
Beta function quintessence cosmological
parameters and fundamental constants – II.

Exponential and logarithmic dark energy potentials

Item Type Article

Authors Thompson, Rodger I

Citation Rodger I Thompson, Beta function quintessence cosmological
parameters and fundamental constants – II. Exponential and
logarithmic dark energy potentials, Monthly Notices of the Royal
Astronomical Society, Volume 482, Issue 4, February 2019, Pages
5448–5458, https://doi.org/10.1093/mnras/sty2973

DOI 10.1093/mnras/sty2973

Publisher OXFORD UNIV PRESS

Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Rights © 2018 The Author(s) Published by Oxford University Press on
behalf of the Royal Astronomical Society.

Download date 27/08/2022 16:15:40

Item License http://rightsstatements.org/vocab/InC/1.0/

Version Final published version

Link to Item http://hdl.handle.net/10150/633680

http://dx.doi.org/10.1093/mnras/sty2973
http://rightsstatements.org/vocab/InC/1.0/
http://hdl.handle.net/10150/633680


MNRAS 482, 5448–5458 (2019) doi:10.1093/mnras/sty2973

Advance Access publication 2018 November 6

Beta function quintessence cosmological parameters and fundamental

constants – II. Exponential and logarithmic dark energy potentials

Rodger I. Thompson‹

Steward Observatory, University of Arizona, Tucson, AZ 85721, USA

Accepted 2018 October 29. Received 2018 October 26; in original form 2018 September 27

ABSTRACT

This paper uses the beta function formalism to extend the analysis of quintessence cosmological

parameters to the logarithmic and exponential dark energy potentials. The previous paper

demonstrated the formalism using power and inverse power potentials. The essentially identical

evolution of the Hubble parameter for all of the quintessence cases and �CDM is attributed

to the flatness of the quintessence dark energy potentials in the dark energy dominated era.

The Hubble parameter is therefore incapable of discriminating between static and dynamic

dark energy. Unlike the other three potentials considered in the two papers the logarithmic

dark energy potential requires a numerical integration in the formula for the superpotential

rather than being an analytic function. The dark energy equation of state and the fundamental

constants continue to be good discriminators between static and dynamical dark energy. A

new analysis of quintessence with all four of the potentials relative the swampland conjectures

indicates that the conjecture on the change in the scalar field is satisfied but that the conjecture

on the change of the potential is not.

Key words: cosmological parameters – dark energy – early Universe.

1 IN T RO D U C T I O N

This is the second of two papers using the beta function methodol-

ogy to produce accurate analytic solutions from model dark energy

potentials in a quintessence cosmology. The first paper (Thompson

2018), hereinafter paper I, examined solutions for power and inverse

power-law potentials. This work extends the analysis to logarithmic

and exponential potentials. The analytic nature of the solutions pro-

vides the means to calculate solutions for other values of the input

parameters such as H0 and �m0
in a flat universe for comparison

with observations.

Exact analytic solutions for specific dark energy potentials are

often mathematically intractable (Narain 2017) but the beta func-

tion formalism (Binetruy et al. 2015; Cicciarella & Pieroni 2017)

provides a method for achieving accurate analytic solutions using

beta potentials Vb(φ) that are accurate, but not exact, representations

of model potentials Vm(φ). In many cases numerical calculations

can provide solutions for specific cases. Such solutions, however,

often neither readily reveal the basic physics in play nor do they

provide easily calculable solutions for alternative input parameters.

The particular potentials examined here are the logarithmic

Vm(φ) ∝
(

ln(φ)

ln(φ0)

)βl

(1)

⋆ E-mail: rit@email.arizona.edu

and exponential

Vm(φ) ∝ exp [−βe(φ − φ0)] (2)

potentials, where β l and βe are real, positive constants.

The methodology follows the descriptions in Binetruy et al.

(2015) and Cicciarella & Pieroni (2017), particularly Cicciarella &

Pieroni (2017) who explicitly include matter as well as dark energy.

The details of the analysis are given in paper I and will not be re-

peated here except for clarity. This work concentrates on the ‘late

time’ evolution of the Universe which is taken to be the time between

a scale factor of 0.1 and 1.0 corresponding to redshifts between zero

and nine. A flat Universe is assumed with H0 = 70 km s−1 per mega-

parsec. The current ratio of the dark energy density to the critical

density �φ0
is set to 0.7 where φ0 is the current value of the scalar

φ. The current values of the dark energy equation of state are set to

w0 = (−0.98, −0.96, −0.94, −0.92, −0.90) as was done in paper I.

The last two values of w0 are unlikely but are included to determine

the limits on the validity of the solutions. In the exponential model

potential the value of w0 determines the value of βe removing one

degree of freedom. In paper I κ =
√

8π
mpl

was set to one, however, in

this paper natural units are used with mpl, the Planck mass, set to

one. This makes the units of the scalar φ the Planck mass rather than

1/κ . A section on where the quintessence cases considered here and

in paper I dwell relative to the swampland conjectures has also been

added.

