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Abstract. We introduce a Bayesian analysis for beta generalized distribu-
tions and related exponentiated models. We review the exponentiated ex-
ponential, exponentiated Weibull and beta generalized exponential distribu-
tions. These distributions have been proposed as alternative extensions of the
gamma and Weibull distributions in the analysis of lifetime data. Some pos-
terior summaries of interest are obtained using Monte Carlo Markov chain
(MCMC) methods. An application to a real data set is given to illustrate the
potentiality of the Bayesian analysis.

1 Introduction

In recent years, several common distributions have been generalized via exponen-
tiation. Let G(y) be the cumulative distribution function (c.d.f.) of any continuous
baseline distribution. The c.d.f. of the exponentiated G distribution is defined by
elevating G(x) to the power λ, say F(y) = G(y)λ, where λ > 0 denotes an ex-
tra shape parameter. The baseline distribution is obtained as a special case when
λ = 1. The advantage of this approach for modeling failure time data lies in its
flexibility to model both monotonic as well as non-monotonic failure rates even
though the baseline failure rate may be monotonic. Following this idea, Gupta,
Gupta and Gupta (1998) introduced the exponentiated exponential (EE) distribu-
tion as a generalization of the exponential distribution. In the same way, Nadarajah
and Kotz (2006) proposed four more exponentiated distributions that generalize
the gamma, Weibull, Gumbel and Fréchet distributions and provided some math-
ematical properties for each distribution. Several other authors have considered
exponentiated distributions, for example, Mudholkar and Hutson (1996), Gupta
and Kundu (2001), Surles and Padgett (2001) and Kundu and Gupta (2007, 2008).

We consider a further extension of the exponentiated distributions starting from
the baseline c.d.f. G(y). Eugene, Lee and Famoye (2002) proposed a class of beta
generalized distributions defined by

F(y) = IG(y)(a, b) = 1

B(a, b)

∫ G(y)

0
ωa−1(1 − ω)b−1 dω, (1.1)
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where B(a, b) = ∫ 1
0 ωa−1(1 − ω)b−1 dω is the beta function,

Iy(a, b) = B(a, b)−1
∫ y

0
ωa−1(1 − ω)b−1 dω

denotes the incomplete beta function ratio, that is, the c.d.f. of the beta distribution
with parameters a > 0 and b > 0. The role of these extra parameters is to introduce
skewness and to very tail weight and the c.d.f. G(y) could be quite arbitrary. The
distribution F is so-called the beta G distribution. Evidently, the exponentiated G

distribution is a special case of the beta G distribution when b = 1. Application of
Y = G−1(V ) to a beta random variable V with parameters a and b yields Y with
c.d.f. (1.1).

The class of beta generalized distributions has been received special attention
over the last years, in particular after recent works of Eugene, Lee and Famoye
(2002) and Jones (2004). Eugene, Lee and Famoye (2002) defined the beta normal
(BN) distribution by taking G(y) in (1.1) to be the c.d.f. of the normal distribu-
tion and derived some of its first moments. General expressions for the moments
of the BN distribution were obtained by Gupta and Nadarajah (2004). Nadarajah
and Kotz (2004) proposed the beta Gumbel (BG) distribution by taking G(y) as
the c.d.f. of the Gumbel distribution and obtained closed-form expressions for the
moments, the asymptotic distribution of the extreme order statistics and discussed
maximum likelihood estimation. Further, Nadarajah and Kotz (2005) worked with
the beta exponential (BE) distribution, derived the moment generating function,
the first four cumulants, the asymptotic distribution of the extreme order statis-
tics and also discussed maximum likelihood estimation. Some of the their results
were generalized by Cordeiro, Simas and Stosic (2011) who investigated several
mathematical properties for the beta Weibull (BW) distribution and obtained the
maximum likelihood estimates (MLEs) of the model parameters.

The probability density function (p.d.f.) corresponding to (1.1) can be written
as

f (y) = 1

B(a, b)
G(y)a−1[1 − G(y)]b−1g(y), (1.2)

where g(y) = dG(y)/dy. The p.d.f. f (y) of the beta G will be most tractable
when both functions G(y) and g(y) of the baseline distribution have simple an-
alytic expressions. Except for some special choices for G(y) in (1.1), it would
appear that the p.d.f. f (y) will be difficult to deal with in generality.

