased the expression of the MYC-
negative regulator HEXIM1 ( 59 ). 

 OTX015 was also evaluated in a large panel of cell lines 
derived from mature B-cell lymphoid malignancies, showing 
antiproliferative activity among all the different histologic sub-
types. The activity of OTX015 in lymphoma cell lines is mainly 
cytostatic, with the exception of a subgroup of cell lines derived 
from non–germinal center B cell–like diffuse large B-cell lym-
phoma (DLBCL) bearing wild-type  TP53  and mutations in 
 MYD88 ,  CD79B , or  CARD11  in which it induces apoptosis ( 36 ). 
Both  in vitro  and  in vivo , OTX015 inhibits NFκB/TLR/JAK/STAT 
signaling pathways and MYC- and E2F1-regulated genes ( 36 ). 
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Based on its preclinical activity, OTX015 was investigated 
in a phase I dose-finding study in two parallel cohorts of 
patients with advanced hematologic malignancies: one cohort 
of patients with acute leukemia and one cohort of patients 
with nonleukemic hematologic malignancies (including lym-
phoma and multiple myeloma). Doses from 10 to 160 mg 
daily in either continuous or different intermittent schedules 
were evaluated, establishing the recommended phase II dose 
at 80 mg once daily for 14 days every 21 days in both cohorts.

In the acute leukemia cohort, among 41 patients (36 with 
AML, 3 with acute lymphoblastic leukemia, 1 with acute 
undifferentiated leukemia, and 1 with refractory anemia with 
excess of blasts) previously failing a median of 2 systemic 
treatments, preliminary activity was observed in 5 patients: 
2 (1 with acute leukemia treated at 40 mg once a day and 1 
with refractory anemia with excess of blasts treated at 160 
mg once a day) achieved complete remission lasting 5 and 3 
months, respectively, and 1 with acute leukemia treated at 80 
mg achieved a complete remission with incomplete recovery 
of platelets. In addition, 2 patients (1 with AML secondary 
to polycythemia vera treated at 10 mg and 1 with myelo-
dysplastic syndrome treated at 80 mg) had partial blast clear-
ance. No correlation was found between somatic mutations 

in 42 genes (including NPM1, IDH2, FLT3, EV11, and MLL) 
and response to OTX015 comparing 5 responders versus 28 
nonresponders (60).

In the nonleukemic cohort, among 45 patients (33 with 
lymphoma and 12 with multiple myeloma) previously treated 
with a median of three systemic lines, 2 patients with DLBCL,  
both initially treated at 120 mg once a day, achieved com-
plete remissions lasting 4.5 and 13.7 months, respectively, and 
another patient with DLBCL treated at 80 mg once a day 
achieved a partial remission lasting 6 months. Additionally, 6 
patients (2 with DLBCL, 2 with follicular lymphoma, 1 with 
extranodal marginal zone lymphoma, and 1 with lympho-
plasmacytic lymphoma) had tumor reductions not meeting the  
criteria for objective response. In a retrospective subgroup anal-
ysis, out of the 10 patients with non–germinal center B cell–like 
DLBCL, 4 (40%) had evidence of clinical activity versus 2 of 12 
(17%) patients with germinal center B cell–like DLBCL. With 
regard to MYC protein expression, among 5 patients with MYC-
positive DLBCL, only 1 responded to treatment. No activity was 
detected in any of the 12 patients with multiple myeloma (61).

Antitumor activity has also been reported with CPI-0610, 
a benzoisoxazoloazepine compound currently in evaluation 
in a phase I study in patients with relapsed or refractory 

OTX015 CPI-0610 GSK525762
BAY

1238097
TEN-010

Thrombocytopenia,
anemia, neutropenia,
GI toxicities, fatigue,

bilirubin increase

Berthon, et al.:

AL, n = 41: CR = 2;
PR = 3

Stathis, et al.:

NUT ca, n = 4: PR = 2

Abramson, et al.:

NHL, n = 44:
CR = 2, PR = 1

*O’Dwyer, et al.:

NUT ca, n = 10:
PR = 2

Postel-Vinay, et al.:

Solid tumors,
n = 8: NR

Shapiro, et al.:

