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Abstract 

Background: Optimizing engraftment and early survival after clinical islet 

transplantation is critical to long-term function, but there are no reliable, 

quantifiable measures to assess beta cell death. Circulating cell free DNA 

(cfDNA) derived from beta cells has been identified as a novel biomarker to 

detect cell loss, and was recently validated in new-onset type 1 diabetes and in 

islet transplant patients.  

Methods: Herein we report beta cell cfDNA measurements after 

allotransplantation in 37 subjects and the correlation with clinical outcomes.  

Results: A distinctive peak of cfDNA was observed 1hr after transplantation in 

31/37 (83.8%) of subjects. The presence and magnitude of this signal did not 

correlate with transplant outcome. The 1hr signal represents dead beta cells 

carried over into the recipient after islet isolation and culture, combined with 

acute cell death post infusion. Beta cell cfDNA was also detected 24hrs post-

transplant (8/37 subjects, 21.6%). This signal was associated with higher 1-

month insulin requirements (p=0.04), lower 1-month stimulated C-peptide levels 

(p=0.01) and overall worse 3-month engraftment, by insulin independence 

(ROC:AUC=0.70, p=0.03) and Beta 2 score (ROC:AUC=0.77, p=0.006).  

Conclusions: cfDNA-based estimation of beta cell death 24hrs after islet 

allotransplantation correlates with clinical outcome and could predict early 

engraftment. 

  



 

Introduction 

Despite the success of clinical islet transplantation (IT), outcomes may still be 

hampered by cell death occurring early after intraportal infusion. Following 

transplantation, islets are hypoxic, and exposed to the instant blood-mediated 

inflammatory response (IBMIR) and alloimmunity 1. As a consequence, a 

significant portion of the graft is lost at this early stage often necessitating 

multiple subsequent donor islet infusions to achieve insulin independence 2,3. An 

inability to accurately determine cell death after intraportal islet transplantation 

remains a limiting factor in predicting early and long-term graft function, and in 

identification of modifiable factors that could enhance early engraftment. In most 

cases graft loss can only be measured by its functional consequence at a stage 

where a potential therapeutic window has been closed 4.  

Assessing engraftment and graft function is not a straightforward process and 

normally relies on complex metabolic tests of insulin secretory profiles, which are 

both time consuming and expensive 4. Multiple scoring systems have been 

implemented to measure post-transplant function more accurately including the 

Beta 2 Score recently described by our group 4, which can be obtained without 

using a stimulant to successfully discriminate between glucose intolerance and 

insulin independence after IT. A limitation to this functional approach is the lack 

of quantifiable evidence of graft loss and its corresponding clinical impact. 

When cells die, fragments of their genomic DNA are released to circulation, 

where they travel shortly before being cleared by the liver. In a recent 

breakthrough, Akirav and Herold showed that hypomethylation in the insulin gene 



 

promoter, which is unique to beta cells, can be used to detect DNA derived 

specifically from dying beta cells 5. Indeed, studies from their group and other 

investigators showed that unmethylated insulin promoter circulating cell free DNA 

(cfDNA) can be detected in the blood of patients recently diagnosed with type 1 

diabetes mellitus (T1DM), raising the exciting possibility that this novel type of 

biomarker can be used to precisely monitor beta cell death 6-8. We have recently 

reported a new version of this technology, based on next generation sequencing, 

for the assessment of beta cell death as well as multiple other tissues based on 

tissue-specific methylation markers. We used the method to assess the levels of 

beta cell-specific cfDNA in serum and plasma of healthy individuals, in T1DM 

patients and in islet graft recipients 9. While healthy individuals had extremely low 

concentrations of beta cell-derived cfDNA, a clear signal was observed in 

recently diagnosed T1DM patients. Specifically in islet graft recipients, we 

observed significant levels of beta cell-specific cfDNA as early as 1hr after islet 

infusion, and a second less intense beta-cell cfDNA signal 24hrs after 

transplantation, which could be an objective expression of early graft loss 9. 

Since the clinical utility of this novel technology is not defined, we sought to 

characterize cfDNA measurements in a clinical islet allotransplantation setting, 

and to correlate findings with clinical outcomes as a method to complement the 

initial assessment of islet engraftment and function. Here we report the outcome 

of these studies, pointing to beta cell cfDNA as a promising prognostic biomarker 

for clinical islet transplantation. 