The rest of the paper is organized as follows. In Section 2, we review some
exponentiated and beta generalized distributions. Section 3 proposes a Bayesian
analysis for the EE, exponentiated Weibull (EW) and beta generalized exponential
(BGE) distributions. Model selection is presented in Section 4. In Section 5, we
give an application to a real data set to illustrate the Bayesian methods developed
here. Finally, concluding remarks are given in Section 6.
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2 Some exponentiated and beta generalized distributions

2.1 Exponentiated exponential distribution

The two parameter EE distribution (Gupta and Kundu (1999)) has been used as an
alternative for the usual gamma and Weibull distributions in the analysis of life-
time data (Kundu and Gupta (2007, 2008), Raqab (2002), Raqab and Ahsanullah
(2001), Zheng (2002)). This distribution is a special sub-model of the EW distribu-
tion (see Section 2.2) and can be used quite effectively in analyzing several lifetime
data, particularly in place of the widely known gamma and Weibull distributions.
If the shape parameter is one, then all the three distributions reduce to the one pa-
rameter exponential distribution. The three distributions represent generalizations
of the exponential distribution in different ways. Unlike the gamma model, the den-
sity, distribution and survival functions of the EE distribution have convenient rep-
resentations. In addition to the EW distribution, Nadarajah and Kotz (2006) studied
the exponentiated gamma, exponentiated Gumbel and exponentiated Fréchet dis-
tributions by extending the gamma, Gumbel and Fréchet distributions in the same
way that the EE distribution generalizes the exponential distribution. They also
provide some mathematical properties for each exponentiated distribution.

The two parameter EE distribution has density function given by

f (y;α,λ) = αλ[1 − exp(−λy)]α−1 exp(−λy), y > 0, (2.1)

where α > 0 and λ > 0 are the shape and scale parameters, respectively, like in the
gamma and Weibull distributions. The EE density function is always right skewed
and can be used quite effectively to analyze skewed data sets as an alternative to
the more popular log-normal distribution. The p.d.f. (2.1) is concave and varies
significantly depending on the shape parameter. For α < 1, it is a decreasing func-
tion and for α > 1, it is unimodal with mode at λ−1 log(α), skewed, right tailed
similar to the Weibull and gamma density functions. Both EE and gamma distri-
butions can be considered as generalizations of the exponential distribution in dif-
ferent directions. In many situations, the EE distribution provides better fit than a
gamma distribution and we can choose one of the two models to analyze a skewed
data set. Even when α is very large, it is not symmetric. The mean, median and
mode are nonlinear functions of the shape parameter and as α goes to infinity all
of them tend to infinity. For large values of this parameter, the mean, median and
mode are, approximately, equal to log(α) but they converge at different rates. The
EE distribution has several mathematical properties that are very similar to those
of the gamma distribution but it has closed-form expressions for the distribution
and survival functions like the Weibull distribution. The mean of both distributions
diverges to infinity as the shape parameter goes to infinity. The corresponding sur-
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vival and hazard functions are given by

S(y;α,λ) = 1 − [1 − exp(−λy)]α
and

h(y;α,λ) = f (y;α,λ)

S(y;α,λ)
= αλ[1 − exp(−λy)]α−1 exp(−λy)

1 − [1 − exp(−λy)]α ,

respectively.
The hazard function of the EE distribution can be increasing from 0 to λ if

α > 1, decreasing from ∞ to 1 if α < 1 and constant if α = 1, similarly as the
gamma distribution. Most properties of the EE distribution are identical in nature
to those of the gamma distribution but computationally it is quite similar to the
Weibull distribution. Hence, it can be used as an alternative distribution to the
gamma and Weibull models and in some situations it might work better in terms
of fitting than both models although it can not be guaranteed. In summary, the EE
distribution is a good alternative for the gamma and Weibull models to be fitted to
lifetime data.

We assume a random sample y = (y1, . . . , yn) following the EE distribution
(2.1). The log-likelihood function � = �(α,λ) for the model parameters reduces to

�(α,λ) = n log(α) + n log(λ) + (α − 1)

n∑
i=1

log[1 − exp(−λyi)] − λnȳ, (2.2)

where ȳ is the sample mean. The MLEs α̂ and λ̂ of α and λ can be obtained from
the score equations ∂�/∂α = 0 and ∂�/∂λ = 0. The estimate α̂ is given by

α̂ = −n∑n
i=1 log[1 − exp(λ̂yi)]

and λ̂ is the solution of the nonlinear equation

n

λ̂
− nȳ + (α̂ − 1)

n∑
i=1

yi exp(−λ̂yi)

[1 − exp(−λ̂yi)]
= 0.

