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Abstract

In daily life, complex events are perceived in a causal manner, suggesting that the brain relies on predictive processes to
model them. Within predictive coding theory, oscillatory beta-band activity has been linked to top-down predictive signals
and gamma-band activity to bottom-up prediction errors. However, neurocognitive evidence for predictive coding outside
lower-level sensory areas is scarce. We used magnetoencephalography to investigate neural activity during probability-
dependent action perception in three areas pivotal for causal inference, superior temporal sulcus, temporoparietal junction
and medial prefrontal cortex, using bowling action animations. Within this network, Granger-causal connectivity in the
beta-band was found to be strongest for backward top-down connections and gamma for feed-forward bottom-up
connections. Moreover, beta-band power in TPJ increased parametrically with the predictability of the action kinematics-
outcome sequences. Conversely, gamma-band power in TPJ and MPFC increased with prediction error. These findings
suggest that the brain utilizes predictive-coding-like computations for higher-order cognition such as perception of causal
events.
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Introduction

The view that predictions and prediction errors provide funda-
mental principles for making sense of perception and cognition
is gaining increased interest from the neuroscience community.
Predictive coding suggests that perception is a result of a prob-
abilistic inference, in which prior expectations are combined
with incoming sensory inputs to infer causes of sensory inputs
(Friston, 2010; Bastos et al., 2012). Crucially, a predictive model
requires that prediction errors are generated at each level of
neuronal processing, so also beyond low-level, sensory brain
areas (Clark, 2013; Hohwy, 2013). However, while there is much
experimental support for predictive coding activity in low-level
perception (Colby et al., 1996; Wolpert et al., 2003; Wacongne
et al., 2012; Summerfield and de Lange, 2014; Bastos et al., 2015b),
experimental evidence supporting the notion that it generalizes

to abstract, higher-order cognitive domains is scarce (Clark,
2013). The current study concentrates on predictive processes in
causal inference, a higher-order domain that is central to
human cognition (Tenenbaum et al., 2011).

Causal inference is a necessary corollary of modeling our
world. Technically, this inference is known as model inversion,
in which we invert the mapping from cause to effect to infer the
cause given observed effects or consequences. Predicting cause
and effect not only allows us to understand physical systems
but also other people’s consequential actions. These models
build on the world knowledge reflected by the (Bayesian) statis-
tics of causal events that we experience throughout life (Friston,
2010). These models allow us to predict for example the
Michotte-like ‘launching effects’ of colliding objects (Michotte,
1950; Kerzel et al., 2000) and the trajectories and impact of a ball
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thrown by a human agent. Such predictions require an integra-
tion of kinematic, (somato)sensory and agent information with
different temporal relations. A cortical network encompassing
the superior temporal sulcus (STS), temporoparietal junction
(TPJ) and medial prefrontal cortex (MPFC) has been associated
with inference of potential higher-level (mental) causes of ex-
ternal events (Castelli et al., 2000; Blakemore et al., 2001, 2007;
Den Ouden et al., 2005; Fugelsang et al., 2005; Decety and Lamm,
2007; Wheatley et al., 2007; Tavares et al., 2008; Koster-Hale and
Saxe, 2013; Murdaugh et al., 2014).

In this study, we use real-world simulated bowling stimuli to
unravel if perceptual models for causal inference in the STS-
TPJ-MPFC network are governed by predictive coding mechan-
isms. We recorded brain activity of participants using mag-
netoencephalography (MEG), while they viewed an agent on a
bowling lane throwing balls that knocked over a variable num-
ber of pins (see Supplementary Method and Figure S1). Our hy-
pothesis is that for optimal causal inference, the brain will
construct a generative model which integrates top-down pre-
dictions based on previous bowling events with bottom-up sen-
sory information about the combination of sequential aspects
of the current bowling action to predict the complete action.
This requires more complex modeling than for Michotte-like
collisions, since the agent-related goal directness of the actions
needs to be taken into account, i.e. the (score) intentions that
are attributed to the agent, independent of the physical (visual)
configuration of that score. To this end, top-down predictive
signals (Figure 1A, in red) are sent from the higher abstract
knowledge areas (MPFC) to motion perception areas (STS) via
intermediate integration areas (TPJ), while bottom-up predic-
tion error signals (Figure 1A, blue) flow in the opposite direction
(Figure 1A), following the principles of predictive coding. At
each level, the predictions are contrasted against the bottom-up
evidence that is ascending from lower regions, resulting in
sparse, prediction error activity that is in turn sent upstream.
Critical to causal inference, the model is assumed to integrate
action outcome information (the score—i.e. the effect) with the
preceding action kinematics information (throwing direction—
i.e. the cause). We will refer to the throwing of the ball and its
direction as the “kinematics”, and to the hitting and falling of
the pins as the “outcome”. The “full action” will be reserved for
the entire sequence of movement and outcome stimuli.