  



 

Materials and Methods 

 

Study design 

Clinical islet isolations and allotransplants were performed at the University of 

Alberta, Canada over a 14-month period using defined standard of care. Only 

those subjects receiving a first intraportal allotransplant or a re-transplant after a 

remote (>1yr) previous infusion were included in the analysis (n=37) to avoid 

multiple confounding factors derived from previous transplants. This study was 

part of the on-going review of islet transplant patients at the University of Alberta 

(protocol number Pro00001120) in collaboration with JDRF and the Hebrew 

University (study number RES-0024003). This investigation is approved by the 

University of Alberta Health Research Ethics Board and conducted in accordance 

with the principles endorsed by the Declaration of Helsinki. 

 

Human islet isolation, purification and culture  

Human islet preparations were isolated from deceased donor pancreata, as 

previously described using a collagenase/thermolysin enzyme mixture (Roche 

Diagnostics, Laval, QC, Canada) and the resulting digest suspension was 

purified using a modified COBE 2991 cell processor (Terumo BCT, Inc., 

Lakewood, CO, United States) with continuous density gradients 2,10-12. The 

purified islet fraction(s) were assessed for clinical suitability and cultured in 

CMRL 1066-based medium at 22°C (5% CO2) for up to 72 hours prior to 

transplantation. 



 

 

Islet product characterization  

Islet dose was calculated using standard methods 12. Briefly, islets >50 μm in 

diameter were enumerated by manual count with an inverted light microscope 

and classified into size ranges in increments of 50 μm. The number of islets 

particles in each size range was converted to islet equivalent (IE) to account for 

size difference. Furthermore, islet size index (ISI) was calculated by dividing the 

total number of IE in a preparation by the total number of islet particles to reflect 

the average particle size in a preparation 12. After the culture period, islets were 

assessed for viability and functionality. Viability was assessed by fluorescent 

membrane integrity assay with counterstains using SYTO 13 green fluorescent 

nucleic acid stain (Life Technologies, Burlington, ON, Canada) and ethidium 

bromide (Sigma-Aldrich, ON, Canada) 13-15. Samples were manually assessed 

using fluorescent microscopy and reported as a percentage of viable to all cells. 

Hormonal islet secretory function was assessed by static glucose-stimulated 

insulin secretion (s-GSIS), sequentially performed at low (2.8 mmol/L) and high 

(28.0 mmol/L) glucose concentrations. The amount of insulin released was 

measured using an ELISA (Mercodia Insulin ELISA, Mercodia, Uppsala, 

Sweden) and a stimulation index was calculated as the ratio of stimulated to 

basal insulin secretion. 

Oxygen consumption rate (OCR) is a real-time, operator-independent method of 

assessing fractional cell viability. OCR was measured as described previously 16-

19. OCR was normalized to the DNA content per chamber by collecting the islets 



 

and assessing for DNA by using a double-strand DNA fluorescent dye (Quant-iT 

PicoGreen dsDNA Assay Kit, Invitrogen, Life Technologies Corporation, Grand 

Island, NY) resulting in OCR/DNA (nmol O2/min ● mg DNA). To further 

characterize the preparation, the mean OCR/DNA value of an islet preparation 

was normalized to Islet Size Index (ISI) (OCR/DNA/ISI) and the islet dose (IE/kg), 

as previously reported 20. 

 

Islet transplantation procedure 

Islet transplant procedures were performed using a previously reported 

procedure 21. Islets were suspended in 100 mL of CMRL-based transplant media 

supplemented with human serum albumin and HEPES buffer into an infusion 

bag. Patients received the infusion via a catheter placed intraportally, performed 

under local anesthetic and with combined ultrasonography and radiology 

guidance. Final vascular track ablation with Avitene paste (Davol, Inc., Warwick, 

RI, United States) was done following the procedure.  

Immunosuppression consisted of T depletional induction therapy with 

alemtuzumab (MabCampath, Genzyme Corp.) and anti-inflammatory therapy 

included etanercept (Enbrel; Amgen Canada Inc., Mississauga, ON.) and 

anakinra (Kineret, Amgen Canada Inc., Mississauga, On.). Maintenance twice 

daily tacrolimus (Prograf, Astellas Pharma Canada Inc., Markham, ON.) was 

adjusted to provide target trough levels of 10 – 12 µg/L, together with 

mycophenolate mofetil (CellCept®, Hoffmann-La Roche Ltd., Mississauga, ON.). 

