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Bounded time series consisting of rates or proportions are often encoun-
tered in applications. This manuscript proposes a practical approach to ana-
lyze bounded time series, through a beta regression model. The method al-
lows the direct interpretation of the regression parameters on the original re-
sponse scale, while properly accounting for the heteroskedasticity typical of
bounded variables. The serial dependence is modeled by a Gaussian copula,
with a correlation matrix corresponding to a stationary autoregressive and
moving average process. It is shown that inference, prediction, and control
can be carried out straightforwardly, with minor modifications to standard
analysis of autoregressive and moving average models. The methodology is
motivated by an application to the influenza-like-illness incidence estimated
by the Google® Flu Trends project.

1. Introduction. Continuous bounded response variables, such as propor-
tions and rates, are frequently encountered in many areas of statistical practice.
This kind of data is usually examined through linear regression after a logistic
transformation. Despite its feasibility, such a modeling strategy can suffer from
some shortcomings, the most relevant being that regression parameters are not di-
rectly interpretable on the original response scale, as a consequence of Jensen’s
inequality. See Kieschnick and McCullough (2003) and Cribari-Neto and Zeileis
(2010) for detailed discussions.

An alternative to linear modeling after logistic transformation consists in a di-
rect analysis of the bounded responses on their original scale. To this purpose, the
beta regression model has attracted increasing interest in recent years, as a con-
sequence of the flexibility of the beta distribution in accommodating a variety of
distributional shapes over the unit interval. Beta regression modeling of indepen-
dent observations has been illustrated in Paolino (2001), Ferrari and Cribari-Neto
(2004), and Smithson and Verkuilen (2006). Recent applications of beta regression
in life sciences have been encountered in clinical medicine [Wang et al. (2011),
Zou, Carlsson and Quinn (2010)], neuroscience [Wang (2012)], pharmacometrics
[Rogers et al. (2012)], and virology [Love et al. (2010)].
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Recent developments of beta regression analysis of bounded time series have
been addressed to observation-driven models [Casarin, Dalla Valle and Leisen
(2012), Rocha and Cribari-Neto (2009)] and to parameter-driven models [Da-Silva
and Migon (2012)]. Straightforward likelihood inference makes the observation-
driven model appealing. A possible drawback arises in the case of regression anal-
ysis, since the interpretation of the coefficients depends on past transformed obser-
vations in the mean. Parameter-driven models are attractive given their hierarchical
construction. Nevertheless, inference and prediction are complicated by the pres-
ence of correlated latent variables.

As an alternative to the conditional observation- and parameter-driven models,
we suggest a marginal regression approach, through the specification of a con-
venient class of beta regression models with autoregressive and moving average
errors. The serial dependence is modeled by a Gaussian copula. Likelihood in-
ference, prediction, and control are carried out in a straightforward manner, with a
computational complexity similar to that of an ordinary ARMA model. In addition,
the approach allows an attractive interpretation of model components.

This article is motivated by surveillance of influenza through analysis of the
influenza-like-illness percentage estimated from aggregated web search queries by
the Google® Flu Trends project. Analysis of influenza time series is a key step in
disease surveillance for monitoring the progress of epidemics, early identification
of pandemics, and ascertainment of factors associated to unexpected changes in
flu levels.

The plan of the article is as follows. Section 2 describes the motivating Google®

Flu Trends data. Section 3 summarizes beta regression modeling and some ex-
tensions for time series analysis. The proposed methodology is detailed in Sec-
tion 4 and its finite sample performance is investigated through simulation in Sec-
tion 5. Section 6 describes online monitoring of influenza outbreaks through con-
trol charts applied to beta regression predictive quantile residuals. The application
to the real data set of interest is given in Section 7. Final remarks in Section 8
conclude.

Methods described in the paper are implemented within the more general R
[R Core Team (2013)] package gcmr “Gaussian copula marginal regression”
[Masarotto and Varin (2012)], version 0.6.1. The package is freely available at
the CRAN repository, URL cran.r-project.org/web/packages/gcmr. Supplementary
material [Guolo and Varin (2013)] provides a brief illustration of the R code.