NUT ca, n = 3:
PR = 2

Hottinger, et al.:

GLB, n = 12: NR

Massard, et al.:

NUT ca, n = 10: PR = 3
CRPC, n = 36: PR = 1

NSCLC, n = 9: NR

Amorim, et al.:

NHL, n = 33: CR = 2;
PR = 1

MM, n = 12: NR

Thrombocytopenia,
GI toxicities,

anemia, fatigue,
bilirubin increase

Irritation at the
injection site,

indirect bilirubin
increase,
anorexia

Headaches,
vomiting

(development
stopped due to
adverse events)

Thrombocytopenia,
diarrhea (dose

escalation ongoing
at the time of

reporting)

figure 2.  Schematic representation of available clinical data including preliminary antitumor activity and main toxicities observed with BET inhibitors. 
AL, acute leukemia; NHL, non-Hodgkin lymphoma; MM, multiple myeloma; NUT ca, NUT carcinoma; GLB, glioblastoma; GI, gastrointestinal; n, number of 
patients included; CR, complete remission; PR, partial remission; NR, no response. *This study included 70 patients at the time of reporting, and prelimi-
nary activity was reported in 10 patients with NUT carcinoma (67). Cited references: Berthon, et al. (60); Amorim, et al. (61); Stathis, et al. (64); Massard, 
et al. (65); Hottinger, et al. (69); Abramson, et al. (62); O’Dwyer, et al. (67); Shapiro, et al. (66); Postel-Vinay, et al. (70).
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lymphomas. Preliminary results in 44 patients who received 
CPI-0610 orally once daily on days 1 to 14 in 21-day cycles at 
doses ranging from 6 to 230 mg have been reported (62). Two 
patients with DLBCL achieved a complete response (1 main-
tained after 7 cycles and 1 followed by allogeneic transplanta-
tion after 6 cycles), and 1 patient with follicular lymphoma 
achieved a partial response (lasting at least 6 cycles). Five 
patients experienced smaller decreases in tumor volume not 
meeting the criteria for objective response. Expression of the 
BET target gene CCR1 was suppressed at the 170-mg once-
daily and 230-mg dose levels.

The above-reported clinical results, albeit coming from a 
small number of patients, provide evidence that BET inhibi-
tors used in tolerable doses can result in clinical activity in 
patients with acute leukemia and lymphoma, in particular in 
DLBCL. Results from the OTX015 phase I trial might suggest 
an association between the non–germinal center B cell–like 
phenotype and treatment response, in line with preclinical 
data reporting strong capacity of BET inhibitors to down-
regulate the NF-κB, TLR, and JAK/STAT3 signaling pathways 
(28, 36), crucial in this subtype of DLBCL (63). However, this 
finding will need confirmation in additional studies. On the 
other hand, no association was found between MYC expres-
sion and sensitivity to OTX015. Future studies should aim to 
identify molecularly defined subsets of patients with DLBCL 
that are most likely to benefit from BET inhibitors.

NUT Carcinoma

NUT carcinoma represents a disease prototype for the 
clinical testing of BET inhibitors due to the strong preclinical 
rationale, as reported above, and to the need for novel thera-
peutic approaches. Indeed, NUT carcinoma is one of the most 
lethal solid tumors, characterized by a very aggressive course, 
lack of benefit from chemotherapy or radiotherapy, and an 
overall survival of 6 to 9 months (26).

Our institution was one of the centers participating in the 
dose-escalation phase I study of OTX015 in patients with 
hematologic malignancies. Four patients were referred to 
our center with advanced, previously treated NUT carcinoma 
with confirmed BRD4–NUT fusions and received OTX015 on 
a compassionate basis (64). The schedule consisted of 80 mg 
once daily, administered orally in 3-week cycles, based on the 
dose that was already tested and declared safe in the phase 
I hematologic study (61). Among the 4 treated patients, 2 
responded and 1 had a meaningful disease stabilization with 
a minor metabolic response (64). Responses were rapid with 
symptomatic relief (including a clinical response after 1 week 
of treatment in 1 of the patients presenting at treatment start 
with a bulky tumor involving the left maxillary and mandibu-
lar region) and were confirmed by PET-CT after two cycles of 
treatment. The duration of response was 13 cycles in 1 patient 
and 3 cycles in the second patient (64).