Three subjects received basiliximab (Simulect®, Novartis Pharmaceutical 



 

Canada Inc. Dorval, QC) induction instead of alemtuzumab. All subjects received 

peritransplant insulin-heparin infusions as per our standard protocol and following 

the procedure; their insulin requirements were adjusted according to functional 

indicators 22. All recipients and donors were HLA typed by low to medium 

resolution typing (LabType® SSO One Lambda A Thermofisher Scientific at HLA 

A, B, C,DRB1, DRB345, DQA1, DQB1, DPA1 and DPB1. Pre-transplant antibody 

testing was performed with single antigen bead testing (LabScreen® One 

Lambda. Calculated panel reactive antibodies (cPRA) was calculated using the 

Canadian cPRA calculator (https://ctr2.transplantregistry.ca/otd-cpra-

client/ctr2.jsp). Flow crossmatches were performed on pre-transplant serum 23. 

 

Measurement of cfDNA 

Beta cell-specific cfDNA was measured in plasma from study subjects as 

reported by Lehmann-Werman and collaborators 9. Blood samples were 

collected from patients at 1hr, 24hrs, 7 days and 1 month after IT.  Cell-free DNA 

was extracted from 4 mL of plasma using the QIAsymphony liquid-handling robot 

(Qiagen) and was treated with bisulfite (Zymo Research). DNA concentration 

was measured using Qbit single-strand molecular probes (Invitrogen). Bisulfite-

treated DNA was PCR amplified, using insulin promoter primers specific for 

bisulfite-treated DNA but independent of methylation status at monitored CpG 

sites. Sequencing was performed on PCR products using MiSeq Reagent Kit v2 

(MiSeq, Illumina method). Sequenced reads were separated by a barcode, 

aligned to the target sequence (insulin gene promoter), and analyzed using 

https://ctr2.transplantregistry.ca/otd-cpra-client/ctr2.jsp
https://ctr2.transplantregistry.ca/otd-cpra-client/ctr2.jsp


 

custom scripts written and implemented in Matlab. Reads were quality filtered 

based on Illumina quality scores. Reads were identified by having at least 80% 

similarity to target sequence and containing all the expected CpGs in the 

sequence. To calculate the concentration of cfDNA derived from beta cells, we 

multiplied the fraction of beta cell-specific cfDNA (as determined from the 

frequency of molecules carrying a beta cell-specific methylation pattern) by the 

concentration of cfDNA measured in each particular patient. The concentration 

was expressed in copies DNA/mL and a value of 50 copies/mL was considered 

as the minimum threshold for positive cell death. 

 

Absolute beta cell loss was estimated multiplying the number of DNA copies by 

the patient’s total plasma volume (TPV). Calculation of TPV was done using the 

total body water and the extracellular fluid 24-26, using the formula: 

TPV = Extracellular Fluid – Interstitial Fluid 

With the following assumptions: 

• Total Body Water = 60% of Body Weight (For Male) 

• Total Body Water = 50% of Body Weight (For Female) 

• Extracellular Fluid = Total Body Water / 3 

• Interstitial Fluid = Total Body Water * 0.25 

Cell loss was estimated relative to the original cell count present in the islet 

preparation, assuming an average of 1140 beta cells/IE 27. 

 

Metabolic studies after transplantation 



 

Post-transplant graft function was measured as previously reported 3,4,28. It 

consisted of sequential clinical and metabolic assessments including the results 

of several metabolic tests such as the record of hypoglycemia events, fasting 

blood glucose, basal and stimulated C-peptide levels, hemoglobin A1C, oral and 

intravenous glucose tolerance tests, mixed meal stimulation tests, glucagon and 

arginine, as well as requirements for exogenous insulin. Beta 2 scores were 

calculated three months after transplant as recently described by Forbes and 

collaborators 4, as a more accurate indicator of islet engraftment.   

 

Statistical Analysis 

To assess the significance of differences in isolation parameters and cell loss 

between groups with positive and negative cell death, we used a two-tailed 

Mann–Whitney test. Two-tailed Pearson’s correlation was used to measure the 

linear dependence between cfDNA and immediate post-transplant function 

variables (1-month stimulated C-peptide and insulin requirements). Fisher’s exact 

test was used for comparison of proportions. Relationships between beta cell 

death and graft function (3-month insulin independence and Beta 2 score) were 

examined using receiver-operating characteristic (ROC) analysis. The area under 

the ROC curve (AUC) was calculated from ROC curves generated for each 

method. All comparisons between groups were performed with a 95% confidence 

interval and a p-value <0.05 was considered significant. Analysis was performed 

using GraphPad Prism (GraphPad Software version 6, La Jolla, CA, USA). 