C© 2018 The Author(s)
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Beta function quintessence II 5449

2 QUINTESSENCE

Quintessence is characterized by an action of the form

S =
∫

d4x
√

−g

[

R

2
−

1

2
gμν∂μ∂νφ − V (φ)

]

+ Sm, (3)

where R is the Ricci scalar, g is the determinant of the metric gμν ,

V(φ) is the dark energy potential, and, Sm is the action of the matter

fluid. Different types of quintessence are defined by different forms

of the dark energy potential. The quintessence dark energy density,

ρφ , and pressure, pφ , are given by

ρφ ≡
φ̇2

2
+ V (φ), pφ ≡

φ̇2

2
− V (φ). (4)

3 TH E B E TA FU N C T I O N

The beta function is defined as the derivative of the scalar φ with

respect to the natural log of the scale factor a (Binetruy et al. 2015)

β(φ) ≡
κdφ

d ln(a)
= κφ′, (5)

where κ =
√

8π
mpl

and the prime on the right hand term denotes the

derivative with respect to the natural log of the scale factor except

when it denotes the integration variable inside an integral as in

equation (11). As noted in the introduction paper I set κ to one as is

often done in the cosmological literature. Here instead the Planck

mass is set to one leading to the scalar φ being expressed in units

of the Planck mass, a difference of
√

8π ≈ 5 from paper I. In the

following k is used to denote
√

8π in an equation. Note that φ now

has the dimensions of mpl and that κφ is dimensionless.

The dark energy equation of state w = pφ

ρφ
for quintessence is

given by Nunes & Lidsey (2004)

w + 1 =
k2φ′2

3�φ

=
k2β2(φ)

3�φ

. (6)

For the logarithmic potentials this equation provides the boundary

condition to determine the current value of the scalar φ0. For the

exponential potential equation (6) determines βe as discussed in

Section 4.

The beta function is not an arbitrary function of φ and a, but

is determined the model dark energy potential Vm(φ) such that

(Cicciarella & Pieroni 2017)

Vm(φ) = exp

{

−
∫

kβ(φ)dkφ

}

. (7)

3.1 Beta functions from the potentials

From equation (7) the appropriate beta function is the logarithmic

derivative of the potential. Using the potentials listed in the intro-

duction the logarithmic beta function is

β(φ) =
(

−βl

kφ ln(kφ)

)

. (8)

The exponential beta function is simply

β(φ) =
βe

k
. (9)

Five β l values are considered, the integers one through five. The βe

values are set by the five values of w0.

4 EVO L U T I O N O F TH E S C A L A R

An important feature of the beta function formalism is that the

specification of the beta function, along with a boundary condition

determines the evolution of the scalar with respect to the scale factor

φ(a).

4.1 The scalar as a function of the scale factor (logarithmic)

The beta function, equation (5), provides the differential equation

for φ as a function of the scalar a. For the logarithmic potential

k2φ ln(kφ) d φ = −βld ln(a). (10)

Integrating both sides

∫ φ

φ0

k2φ′ ln(kφ′) d φ′ = −βl

∫ a

1

d ln(a′) (11)

gives

k2φ2

2

(

ln(kφ) −
1

2

)

= −βl ln(a) +
k2φ2

0

2

(

ln(kφ0) −
1

2

)

, (12)

where φ0 is the current value of the scalar. Denoting the right hand

term of the equation by Q the scalar is given by

kφ = ±
√

2Q

PL( 2Q

e
)
. (13)

The term PL in equation (13) stands for the Product Log, more

commonly known as the Lambert W(x) function, the solution to

WeW = x. Here the Product Log term, used by Mathematica, is

retained to avoid confusion with the superpotential W(φ) introduced

later. The value of φ0 is determined by the current value of the dark

energy equation of state w0 using equation (6)

kφ0 ln(kφ0) =
±βl

√

3�φ0
(w0 + 1)

, (14)

where �φ0
is the current ratio of the dark energy density to the

critical density. The solution to equation (14) again uses the PL

function

kφ0 =

±βl√
3�φ0

(w0+1)

PL( ±βl√
3�φ0

(w0+1)
)
. (15)

The Product Log does not have positive real solutions for negative

arguments. The definition of the logarithmic beta function assumes

that β l is a positive real number, therefore, the positive square

root is chosen in equations (13)–(15). None of the three equations

accommodate phantom solutions where (w + 1) < 0.

Figs 1 and 2 show the evolution of the scalar φ for the logarithmic

beta function with β l held constant at 3 in Fig. 1 for the five values

of w0 and w0 is held constant at −0.94 in Fig. 2 for the five values

of β l. Even though φ0 changes significantly with the value of β l,

the scalar φ evolves relatively little over a between 0.1 and 1.

4.2 The scalar as a function of the scale factor (exponential)

The exponential potential, V(φ) ∝ exp [βe(φ − φ0)] is the dark

energy potential for slow roll quintessence when the first slow roll

parameter, 1
V

dV
dφ

is held constant eg. Scherrer & Sen (2008). The

beta function for the exponential potential, βe, is unique in that it is

a constant and not a function of φ. Unlike all of the previous cases

βe cannot be set arbitrarily. The value of βe is set by equation (6)

βe =
√

3�φ0
(w0 + 1) (16)

MNRAS 482, 5448–5458 (2019)
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5450 R. I. Thompson

Figure 1. The evolution of the scalar field φ as a function of the scalar a for

the logarithmic beta function with β l = 3.0 for the five values of w0 listed

in the introduction.

Figure 2. The evolution of the scalar field φ as a function of the scalar a

for the logarithmic beta function with the five values of β l and w0 = −0.94.

Figure 3. The evolution of the scalar field (φ − φ0) as a function of the

scalar a for the exponential beta function for the five values of w0 listed in

the introduction.

independent of φ or φ0, therefore there is no boundary condition to

set φ0. The solutions for the relevant cosmological parameters and

fundamental constants are all functions of (φ − φ0) therefore it is

the appropriate parameter rather than the absolute values of φ and

φ0. From the exponential potential beta function

k(φ − φ0) = βe ln(a). (17)

The evolution of (φ − φ0) is shown in Fig. 3. The values of βe for

Figure 4. The evolution of β(a) as a function of the scalar a for the logarith-

mic potential with β l = 3 for the five values of w0 listed in the introduction.