To test the predictive integrative model, we parametrically
manipulated the probabilities of both the outcome aspect
(score) and kinematic aspect (throwing direction) of the action
separately (Figure 1B), each at three levels (10, 30 and 60). The
combination of outcome and kinematics, which is hypothesized
to be modeled by the proposed integration model, yields nine
unique complete actions with probabilities between 1 and 36%.
In other words, the combination of kinematics and outcomes
had varying degrees of probability or predictability, in which an
outcome could not be uniquely associated with any observed
kinematics. Prior to the MEG session, subjects underwent a
training sessions in which they learned the action probabilities
to ensure that these are incorporated in their top-down predic-
tions from the start of the experiment.

We analyzed the model by exploiting the functional segrega-
tion between beta- and gamma-band oscillatory activity in
terms of predictive coding. This spectral dissociation assumes
that gamma-band activity reflects (feed-forward) prediction
errors and that beta-band activity reflects the precision of feed-
back predictive signals (Bastos et al., 2012, 2015a; Bressler and
Richter, 2015; Friston et al., 2015). Recent findings in human and
non-human primate studies are congruent with these notions

(Arnal et al., 2011; Bosman et al., 2012; Bauer et al., 2014;
Brodski et al., 2015; Bastos et al., 2015b). We hypothesize that
higher-order cognition such as causal inference is based on pre-
dictive-coding-like computations in the brain. Consequently,
gamma-band activity should decrease parametrically with the
probability of the complete action (consistent with reflecting
prediction error), whereas beta-band activity should increase
with this probability (consistent with reflecting the precision of
the prediction). Our results suggest a dissociation in the direc-
tionality of beta and gamma connectivities within the causal in-
ference network and show that beta and gamma power

Fig. 1. Hypothesized direction of brain activity and experimental design. (A)

Schematic of proposed flow of oscillatory activity in a hierarchically organized

causal inference network. Predictive, beta-band signals (P, red arrows) run in the

top down-direction, from the MPFC, via the intermediate TPJ, to the STS.

Prediction error signals (E, blue arrows) are conveyed by the gamma-band and

flow in the opposite direction, from STS, via TPJ to MPFC. (B) Experimental de-

sign. Subjects viewed animations of a bowler throwing a ball that subsequently

knocks over a number of pins. Both the kinematic aspect (throwing direction)

and outcome aspect (# of pins hit, i.e. score) were manipulated independently

from each other, at three probability levels: 10, 30 and 60%. In conjunction, this

made up a total of nine possible complete actions, each with a probability that

was the product of the separate probabilities of the action’s kinematic and out-

come aspects. Thus, these full actions could be presented at frequencies that

ranged from 1% (10� 10%) to a maximum of 36% (60�60%). See Supplementary

Movies S1–S9 for the video animations and Supplementary Figure S1 for the trial

timelines.
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modulations are consistent with a predictive coding-based
modeling of causal aspects of actions.

Method

See Supplementary Material.

Results

Twenty-three human participants viewed a sequence of 400
animated videos of causal events situated on a bowling lane,
while their brain activity was recorded using MEG (see
Supplementary Method). The videos consisted of an agent
throwing a ball that subsequently knocked over a number of
pins. The stimuli could differ in action kinematics (ball throw-
ing direction toward left, center or right), and action outcome
(score of 3, 6 or 9 pins hit), together constituting a total of nine
unique video’s (Figure 1B). The probabilities at which these vid-
eo’s could occur were 10, 30 and 60%, for both kinematics and
outcome separately, and 1, 3, 3, 6, 6, 9, 18, 18 and 36% for the full
action (specific outcome, in combination with specific preced-
ing kinematics). Before going into the MEG, subjects performed
a training session with the same stimuli (200 trials), to allow for
internalization of the probabilities of the different actions. We
subsequently analyzed beta- and gamma-band connectivities
in the STS-TPJ-MPFC network as well as spectral power modula-
tions by condition probabilities.