  



 

Results 

We defined selection criteria for the study as subjects receiving a first transplant 

or a re-transplant after a remote (>1yr) previous infusion (see material and 

methods). During the study period (2014-2016), 100 islet allotransplants were 

performed in 83 patients. Only 37 (44.6%) subjects fulfilled these selection 

criteria and were included in the analysis. Baseline characteristics of these 

subjects are comparable to excluded patients during the same period (Table 1). 

 

Isolation parameters do not influence post-transplant beta cell cfDNA 

levels 

Patient and isolation characteristics were comparable throughout the study 

cohort. The median level of cfDNA one hour after transplant was 852 copies/mL 

(range: 0 – 6647); assuming 3000 ml plasma per individual, an average islet 

transplant recipient had ~2.5 million beta cell genomes in the circulation at this 

stage.  Positive beta cell-specific cfDNA was detected in 31/37 (83.8%) patients 

at 1 hour, while only 8/37 (21.6%) patients were positive at 24 hours post-

transplant (p<0.0001). Levels of beta cell cfDNA were particularly high 1 hour 

after transplant. Based on these cfDNA measurements, we estimated that 

5.2x106 beta cells (range: 349,198 – 3.3x107) were lost prior to the infusion or 

during the first hour after transplant (Table S1 and Figure S1). These levels of 

1hr beta cell cfDNA were not associated with any of the islet preparation 

parameters including culture time, preparation purity and viability, islet size, dose 

and packed cell volume (PCV), as well as other functional markers such as static 



 

glucose-stimulated insulin secretion (sGSIS), pure oxygen consumption rate 

(OCR) or OCR adjusted by islet size index or islet dose (Table 2). In principle, 

cfDNA shortly after transplantation could reflect material from beta cells that have 

died during islet isolation or culture, acute death of beta cells after 

transplantation, or a combination of both.  

The levels of beta cell cfDNA measured at 24 hours were not associated with any 

isolation parameter but we observed increased beta cell cfDNA at this time point 

when islets were infused in a larger PCV. Patients with positive cfDNA were 

transplanted with a median PCV of 4.0 mL (range: 3.5 – 7.5) vs. 3.0 mL (range: 

2.0 – 5.0) in patients with negative cfDNA (p=0.002, Table 3). These 24hrs-

cfDNA measurement resulted in a significantly lower estimation of 427,991 cells 

(range: 297,815 – 1.6x106) lost after transplant, corresponding to a significantly 

lower graft loss from the initial islet preparation compared to the earlier time point 

(24hrs: 0.09% cell loss, range: 0.06 – 0.3%) vs. 1hr: 1.2%, range: 0.06% – 8.9%, 

p<0.0001. Table S1 and Figure S1) 

 

Beta cell-specific cfDNA measured at 24 hours is associated with 

immediate post-transplant graft function 

Subjects with a signal of beta cell cfDNA at 1hr had similar initial graft function 

compared to those with no 1hr-beta cell cfDNA, expressed as comparative 1 

month-exogenous insulin requirements (0.14 U/Kg/Day vs. 0.11 U/Kg/Day, 

p=0.55) and 1 month-stimulated C-peptide levels (0.92 nmol/L vs. 1.3 nmol/L, 

p=0.22). These represent the most relevant indicators of immediate graft function 



 

after islet transplantation. Significant differences however, were found at the 

24hrs time point. Patients with 24hrs positive cfDNA had significantly higher 1 

month-insulin requirements (0.26 U/Kg/Day vs. 0.13 U/Kg/Day, p=0.04), higher 1 

month-absolute insulin usage (15 U/Day vs. 8 U/Day, p=0.04) and significantly 

lower 1 month-stimulated C-peptide (0.79 nmol/L vs. 1.4 nmol/L, p=0.01). These 

findings were also supported by positive 24hrs-correlations between cfDNA 

concentration and 1 month-exogenous insulin requirements (r2=0.26, p=0.001), 

and between cfDNA concentration and 1 month-stimulated C-peptide levels 

(r2=0.15, p=0.02). These correlations indicate a possible significant association 

between these variables despite a low r-squared value, which may be a 

consequence of an inherently higher amount of unexplainable variability between 

subjects. It is possible however, that additional predictors can increase the true 

explanatory power of this particular model (Figures 1 and 2).  