The MLEs α̂ and λ̂ of α and λ are consistent estimates with an asymptotic
bivariate normal distribution Gupta and Kundu (1999), namely

(α̂, λ̂)T ∼ N [(α,λ)T , I−1(α,λ)],
where I (α,λ) is the joint information matrix obtained from (2.2)

I (α,λ) =

⎛
⎜⎜⎝

E

(
− ∂2�

∂α2

)
E

(
− ∂2�

∂α ∂λ

)

E

(
− ∂2�

∂λ∂α

)
E

(
− ∂2�

∂λ2

)
⎞
⎟⎟⎠ , (2.3)
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whose elements are given by

E

(
− ∂2�

∂α2

)
= n

α2 ,

E

(
− ∂2�

∂α ∂λ

)
= n

λ

{
[ψ(α + 1) − ψ(1)] − α

α − 1
[ψ(α) − ψ(1)]

}
,

(2.4)

E

(
− ∂2�

∂λ2

)
= n

λ2

{
1 + α(α − 1)

α − 2

[
ψ ′(1) − ψ ′(α − 1) + [ψ(α − 1) − ψ(1)]2]

− α
[
ψ ′(1) − ψ ′(α) + [ψ(α) − ψ(1)]2]}

.

Here, �(·) and ψ(α) = d log�(α)/dα = �′(α)/�(α) are the gamma and digamma
functions, respectively.

2.2 Exponentiated Weibull distribution

The EW distribution was originally proposed by Mudholkar and Srivastava (1993)
and later studied by Mudholkar, Srivastava and Freimer (1995). Its properties have
been studied in more detail by Mudholkar and Hutson (1996) and Nassar and Eissa
(2003). The EW family is an extension of the Weibull distribution obtained by
adding an extra shape parameter. The beauty and importance of this distribution
lies in its ability to model monotone as well as nonmonotone failure rates which
are quite common in reliability and biological studies. As with any other distri-
bution, many of its interesting characteristics and features can be studied through
moments. The EW p.d.f. is given by

f (y;α,λ,β) = αλβ[1 − exp(−λyβ)]α−1 exp(−λyβ)yβ−1, y > 0, (2.5)

where the parameters α, λ and β are all positive. When α = 1, equation (2.5) yields
the Weibull distribution. Clearly, the EE distribution is also a sub-model of the EW
distribution when β = 1. The survival and hazard functions are

S(y;α,λ,β) = 1 − [1 − exp(−λyβ)]α

and

h(y;α,λ,β) = αλβ[1 − exp(−λyβ)]α−1 exp(−λyβ)yβ−1

1 − [1 − exp(−λyβ)]α ,

respectively.
This above hazard function is monotone increasing if β ≥ 1 and αβ ≥ 1; mono-

tone decreasing if β ≤ 1 and αβ ≤ 1; unimodal if β < 1 and αβ > 1 and bathtub
shaped if β > 1 and αβ < 1. Mudholkar and Srivastava (1993) derived some math-
ematical properties of the EW distribution.
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We assume a random sample y = (y1, . . . , yn) following (2.5). The log-
likelihood function � = �(α,λ,β) for the model parameters can be written as

�(α,λ,β) = n log(α) + n log(λ) + n log(β)

+ (α − 1)

n∑
i=1

log[1 − exp(−λy
β
i )] (2.6)

− λ

n∑
i=1

y
β
i + (β − 1)

n∑
i=1

log(yi).

The MLEs α̂, λ̂ and β̂ are obtained from the nonlinear equations ∂�/∂α = 0,
∂�/∂λ = 0 and ∂�/∂β = 0 using any iterative algorithm.

2.3 Beta generalized exponential distribution

The four parameter BGE distribution (Barreto-Souza, Santos and Cordeiro (2010))
is defined by taking G(y) in (1.1) to be the c.d.f. G(y) = (1 − e−λy)α of the EE
distribution. The c.d.f. of the BGE distribution is given by

F(y;a, b,α,λ) = 1

B(a, b)

∫ (1−e−λy)α

0
ωa−1(1 − ω)b−1 dω, y > 0

for a > 0, b > 0, α > 0 and λ > 0. The BGE density function does not involve any
complicated function and it reduces to

f (y;a, b,α,λ) = αλ

B(a, b)
exp(−λy)(1 − e−λy)αa−1

(2.7)
× [1 − (1 − e−λy)α]b−1, y > 0.