Following the phase I study in hematologic malignancies, 
OTX015 was subsequently evaluated in a phase I study in 
patients with selected solid tumors, including patients with 
NUT carcinoma. In a preliminary report of this study, among 
10 patients with NUT carcinoma, 3 patients achieved a par-
tial response (65).

At least two other BET inhibitors that are currently in 
clinical development have been evaluated in small numbers of 

patients with NUT carcinoma. Similar to OTX015, evidence 
of clinical activity was observed. TEN-010, a BET inhibi-
tor structurally related to JQ1, is under clinical evaluation 
in solid tumors, including NUT carcinoma, and hemato-
logic malignancies. Preliminary data were reported for the 
3 patients with NUT carcinoma treated with subcutaneous 
daily dosing of TEN-010 for 3 weeks in 4-week cycles. One 
patient received TEN-010 at 0.1 mg/kg and 2 received 0.45 
mg/kg. Although the patient treated at the low dose had a 
rapid tumor progression, both patients treated at the higher 
dose had clinical responses, 1 with a 30% and 1 with a 50% 
tumor regression after 1 and 2 cycles of treatment, respec-
tively. A symptomatic improvement was rapidly obtained 
in both patients. At the time of reporting of these results, 1 
of the responding patients had experienced disease progres-
sion after 2 cycles of treatment and treatment of the second 
patient was ongoing in cycle 3 (66).

GSK525762 is another pan-BET inhibitor that is being 
evaluated in patients with hematologic malignancies and 
solid tumors (67). Preliminary results after the inclusion of 
70 patients (including 17 patients with NUT carcinoma) 
showed good tolerability at the dose of 80 mg once daily, 
which was the dose selected for expansion cohorts. The most 
common adverse events of any grade included thrombocy-
topenia, gastrointestinal adverse events (nausea, vomiting, 
decreased appetite, diarrhea, and dysgeusia), anemia, and 
fatigue. At the time of reporting of these results, among 10 
response-evaluable patients with NUT carcinoma, 2 patients 
achieved partial response and 4 had stable disease.

Results from this small number of patients provide clinical 
evidence of the activity of BET inhibition in NUT carcinoma 
and represent an important example of therapy with small 
molecules resulting in antitumor activity by targeting the 
causative oncoprotein.

Based on the available data, it is not possible to estimate 
what the clinical impact of BET inhibitors used as monother-
apy could be in NUT carcinoma. Not all patients responded; 
in fact, only 30% of patients with NUT carcinoma responded 
in the phase I trial of OTX015 in solid tumors, and 20% in the 
phase I trial of GSK525762. On the other hand, among those 
patients who achieved a response and for which follow-up 
data were available, all patients relapsed during treatment. 
Genetic data from tumor biopsies before treatment start and 
at time of disease progression are available from only one of 
the first 4 patients treated with OTX015, but they did not 
detect any genetic alterations at the time of progression that 
could possibly explain the development of resistance to treat-
ment (64). Future studies should aim to molecularly charac-
terize patients with NUT carcinoma who are treated with BET 
inhibitors. In addition, although FISH confirmation of the 
chromosomal translocation is not necessary for diagnostic 
purposes (68), it should be implemented in clinical trials to 
assess whether the partner gene (BRD4 vs. other genes) fused 
to NUT may predict response to BET inhibition. Finally, com-
bination therapies may be necessary to overcome the resist-
ance that can develop to BET inhibition.

Other Solid Tumors

The currently available clinical data in other solid tumors are 
very scant. Preliminary results of the phase I study of OTX015 
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in patients with NUT carcinoma, castration-resistant prostate 
cancer (CRPC), or KRAS-mutated or ALK-positive non–small 
cell lung cancer (NSCLC) showed evidence of clinical activity 
in NUT carcinoma as reported above and in CRPC. Among 
46 patients treated (26 CRPC, 10 NUT carcinoma, 9 KRAS-
mutated, and 1 ALK-positive NSCLC), 4 patients had a partial 
response (including the 3 patients with NUT carcinoma and  
1 patient with CRPC). In addition, prolonged stable disease 
was observed in 5 patients with CRPC (4–8 months) and 2 
patients with KRAS-mutated NSCLC (65).