Figure 5. The evolution of β(a) as a function of the scalar a for the log-

arithmic potential with w0 = −0.94 for the five values of β l listed in the

introduction.

the appropriate values of w0 are listed in Fig. 3 and are all less than

one.

An anonymous referee has pointed out that a constant beta func-

tion never reaches a fixed de Sitter point which requires a beta

function value of zero. The referee also mentioned that for a small

value of the beta function, as is found here, that space time is evolv-

ing towards a power-law geometry that might have interesting con-

sequences in holography as discussed in Cicciarella, Mabillard &

Pieroni (2018).

5 TH E E VO L U T I O N O F TH E B E TA FU N C T I O N

In the beta function formalism many of the cosmological parameters

depend on the form of the beta function. Figs 4 and 5 display the

evolution of the logarithmic potential beta functions for the five

values of w0 with β l = 3, (Fig. 4) and for the five values of β i with

w0 = −0.94 (Fig. 5). The logarithmic beta functions are negative

and between −0.1 and −0.5 for scale factors between 0.1 and 1.

Fig. 6 shows the evolution of the exponential potential beta func-

tion for the five βe, w0 pairs. The values are positive and constant

which simplifies several of the subsequent calculations.

6 THE POTENTI ALS

In the beta function formalism two different types of potentials play

a prominent role. The first is the dark energy potential in the action

V(φ) that does not depend on matter. The second, in analogy with

MNRAS 482, 5448–5458 (2019)
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Beta function quintessence II 5451

Figure 6. The evolution of β(a) as a function of the scalar a for the expo-

nential potential.

particle physics, is termed the superpotential W given by

W (φ) = −2H (φ) = −2
ȧ

a
. (18)

Even though the Hubble parameter H is the parameter of interest W

is utilized here to be consistent with the literature on beta functions.

Both the dark energy potential V(φ) and the superpotential W(φ)

can be expressed in terms of β(φ) (Cicciarella & Pieroni 2017) by

W (φ) = W0 exp

{

−
1

2

∫ φ

φ0

β(kφ′)k d φ′
}

(19)

and

V (φ) =
3

4k2
W 2

0 exp

{

−
∫ φ

φ0

β(kφ′)kdφ′
}(

1 −
β2(kφ)

6

)

, (20)

where W0 is the current value of W equal to −2H0. Note that the

superpotential is always denoted as a capital W and the dark energy

equation of state by a lower case w. The potential in equation (20)

is referred to as the beta potential of the model potential. It differs

from the model potential by the factor of (1 − β2(φ)

6
). As long as this

factor is close to one the beta potential is an accurate, but not exact,

representation of the model potential.

6.1 The logarithmic potential

The model logarithmic potential is given by

Vm(φ) =
3

4k2
W 2

0

(

ln(kφ)

ln(kφ0)

)βl

(21)

with the beta function shown in equation (8). The logarithmic beta

potential is given by

Vb(φ) =
3

4k2
W 2

0

(

ln(kφ)

ln(kφ0)

)βl
(

1 −
β2

l

6(kφ ln(kφ))2

)

. (22)

The logarithmic potential is decreasing as the scale factor increases.

Fig. 7 shows the potential with β l fixed at 3 for the five different

values of w0. The solid lines in Fig. 7 show the beta potential

which follows the model potential (dashed) quite well, particularly

for values of w0 close to minus one. The accuracy of the fit is

quantified in Section 6.4 for all of the potentials.

Figure 7. The evolution of the model logarithmic potential with β l = 3 is

shown by the dashed lines and the solid lines indicate the evolution of the

beta logarithmic potential.

Figure 8. The evolution of the model exponential potential is shown by the

dashed lines and the solid lines indicate the evolution of the beta exponential

potential.

6.2 The exponential potential

The model potential is of the form

Vm(φ) =
3

4k2
W 2

0 exp(−βek(φ − φ0)) (23)

with a beta potential of

Vb(φ) =
3

4k2
W 2

0 exp(−βek(φ − φ0))

(

1 −
β2

e

6

)

. (24)

Fig. 8 shows the evolution of exponential model and beta poten-

tials.

6.3 Normalization

It is clear that the beta dark energy potentials have the desired model

potentials multiplied by (1 − β(φ)2

6
) which produces both an offset

and a deviation from the model potentials. The deviation is expected

to be small since β(φ)2

6
is much less than one in most cases. In paper I

the potential was normalized to be 3
4
W 2

0 at a scale factor of one

producing a potential slightly different than the true beta potential.

In this work that practice has been abandoned and no normalization

has been applied. As a result the beta potentials shown in Figs 7

and 8 cross over each other at a ≈ 0.8 due to the β(φ)2

6
term.

6.4 Accuracy of fit

The cosmological parameters derived by the beta function formal-

ism are only useful if the beta potentials accurately represent the

model potentials. Figs 9 and 10 show the fractional deviation of the

MNRAS 482, 5448–5458 (2019)
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5452 R. I. Thompson

Figure 9. The fractional deviation of the beta logarithmic law potentials

from the model potentials with β l = 1, dashed lines, β l = 3.0, solid lines,

and βp = 5.0, dot-dashed lines. For each β l the tracks are marked with the

value w0 at the end.

Figure 10. The same as for Fig. 9 except for the exponential-law potentials.