 

Beta cell-specific cfDNA measured at 24 hours may be a predictor for islet 

engraftment 

All patients were closely monitored for graft function and exogenous insulin 

requirements before receiving subsequent complementary islet infusions. We 

examined beta cell cfDNA levels at 1hr and 24hrs after the procedure to correlate 

beta cell death rate with graft function at a later time point. Three months after 

transplant 20/37(54.1%) patients were insulin independent and a favorable Beta 

2 score (>15 points) was also calculated in these same subjects. These two 

indicators provide a more objective assessment of islet engraftment and may 



 

predict the need for a supplementary transplant to facilitate long term benefits 4. 

The 1hr beta cell-specific cfDNA failed to correlate with both, insulin 

independence (p=0.45) and with Beta 2 score (p=0.10), whereas 24hrs positive 

beta cell cfDNA was inversely associated with both outcomes. Only 4/20 (20%) 

subjects with positive 24hrs beta cell cfDNA were insulin independent at 3 

months (p=0.04) and only one of those three patients (1/20, 5%) with detectable 

24hrs beta cell cfDNA achieved a 3 month-Beta 2 score >15 points (p=0.008). 

The receiver-operating characteristic analysis supported utilizing the 24hrs beta 

cell cfDNA as an optimal model for insulin independence (ROC:AUC=0.70, 

p=0.03, sensitivity=75% and specificity=58.8%), and Beta 2 score 

(ROC:AUC=0.77, p=0.006, sensitivity=88.9% and specificity=52.6%) at 3 

months, using a discrimination threshold of 50 copies/mL (Figures 3 and 4). 

Packed cell volume of the islet preparation was not correlated with these 3-month 

outcomes.  

 

A positive beta cell cfDNA signal was only observed in 2 patients at 7 days post-

procedure and in 2 different subjects, 1 month after transplant. This late beta cell 

mortality was not associated with unfavorable outcomes (Table S2). Moreover, 

24hrs positive beta cell cfDNA failed to predict the time to second supplementary 

transplant, and there was no correlation between the cPRA or the presence of 

donor-specific antibodies (DSA) or the levels of cfDNA at any time point. 

Similarly, there was no relationship between cPRA/DSA and the 3-month insulin 

independence or Beta-2 score (data not shown). 



 

Discussion 

Assessing graft loss is a particularly challenging aspect of islet transplantation 

due to the many mechanisms eliciting islet injury and the lack of tools to measure 

beta cell mass in vivo 1. We have described a 14% islet mass loss during culture 

associated with cell fragmentation and disintegration 29. Another important islet 

loss event occurs immediately after infusion, largely due to cell hypoxia and 

inflammatory responses following transplantation. In particular, IBMIR accounts 

for significant graft attrition at this early stage and is reported to reach up to 70% 

of the initial preparation within the first 24hrs, when using the intraportal route 

30,31. The sum of all these events paired with sustained immune-related cell 

death, is the rationale for using more than one infusion per patient to achieve 

durable normoglycemia 32. Nonetheless, implementation of new protocols in 

selected centers can result in high rates of single-donor insulin-independence 33. 

 

To date, clinical islet transplantation lacks an accurate estimator for cell loss to 

support clinical and metabolic indicators from the early post-transplant phase. 

Beta cell-specific cfDNA has been identified as a novel biomarker to detect islet 

loss 9,34,35. We have recently reported the use of a novel cfDNA measurement 

technology, based on next generation sequencing, to identify beta cell death in 

patients with new-onset T1DM and recent clinical IT patients 9. Moreover, a 

recent publication used a similar technique to detect beta cell mortality after islet 

autotransplantation with a full characterization of islet loss throughout the 

process of pancreatitis, total pancreatectomy and transplant 35. We herein report 



 

the first observations of a correlation between beta cell-specific cfDNA after 

clinical allotransplantation and patient outcomes.  

 

After measuring cfDNA at 1hr, 24hrs, 7 days and 1 month, we observed two 

distinct signal peaks in our study population. One, at 1hr after infusion, very 

intense (934 copies/mL) and generalized (83.8% of patients) and another, less 

intense (93 copies/mL) and less frequent (21.6% of patients) at 24 hours. 