The BGE distribution generalizes some well-known distributions in the litera-
ture, such as the EE and BE distributions. The EE distribution is a special sub-
model for the choice a = b = 1. The BE is also a special case for α = 1. If, in
addition, a = b = 1, we obtain the exponential distribution with parameter λ as a
special case. Some mathematical properties of the BGE distribution are given by
Barreto-Souza, Santos and Cordeiro (2010). It is evident that (2.7) is much more
flexible than the EE and BE distributions because of the extra parameters. The
corresponding hazard function becomes

h(y;a, b,α,λ) = αλe−λy(1 − e−λy)αa−1[1 − (1 − e−λy)α]b−1

B(a, b)I1−(1−e−λy)α (a, b)
, y > 0.

The log-likelihood function � = �(a, b,α,λ) for the model parameters of the
BGE distribution given a random sample y = (y1, . . . , yn) can be written from
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Table 1 Summary of the distributions

Exponentiated exponential distribution*
Density αλ[1 − exp(−λy)]α−1 exp(−λy)

Survival function 1 − [1 − exp(−λy)]α
Hazard function αλ[1−exp(−λy)]α−1 exp(−λy)

1−[1−exp(−λy)]α
Exponentiated Weibull distribution*

Density αλβ[1 − exp(−λyβ)]α−1 exp(−λyβ)yβ−1

Survival function 1 − [1 − exp(−λyβ)]α
Hazard function αλβ[1−exp(−λyβ)]α−1 exp(−λyβ)yβ−1

1−[1−exp(−λyβ)]α
Beta generalized exponential distribution*

Density αλ
B(a,b)

exp(−λy)(1 − e−λy)αa−1[1 − (1 − e−λy)α]b−1

Hazard function αλe−λy(1−e−λy)αa−1[1−(1−e−λy)α]b−1

B(a,b)I1−(1−e−λy )α
(a,b)

*y > 0, a > 0, b > 0, α > 0, β > 0, λ > 0.

(2.7) as

�(a, b,α,λ) = n log
(

αλ

B(a, b)

)
− λ

n∑
i=1

yi + (αa − 1)

n∑
i=1

log
(
1 − exp{−(λyi)})

(2.8)

+ (b − 1)

n∑
i=1

log(1 − [1 − exp{−λyi}]α).

The MLEs â, b̂, α̂ and λ̂ are obtained from the nonlinear equations ∂�/∂a = 0,
∂�/∂b = 0, ∂�/∂α = 0 and ∂�/∂λ = 0 using any iteration procedure such as the
Newton–Raphson or Fisher scoring method.

In Table 1, we provide a summary of the three previous distributions. Expres-
sions for the mean, variance, skewness and kurtosis of these distributions are given
in the references cited in the article.

3 A Bayesian analysis

3.1 A Bayesian analysis for the EE distribution

For a Bayesian analysis of the EE model, we can use different prior distributions
for the model parameters α and λ. The Jeffreys invariant prior (Box and Tiao
(1973)) for α and λ is given by

π1(α,λ) ∝ [det I (α,λ)]1/2, (3.1)

where I (α,λ) is the joint information matrix (2.3). Another prior joint distribu-
tion for α and λ can take the form π(α,λ) = π(λ|α)π0(α). In this way, using the



8 J. A. Achcar, E. A. Coelho-Barros and G. M. Cordeiro

Jeffreys rule, we obtain

π2(α,λ) ∝
√

E

(
− ∂2�

∂λ2

)
π0(α), (3.2)

where E(−∂2�/∂λ2) is given by (2.4). Since α > 0, a Jeffreys noninformative
prior for α becomes π0(α) ∝ 1/α. Hence,

π2(α,λ) ∝ 1

αλ

√
A(α), (3.3)

where

A(α) = 1 + α(α − 1)

α − 2
[ψ ′(1) − ψ ′(α − 1) + ψ(α − 1) − ψ(1)]

(3.4)
− α{ψ ′(1) − ψ ′(α) + [ψ(α) − ψ(1)]2}.

