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π-NORMAL TOPOLOGICAL SPACES

Lutfi N. Kalantan

Abstract

A topological space X is called π-normal if for any two disjoint closed

subsets A and B of X one of which is π-closed, there exist two open

disjoint subsets U and V of X such that A ⊆ U and B ⊆ V . We will

present some characterizations of π-normality and some examples to show

relations between π-normality and other weaker version of normality such

as mild normality, almost normality, and quasi-normality.

We investigate in this paper a weaker version of normality called π-normality.
We will prove that π-normality is a property which lies between almost normality
and normality. We will present some characterizations of π-normality and some
examples to show relations between π-normality and other weaker versions of
normality such as mild normality, almost normality, and quasi-normality.

We will denote an ordered pair by 〈x, y〉, the set of positive integers by N and
the set of real numbers by R. A T4 space is a T1 normal space and a Tychonoff
space is a T1 completely regular space. The interior of a set A will be denoted
by intA, and the closure of a set A will be denoted by A.

1 Definition:
A subset A of a topological space X is called regularly closed (called also,

closed domain ) if A = intA . A subset A is called regularly open (called also,
open domain ) if A = int(A ). A finite union of regular open sets is called π-open

set and a finite intersection of regular closed sets is called π-closed set. Two
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subsets A and B in a topological space X are said to be separated if there exist
two disjoint open subsets U and V such that A ⊆ U and B ⊆ V .

Observe that an intersection of two regularly closed sets need not be regularly
closed, for example, in R with the usual metric topology, any closed interval is a
regularly closed set but [0, 1]∩ [1, 2] = {1} and the singleton {1} is not regularly
closed. A dual argument holds for regularly open sets. So, we always have

regularly closed =⇒ π-closed =⇒ closed.

Observe that the complement of a π-open set is π-closed and the complement
of a π-closed set is π-open, the finite union (intersection) of π-closed sets is π-
closed, but the infinite union (intersection) of π-closed sets need not be π-closed.
An example for the union is the rationals Q in R with its usual topology as {q}
is π-closed for each q ∈ Q, but Q is not closed hence not π-closed. An example
for the intersection is the singleton {ω1} in the ordinal space ω1 + 1. Observe
that for each α < ω1 we have (α, ω1] is a clopen subset of ω1 + 1 , so (α, ω1] is
regularly closed in ω1 + 1 for each α < ω1. Now

⋂
α<ω1

(α, ω1] = {ω1}, which
is not π-closed. To see this, suppose, without loss of generality, {ω1} = F ∩ E,
where F = intF and E = intE are regularly closed in ω1+1. Let A = F \{ω1}
and B = E \ {ω1}, then A and B are closed sets in ω1, because if α ∈ ω1 \ A,
then α ∈ ω1 + 1 \ F . Since F is closed in ω1+1, so there exists an α1 < α such
that (α1, α]∩F = ∅, then (α1, α]∩A = ∅. Thus (α1, α] ⊆ ω1 \A. Hence ω1 \A

is an open set in ω1 and so A is closed in ω1. Similarly B is closed in ω1. Now A

and B are also unbounded in ω1, because if α < ω1 then (α, ω1] ∩ intF 6= ∅,so
there exists a β ∈ intF such that α < β. Thus β ∈ F such that α < β, hence
β ∈ A such that α < β. Thus A is unbounded, similarly B is unbounded. We
have now A and B are both closed and unbounded in ω1, then A and B are
clubs in ω1, so A∩B is club in ω1. Thus there is a γ ∈ A∩B such that γ < ω1,
this implies that γ 6= ω1 and γ ∈ F ∩ E a contradiction. Therefore {ω1} is a
closed set in ω1 + 1 which is not π-closed.

2 Definition: (Singal and Singal)
A topological space X is called mildly normal if for any two disjoint regularly

closed subsets A and B of X, there exist two open disjoint subsets U and V of
X such that A ⊆ U and B ⊆ V . i.e., any two disjoint regularly closed subsets
are separated.

Shchepin introduced the same notion in the class of regular spaces, see [6],
he called it κ-normality. It is clear from the definitions that any normal space
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is mildly normal. The converse is not always true. The space ω1 × ω1 + 1 is
mildly normal, see [2] and [3], but not normal.