Although the 1hr signal is strong, it is transient, and given the limited number of 

sample time points and the rapid clearance of cfDNA, it likely represents a 

combination of beta-cell death carried from the islet isolation and culture 

procedures and acute cell loss early after infusion. These observations are 

consistent with the recent report on autotransplantation 35. In contrast, cfDNA 

signal at 24hrs was more informative of future graft function. In our study this was 

not related to any isolation parameter, including well-established viability 

indicators like OCR/DNA, OCR/DNA/ISI or OCR Dose 16,19,20. Surprisingly, only 

the PCV showed a significant association with 24hrs cfDNA. PCV is directly 

dependent on the islet fraction purity and increasing PCV (>5.5 mL) has been 

associated with high portal venous pressure, increased risk for portal thrombosis 

21,36 and self-limited hepatocellular damage 37,38. Our findings indicate that 

increased PCV may also be associated with early beta cell death. Despite this 

24-hour cell mortality being relatively small compared with the signal measured 

at 1 hour, it correlated with less favorable post-transplant outcomes. The 24-hour 

beta cell-specific mortality was also a good predictor of islet engraftment as 



 

subjects with no beta cell mortality at this time point were more likely to be insulin 

independent and have a favorable Beta 2 score at 3 months post-transplant.  

 

A clear limitation of this study is that blood for early cfDNA measurements was 

only drawn at 1 and 24 hours post-transplant. As a consequence, our 24hrs beta 

cell cfDNA values represent a snapshot of graft cell death within that particular 

hour. Clearly the interpretation of our cell loss estimates is limited by the lack of 

more frequent time points within the first 24 hours and may be further influenced 

by unknown factors such as the islet death rate and the half-life of cfDNA, which 

is currently estimated between 15-120 minutes 39,40. Additional studies with more 

frequent sampling may clarify the dynamics of graft loss in the critical hours and 

days after transplantation. Moreover, sampling for cfDNA at different stages of 

the islet isolation process could also provide more accurate information on the 

number of beta cells lost to digestion, purification and culture.  

Islet culture performed at 22˚C has been the standard approach at our site for 

more than15 years to minimize islet loss prior to transplantation as oppose as a 

37 ˚C. With the primary goal of clinical islet isolation being the recovery of the 

highest islet mass possible following purification, we often choose to compromise 

purity to maximize transplantable islet mass. This particular cfDNA assay may 

also serve as an evaluation to our current approach to islet isolation and culture 

leading to refinement of standard operating protocols. 

 



 

Further clinical studies using cfDNA measurement paired with beta cell DNA 

kinetic may help estimate islet cell death rate before and after transplantation as 

a consequence of the process of islet isolation and post-transplant hypoxia, 

IBMIR or inflammatory response. All patients in this study received anti-

inflammatory treatments (etanercept + anakinra) post-transplant. We have not 

carried out sub-analyses to evaluate cfDNA levels in the absence of these anti-

inflammatory treatments, but this would be insightful if data were available.  

Only 10% of patients achieve and maintain insulin independence with single 

donor islet infusions across our entire experience. None of the study subjects 

fulfilled this criteria at one year. However, in a larger study group it would be 

interesting to look for associations between cfDNA levels in a subset that did 

maintain single donor islet transplant full function beyond one year versus others 

that did not.  

 

In summary, we present a validation of our recently described method to detect 

beta cell death based on beta cell-specific methylation patterns in circulating 

DNA. Our results indicate that 24hrs estimation of beta cell death correlates with 

clinical allotransplantation outcomes and could predict islet engraftment at 3 

months. This technique may represent a useful tool to accurately estimate the 

rate of cell loss after transplantation of islets and other organs, and potentially a 

means to monitor graft rejection and to optimize immunosuppression. Together 

with existing clinical and metabolic indicators of islet graft performance, it may 



 

contribute to secure long-term graft survival by allowing adequate timely 

interventions and judicious planning of subsequent islet infusions.   
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Tables 

Table 1. Baseline characteristics of subjects and islet preparations included in 

the study compared to other transplanted patients during the same study period 

(2014-2016). Data are mean (range) or mean ± standard deviation or n. 

Characteristic Included patients 

(n = 37) 

Excluded patients 

(n = 46) 

Age (years) 44.1 (26 – 63) 46.2 (24 – 68) 

Diabetes duration (years) 27.3 ± 9 28.7 ± 10.9 

Male/Female 15/22 20/26 

Weight (Kg) 70.5 ± 9.2 71.1 ± 11.8 

Insulin requirements (u/kg/day) 0.60 ± 0.1 0.61 ± 0.19 

Islet dose (IE/Kg) 7,475.6 (4,373 – 

21,678) 

7,265 (5,891 – 

19,762) 

 

IE: Islet equivalents. 