Assuming prior independence between the parameters α and λ, we take a non-
informative prior distribution expressed as

π3(α,λ) ∝ 1

αλ
, (3.5)

where α > 0 and λ > 0.
We consider the reparametrization ρ1 = log(α) and ρ2 = log(λ). We obtain

from (3.5) a noninformative prior for ρ1 and ρ2, namely π4(ρ1, ρ2) ∝ constant,
where −∞ < ρ1 < ∞ and −∞ < ρ2 < ∞. In practical terms, we can consider an
uniform prior distribution U(−ai, ai) for i = 1,2 with larger values for ai to pro-
duce approximate noninformative priors for ρ1 and ρ2 and proper joint posterior
distribution.

Further, we assume independence between ρ1 and ρ2. Using the reparametri-
zation ρ1 = log(α) and ρ2 = log(λ), the joint posterior distribution for ρ1 and ρ2
reduces to

π(ρ1, ρ2|y) ∝ π(ρ1, ρ2)

× exp

{
nρ1 + nρ2 − nȳ exp(ρ2) (3.6)

+ [exp(ρ1) − 1]
n∑

i=1

log
(
1 − exp[−yi exp(ρ2)])

}
.

Equation (3.6) is the likelihood function for ρ1 and ρ2, that is, f (y|ρ1, ρ2) is
the joint distribution for the data in terms of ρ1 and ρ2.

Prior summaries of interest could be obtained using MCMC methods such as the
Gibbs sampling algorithm (Gelfand and Smith (1990)) or the Metropolis–Hastings
algorithm (Smith and Roberts (1993)).
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If we assume the prior π4(ρ1, ρ2) ∝ constant, the conditional posterior distribu-
tions used in the Gibbs sampling algorithm are given by

π(ρ1|ρ2,y) ∝ exp

{
nρ1 +[exp(ρ1)− 1]

n∑
i=1

log
(
1 − exp[−yi exp(ρ2)])

}
. (3.7)

and

π(ρ2|ρ1,y) ∝ exp

{
nρ2 − nȳ exp(ρ2)

(3.8)

+ [exp(ρ1) − 1]
n∑

i=1

log
(
1 − exp[−yi exp(ρ2)])

}
.

We can consider the reparametrization ρ1 = log(α) and ρ2 = log(λ) to obtain
better performance for the Gibbs sampling algorithm. Equations (3.1)–(3.8) define
a Bayesian analysis for the EE distribution.

It is important to point out that we could use alternative algorithms to perform
the Bayesian analysis of the proposed models (Rue, Martino and Chopin (2009))
instead of using the standard MCMC methods.

3.2 A Bayesian analysis for the EW distribution

The joint posterior distribution for the parameters α, λ and β of the EW distribution
with density (2.5) can be written as

π(α,λ,β|y) ∝ π0(α,λ,β)

× exp

{
n logα + n logλ + n logβ − λ

n∑
i=1

y
β
i (3.9)

+ (α − 1)

n∑
i=1

log[1 − exp(−λy
β
i )] + (β − 1)

n∑
i=1

logyi

}
,

where π0(α,λ,β) is a joint prior distribution for the model parameters α, λ

and β .
If we assume that these parameters are independent with a joint noninformative

prior π0(α,λ,β) ∝ (αλβ)−1, α > 0, λ > 0 and β > 0, and a reparametrization
ρ1 = log(α), ρ2 = log(β) and ρ3 = log(λ), that is, the parameters ρ1, ρ2 and ρ3
have a location uniform prior distribution (Box and Tiao (1973)), the conditional
posterior distributions for the Gibbs sampling algorithm are given by

π(ρ1|ρ2, ρ3,y) ∝ exp

{
nρ1 + (eρ1 − 1)

n∑
i=1

[1 − exp(−eρ3yeρ2
i )]

}
, (3.10)
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π(ρ2|ρ1, ρ3,y) ∝ exp

{
nρ2 − eρ3

n∑
i=1

yeρ2
i + (eρ1 − 1)

n∑
i=1

[1 − exp(−eρ3yeρ2
i )]

(3.11)

+ (eρ2 − 1)

n∑
i=1

logyi

}

and

π(ρ3|ρ1, ρ2,y)
(3.12)

∝ exp

{
nρ3 − eρ3

n∑
i=1

yeρ2
i + (eρ1 − 1)

n∑
i=1

[1 − exp(−eρ3yeρ2
i )]

}
.