All five values of βe are shown with the values of w0 marked on the figure.

beta potentials from the model potentials to quantify the deviations

of the beta potentials from the model potentials. For the logarith-

mic potential the minimum, median, and maximum β l values are

shown with w0 values equal to –0.98, –0.94, and –0.9 to show the

extremes without excessive overlap of tracks in the figures. For the

exponential potential all of the cases are shown since they do not

overlap. In paper I a conservative limit of only accepting solutions

with fractional deviations of 1 per cent or less was adopted. In this

paper that limit is expanded to 4 per cent which is a higher accuracy

than the accuracy of most of the available observational data.

6.4.1 The logarithmic beta potential fractional error

The primary feature of the logarithmic potential fractional deviation

in Fig. 9 is that all of the cases are within the acceptable error of

0.04. Unlike the normalized cases of paper I the highest fractional

deviation for the logarithmic beta potential is at a scale factor of one

increasing for values of w0 further from minus one but independent

of the value of β l. The evolution away from a = 1 is dependent on

β l but is decreasing for lower values of a. All of the logarithmic

cases are therefore retained in the subsequent analysis.

6.4.2 The exponential beta potential fractional errors

The exponential beta potential fractional errors shown in Fig. 10

are set by the values of w0 which also sets the value of βe. As

expected the fractional deviations of the exponential beta potential

are independent of the scale factor since β(φ) is constant for a given

w0 and all fall in the acceptable range. As with the logarithmic beta

potential all of the exponential cases are retained in the subsequent

analysis.

7 THE MATTER DENSI TY

The dark energy potentials are independent of matter but both bary-

onic and dark matter must be taken into account to calculate accu-

rate analytic solutions for fundamental constants and cosmological

parameters. Matter is represented by the Sm term in the action, equa-

tion (3). From Cicciarella & Pieroni (2017) and paper I the matter

density as a function of the scalar is given by

ρm(φ) = ρm0
exp

(

−3

∫ φ

φ0

dφ′

β(φ′)

)

, (25)

where ρm0
is the present-day mass density. Different beta functions

produce different functions for ρm as a function of φ hiding the

universality of the matter density when expressed as a function of

the scale factor a

ρm(a) = ρm0
exp

(

−3

∫ a

1

d ln(a′)

)

= ρm0a
−3 (26)

as expected, independent of β(φ).

8 THE SUPERPOTENTI AL W A N D T H E

HUBBLE PARAMETER H

From equation (18) it is obvious that calculating the superpotential

W is equivalent to calculating the Hubble Parameter H. As shown

in Cicciarella & Pieroni (2017) and paper I the differential equation

for W with matter is

WW,φ +
1

2
βW 2 = −2

ρm

β
, (27)

where the notation, φ indicates the derivative with respect to the

scalar φ. Paper I includes two specific examples, the power and

inverse power-law potentials and their related beta functions. Here

a more general solution is presented that gives a better insight of the

process. The solutions to equation (27) utilize integrating factors

f(x), where x = kφ for ease of notation. The integrating factors

multiply both sides of equation (27) to create an exact equation that

can be integrated. The exact form on the left of the equation has

the form of the left side of equation (28). The right side is then

integrated to provide the solution for W:

d

dx

(

1

2
W 2(x)f (x)

)

= −2f (x)
ρm(x)

β(x)
. (28)

Comparison with equation (27) shows that the integrating factor

must satisfy

df (x)

dx
= β(x)f (x) (29)

which determines f(x). Writing the equation out as the equality of

two differentials gives

d(W 2(x)f (x)) = −4f (x)
ρm(x)

β(x)
dx. (30)

Integrating both sides of equation (30) gives

W 2(x)f (x) − W 2
0 f (x0) = −4

∫ x

x0

f (x)
ρm(x)

β(x)
dx. (31)

MNRAS 482, 5448–5458 (2019)
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Beta function quintessence II 5453

Equation (31) can be solved as a function of x or the much more

useful function of a using x(a) from equations (15) and (17) and the

much simpler ρm(a) from equation (26). The beta function provides

the conversion of dx on the right-hand side of equation (30) to da

dx = β(x(a))d ln(a) = β(x(a))
da

a
. (32)

The beta function in equation (32) cancels the beta function on

the right-hand side of equation (30). The right-hand side of equa-

tion (30) is now a function of a rather than x and the integral of the

right-hand side is

− 4ρm0

∫ a

1

f (x(a′))a′−4da′. (33)

After integrating the left side of equation (30) and re-arranging the

final answer is

W (a) = −
{

−4
ρm0

f (x(a))

∫ a

1

f (x(a′))a′−4da + W 2
0

f (x(a = 1)

f (x(a))

}
1
2

.

(34)

The integrating factors for the logarithmic and exponential po-

tentials are

(ln(kφ))−βl logarithmic

exp[βek(φ − φ0)] exponential. (35)

The integral in equation (33) for the exponential integrating factor

is quite simple and analytic. The integral for the logarithmic inte-

grating factor is not analytic and must be done numerically since it

contains the PL function for x(a) given in equation (13).

W (a) = −
[

− 4ρm0
(ln(kφ(a))βl

∫ a

1

(ln(kφ(a′))−βl a′−4da′

+W 2
0

(

ln(kφ(a))

ln(kφ0)

)βl
]

1
2

log

W (a) = −
[

−4ρm0

β2
e − 3

(a−3 − a−β2
e ) + W 2

0 a−β2
e

]
1
2

exp, (36)

where kφ(a) is given by equation (13) for the logarithmic potentials.

The superpotential is a negative quantity therefore the negative

solution of the square roots in equations (36) are used.