 

  



 

Table 2. Comparison of baseline islet preparation characteristics between 

patients with positive vs. negative beta cell-specific free circulating DNA, 1 hour 

after clinical transplantation 

 

 Positive 1hr cfDNA Negative 1hr cfDNA p-value 

Sample size 31 6 - 

Pre-transplant culture period (hr) 40 (14.2 – 69.5) 31 (17.5 – 54.5) 0.50 

Purity (%) 50 (30 – 90) 46 (45 - 65) 0.98 

Viability (Syto/EtBr) (%) 85 (76 - 98) 83 (76.5 - 98) 0.51 

Islet Equivalent (IE) 484,751 

(307,913 – 

1,018,889) 

565,447 

(381,461 – 636,700) 

0.25 

Islet Size Index (ISI) 1.1 (0.6 – 2.4) 1.0 (0.8 – 1.7) 0.49 

sGSIS (Stimulation Index) 2.4 (0.5 – 9.4) 3.6 (1.3 – 4.1) 0.82 

OCR/DNA (nmol O2/min•mg DNA) 108 (61 - 203) 116 (80 – 198) 0.52 

OCR/DNA/ISI (nmol O2/min•mg DNA) 91 (29.7 – 199) 109 (53 – 240) 0.32 

Islet dose (IE/Kg) 6,718 (4,373 – 

21,678) 

7,622 (5,338 – 

10,621) 

0.79 

OCR Dose (nmol O2/min•kg) 7.7 (3.0 - 25) 8.3 (6.3 – 17) 0.53 

Packed Cell Volume (mL) 3.0 (2.0 – 7.5) 3.3 (2.5 – 4.0) 0.81 

 

Two-tailed Mann-Whitney, 95% confidence interval. cfDNA (circulating free 

DNA), OCR (oxygen consumption rate).  



 

Table 3. Comparison of baseline islet preparation characteristics between 

patients with detectable or undetectable beta cell-specific free circulating DNA, 

24 hours after clinical transplantation 

 Positive 24hrs 

cfDNA 

Negative 24hrs 

cfDNA 

p-value 

Sample size 8 29 - 

Pre-transplant culture period (hr) 36 (16 – 70) 36 (14 – 67) 0.65 

Purity (%) 50 (30 – 90) 46 (36 – 80) 0.86 

Viability (Syto/EtBr) (%) 80 (77 – 93) 85 (76 – 98) 0.55 

Islet Equivalent (IE) 505,559 

(390,068 – 591,890) 

487,220 

(307,913 - 

1,018,889) 

0.84 

Islet Size Index (ISI) 1.1 (0.95 – 2.4) 1.1 (0.6 – 1.7) 0.39 

sGSIS (Stimulation Index) 3.1 (0.5 – 4.2) 2.3 (1.3 – 9.4) 0.41 

OCR/DNA (nmol O2/min•mg DNA) 95 (73 – 203) 111 (61 – 198) 0.82 

OCR/DNA/ISI (nmol O2/min•mg DNA) 82 (30 – 169) 91 (38.8 - 240) 0.23 

Isle dose (IE/Kg) 6,718 (5,569 – 

10,621) 

7,205 (4373 – 

21,678) 

0.76 

OCR Dose (nmol O2/min•kg) 6.9 (5.1 – 18) 8.1 (3.0 – 25) 0.94 

Packed Cell Volume (mL) 4.0 (3.5 – 7.5) 3.0 (2.0 – 5.0) 0.002a 

 

a Significant p-value (two-tailed Mann-Whitney, 95% confidence interval). cfDNA 

(circulating free DNA), OCR (oxygen consumption rate). 



 

Table S1. Estimated beta cell loss at 1hr and 24hrs after clinical islet 

allotransplantation based on blood circulating free beta cell-specific DNA and 

estimated patient’s total plasma volume. 

 1 hour 24 hours p-value 

Number of patients 31 8 - 

Median DNA copies/mL (range) 934 (105 – 6647) 93 (64 – 476) <0.0001 

Estimated absolute beta cell loss 

(number of cells) 

5.2x106 (349,198 – 

3.3x107) 

427,991 (297,815 – 

1.6x106 

<0.0001 

Estimated relative beta cell loss 

(percentage from original 

preparation) 

1.2% (0.06% – 8.9%) 0.09% (0.06 – 0.3%) <0.0001 

  

cfDNA (circulating free DNA). 

  



 

Table S2. Patients with late beta cell mortality at 7 days and 1 month after 

clinical islet allotransplantation based on blood circulating free beta cell-specific 

DNA. 