Directionality of beta and gamma connectivity between
STS, TPJ and MPFC

We first assessed to what extent the beta-gamma dissociation
as observed in lower perceptual areas was also present in the
causal inference network. According to the cortical processing
hierarchy, top-down predictions flow from MPFC to TPJ, and
from there to STS (Figure 1A). Bottom-up prediction error sig-
nals are propagated upwards, from STS to TPJ, and from TPJ to
MPFC. Because of the lack of direct connections between STS
and MPFC (Öngür and Price, 2000; Ethofer et al., 2011), we did not
consider this connection in our analyses. The effective STS-TPJ-
MPFC network hierarchy should be reflected in a dissociation in
the directionality of beta- and gamma-band connectivity be-
tween the nodes in this network.

To test this, we reconstructed virtual time courses (bilat-
erally) in the STS, TPJ and MPFC (see Supplementary Method,
and Coricelli and Nagel (2009) for Montreal Neurological
Insititute coordinates), separately for beta and gamma-band ac-
tivity (15–31 Hz and 32–90 Hz, respectively). We subsequently
determined the directionality of the beta- and gamma-band
connections between STS and TPJ, and between TPJ and MPFC,
during the epochs that subjects viewed the bowling videos, in-
dependently of the probability of combinations. We computed
the Granger-causal connectivity (GC) of their data time courses.
For a given set of two time series A and B, GC quantifies the
variance in series B that can be predicted on basis of data from
series A from an earlier point in time (Geweke, 1982; Kamiński
et al., 2001; Dhamala et al., 2008; Schippers et al., 2010). If the past
of series A can significantly predict an additional amount of ser-
ies B than the history of series B alone, series A is said to
Granger-cause series B. From this GC data, we constructed an
index of the net GC directionality (Schippers et al., 2010; Seth
et al., 2015). Figure 2 shows this GC directionality index in the
left hemisphere between STS and TPJ (left panels), and TPJ and
MPFC (right-hand panels), over the time course of the trial, as

averaged over all participants and conditions (t¼ 0 s denotes
movie onset). GC influences in the beta-band are shown in blue,
and those in the gamma-band in red. The net directionality of
the beta-band connectivity in the left hemisphere (upper pan-
els) is toward the top-down direction (TPJ toward STS and MPFC
toward TPJ; indicated by positive values), both for the STS to TPJ
and the TPJ to MPFC connections. These effects are significant
for the baseline epoch (�1.0 to 0.0 s), the kinematics epoch (0.5–
3.0 s) and the outcome epoch (3.0–5.5 s) of the trial (P< 0.05 for
all six epochs, signed Mann–Whitney U-test; epochs indicated
with blue horizontal lines). In contrast, for the gamma-band,
both STS to TPJ and TPJ to MPFC connectivities are stronger in
the bottom-up than in the top-down directions (so, TPJ toward
MPFC and STS toward TPJ; indicated by negative values). Again,
these signals were significantly different from zero in the
kinematics epoch (P< 0.001, both connections) as well as in the
outcome epoch (P< 0.01). During the baseline however, gamma-
band directionality was not different from zero (P> 0.05), in
contrast to the beta-band.

Similar patterns in the directionality in the connectivity be-
tween the same regions are observed in the right hemisphere
(Figure 2, lower panels). The gamma-band connectivity between
STS and TPJ was stronger in the bottom-up direction during
both epochs (P< 0.001), and between TPJ and MPFC during the
kinematics epoch (P< 0.001). GC influences in the beta-band
were stronger top-down than bottom-up for the connection be-
tween STS and TPJ (P< 0.05 and P< 0.001, for kinematics and out-
come, respectively). There was no significant directionality
(P> 0.05; indicated with not significant) for the other connections
and epochs in the right hemisphere (i.e. beta TPJ-MPFC kine-
matics and outcome epochs; gamma TPJ-MPFC outcome epoch;
all baseline epochs). In conjunction, these connectivity findings
are congruent with the notion that, also in the causal inference
network, beta and gamma-band activity are functionally dissoci-
ated, respectively, reflecting top-down and bottom-up signals
during the different stages of observation of causal actions.