8.1 The Hubble parameter as a function of the scale factor

The Hubble parameter is simply −W (a)

2
. As was found in paper I

for the power and inverse power-law potentials the evolution of the

Hubble parameter for the logarithmic and exponential potentials

is indistinguishable from the �CDM evolution at the scale of the

plots. To highlight the true differences Fig. 11 shows the ratio of the

Hubble parameter for logarithmic potential to the �CDM minus

one as a function of the scale factor. In Fig. 11 β l is held constant at

three and each of the five values of w0 are plotted. The same ratio is

plotted for the five exponential potential cases in Fig. 12. In both the

logarithmic and exponential cases the deviation from the �CDM

case is small and peaks at a ≈ 0.5 as expected. The similarity of the

Hubble parameter evolution for a dynamic quintessence cosmology

to the static �CDM cosmology makes it a poor discriminator be-

tween the two cases. One per cent accuracy observations of H(a)

at redshifts near one are required to distinguish between the two.

The reason for the similarity of the evolutions is given in the next

section.

Figure 11. The ratio of the logarithmic potential evolution of the Hubble

parameter Hl(a). β l is held constant at 3 and all five of the w0 values are

plotted.

Figure 12. The same as in Fig. 11 except for the five exponential potential

cases.

8.2 The evolution of the dark energy density

From the Einstein equation with mass

3H 2 = ρm + ρφ (37)

it is clear that

ρφ = 3H 2 − ρm = 3H 2(a) −
ρm0

a3
(38)

for a flat universe. Figs 13 and 14 show the evolution of the dark

energy density for the logarithmic and exponential potentials, re-

spectively. The dashed line in the figures shows the evolution of the

matter density. The reason for the similarity of the quintessence evo-

lution of H(a) to the �CDM evolution is shown in the figures. The

quintessence dark energy density evolves very slowly in the current

dark energy dominated epoch, mimicking the static cosmological

constant dark energy density. The quintessence dark energy density

only evolves significantly at high redshift in the matter dominated

era. This is why the H(a) evolution is essentially similar for the

two cosmologies and may be true for most freezing cosmologies.

There are thawing quintessence cosmologies (Scherrer & Sen 2008)

however their potentials are extremely flat and must match the same

value of H0 as the freezing models.

9 TH E DA R K E N E R G Y E QUAT I O N O F S TATE

A primary observational indicator of a dynamical cosmology is

a dark energy equation of state different from the cosmological

MNRAS 482, 5448–5458 (2019)
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5454 R. I. Thompson

Figure 13. The log10 of the dark energy density values as a function of

the scale factor for the logarithmic potential. The dashed line is the matter

density which decreases below the dark energy density near a scale factor

of 0.75.

Figure 14. The dark energy density values as a function of the scale factor

for the exponential potential. As in Fig. 13 the dashed line shows the matter

density.

constant value of minus one. From paper I

1+ w(φ) =
k2β2

3

(

1 −
4ρm0

a−3

3W 2

)−1

=
k2β2

3
(1 − �m)−1 =

k2β2(φ)

3�φ

(39)

for a flat universe. Fig. 15 shows the evolution of (w(a) + 1) for the

logarithmic dark energy potential with β l = 3 and all five values of

w0. Fig. 16 shows the evolution of (w(a) + 1) for the exponential

dark energy potential with the βe values set by (w0 + 1) = 0.02,

0.04, 0.06, 0.08, and 0.1.

A common feature of all of the potentials in this paper and paper I

is a very slow late time, a > 0.5 evolution of w(a) with significant

evolution for scale factors between 0.1 and 0.5. This indicates that

at least for the quintessence cosmology that high-redshift observa-

tions have the best chance of detecting the presence of dynamical

dark energy. The shapes of the logarithmic and exponential potential

w(a) are quite similar, particularly for the lower values of w0, while

they are more divergent for the higher values. Any determination

of the dark energy potential from the w(a) tracks would require a

secure knowledge of w0 and very accurate measurements of w(a)

at higher redshifts. The required level of accuracy is beyond cur-

rent observational capabilities. Detection of the predicted value of

w(a) ≈ −0.5 at a = 0.2, z = 4, however, might be possible with

Figure 15. The evolution of (w(a) + 1) as a function of a for the logarithmic

dark energy potential with β l = 3 and all five values of w0.

Figure 16. The evolution of (w(a) + 1) as a function of a for the exponential

dark energy potential for the five βe values set by (w0 + 1) = 0.02, 0.04,

0.06, 0.08, and 0.1.

present techniques. Further discussion of w(a) observations occurs

in Section 11.1.

9.1 The fundamental constants

Paper I gives an extensive discussion of the evolution of the funda-

mental constants for both the proton to electron mass ratio μ and the

fine structure constant α in terms of a change of φ and a coupling

constant ζ c where c is μ or α (Nunes & Lidsey 2004).


c

c
= ζck(φ − φ0) = ζc

∫ a

1

β(a′)d ln a′, c = α, μ. (40)

The first equality is usually interpreted as the first term of a Taylor

expansion of a possibly more complicated coupling. The observa-

tional constraints on 
α/α and 
μ/μ are of the order 10−6 or less,

justifying the assumption. The last equality, not shown in paper I,

explicitly shows the connection between the beta function and the

evolution of the fundamental constants. Sections 4.1 and 4.2 show

the transformation of β(φ) to β(a) via the formulae for φ(a).