On the other hand, no clinical activity was seen in a small 
phase IIa study in 12 patients with glioblastoma, and the trial 
was closed due to lack of clinical activity (69).

Adverse Events

Similar to the data reporting on their clinical activity, 
the adverse events profile of BET inhibitors must be bet-
ter defined, because the results of most of the compounds 
currently in phase I trials are preliminary. The main tox-
icities seen with OTX015 in the phase I study in patients 
with hematologic malignancies were represented by revers-
ible thrombocytopenia (which indeed required a schedule of 
administration of 2 weeks on/1 week off to permit platelet 
recovery), anemia, neutropenia, gastrointestinal symptoms 
(including nausea, diarrhea, and dysgeusia), fatigue, and bili-
rubin elevation. Overall, OTX015 was well tolerated, and the 
toxicities were reversible with treatment interruptions. The 
favorable safety profile of OTX015 was confirmed in the phase 
I trial in patients with solid tumors (65). Thrombocytopenia, 
fatigue, gastrointestinal symptoms, and hyperbilirubinemia 
are among side effects also reported in patients treated with 
other BET inhibitors (62, 66, 67), although the results of 
these trials are currently preliminary and reported only in 
abstract form. Additional results from the ongoing studies 
will add information on the safety of these compounds, and 
the impact that these adverse events could have in treatment 
compliance. On the other hand, the development of another 
BET inhibitor, BAY 1238097, was prematurely interrupted 
due to severe adverse events (mainly headaches) that occurred 
at doses below the predicted therapeutic dose (70).

Further side effects might be predicted based on preclinical 
data. Human BET proteins, mainly BRD4, interact with viral 
proteins and are involved in viral life cycles (18, 71–81). There 
is preclinical evidence that BET inhibitors activate DNA 
replication of human immunodeficiency virus (HIV; refs. 76, 
77, 79), human papillomavirus (HPV) 16 (80), human herpes 
simplex virus 1 and 2 (HSV-1 and HSV-2; ref. 78), and hepati-
tis B virus (HBV; ref. 73). Although this can be therapeutically 
exploited to eliminate latent viral infections (76, 77, 82), it 
advises for a close monitoring of patients with cancer receiv-
ing BET inhibitors for reactivation of viral infections.

The complete lack of either BRD2 or BRD4 is lethal (12–15)  
and, in general, low BET protein level is associated with 
reduced cell growth (12, 13). Mice with reduced BRD4 levels 
present different reversible phenotypes with a decrease in the 
number of hematopoietic cells, skin hyperplasia with abnor-
mal hair follicles, and disruption of the intestinal crypts with 
loss of the secretory cells and increased intestinal toxicity 
after exposure to radiation or doxorubicin (83). Mice with 
reduced levels of BRD2 show important neuronal defects  

and obesity with hyperinsulinemia in the presence of a low-
ered blood glucose (13–15). Impaired long-term memory (84), 
reduced explorative motor activity, and heightened anxiety-
like behavior in the open field (85) have been observed in 
mice exposed to the BET inhibitors JQ1 (84) and I-BET858 
(85), further suggesting that neurologic symptoms might be 
expected. Finally, a tumor-suppressor role for BET proteins 
has also been reported in which their inhibition would result 
in a reduced immune surveillance (86) and reduced capacity 
of healthy cells to counteract the neoplastic transformation 
process (87). These observations suggest monitoring for 
second tumors in patients exposed to BET inhibitors.