By using uniform prior distributions for ρj , over a large interval (−aj , aj ),
j = 1,2,3, we obtain the proper joint posterior distribution given by

π(ρ1, ρ2, ρ3|y)

∝ exp

{
n[ρ1 + ρ2 + ρ3] − eρ3

n∑
i=1

yeρ2
i (3.13)

+ (eρ1 − 1)

n∑
i=1

log[1 − exp(−eρ3yeρ2
i )] + (eρ2 − 1)

n∑
i=1

logyi

}
,

which coincides with the joint density for the data y reparameterized in terms of
ρ1, ρ2 and ρ3.

3.3 A Bayesian analysis for the BGE distribution

We consider the BGE model with density function (2.7) and a noninformative joint
prior distribution for a, b, α and λ given by

π0(a, b,α,λ) ∝ 1

abαλ
, (3.14)

where a > 0, b > 0, α > 0 and λ > 0. The joint posterior distribution for these
parameters can be written as

π(a, b,α,λ|y) ∝ π0(a, b,α,λ)B(a, b)

× exp

{
n logα + n logλ − n log

(3.15)

− λ

n∑
i=1

yi + (αa − 1)

n∑
i=1

log(1 − e−λyi )

+ (b − 1)

n∑
i=1

log[1 − (1 − e−λyi )α]
}
.
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We now move to the reparametrization ρ1 = log(a), ρ2 = log(b), ρ3 = log(α)

and ρ4 = log(λ). We can easily obtain a locally uniform prior distribution for the
new parameters ρ1, ρ2, ρ3 and ρ4 from equation (3.14).

Some posterior summaries of interest can be derived from the generated sam-
ples for the joint posterior distribution for the new parameters by using the Gibbs
sampling algorithm. A considerable simplification can be achieved using the Win-
bugs software (Spiegelhalter et al. (1995)) which requires only the specification of
the joint distribution for the data and the prior distributions for the model parame-
ters. We observe that using uniform prior distributions over large intervals for the
parameter ρ1, ρ2, ρ3 and ρ4, we have proper joint posterior distribution.

4 Model selection

Different model selection methods to choose the most adequate model could be
adopted under the Bayesian paradigm (Berg, Meyer and Yu (2004)). We consider
the Deviance Information Criterion (DIC) which is a specifically useful for select-
ing models under the Bayesian approach, where samples of the posterior distribu-
tion for the model parameters are obtained by using MCMC methods.

The deviance can be expressed as

D(θ) = −2 logL(θ |y) + c, (4.1)

where L(θ |y) is the likelihood function for the unknown parameters in θ given the
observed data y and c is a constant not required for comparing models.

Spiegelhalter, Best and Vander Linde (2000) defined the DIC criterion by

DIC = D(θ̂) + 2nD, (4.2)

where D(θ̂) is the deviance evaluated at the posterior mean θ̂ and nD is the
effective number of parameters in the model, namely nD = D̄ − D(θ̂), where
D̄ = E[D(θ)] is the posterior deviance measuring the quality of the goodness-of-
fit of the current model to the data. Smaller values of DIC indicate better models.
Note that these values could be negative.

For model selection, we could also consider the conditional predictive ordi-
nate (CPO) for each observation (Gelfand, Dey and Chang (1992)). CPO is a
cross-validated predictive approach, the predictive density for yi given y(i) =
(y1, . . . , yi−1, yi+1, . . . , yn), can be expressed as

ci = p
(
yi |y(i)

) =
∫

p(yi |θ)p
(
θ |y(i)

)
dθ , (4.3)

where p(yi |θ) is the density proposed for the data and p(θ |y(i)) is the posterior
density for the vector θ of parameters given the data y(i). We could obtain Monte
Carlo estimates for ci based on the generated MCMC sample.
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Larger values of ci (in average) indicate a better model. Alternatively, we could
also select the model with larger value for the sum (or product) of the ci ’s, i =
1, . . . , n.

Another commonly used measure of goodness-of-fit is the Akaike information
criterion (AIC) Akaike (1973, 1974) given by

AIC = −2 logL(θ̂ |y) + 2p, (4.4)

where L(θ̂ |y) is the maximized likelihood value and p is the number of parameters
in the model. Smaller values of AIC indicate better models.