2. Motivating example. The Google® Flu Trends project aims at early de-
tection of influenza-like-illness (ILI) activity around the world. The ILI activity is
measured in terms of cases per 100,000 persons. The number of cases is recon-
structed starting from aggregated Google® search queries related to the disease,
such as, for example, influenza complication, flu remedy, influenza symptoms, and
antiviral medication. See Ginsberg et al. (2009) for details about ILI counts es-
timation. The Google® estimated ILI time series are publicly available at URL

http://cran.r-project.org/web/packages/gcmr


76 A. GUOLO AND C. VARIN

FIG. 1. Google® Flu Trends estimated ILI percentage for Canada. Circles denote Christmas/New
Year holidays. Data source: www.google.org/flutrends.

www.google.org/flutrends. Data start on the last week of 2002 for Brazil and Peru.
Information has been successively extended to 26 other countries all around the
world. Researchers at the U.S. Centers for Disease Control and Prevention con-
sider Google® Flu Trends as an early warning of an outbreak, although not a sub-
stitute for traditional epidemiological surveillance networks. In fact, recent data
from the U.S. indicate that peak influenza levels in winter 2012–2013 have been
overestimated, as a consequence of an increased number of search queries related
to influenza strains which caused more serious illness and deaths than usual [Butler
(2013)].

Figure 1 displays the time series of Google® estimated ILI percentage, obtained
as estimated ILI counts divided by 100,000 persons, for Canada. The time series
covers 510 consecutive weeks in the period October 2003–June 2013. Canada has
been chosen since Google® estimated ILI percentage highlights three epidemic
peaks in December 2003, October–November 2009, and December 2012–January
2013. In these periods, ILI peaked at about 7.5%, 9.7%, and 7.7% of Canadians,
respectively, against normal seasonal influenza peaks of about 3.5%.

3. Beta regression. Let Yt be a response variable bounded on the unit interval
(0,1), t = 1, . . . , n, and let xt be a vector of p concomitant covariates. According
to Paolino (2001) and Ferrari and Cribari-Neto (2004), beta regression assumes
that Yt given xt follows a beta distribution Beta(μt , κt ) parametrized in terms of
the mean parameter 0 < μt < 1 and the precision parameter κt > 0. It follows that
var(Yt ) = μt(1 − μt)/(1 + κt ) and the density function of Yt is

pt(yt ;β) = �(κt )

�(μtκt )�{(1 − μt)κt }y
μtκt−1
t (1 − yt )

(1−μt )κt−1,(3.1)

where �(·) denotes the Gamma function and subscript t in pt(·) emphasizes the
time dependence of the beta density through μt and κt .

http://www.google.org/flutrends
http://www.google.org/flutrends
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Dependence of the response Yt on the covariates xt is obtained by assuming
a logit-linear model for the mean parameter, logit(μt ) = x�

t βx, where βx is a p-
dimensional vector of coefficients. Alternative link functions g : (0,1) → R are
allowed, provided that they are monotonic and differentiable, such as, for exam-
ple, probit and log–log. Since the distribution of bounded variables is character-
ized by heterogeneity, it is reasonable to model the precision parameter with a
log-linear model log(κt ) = z�

t βz, where z is a set of q covariates with associated
vector of coefficients βz. Implementations of beta regression analysis for indepen-
dent observations are available through R packages betareg [Cribari-Neto and
Zeileis (2010), Grün, Kosmidis and Zeileis (2012)] and gamlss [Stasinopoulos
and Rigby (2007)].

Within the time series framework, serial correlation in nonlinear regression
analysis can be accounted for through conditional or marginal models. Follow-
ing Cox (1981), conditional models are further classified as observation- and
parameter-driven models. Rocha and Cribari-Neto (2009) consider observation-
driven beta regression models where the response Yt is modeled as a function of
past information,

Yt |{yt−1, . . . , y1} ∼ Beta(μt , κt ),

with μt depending on both covariates xt and logit-transformed past observations
through the ARMA(p, q) model

logit(μt ) = x�
t βx +

p∑
i=1

ψt

{
logit(yt−i) − x�

t−iβx
} +

q∑
j=1

λjεt−j .

In the expression above, εt is a random error and ψ = (ψ1, . . . ,ψp)� and
λ = (λ1, . . . , λq)

� are the autoregressive and moving average parameter vectors,
respectively. Straightforward likelihood inference makes the observation-driven
model appealing, although the interpretation of the regression coefficients is com-
plicated by the presence of past transformed observations in the mean. Casarin,
Dalla Valle and Leisen (2012) develop Bayesian inference for purely autoregres-
sive beta regression observation-driven models and discuss selection of the optimal
order.