Resistance

Mechanisms of resistance to BET inhibitors so far derive 
from preclinical models. Resistance does not appear to derive 
from somatic mutations or copy-number changes affecting 
BET bromodomain genes (42, 88). Increased WNT signaling 
with β-catenin–mediated MYC expression in AML (88, 89), 
activation of the Hedgehog pathway with GLI2-mediated MYC 
expression in pancreatic cancer (90), hyperphosphorylation of 
BRD4 that leads to a bromodomain-independent binding to 
MED1 in triple-negative breast cancer (42), kinome reprogram-
ming in ovarian cancer (91), activation of the MAPK pathway 
in colorectal cancer (45), AMPK–ULK1-mediated autophagy 
(92) or MCL1 upregulation in AML (29), and RAS pathway 
activation with BCL2 upregulation in lymphoma (93) all repre-
sent possible mechanisms of resistance to BET inhibitors. The 
presence of concomitant KRAS and LKB1 mutations in NSCLC 
(38, 46) and PIK3CA mutations in breast cancer (23) has been 
also associated with resistance to BET inhibitors. Mutations of 
the SPOP gene, coding for a ubiquitin ligase adaptor protein, 
are associated with high sensitivity to BET inhibition in endo-
metrial cancer cell lines but to resistance in prostate cancer cell 
lines due to an increased or decreased, respectively, degradation 
of the BET proteins in cases bearing SPOP mutations (94).

Gene expression signatures associated with sensitivity to 
BET inhibitors have been identified in different tumor mod-
els, but they still need to be further validated in the clinical 
context (36, 39, 41).

future Directions

The above-reported preliminary information on BET 
inhibitors in clinical trials provides evidence of their antitu-
mor potential in a subset of patients with hematologic malig-
nancies and in NUT carcinoma. Although results of ongoing 
trials are awaited and may add information on activity in 
other solid tumors, two areas of preclinical research are being 
actively pursued and may guide future development of BET 
inhibitors. Below we report the preclinical rationale for com-
bination treatments and outline the current research aiming 
at developing a new generation of BET inhibitors.

Combinations

BET inhibitors have shown preclinical synergism with dif-
ferent classes of compounds and in almost all the different 
tumor types that have been investigated (Table 2). Synergism 
largely appears to be due to the ability of BET inhibitors to 
block protective feedback mechanisms that would lead to 
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 table 2.    Combination partners that have shown synergism with BET inhibitors in 
preclinical tumor models  

Classes Second compound Experimental disease model

Small molecules

ALK inhibitors Lymphoma ( 31 )

BTK inhibitors Lymphoma ( 28, 31, 35, 36 ,  100, 101, 114 )

CDK inhibitors Lymphoma ( 100, 101 ), osteosarcoma ( 51 )

BCL2/MCL1 inhibitors ALL ( 115 ), AML ( 29, 116 ), LC ( 117 ), 

lymphoma ( 99–101 )

EGFR/ERBB2 inhibitors BC ( 97 )

FLT3 inhibitors AML ( 118 )

Hedgehog inhibitors Lymphoma ( 31 )

JAK inhibitors AML ( 119 )

MEK/ERK inhibitors Lymphoma ( 120 ), OC ( 91 )

mTOR inhibitors BC ( 40 ), glioblastoma ( 121 ), lymphoma 

( 28, 35, 36, 114 ), osteosarcoma ( 122 )

PARP inhibitors BC ( 96 ), OC ( 96 )

PI3K inhibitors, pan or selective BC ( 95 ), CC ( 95 ), lymphoma ( 28, 36, 102 ), 

glioblastoma ( 95 ), OC ( 90, 95 )

Proteasome inhibitors MM ( 116, 123 )

Antibodies

Anti-CD20 monoclonal antibodies Lymphoma ( 36, 114, 124 )

Immune 

modulators

Immunomodulatory drugs (IMiD) Lymphoma ( 36, 125, 126 ), MM ( 45 )

Anti–PD-1 monoclonal antibodies Lymphoma ( 30 )

Anti–4-1BB monoclonal antibodies Lymphoma ( 30 )

Chimeric antigen receptor (CAR) 

T cells

ALL ( 105 )

Epigenetic drugs

EZH2 inhibitors Lymphoma ( 35, 127 )

HDAC inhibitors AML ( 128 ), BC ( 129 ), LC ( 130 ), lymphoma 

( 31, 36, 101, 114 ,  131 ), melanoma ( 132 ), 

neuroblastoma ( 133 ), PC ( 134 )

Azacytidine AML ( 116 )

Decitabine Lymphoma ( 36 )

Chemotherapy

Temozolomide Glioblastoma ( 121 )

Hormone therapy

Antiandrogen PrC ( 49 )

Estrogen receptor degrader BC ( 135 )

   Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BC, breast cancer; CC, colorectal 
cancer; LC, lung cancer; MM, multiple myeloma; OC, ovarian cancer; PC, pancreatic cancer, PrC; prostate cancer.   

the upregulation of additional kinases by a BRD-mediated 
mechanism ( 35, 95 ).  