Although DIC values are given automatically by Winbugs software, which leads
to a great simplification in practical work, there is some controversy about the use
of DIC for model comparison in Bayesian context, as pointed out in the literature.
In this way, it is recommended using some criteria such as CPO or AIC. In terms
of MCMC methods, we adopt the expected AIC rather than the AIC criteria used
in the classical approach. Other proposals have been suggested in the literature
(Brooks (2002), Celeux et al. (2005)).

5 An example

We now consider a real data set introduced by Lawless (1982, p. 228) related to
tests on the endurance of deep groove ball bearings Gupta and Kundu (2001),
Lieblein and Zelen (1956). The data represent the number of million revolu-
tions before failure of each of the 23 ball bearings in the life test. The data are:
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and
173.40.

First, we consider the EE distribution with density (2.1) under the reparame-
trization ρ1 = log(α) and ρ2 = log(λ). Further, we assume approximate nonin-
formative prior uniform U(−10,10) and U(−10,10) distributions for ρ1 and ρ2,
respectively.

The use of uniform U(−10,10) prior distributions for ρ1 and ρ2 was consid-
ered to have approximate noninformative priors and convergence of the MCMC
algorithm using the Winbugs software.

We generate 3,000 Gibbs samples taking every 10th sample after a “burn-in-
sample” of size 5,000 to eliminate the initial values considered for the Gibbs sam-
pling algorithm. All the calculations were performed using the Winbugs software.
Convergence of the Gibbs sampling algorithm was verified from time series plots
for the simulated samples. Table 2 lists the posterior summaries of interest for the
EE model, the MLEs of α and λ and their corresponding standard errors and 95%
confidence intervals (the Winbugs code is listed in Appendix).
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Table 2 Posterior summaries of interest and MLEs for some fitted models

Posterior 95% credible 95% confidence
Model Parameter mean (SD) interval MLE (SD) interval

GE model ρ1 1.604 (0.387) (0.843,2.352) 1.664 (0.388) (0.862,2.467)

DIC = 229.901 ρ2 −3.468 (0.206) (−3.902,−3.099) −3.433 (0.200) (−3.844,−3.021)

AIC = 230.0 α 5.359 (2.133) (2.324,10.510) 5.283(2.050) (1.044,9.522)

λ 0.032 (0.006) (0.020,0.045) 0.032 (0.006) (0.019,0.046)

EW model ρ1 1.543 (0.248) (1.072,1.965) 1.556 (1.627) (−1.810,4.922)

DIC = 228.974 ρ2 0.057 (0.036) (0.003,0.129) 0.044 (0.647) (−1.295,1.382)

AIC = 231.9 ρ3 −3.719 (0.180) (−3.986,−3.339) −3.673 (3.619) (−11.159,3.813)

α 4.823 (1.177) (2.922,7.132) 4.740 (7.714) (−11.217,20.698)

β 1.059 (0.038) (1.003,1.138) 1.045 (0.676) (−0.354,2.443)

λ 0.025 (0.005) (0.019,0.035) 0.025 (0.092) (−0.165,0.216)

BGE model ρ1 1.385 (0.259) (1.016,1.923) 1.437 (75.083) (−153.880,156.760)

DIC = 229.053 ρ2 0.034 (0.020) (0.002,0.068) 0.053 (3.054) (−6.265,6.370)

AIC = 234.0 ρ3 0.390 (0.252) (0.018,0.926) 0.209 (75.296) (−155.550,155.970)

ρ4 −3.412 (0.158) (−3.740,−3.115) −3.473 (2.342) (−8.318,1.373)

a 4.134 (1.135) (2.763,6.839) 4.207 (315.900) (−649.290,657.710)

b 1.035 (0.021) (1.002,1.070) 1.054 (3.219) (−5.604,7.712)

α 1.526 (0.409) (1.018,2.525) 1.233 (92.841) (−190.820,193.290)

λ 0.033 (0.005) (0.024,0.044) 0.031 (0.073) (−0.119,0.181)
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Secondly, we move to the EW distribution with density (2.5) and consider
the reparametrization ρ1 = log(α), ρ2 = log(β) and ρ3 = log(λ). We adopt the
same generating procedure to simulate Gibbs samples used for the GE distribu-
tion. We consider approximate noninformative prior uniform U(1,2), U(0,1) and
U(−4,−3) distributions for ρ1, ρ2 and ρ3, respectively. Table 2 lists the posterior
summaries of interest for the EW model based on 3,000 simulated Gibbs samples
using the Winbugs software, the MLEs of the parameters α, β and λ and the cor-
responding standard errors and confidence intervals. The choices of the values of
hyper-parameters of the uniform priors were required to obtain convergence of the
Gibbs sampling algorithm.