Da-Silva and Migon (2012) investigate parameter-driven beta regression mod-
els, extending da Silva, Migon and Correia (2011). Da-Silva and Migon (2012)
suppose responses distributed as independent beta random variables conditionally
on latent variables. Serial correlation is accounted for by assuming that the latent
variables evolve in time according to a state-space model. Although the hierarchi-
cal model construction is attractive, likelihood computation is complicated by the
presence of n correlated latent variables. Likelihood approximation can be based
on sequential simulation methods, such as, for example, the Markov chain Monte
Carlo approach discussed by Da-Silva and Migon (2012).

4. Marginal beta regression time series modeling. In this paper we develop
a marginal extension of the beta regression model for time series analysis which
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avoids the difficulties of interpretation of observation-driven models and the com-
putational complications of parameter-driven models. Thereafter, the cumulative
distribution function of a normal variable with mean m and variance s2 will be
denoted by �(·;m,s). A similar notation will be used for the density function
φ(·;m,s). The common simplified notation �(·) = �(·;0,1) and φ(·) = φ(·;0,1)

is adopted for a standard normal variable.
The proposed marginal beta regression model exploits the probability integral

transformation to relate response Yt to covariates xt and zt and to a standard normal
error εt ,

Yt = F−1
t

{
�(εt );β}

,(4.1)

where Ft(·;β) is the cumulative distribution function associated to density (3.1),
β = (β�

x ,β�
z )�. The probability integral transformation implies that Yt is mar-

ginally beta distributed, Yt ∼ Beta(μt , κt ). Remaining serial correlation not ac-
counted for by covariates xt and zt is modeled by assuming that errors εt follow a
stationary ARMA(p, q) process,

εt =
p∑

i=1

ψiεt−i +
q∑

j=1

λjηt−j + ηt ,(4.2)

where ηt are independent zero-mean normal variables. In order to assure εt having
unit variance, the variance of ηt is an appropriate function of the autoregressive
parameter vector ψ and the moving average parameter vector λ. For example, if
errors follow the AR(1) process εt = ψεt−1 + ηt , then var(ηt ) = 1 − ψ2.

The proposed beta regression model expressed by equations (4.1)–(4.2) has the
advantage of separating the time series component εt from the regression part.
This allows a straightforward interpretation of the regression coefficients as if ob-
servations were independent. Models (4.1)–(4.2) is an instance of Gaussian copula
marginal regression [Song (2007), Chapter 6; Masarotto and Varin (2012)].

Let θ denote the whole parameter vector formed by the regression parameter
vector β and the ARMA parameter vectors ψ and λ. Inference on θ , diagnostics of
departures from model assumptions, and prediction of future outcomes require the
specification of the k-lags ahead predictive density pt+k(yt+k|yt , . . . , y1; θ). Such
a density can be obtained by standard transformation rules as the product of the k-
lags ahead predictive density of the errors and the Jacobian of the transformation
εt+k = �−1{Ft+k(yt+k;β)},

pt+k(yt+k|yt , . . . , y1; θ) = p(εt+k|εt , . . . , ε1; θ)

∣∣∣∣dεt+k

dyt+k

∣∣∣∣
= pt+k(yt+k;β)

p(εt+k|εt , . . . , ε1; θ)

p(εt+k;β)
(4.3)

= pt+k(yt+k;β)
φ(εt+k;mt+k|t , st+k|t )

φ(εt+k)
,
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FIG. 2. Predictive density (solid line) and marginal density (dashed line) at different lags ahead
for the marginal beta regression model with ARMA(2,1) errors described in the simulation study,
Section 5.

where mt+k|t = E(εt+k|εt , . . . , ε1; θ) and s2
t+k|t = var(εt+k|εt , . . . , ε1; θ). Both

conditional expectations can be efficiently evaluated in a linear number of oper-
ations via Kalman filter recursions.

Expression (4.3) is particularly attractive in terms of interpretability, since it
separates the marginal density associated to the future observation, pt+k(yt+k;β),
from a measure of the serial correlation within the errors. Figure 2 provides an
illustration of the beta regression model with ARMA(2,1) errors used for the sim-
ulation study in Section 5. The marginal density pt+k(yt+k;β) and the predictive
density pt+k(yt+k|yt , . . . , y1; θ) substantially differ for short time prediction, with
the predictive density being more peaked since it accounts for the information in
the past observations. As the prediction lag increases, past data become less in-
formative, thus making the predictive density closer to the marginal density, as
expected.

Basic properties of the ARMA(p, q) process are inherited by the proposed
model. In fact, it is immediate from (4.3) that if errors εt follow a MA(q) pro-
cess, then observations more than q units far apart are independent. Moreover, if
errors εt follow an AR(p) process, then observations follow a Markovian process
of order p.