 Several preclinical studies have explored BET inhibitors 
in combination with molecularly targeted agents in solid 
tumors and hematologic malignancies ( Table 2 ). A benefi t 
has been observed when combining BET inhibitors with PI3K 
inhibitors in breast, ovarian, and colorectal cancers ( 95 ), ERK 
inhibitors in ovarian cancer ( 91 ), PARP inhibitors in ovarian 
and breast cancers ( 96 ), and the ERBB2 inhibitor lapatinib 
in breast cancer ( 97 ). In lymphomas, synergistic activity has 
been observed in combinations with small molecules that 

have established single-agent clinical activity such as BTK, 
PI3K, or BCL2 inhibitors ( 28, 35, 36, 98–102 ). At least two 
clinical trials are currently testing BET inhibitors in combi-
nation with BCL2 inhibitors in patients with relapsed lym-
phoma (NCT02391480 and NCT03255096). 

 Interestingly, some kinase inhibitors, such as the PLK1 
inhibitor BI-2536 or the JAK2/FLT3 inhibitor TG-101348, 
also inhibit BET proteins ( 103, 104 ). Considering the 
observed synergisms of combinations containing BET inhibi-
tors and kinase inhibitors, the possibility of targeting both 
classes of proteins is under active investigation ( 103 ). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rd

is
c
o
v
e
ry

/a
rtic

le
-p

d
f/8

/1
/2

4
/1

8
3
9
0
4
1
/2

4
.p

d
f b

y
 g

u
e
s
t o

n
 2

6
 A

u
g
u
s
t 2

0
2
2



Stathis and BertoniREVIEW

32 | CANCER DISCOVERY January  2018 www.aacrjournals.org

 Due to the diffuse use of immune checkpoint modulators 
in solid tumors and in some hematologic cancers, it is impor-
tant to highlight that BET inhibitors have shown synergism 
with this class of compounds in preclinical models ( 30, 105 ). 
BET inhibitors decrease BRD4 binding to the  CD274  locus 
with downregulation of PD-L1 expression on tumor cells and 
improvements of the response to anti–PD-1 or anti–4-1BB 
( 30 ). BET inhibitors also increase the response to chimeric 
antigen receptor–transduced T cells via supporting the main-
tenance of CD8 +  T cells with a phenotype of central memory 
T cells or stem cell–like memory T cells ( 105 ). Finally, BET 
inhibitors downregulate ITK expression in T-cell lymphomas 
( 31 ), and this, if confi rmed in normal T cells, could favor 
the generation of Th 1  cells, IFNγ production, and increased 
antitumor immunity as observed with the BTK inhibitor 
ibrutinib that also inhibits ITK ( 106 ). 

 Finally, BET inhibitors have been tested in CRPC and 
tamoxifen-resistant breast cancer in combination with enzalu-
tamide and fulvestrant, respectively, showing synergistic activ-
ity. At least fi ve clinical trials (NCT02392611, NCT02964507, 
NCT02607228, NCT02983604, and NCT02711956) are cur-
rently evaluating combination therapies of BET inhibitors 
with hormone therapy in patients with prostate or breast 
cancer ( Table 1 ).  

  Next Generation of Compounds 

 Different experimental models show that tumor cells resist-
ant to BET inhibitors are still dependent on BET proteins ( 42, 
88 ) and, in general, exposure to BET inhibitors results in 
downregulation of BET proteins that is reversible and often 
followed by an upregulation of the BET proteins themselves 
( 36, 107 ). Thus, there are ongoing efforts to obtain stronger 
and more sustained suppression of the BET protein activity, 
which would lead to increased antitumor activity. Com-
pounds such as “biBET ( 6 ) ” ( 108 ), MT1 ( 109 ), and AZD5153 

( 31 ), which engage both bromodomains simultaneously 
in a bivalent mode, have shown promising  in vitro  results. 
Another extremely active fi eld is the creation of BET degrad-
ers, chimeric compounds that merge a BET inhibitor that 
allows the binding to BET proteins, linked to an additional 
small molecule that mediates the binding to an E3 ubiqui-
tin ligase complex, thus degrading the BET proteins via the 
proteasome. These compounds are based on the idea of the 
proteolysis targeting chimeras (PROTAC), fi rst described in 
2001 ( 110 ). Currently available BET degraders, which are 
still at the preclinical level, differ both in the use of the BET 
inhibitor component and in the exploited E3 ligase complex 
( Table 3 ).  