Modulation of beta and gamma power by action
probabilities

Having established that beta-band activity is indeed related to
top-down activity and gamma-band activity to bottom-up sig-
naling in the causal inference network, just as in visual process-
ing areas, we hypothesized that beta and gamma-band activity
within these regions should be modulated by the probabilities
of the different bowling actions. Beta-band activity should in-
crease when the probability of a condition is higher (higher pre-
cision), while gamma-band activity should go down with
decreasing prediction error. The predictive causal inference
model suggest the oscillatory activity to be modulated by the
combination of the probabilities of the action kinematics and
the action outcome, rather than by the probabilities of both as-
pects alone (Figure 1B, see Introduction). Figure 3A shows how
beta-band activity during the action outcome stage in STS, TPJ
and MPFC is modulated by the probability of the full action (so,
a specific action outcome, in combination with specific action
kinematics). Averaged over subjects, beta-band power increases
parametrically with probability of the full action. This effect is
significant in both left and right TPJ (P< 0.05, two-sided t-test,
fdr-corrected) but not in STS and MPFC (P> 0.1). So, the larger
the probability of the full action, the higher the beta-band activ-
ity. In contrast, this positive correlation was not present when
we repeated the same regression analysis for the probabilities
of the action kinematics and outcome separately (Figure 3C),
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Fig. 2. GC influences of gamma and beta-band connectivity. The index of the net GC directionality (GC-index) is shown as a function of time (t¼ 0 s denotes trial onset)

for connections between STS and TPJ (left panels), and for the connections between TPJ and MPFC (right-hand panels), for the left (upper panels) and right (lower pan-

els) hemisphere separately. Blue lines depict group-level averaged beta-band directionalities (6s.d.), red lines the directionality in the gamma-band. The individual-

subject GC-index is defined as (GC top-down � GC bottom-up)/(GC top-down þ GC bottom-up). Horizontal blue and red lines above and below the data traces indicate

the baseline, kinematics and outcome epochs within the trial, over which the statistics are computed. Per subject, data are averaged over all trials. LH, left hemisphere;

RH, right hemisphere; n.s., not significant.

Fig. 3. Modulation of beta and gamma power by action probabilities. (A) Modulation of the beta-band power change (relative to a common pre-stimulus baseline) as

function of probability of the full action, i.e. an outcome in combination with specific preceding kinematics, for the three bilateral regions-of-interests. (B) Results of

the same analysis but now for gamma-band power change. (C,D) Modulation of beta-band (C) and gamma-band (D) power change by only the kinematic aspect (upper

panel) or the outcome aspect (lower panel) of the bowling action probability. Both oscillatory activity bands show a significant a modulation by action probability but

only when the full action is considered (A,B; indicated by asterisks). Note that the relative values between the conditions are crucial here, since baseline was always

common.
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neither for action kinematics (upper panel) nor for action
outcome (lower panel; P> 0.05 in all cases).

This result suggests that within the analyzed regions,
predictions are not made for the kinematic and outcome com-
ponents of the action separately but for their combination, i.e.
on basis of the probabilities of the full action. In other words,
the entire causal event—reflected in the joint probability of
kinematics and outcome—is modeled.

Figure 3B and 3D show the same analyses as in Figure 3A
and 3C but now for the gamma-band activity. As was the case
for beta-band power, there is a modulation by probability of the
full action, when kinematics and outcome are combined (Figure
3B). Crucially, the direction of this effect is in opposite direction
as for the beta-band, with significant decreases with probability
for left TPJ, and left and right MPFC (P< 0.05 in each case). So,
the higher the probability of the full action is—and thus the
lower the prediction error—the lower the gamma-band re-
sponse. In contrast, the probabilities of either action kinematics
or action outcome in isolation did not significantly modulate
power changes in the gamma-band (Figure 3D).

In conjunction with the directionality findings, the power
modulation data are supportive of a causal inference model that
integrates top-down predictions based on previous events with
bottom-up sensory information about the action perceived.