Fig. 17 shows the evolution of 
μ/μ versus the scale factor

for the logarithmic potential with β l = 3 and the five values of

w0. The positive and negative evolutions simply indicate that the

coupling could have either a positive or negative sign. The coupling

is arbitrarily set to ±10−6 for the figure. The evolution of the fine

structure constant is identical for the same coupling constant. The

evolution reflects the evolution of φ(a) since the coupling is assumed

MNRAS 482, 5448–5458 (2019)
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Beta function quintessence II 5455

Figure 17. The evolution of

μ
μ

for the logarithmic dark energy potential

with βe = 3 and w0 = −0.98, −0.96, −0.94, −0.92, and −0.98. The

coupling constant ζμ is set to ±10−6 as an example.

Figure 18. The evolution of

μ
μ

for the exponential dark energy potential

for the βe values set by (w0 + 1) = 0.02, 0.04, 0.06, 0.08, and 0.1. The

coupling constant ζμ is set to ±10−6.

to be a constant. As expected the higher the deviation of w0 is from

minus one the larger the evolution of μ. Similar to the power-law

potentials in paper I the evolution of 
μ/μ relatively insensitive to

changes in β l.

Fig. 18 shows the evolution of μ for the exponential potential. As

described in Section 4.2 w0 and βe are not independent variables in

the exponential case. In Fig. 18 the five values of w0 are retained as

in Fig. 3 with the appropriate values of βe for each case. The values

of βe are shown in Fig. 18.

9.1.1 Observational constraints on 
μ

μ

As discussed in paper I the primary constraint on a variation of

μ is 
μ/μ ≤ ±10−7 from Bagdonaite et al. (2013) and Kanekar

et al. (2015) at a redshift of 0.885 82. This measurement defines

an allowed and a forbidden parameter space in the ζμ w0 plane.

The first parameter, ζμ, defines the limits on the allowed deviation

from the standard model, ζμ = 0, and the second, w0, the allowed

deviation from the cosmological constant, (w0 + 1) = 0. The upper

limit on ζμ is given by

ζμ =

μ/μ

∫ aob

1
β(a′)d ln(a′)

=

μ/μ

√
3�0(w0 + 1) ln(aob)

, (41)

where aob is the scale factor at the epoch of the observation. The

second equality shows explicitly the dependence on w0. Fig. 19

shows the allowed and forbidden parameter space for the logarith-

mic dark energy potential and Fig. 20 the parameter spaces for the

exponential potential.

Figure 19. The allowed and forbidden parameter spaces in the ζμ – w0

plane for the logarithmic dark energy potential.

Figure 20. The allowed and forbidden parameter spaces in the ζμ – w0

plane for the exponential dark energy potential.

The plots start at (w0 + 1) = 0.001 to avoid the plus and minus

infinite values of ζμ at (w0 + 1) = 0. The allowed parameter space

contains the �CDM cosmology which is the 0,0 point in the plots.

Although constrained to either small values of ζμ or (w0 + 1)

there is still room in the allowed parameter space to accommodate

quintessence.

1 0 R E L E VA N T BU T N OT D I R E C T LY

OBSERVABLE PARAMETERS

There are several cosmological parameters that are relevant but not

directly observable. Here two parameters, the time derivative of the

scalar field and the dark energy pressure, are calculated as functions

of the scale factor a.

10.1 The evolution of the time derivative of the scalar

As shown in paper I the time derivative of the scalar φ̇ is simply the

Hubble parameter times the beta function.

kφ̇ = a
kdφ

da

ȧ

a
= βH (42)

Fig. 21 shows the evolution of φ̇ with respect to the scale factor

a for the logarithmic dark energy potential for the five values of

w0 with β l held constant at three. The differences in the tracks are

entirely due the differences in the beta function since the values of

H(a) are essentially invariant with respect to the input parameters

as shown in Section 8.1 and paper I. The values of φ̇ are negative

because the logarithmic beta function is negative.

Fig. 22 shows the tracks of φ̇ as a function of a for the exponential

MNRAS 482, 5448–5458 (2019)
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5456 R. I. Thompson

Figure 21. The time derivative of the scalar for the logarithmic potential

for the five values of w0 with β l held constant at three.

Figure 22. The time derivative of the scalar for the exponential potential

for the five values of w0 and their associated values of βe.

dark energy potential for the five values of w0 and the βe values

associated with them. Both the logarithmic and the exponential have

φ̇ values approaching zero at the present time.

10.2 The evolution of the dark energy pressure

The dark energy pressure comes from the second of the Ein-

stein equations. −2Ḣ = ρm + ρφ + pφ where Ḣ = − 1
2
φ̇W,φ . From

equation (27)

W,φ = −
2ρm

βW
−

1

2
βW (43)

which yields using kφ̇ = − βW

2

pφ = −2ρm −
k2

2
φ̇2 + 3H 2. (44)

Fig. 23 shows the evolution of the dark energy pressure for the

logarithmic dark energy potential for the five values of w0 with

β l = 3. Since the pressure is negative the negative numbers rather

than the logarithms are plotted. As expected from the dark energy

density plots the pφ tracks cross over themselves. Fig. 24 shows the

pφ for the exponential potential for the five βe, w0 pairs.

1 1 R E L E VA N C E O F T H E A NA LY S I S

This paper completes the investigation started in paper I of four

common dark energy potentials in a quintessence cosmology. Here

the relevance of the findings to important cosmological and new

physics questions is examined. The literature on determining cos-

mological parameters based on observations is vast and it is not the

Figure 23. The dark energy pressure for the five values of w0 with a

logarithmic potential with β l = 3.