 BET degraders appear to have a different mechanism 
of action from BET inhibitors, due to the loss of both 
bromodomain-dependent and bromodomain-independent 
functions of the BET proteins and to a collapse of the 
core transcriptional machinery, with wider changes at the 
gene expression level ( 4, 100 ). Accordingly, degradation of 
BET proteins induced by BET degraders results in a higher 
cytotoxic effect than that achieved with BET inhibitors 
( 4, 107, 111–113 ). ARV-825, a heterobifunctional PROTAC 
that exploits the E3 ubiquitin ligase cereblon and leads to 
rapid BRD4 degradation, induces increased apoptosis in 
Burkitt lymphoma cell lines in comparison to either JQ1 or 
OTX015, and a more effective suppression of MYC levels and 
downstream genes ( 107 ). ARV-771, a von Hippel–Landau 
(VHL) E3 ligase–based BET PROTAC, has superior  in vitro

and  in vivo  activity in CRPC in comparison to BET inhibitors 
and results in attenuation of androgen receptor transcript 
levels ( 111 ). BETd-246 and its further optimized analogue 
BETd-260, both using cereblon as E3 ubiquitin ligase, show 
potent  in vitro  and  in vivo  antitumor activity, superior to the 
parental BET inhibitor BETi-211, in triple-negative breast 
cancer models ( 113 ).   

 table 3.    BET degraders (PROTACs) with their components and mechanism of action  

Compound

BET inhibitor 

component

Small-molecule 

component E3 ubiquitin ligase complex Reference

ARV-771 JQ1 VHL ligand Von Hippel–Lindau-containing 

complex

( 111 )

ARV-825 OTX015 Thalidomide Cereblon E3 ubiquitin ligase 

complex

( 107 )

AT1 JQ1 VHL ligand Von Hippel–Lindau-containing 

complex

( 136 )

BETd-246 RX-37 Thalidomide Cereblon E3 ubiquitin ligase 

complex

( 113 )

BETd-260/ZBC260 HJB97/Beti-211 Lenalidomide Cereblon E3 ubiquitin ligase 

complex

( 113, 137 )

dBET1 JQ1 Thalidomide Cereblon E3 ubiquitin ligase 

complex

( 138 )

dBET6 JQ1 Thalidomide Cereblon E3 ubiquitin ligase 

complex

( 4 )

MZ1 JQ1 VHL ligand Von Hippel–Lindau-containing 

complex

( 139 )
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conclusions

Seven years following the first description of the preclinical 
activity of JQ1 in models of NUT carcinoma, a tumor type 
driven by an oncogenic form of BRD4, several BET inhibitors 
have entered clinical evaluation, while many others are cur-
rently in preclinical development. Clinical activity has been 
observed in NUT carcinoma and in hematologic malignancies. 
Regarding their safety, with the exception of one compound 
whose development was stopped due to the emergence of 
adverse events, preliminary information from other BET inhibi-
tors shows a favorable safety profile. Hematologic (mainly 
thrombocytopenia) and nonhematologic adverse events are 
reversible with treatment interruption but, alongside potential 
side effects foreseen based on experimental models, will need 
to be taken into consideration in the planning of future trials, 
especially if in combination with other agents. Additional data 
from ongoing clinical trials will be able to determine the impact 
of these adverse events in treatment compliance. Although final 
results of most of the ongoing studies are still awaited, current 
evidence supports further clinical development of BET inhibi-
tors in hematologic malignancies and in solid tumors. Combi-
nation strategies alongside the development of new generations 
of compounds, not limited to targeting the bromodomains, will 
open new possibilities for future clinical development of BET 
inhibitors as anticancer agents.
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