Discussion

The present results deliver a significant insight into the com-
putational properties underlying higher-order cognition. The
findings show that our brains make predictive models of
causal events, integrating top-down predictions based on pre-
vious events with bottom-up sensory information about the
action currently being perceived. The results provide novel
empirical evidence for predictive coding in higher-order cogni-
tive functioning including its neurophysiological implementa-
tion. Our GC analyses of the directionality of spectral
connectivity within the causal inference network revealed that
the directionality of the gamma-band connectivity is biased to-
ward the bottom-up direction, both for the STS to TPJ and the
TPJ to MPFC connections (Figure 2)—but only in the presence
of the stimulus. In contrast, for the beta-band, both STS to TPJ
and TPJ to MPFC connectivities are stronger in the top-down
than in the bottom-up directions, both during and (in the left
hemisphere) before stimulus presentation. In conjunction, these
connectivity findings are congruent with the notion that beta
and gamma-band activity are functionally dissociated. Here,
beta-band activity reflects top-down predictive signals, which
start being conveyed already before an expected action.
Gamma-band activity relays prediction error signals in the bot-
tom-up direction but only when the actual action is presented.
Furthermore, we show that beta and gamma signals in these
regions are directly modulated by action probabilities. Gamma-
band power shows an increase with increasing sensory predic-
tion errors in TPJ and MPFC, whereas beta-band power is posi-
tively correlated to the precision of the predicted causal event
derived from the generative model.

Oscillatory connectivity and probability modulation

The net direction of the GC connectivity that we observed be-
tween the cortical regions within the causal inference network
follows the cortical processing hierarchy: the beta-band con-
nectivity is strongest in the feedback (top-down) direction, from
MPFC to TPJ to STS, whereas gamma-band connectivity is

strongest in the reverse, feed-forward bottom-up direction. This
directionality is in line with neurophysiology. Anatomical tracer
studies have revealed that feed-forward connections mainly
originate from pyramidal cells in the superficial layers and tar-
get the granular layer of the (hierarchically) next area, whereas
anatomical feedback connections originate from the infragra-
nular layers of the next area and project onto the supragranular
and infragranular layers of the previous area (Felleman and Van
Essen, 1991; Markov et al., 2013). Computational simulations at
the micro and macro network level have indicated that there is
an asymmetry in the spectral characteristics of these feed-for-
ward and feedback connections (Bastos et al., 2012; Lee et al.,
2013). Indeed, in in vivo experiments, beta-band synchronization
is strongest in pyramidal neurons in the infragranular layers,
whereas gamma-band activity is mainly observed in pyramidal
cells in the supragranular layers (Buffalo et al., 2011; Xing et al.,
2012; Roberts et al., 2013; Bastos et al., 2015a). In conjunction
with predictive coding theory, this suggests that beta-band ac-
tivity conveys predictive signals, while gamma-band activity re-
flects prediction errors (Bastos et al., 2012). This idea is
experimentally supported by recent results from both human
and non-human primate work (Arnal et al., 2011; Bosman et al.,
2012; Bauer et al., 2014; Bressler and Richter, 2015; Brodski et al.,
2015; Bastos et al., 2015b; see Friston et al., 2015, for a review).
For example, Bressler and Richter (2015) show that the
size of visually evoked potentials in V1 are predicted by beta-
band activity originating in higher visual areas. The current
findings confirm this notion and extend it to higher-level cogni-
tion involved in causal inference beyond (extra-striate) visual
areas.

The modulation of beta- and gamma-band activity by the
probabilities of the observed causal events further support that
causal inference follows a predictive coding mechanism that is
neurophysiologically implemented by complementary roles of
these oscillations. In the predictive coding view of propagation
of sensory information, gamma-band activity reflects the unex-
plained part of the sensory input that is propagated to the next
brain area (Friston, 2010; Bastos et al., 2012). Thus, the lower the
probability of a stimulus, the larger the prediction error is, and
thus, the larger the gamma-band activity.