3 Definition: (Singal and Arya)
A topological space X is called almost normal if for any two disjoint closed

subsets A and B of X, one of which is regularly closed, there exist two open
disjoint subsets U and V of X such that A ⊆ U and B ⊆ V .

It is clear from the definitions that any normal space is almost normal and
any almost normal space is mildly normal. The converse is not always true.
The space ω1 × ω1 + 1 is mildly normal, but not almost normal because the
closed subset A = ω1 × {ω1} is disjoint from the regularly closed subset B =
{〈α, α〉 : α < ω1} and they cannot be separated by two disjoint open subsets,
see [1]. We do not assume regularity in the definition of almost normality, so
any finite complement topology on an infinite set is an example of an almost
normal space which is not normal. There is a Hausdorff space which is almost
normal but not regular, see [4]. And there is a Tychonoff space which is almost
normal but not normal, see [4].

4 Definition:
A topological space X is called quasi-normal if any two disjoint π-closed

subsets A and B of X there exist two open disjoint subsets U and V of X such
that A ⊆ U and B ⊆ V .

Zaitsev introduced the above notion in the class of regular spaces, see [10].
It is clear that any normal space is quasi-normal and any quasi-normal space is
mildly normal. The converse is not always true. Shchepin, see [6], illustrated an
example of a mildly normal space which is not quasi-normal and also he proved
that the Niemytzki plane is quasi-normal.

5 Definition:
A topological space X is called π-normal if for any two disjoint closed subsets

A and B of X one of which is π-closed, there exist two open disjoint subsets U

and V of X such that A ⊆ U and B ⊆ V .

We do not assume regularity or any separation axiom in the definition of
π-normality. The following implications are clear:

normal =⇒ π-normal =⇒ almost normal =⇒ mildly normal.
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normal =⇒ π-normal =⇒ quasi-normal =⇒ mildly normal.

We will study some of the converse of the above implications. First, consider
the finite complement topology on any infinite set X. This space is T1 but not
T2 and any regularly closed set is either the empty set or the whole space X, as
any infinite subset is dense in this space. Thus it is π-normal but not normal.
Now, we will present a quasi-normal space which is not almost normal, hence
not π-normal.

6 Example:
Let P = {〈x, y〉 : x, y ∈ R, y > 0} be the open upper half-plane and let

L = {〈x, 0〉 : x ∈ R} be the x-axis. Let X = P ∪ L. Let τ be the topology
on X generated by the following neighborhood system: For any z ∈ P , a basic
open neighborhood of z is any basic open disc around z contained in P with its
usual Euclidean topology. For z ∈ L, a basic open neighborhood of z is of the
form {z}∪ (P ∩D), where D is any open disc around z in the plane R2 with its
usual Euclidean topology. This topological space (X, τ) is called the Half-Disc

topological space. Observe that P as a subspace of X is the same as the usual
Euclidean space. This space is not regular. For more information about this
space, see [9].

It is clear that Q2 ∩ P is countable and dense in X. Thus X is separable.
Also, L is a closed uncountable discrete subset of X. Thus, by Jones’ Lemma,
X is not normal. Now, let p : X −→ L be the usual projection function from
X ⊂ R2 onto the x-axis L.

Claim 1: Let E and F be any two closed disjoint subsets of X. Then E

and F are unseparated if and only if either (there exists 〈x, 0〉 ∈ E such that
x ∈ p(F ∩ L) ) or (there exists 〈x, 0〉 ∈ F such that x ∈ p(E ∩ L) ), where the
closure is taken in the x-axis L with its usual Euclidean topology.