Figure 24. The dark energy pressure for the five βe, w0 pairs with an

exponential potential.

purpose of this section to determine the veracity of the various stud-

ies. Instead the following points out which parameters calculated in

this study and paper I are relevant to the important questions and

how they may differ from the current body of work.

11.1 Dynamical versus static dark energy

What observations can discriminate between a dynamic dark energy

quintessence cosmology and a static dark energy �CDM Universe?

An important finding is that due to the flatness of the quintessence

potentials in the dark energy dominated eras both cosmologies pre-

dict essentially identical evolution of the Hubble parameter H(a).

H(a) measurements, therefore, cannot effectively discriminate be-

tween the two cases. Measurements that differed from the predicted

evolution would, however, rule out both cosmologies.

Measurements of the dark energy equation of state w(a) and the

values of the fundamental constants μ and α can discriminate be-

tween dynamical and static dark energy. A confirmed observation

of w(a) 	= −1 or a change in the value of a fundamental constant

would rule out �CDM but would be consistent with quintessence

or other dynamical dark energy cosmologies. Tests for a value of

w(a) 	= −1 eg. Avsajanishvilli et al. (2017), are often conducted

using the Chevallier–Polarsky–Linder (CPL) linear model (Cheval-

lier & Polarski 2001; Linder 2003).

w(a) = w0 + wa(1 − a). (45)

Examination of Figs 15 and 16 indicates that the model is a reason-

able fit at low redshifts but is a bad fit at high redshifts where w(a)

is evolving rapidly in the quintessence cosmology. The tracks in

these figures provide more realistic templates to compare with ob-

servations than the CPL linear model. The shapes of the w(a) tracks

MNRAS 482, 5448–5458 (2019)
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Beta function quintessence II 5457

Figure 25. Three CPL fits, dashed lines, to the evolution of w(a) for an

exponential potential with w0 = −0.94. The fits to the full range and the

range between a = 0.2 and 1.0 produce false phantom crossings.

suggest a possible reason why many observational studies seem to

favour phantom, w < −1, values of w e.g. (Chen, Huang & Wang

2017). Fig. 25 shows CPL fits to the w0 = −0.94w(a) evolution

for an exponential potential over three scale factor ranges; the full

range between 0.1 and 1.0 (z = 9 − 0), the range between 0.2 and

1.0 (z = 4 − 0), and the range between 0.5 and 1.0 (z = 1 − 0).

As expected the fit between z = 1 and 0 is a good match but the

two fits that include the higher redshift evolution produce phantom

values for w0 in equation (45) even though the true evolution has

no phantom values. It is also evident that observations at redshifts

greater than one provide more leverage on constraining deviations

of w(a) from minus one than observations between redshifts one

and zero.

Measurements of the values of μ and α provide more precise

constraints on dynamical dark energy. Figs 17 and 18 show the

expected evolutionary tracks for μ with a coupling constant ζμ =
±10−6 and the five different values of w0. A single measurement,

under the quintessence assumption of homogeneous dark energy,

determines the allowed parameter space for dynamical dark energy.

Figs 19 and 20 show the allowed parameter space in the (w0 + 1),

ζμ plane based on the observational constraint discussed in Sec-

tion 9.1.1. Any point other than 0,0 in the plane requires dynamical

dark energy, new physics or both.

11.2 The dark energy potential

As with the question of dynamical versus static dark energy, the

Hubble parameter yields essentially no information on the func-

tional form of the dark energy potential. Although not explicitly

depicted here the tracks of the cosmological parameters, such as

w(a) for the logarithmic potential have the same insensitivity to the

value of β l as shown for the power and inverse power-law potential

in paper I. The w(a) tracks for the exponential potential, however,

are sensitive to βe since the values of βe and w0 are coupled by

equation (16).

An accurate observational measurement of w(a) at a particular

scale factor or for a range of scale factors does not uniquely de-

termine the dark energy potential. Examination of Figs 15 and 16

shows that for a given coordinate in the w(a), a plane either a

logarithmic or exponential potential can match the coordinate by

altering the value of w0. The tracks in the two figures are for specific

values of w0 but all of the area between the minimal and maximal

tracks are covered by the range of w0 between −0.9 and −0.98.

All of the area below the minimal −0.98 can be covered by making

Figure 26. The rate of change, μ̇/μ per year for the logarithmic potential

with a coupling constant of ζμ = 10−6.

Figure 27. The rate of change, μ̇/μ per year for the exponential potential

with a coupling constant of ζμ = 10−6.

w0 arbitrarily close to −1.0 and the area above the maximal −0.9

tracks can be covered by making w0 even further from −1. The

tracks in both figures have very similar shapes, making it difficult

to discriminate between the potentials even with good knowledge

of w(a) over a large range of scale factors. However, if there is an

accurate measurement of w0 along with w(a) at other scale factors

there is some leverage in determining the potential. Of course any

determination of w other than minus one at any epoch would be a

significant finding.

11.3 The rate of change of fundamental constants

Laboratory constraints on the rate of change of fundamental con-

stants is another check on the possibility of dynamical dark energy.