 1hr-cfDNA 24hrs-

cfDNA 

7 day-cfDNA 1 month-cfDNA 3 month-Insulin 

independence 

Subject 1 2,060.6 2.3 57.3 10.7 Yes 

Subject 2 1,748.6 45.5 62.3 0 No 

Subject 3 382.6 0 1.8 80.1 No 

Subject 4 454.2 0 0 73.3 Yes 

 

cfDNA (circulating free DNA). 

 

  



 

Figure Legends 

Figure 1. Twenty-four -hour cfDNA is better correlated with immediate post-

transplant exogenous insulin demand. A. 1-month insulin requirements in 

subjects with positive (n=31) and negative cfDNA (n=6) measured 1hr post-

transplant (p=0.55). B. 1-month insulin requirements in subjects with positive 

(n=8) and negative cfDNA (n=29) measured 24hrs post-transplant (p=0.04*). C. 

Linear regression of cfDNA measured 24hrs post-transplant and 1-month insulin 

requirements (n=37, r2=0.26, p=0.001). D. 1-month absolute insulin used in 

subjects with positive and negative cfDNA measured 24hrs post-transplant 

(p=0.04*). cfDNA (circulating free DNA). A greater value of cfDNA suggests 

greater beta cell death and lower insulin requirement reflect better post-

transplant function. Summary data are reported as median (interquartile range), 

two-tailed Mann-Whitney, 95% confidence interval. 

 

Figure 2. Twenty-four -hour cfDNA is better correlated with immediate post-

transplant C-peptide levels. A. 1-month stimulated C-peptide blood levels in 

subjects with positive (n=31) and negative cfDNA (n=6) measured 1hr post-

transplant (p=0.22). B. 1-month stimulated C-peptide blood levels in subjects with 

positive (n=8) and negative cfDNA (n=29) measured 24hrs post-transplant 

(p=0.01). C. Linear regression of cfDNA measured 1hr post-transplant and 1-

month stimulated C-peptide blood levels (n=37, r2=0.0002, p=0.94). D. Linear 

regression of cfDNA measured 24hrs post-transplant and stimulated C-peptide 

blood levels (n=37, r2=0.15, p=0.02). cfDNA (circulating free DNA). A greater 



 

value of cfDNA suggests greater beta cell death and higher stimulated c-peptide 

levels reflect better post-transplant function. Summary data are reported as 

median (interquartile range), two-tailed Mann-Whitney, 95% confidence interval. 

 

Figure 3. Twenty-four -hour cfDNA can predict 3-months insulin independence 

after intraportal islet allotransplantation. A and B. Correlation of cfDNA measured 

1hr post-transplant with clinical outcome expressed as 3-month insulin 

independence and its corresponding receiver-operating characteristic (ROC) 

curve. C and D. Correlation of cfDNA measured 24hrs post-transplant with 

clinical outcome expressed as 3-month insulin independence and its 

corresponding receiver-operating characteristic (ROC) curve. The area-under-

the-curve (AUC) has been calculated and displayed for each group. cfDNA 

(circulating free DNA). A greater value of cfDNA suggests greater beta cell death. 

 

Figure 4. Twenty-four -hour cfDNA can predict 3-months engraftment after 

intraportal islet allotransplantation. A and B. Correlation of cfDNA measured 1hr 

post-transplant with clinical outcome expressed as 3-month Beta 2 Score and its 

corresponding receiver-operating characteristic (ROC) curve. C and D. 

Correlation of cfDNA measured 24hrs post-transplant with clinical outcome 

expressed as 3-month Beta 2 Score and its corresponding receiver-operating 

characteristic (ROC) curve. The area-under-the-curve (AUC) has been calculated 

and displayed for each group. cfDNA (circulating free DNA). A greater value of 

cfDNA suggests greater beta cell. Beta 2 Score is a composite measure of beta 



 

cell function after transplant 4. A Beta 2 Score > 15 points reflects a functioning 

graft. 

 

Figure S1. cfDNA measurements as an estimator for beta cell loss. A. cfDNA 

measurements (copies/mL, blue) at 1hr (n=31/37, positive cfDNA) vs. 24hrs 

(n=8/37, positive cfDNA) (p<0.0001), and estimation of absolute beta cell loss 

(number of cells, red) at 1hr vs. 24hrs (p<0.0001). B. Estimated relative beta cell 

loss from the original islet preparation at 1hr vs. 24hrs (p<0.0001). Figure is 

represented with log 2 scale and data points with cfDNA<0.06 are not 

represented. cfDNA (circulating free DNA). Summary data are reported as 

median (interquartile range), two-tailed Mann-Whitney, 95% confidence interval. 