Proof of Claim 1: If the condition holds, the it is clear that E and F are
unseparated. For the converse, suppose that E and F are unseparated but the
condition does not hold. Then we would have that (for all 〈x, 0〉 ∈ E, we have
x 6∈ p(F ∩ L) ) and (for all 〈x, 0〉 ∈ F , we have x 6∈ p(E ∩ L) ). Since E ∩P and
F ∩ P are closed disjoint subsets of P with its usual Euclidean topology, then
there are two open sets U1 and V1, open in P and hence open in X, such that

(E ∩ P ) ⊆ U1, (F ∩ P ) ⊆ V1 and U1

X
∩ V1

X
= ∅. Now, for all 〈x, 0〉 ∈ E there

exists an ǫx > 0 such that the open disc Dǫx
around 〈x, 0〉 of radius ǫx is disjoint

from V1 and there exists a δx > 0 such that the open interval (x − δx, x + δx)
is disjoint from p(F ∩ L). Let rx = min{ ǫx

2
, δx

2
} and let Dx be the open disc
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around 〈x, 0〉 of radius rx and let Ux = {〈x, 0〉} ∪ (P ∩ Dx). Similarly, for all
〈x, 0〉 ∈ F there exists an ǫx > 0 such that the open disc Dǫx

around 〈x, 0〉
of radius ǫx is disjoint from U1 and there exists a δx > 0 such that the open
interval (x− δx, x + δx) is disjoint from p(E ∩L). Let rx = min{ ǫx

2
, δx

2
} and let

Dx be the open disc around 〈x, 0〉 of radius rx and let Vx = {〈x, 0〉}∪ (P ∩Dx).
Define

U = U1 ∪ (∪〈x,0〉∈EUx) and V = V1 ∪ (∪〈x,0〉∈F Vx).

Then E ⊆ U and F ⊆ V where U and V are open in X and disjoint. Thus E

and F are separated which is a contradiction. Thus Claim 1 is proved.

Now, suppose that X is not quasi-normal. Then there would be two disjoint
unseparated π-closed sets E = ∩n

i=1
intEi and F = ∩m

i=1
intFi. By Claim 1, we

may assume, without loss of generality, that there exists an element 〈x, 0〉 ∈ E

such that x ∈ p(F ∩ L). For an ǫ > 0 and z ∈ R2, let us denote the open disc
centered at z of radius ǫ by B(z; ǫ). Observe that for each k ∈ N there exists
yk ∈ (p(F ∩L))∩ (x− 1

k
, x+ 1

k
). Thus for each k ∈ N and for each i ∈ {1, ...,m}

we have that 〈yk, 0〉 ∈ intFi and in L, the x-axis, we have yk −→ x. Thus, for
each K ∈ N and for each i ∈ {1, ..., m} pick

zi
k ∈ ((B(〈yk, 0〉;

1

k
) ∩ P ) ∪ {〈yk, 0〉})

⋂
intFi.

Now, let ǫ > 0 be arbitrary. Pick j ∈ N so that yk ∈ (x− ǫ, x+ ǫ) for each k ≥ j

and B(〈yk, 0〉; 1

k
) ⊆ B(〈x, 0〉; ǫ) for each k ≥ j. Then

zi
k ∈ ((B(〈yk, 0〉;

1

k
) ∩ P ) ∪ {〈yk, 0〉}) ∩ intFi ⊆ (B(〈x, 0〉; ǫ) ∩ P ).

That is

((B(〈x, 0〉; ǫ) ∩ P ) ∪ {〈x, 0〉}) ∩ intFi 6= ∅ for each i ∈ {1, ...,m}.

Since ǫ was arbitrary, we conclude that 〈x, 0〉 ∈ intFi for each i ∈ {1, ..., m}.
Thus 〈x, 0〉 ∈ ∩m

i=1
intFi = F . Thus E ∩ F 6= ∅ which is a contradiction.

Therefore, X is quasi-normal.

Now, let U = {〈x, y〉 : x2 + (y − 1)2 < 1} be points of the interior of the
circle of radius 1 centered at 〈0, 1〉. Let E = U = {〈x, u〉 : x2 + (y − 1)2 ≤ 1},
then E is a regularly closed set being a closure of an open set. Observe that
〈0, 0〉 ∈ U = E. Let F = {〈 1

n
, 0〉 : n ∈ N}. Then F is closed. By Claim
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1, E and F are unseparated. Thus X is not almost normal. Hence X is not
π-normal.

Let us now give some characterization of π-normality.

7 Theorem:

For a space X, the following are equivalent:

1. X is π-normal

2. For every π-closed set A and every open set B with A ⊆ B, there exists
an open set U such that A ⊆ U ⊆ U ⊆ B.

3. For every closed set A and every π-open set B with A ⊆ B, there exists
an open set U such that A ⊆ U ⊆ U ⊆ B.

4. For every pair consisting of disjoint sets A and B, one of which is π-closed
and the other is closed, there exist open sets U and V such that A ⊆ U ,
B ⊆ V , and U ∩ V = ∅.