The parametric increase of beta power with probability that
we report suggest that lower frequencies including beta, en-
code the precision of top-down predictions. The higher the
precision of the event predicted by the generative model, the
stronger the beta-band activity. This is consistent with mes-
sage passing in predictive coding and is in line with recent
work reporting an increase of attentional alpha-modulation
with target predictability (Bauer et al., 2014). It also fits com-
fortably with active inference and predictive coding in ac-
tion per se (Friston et al., 2011). For example, there is profound
beta suppression during sustained movements (see e.g.
Pfurtscheller and Lopes da Silva, 1999) that may be the correl-
ate of sensory attenuation; in other words, the attenuation of
sensory precision during movement. Indeed, one might specu-
late that pathological beta activity in Parkinson’s disease may
reflect a loss of precision control, necessary for action selec-
tion and subsequent execution.

The modulation of beta- and gamma-band activity (Figure 3)
was less pronounced in the STS, which may indicate that the
implementation of the full action model mainly takes place at
the higher conceptual levels in the network (Ondobaka et al.,
2015). This is in agreement with the notion that such a model
needs to take internal motivational aspects of the agent into ac-
count—namely the desired score—that go beyond the pure
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visual (kinematic) aspects of the action that are proposed to be
encoded by STS. Thus, the predictions of the upcoming full ac-
tion are made by the TPJ (implemented in the beta-band), on
basis of information from STS and MPFC, as suggested by the
connectivity results (Figure 2). The absence of oscillatory modu-
lation in STS does not imply that there are no predictions or pre-
diction errors present in STS, only that these do not reflect the
full action model with respect to its incorporation of agent-
related information encoded in the TPJ and MPFC.

Causal inference in goal-directed action

We only observed a modulation of beta and gamma-band power
within the causal inference network when considering the joint
probability of the full action, causally integrating kinematics
and outcome. When the probabilities of kinematics and out-
come aspects of the action were assessed separately, modula-
tory effects were absent. This suggests that the generative
models for the inference of intentional actions incorporate the
causal relations between events, in line with previous work on
causal inference (Den Ouden et al., 2005; Fugelsang et al., 2005),
and mental state attribution in causal inference (Castelli et al.,
2000; Blakemore et al., 2001; Wheatley et al., 2007). These infer-
ential processes as investigated in this study are conceptually
strongly interrelated to action observation (Hari et al., 1998), the-
ory-of-mind (ToM) and social cognition in general. Many studies
in these areas of research observe activity in the same regions
that we have currently investigated (Frith and Frith, 2000;
Tavares et al., 2008; Coricelli and Nagel et al., 2009) and have also
taken a Bayesian perspective for conceptualizing unifying theo-
ries (Kilner et al., 2007; Pellicano and Burr, 2012; Baker and
Tenenbaum, 2014). For ToM, for example, Koster-Hale and Saxe
(2013) proposed a hierarchical model of predictive coding in
STS, TPJ and MPFC, that predicts a flow and modulation of bot-
tom-up and top-down activity in this network that is similar to
what we found in this study.

A major challenge for future studies will be to assess model
updating principles more closely. How do prediction errors enable
the updating of the generative model to entail better prediction of
future events on the basis of beta and gamma-band activity? It re-
mains an open question how bottom-up and top-down signals
interact at a neurophysiological level to modulate gamma-
oscillations that are proposed to reflect perceptual surprise at
each level of the cortical hierarchy. The nature of this cross-
frequency interaction remains to be established and may be im-
plemented by phase–power, power–power or phase–frequency
coupling (Jensen and Colgin, 2007). This would be best investigated
in a learning paradigm, in which the experimental manipulation
systematically targets model updating. On a behavioral level, the
relation between score predictions and the errors in the preceding
trial(s) could then also be quantified (Wolpert et al., 2003).

The current results stress the importance of higher-level
predictions: in this case the outcome of actions. As has been
suggested before, our brains predict consequences of actions
rather than an agent’s kinematics per se (Majdand�zi�c et al.,
2007; Grafton, 2009). Nevertheless, processing of kinematics
and outcomes do go hand in hand since neural activation re-
flects context-dependent action probabilities. Furthermore, the
question remains open how and to which extent the frame-
work can be generalized. Do we make context-dependent prob-
abilities for social aspects like observing an in or out-group
agent? In any case, the current results suggest it is interesting
to follow this path to create a more computationally directed
social neuroscience.

Conclusion

This study provides the first direct experimental evidence that
higher-order cognitive processes such as causal inference are
based on predictive coding-like computations in the brain.
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