Figs 17 and 18 indicate that the rate of change of μ and α in a

quintessence freezing cosmology is slowing down in the current

epoch. Figs 26 and 27 show the rate of change, μ̇/μ per year for

the logarithmic and exponential dark energy potentials with a cou-

pling constant of ζμ = 10−6. The proton-to-electron ratio is used

in the example but the fine structure constant α has exactly the

same track if its coupling constant is also ζ α = 10−6. It is clear

from Figs 26 and 27 that in a quintessence freezing cosmology the

current rate of change of the fundamental constants is significantly

less than rate at high redshift. Table 1 shows the rate of change

in units of 10−17mpl per year for μ at scale factors of 0.1 and 1.0

for the logarithmic and exponential potentials for the five values

of w0 and a coupling constant of +10−6. The signs between the

two potentials are opposite and would be reversed for a negative

coupling constant. The current rates of change are essentially the

same between the two potentials but diverge at a scale factor of

MNRAS 482, 5448–5458 (2019)
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5458 R. I. Thompson

Table 1. μ̇/μ per year for the logarithmic and exponential dark energy

potentials at scale factors of 0.1 and 1.0 for the five values of the current

dark energy equation of state w0 and a coupling constant of ±10−6.

μ̇/μ in 10−17mpl per year

Logarithmic Exponential

w0 a = 0.1 a = 1.0 a = 0.1 a = 1.0

−0.98 −23.4 −1.47 25.6 1.47

−0.96 −31.1 −2.07 36.5 2.07

−0.94 −36.2 −2.54 45.0 2.54

−0.92 −40.0 −2.93 52.4 2.93

−0.90 −42.9 −3.28 59.0 3.28

Table 2. The two swampland parameters for the potentials in this paper

and paper I. The units of 
φ are Planck masses. The β l, p, i values are 3 for

all potentials except for the exponential potential which uses the βe value

appropriate to the w0 value.

Swampland parameters

Log Exp Pow Inv Pow

w0 
φ 
V
V


φ 
V
V


φ 
V
V


φ 
V
V

−0.98 0.45 0.09 −0.47 0.10 0.55 0.10 −0.58 0.11

−0.96 0.62 0.18 −0.67 0.21 0.76 0.20 −0.84 0.23

−0.94 0.73 0.26 −0.82 0.34 0.92 0.30 −1.06 0.38

−0.92 0.82 0.34 −0.94 0.47 1.04 0.41 −1.26 0.56

−0.90 0.90 0.42 −1.06 0.62 1.14 0.52 X X

0.1. The average current rate of change is roughly 18 times less

than the rate of change at a scale factor of 0.1. Current laboratory

bounds (Godun et al. 2014) are μ̇/μ = (0.2 ± 1.1)10−16 yr−1 and

α̇/α = (−0.7 ± 2.1)10−17 yr−1. Matching the cosmological obser-

vational bounds on 
μ/μ discussed in Section 9.1.1 with a coupling

constant of ±10−6 requires (w0 + 1) ≤ 0.02 which is the first row

in Table 1. This sets a limit a factor of 10 below the laboratory

limit. Unlike the laboratory limits the cosmological limit on 
μ/μ

is more stringent than the limit on 
α/α.

11.4 Checking on the swampland

String theory postulates a vast landscape of vacua that is surrounded

by an even more vast landscape, termed the swampland, of consis-

tent looking scalar field theories that are inconsistent with a quantum

field theory of gravity (Vafa 2005; Agrawal et al. 2018). Put another

way the swampland is the landscape of valid scalar field theories

that are incompatible with quantum gravity (Heisenberg et al. 2018).

Given the current interest in the swampland it is worthwhile to de-

termine whether quintessence with the potentials considered here

and in paper I dwells in the swampland. The boundaries of the

swampland are usually defined by two conjectures. The first con-

jecture is that the change in the scalar should be 
φ < ∼O(1) and

the second is that 
V/V ≥ ∼O(1). If either of these conjectures are

violated then the cosmology is in the swampland. It is not entirely

clear how restrictive of order 1 is or exactly what range of scale

factors 
φ and 
V encompass. It is obvious that �CDM is in the

swampland since 
V = 0.

The quintessence models considered here and in paper I certainly

live near the swampland with perhaps one foot in the swamp and one

foot dry depending on how of order 1 is interpreted. The swampland

parameters for the potentials in this paper and paper I are shown in

Table 2. Both 
 values are for the scale factor range between 0.1

and 1.0. The potential V in 
V/V is the current-day potential. The X

in the inverse power-law parameters for w0 = −0.90 indicate that

this is not a valid solution as shown in paper I.

All of the exponential and logarithmic potential cases considered

here satisfy the condition on 
φ under the assumption that −1.06

is of order 1. The power and inverse power law 
φ entries for the

three values of w0 closest to minus one, the most likely values, also

satisfy the 
φ conjecture, the dry foot. None of the 
V/V entries

strictly satisfy the associated conjecture, the wet foot. Very recent

work by Kinney, Vagnozzi & Visinelli (2018) suggest that this is

a feature common to most single scalar field cosmologies. Since

the potentials V(φ) are functions of the scalar φ larger values of


V require larger changes in φ which, as Table 2 shows, requires

larger deviations of w from minus one and drives the 
φ values

higher which could result in violating the 
φ conjecture. Obied

et al. (2018) have also suggested a criterion that |φ| < 1 in Planck

units which is not satisfied by the scalars in this work. It is not the

purpose of this discussion to determine whether having one foot in

the swamp is a good or bad thing but rather to simply show where

quintessence with the potentials examined here lies with respect to

the swampland boundaries.

1 2 C O N C L U S I O N S

This and paper I show that the beta function formalism provides

an effective way to calculate accurate solutions for cosmological

parameters as a function of the scale factor a. For the most part the

solutions are analytic functions utilizing known mathematical func-

tions. The superpotential for the logarithmic dark energy potential,

however, required an easily calculated numerical integral. The two

papers also demonstrate the application of the beta function formal-

ism and can act as a guide to the extension of the formalism to other

potentials and cosmologies.
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