Thirdly, we assume the BGE distribution with density (2.7) under the reparame-
trization ρ1 = log(a), ρ2 = log(b), ρ3 = log(α) and ρ4 = log(λ). We con-
sider approximate noninformative prior uniform U(1,2), U(0,0.1), U(0,1) and
U(−4,−3) distributions for ρ1, ρ2, ρ3 and ρ4, respectively. We adopt the same
Gibbs sampling approach used for the EE and EW models. The calculations were
done with the Winbugs software. Table 2 gives the posterior summaries of interest
for the BGE model, the MLEs and the corresponding standard errors and confi-
dence intervals.

For discrimination of the proposed models, we first use the DIC criterion. From
the results of Table 2, we conclude that the EW model yields better fit to the data
set, since its DIC value is smaller. Using the AIC criterion, we conclude (see Ta-
ble 2) that the GE model is the best model fitted to the data. Note that the three
models (GE, EW and BGE) yield similar fits, since their DIC or AIC values are
quite close. Figure 1 plots the CPO’s for the three fitted models, thus indicating
similar fits with a small improvement for the BGE model, since their CPO’s have,
in average, bigger values.

6 Concluding remarks

Exponentiated and generalized beta distributions have been proved to be very ver-
satile and a variety of uncertainties can be usefully modeled by them. Many of the
classical distributions encountered in practice can be easily extended into the expo-
nentiated and generalized beta forms. We show that the use of Bayesian methods
to analyze these types of extended distributions is a suitable alternative to produce
accurate inference for the parameters of interest. In the example considered in the
article, we conclude that the usual maximum likelihood inference using classical
asymptotic results could lead to larger confidence intervals when compared to the
posterior summaries. The use of a software like Winbugs provides great facility to
generate Gibbs samples for the joint posterior distribution of interest.
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Figure 1 CPO plots for the three fitted models.

Appendix: Winbugs code for the three models

Listing 1 Exponentiated exponential distribution codes

model
{

for (i in 1:N)
{
zeros[i] <- 0
phi[i] <- -log(L[i])
zeros[i] ~ dpois(phi[i])

L[i]<- exp(rho1+rho2-exp(rho2)*y[i]+
(exp(rho1)-1)*log(1-exp(-exp(rho2)*y[i])))

}

rho1 ~ dunif(-10,10)
rho2 ~ dunif(-10,10)
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alpha <- exp(rho1)
lambda <- exp(rho2)
}

Listing 2 Exponentiated weibull distribution codes

model
{
for (i in 1:N)
{
zeros[i] <- 0
phi[i] <- -log(L[i])
zeros[i] ~ dpois(phi[i])

L[i]<- exp(rho1+rho2+rho3+(exp(rho1)-1)*
log(1-exp(-exp(rho3)*pow(y[i],exp(rho2))))
-exp(rho3)*pow(y[i],exp(rho2))
+(exp(rho2)-1)*log(y[i]))

}
rho1 ~ dunif(1,2)
rho2 ~ dunif(0,1)
rho3 ~ dunif(-4,-3)
alpha<-exp(rho1)
beta<-exp(rho2)
lambda<-exp(rho3)
}

Listing 3 Beta generalized exponential distribution codes

model
{
for (i in 1:N)
{

zeros[i] <- 0
phi[i] <- -log(L[i])
zeros[i] ~ dpois(phi[i])

L[i]<- exp(loggam(exp(rho1)+exp(rho2))
-loggam(exp(rho1))-loggam(exp(rho2))+rho3+
rho4-exp(rho4)*y[i]+(exp(rho3)*
exp(rho1)-1)*log(1-exp(-exp(rho4)*y[i]))
+(exp(rho2)-1)*log(1-pow(1-exp
(-exp(rho4)*y[i]),exp(rho3))))
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}
rho1 ~ dunif(1,2)
rho2 ~ dunif(0,0.07)
rho3 ~ dunif(0,1)
rho4 ~ dunif(-4,-3)
a <- exp(rho1)
b <- exp(rho2)
alpha <- exp(rho3)
lambda <- exp(rho4)
}
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