Proof:

(1) =⇒ (2) Assume (1). Let A be any π-closed set and B be any open set
such that A ⊆ B. Then A ∩ (X \ B) = ∅, where X \ B is closed. Then there
exist open disjoint sets U and V such that A ⊂ U and (X \ B) ⊆ V . Since
U ∩ V = ∅, then U ∩ V = ∅. Thus U ⊆ X \ V ⊆ X \ (X \ B) = B. Therefore,
A ⊆ U ⊆ U ⊆ B.

(2) =⇒ (3) Assume (2). Let A be any closed set and B be any π-open set
such that A ⊆ B. Then X\B ⊆ X\A where X\B is π-closed and X\A is open.
Thus, by (2), there exists open W such that X \ B ⊆ W ⊆ W ⊆ X \ A. Thus
A ⊆ X\W ⊆ X\W ⊆ B. So, we let U = X\W which is open and since W ⊆ W ,
then X \ W ⊆ X \ W . Thus U ⊆ X \ W , hence U ⊆ X \ W = X \ W ⊆ B.

(3) =⇒ (4) Assume (3). Let A be any closed set and B be any π-closed set
with A∩B = ∅. Then A ⊆ X \B where X \B is π-open. By (3), there exists an
open U such that A ⊆ U ⊆ U ⊆ X \ B. Now, U is closed. Applying (3) again
we get an open W such that A ⊆ U ⊆ U ⊆ W ⊆ W ⊆ X \ B. Let V = X \ W ,
then V is open and B ⊆ V . We have X \ W ⊆ X \ W , hence V ⊆ X \ W ,
thus V ⊆ X \ W = X \ W . So, we have U ⊆ W and V ⊆ X \ W . Therfore
U ∩ V = ∅.

(4) =⇒ (1) is clear.
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Using Theorem 7, it is easy to show the following theorem which is a
Urysohn’s Lemma version for π-normality. A proof can be established by a
similar way of the normal case.

8 Theorem:
A space X is π-normal if and only if for every pair of disjoint closed sets A

and B, one of which is π-closed, there exists a continuous function f on X into
[0, 1], with its usual topology, such that f(A) = {0} and f(B) = {1}.

It is easy to see that the inverse image of a regularly closed set under an
open continuous function is regularly closed and the inverse image of a π-closed
set under an open continuous function is π-closed. We will use that in the next
theorem.

9 Theorem:
Let X be a π-normal space and f : X −→ Y be an open continuous injective

function. Then f(X) is a π-normal space.
Proof: Let A be any π-closed subset in f(X) and let B be any closed subset

in f(X) such that A ∩ B = ∅. Then f−1(A) is a π-closed set in X which is
disjoint from the closed set f−1(B). Since X is π-normal, there are two disjoint
open sets U and V such that f−1(A) ⊆ U and f−1(B) ⊆ V . Since f is 1-1 and
open, result follows.

10 Corollary:
π-normality is a topological property.

π-normality is not productive, for example ω1×ω1+1. It is also not inherited,
for example (ω1 + 1)2, or any compactification of a Tychonoff non-π-normal
space. But it is clearly additive.

Recall that a space X is called extremally disconnected space if the closure
of any open set in X is open. It is easy to see that any π-open subset of an
extremally disconnected space is an open domain. Thus any π-closed subset of
an extremally disconnected space is a closed domain. The proof of the following
theorem is straight.

11 Theorem:
Any extremally disconnected space is π-normal space.
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Any Tychonoff extremally disconnected non-normal space is an example of
a Tychonoff π-normal non-normal space. There are finite spaces which are
almost normal but not π-normal. We still do not know if there exists an infinite
Tychonoff space which is almost normal but not π-normal, even a consistent
example.

Shchepin, see [6], used the notion of κ-metrizablity to show that the Sorgen-
frey line square is κ-normal. We still do not know the following:

Open Problem:

1. Is the Sorgenfrey line square almost normal? π-normal?

2. Is the Niemytzki plane almost normal? π-normal?
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