By model construction, the predictive cumulative distribution function of Yt+k

given {yt , . . . , y1} coincides with the predictive cumulative distribution function of
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εt+k given {εt , . . . , ε1},
Ft+k(yt+k|yt , . . . , y1; θ) =

∫ yt+k

0
pt+k(u|yt , . . . , y1; θ) du

=
∫ �−1{Ft+k(yt+k;β)}
−∞

p(εt+k|εt , . . . , ε1; θ) dεt+k(4.4)

= �(εt+k;mt+k|t , st+k|t ).
Accordingly, the α-quantile of the predictive distribution is

yt+k|t;α = F−1
t+k

[
�

{
mt+k|t + �−1(α)st+k|t

};β]
.

4.1. Likelihood inference. We suggest to perform inference by relying on
maximum likelihood estimation. Let Lind(β;y) = ∏n

t=1 pt(yt ;β) denote the like-
lihood constructed under the assumption of independence. Then, given the result
in (4.3), the likelihood function for θ is

L(θ;y) = p1(y1;β)

n∏
t=2

pt(yt |yt−1, . . . , y1; θ)

= Lind(β;y)

n∏
t=2

p(εt |εt−1, . . . , ε1; θ)

p(εt ;β)
.

The likelihood function is the product of the independence likelihood Lind and a
calibration term accounting for the presence of dependence of εt on past values.
A calibration term significantly different from one is indicative of dependence.

From a practical point of view, the closed-form of the likelihood implies an
effortless computation. As already noted for the predictive density, the Kalman
filter can be employed for efficient computation of the predictive densities of the
ARMA(p, q) errors, p(εt |εt−1, . . . , ε1; θ), thus making the computational com-
plexity of likelihood evaluation of a linear order.

4.2. Predictive quantile residuals. Following Dunn and Smyth (1996) and
Masarotto and Varin (2012), model validation can be based on the analysis of the
predictive quantile residuals

rt = �−1{
Ft(yt |yt−1, . . . , y1; θ̂)

}
,

where θ̂ denotes the maximum likelihood estimate of θ . Given (4.4), predictive
quantile residuals rt assume the familiar form

rt = ε̂t − m̂t |t−1

ŝt |t−1
,

where ε̂t , m̂t |t−1, and ŝt |t−1 are evaluated at θ̂ . Residuals rt are realizations of n

independent standard normal variables if the model assumptions are met.
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5. Simulation study. A simulation study has been performed in order to eval-
uate maximum likelihood estimation and prediction for the proposed marginal beta
regression model. The simulation setup consists of 1000 weekly time series from
the marginal beta regression model specified as follows. The length of the time
series is set equal to 368, with the first n = 52 × 7 = 364 observations used for
model fitting and the remaining four observations used for prediction. Following
common practice in surveillance literature [Unkel et al. (2012)], mean μt and pre-
cision κt include linear trend and annual seasonal components representing tem-
perature variations,

logit(μt ) = β0x + β1x t̃ + β2x sin
(

2πt

52

)
+ β3x cos

(
2πt

52

)
,

(5.1)

log(κt ) = β0z + β1z t̃ + β2z sin
(

2πt

52

)
+ β3z cos

(
2πt

52

)
,

where t̃ indicates the time index t centered and scaled by factor 100 in such a
way to avoid numerical instabilities. The residual serial correlation is modeled by
assuming an ARMA(2,1) process for the errors. The values of the parameters are
set equal to β0x = −4.00, β1x = 0.15, β2x = −0.22, β3x = −0.67, β0z = 6.00,
β1z = 0.10, β2z = −0.06, β3z = −0.19, ψ1 = 1.50, ψ2 = −0.60, and λ = −0.30.
The values of β2x, β3x, β2z, and β3z are chosen in order to guarantee an amplitude
equal to 0.7 and 0.2 for the mean and the precision, respectively, and a phase shift
equal to 0.6π for both mean and precision. These values resemble a typical ILI
weekly time series.

Table 1 displays average and standard deviation of the parameter estimates, and
average of the standard errors computed from the inverse of the observed Fisher
information. The results are satisfactory, as they show (i) a negligible bias in the
estimation of all the parameters and (ii) averages of the standard errors close to
standard deviations of the estimates.

Table 2 reports the empirical coverage of prediction intervals at lags one to four,
either for the fitted model with ARMA(2,1) errors or for the independence model.
Prediction intervals from the model with ARMA(2,1) errors are sensibly closer to
the nominal level than those based on the independence model.

6. Monitoring outbreaks of disease. Quality control charts are typically
employed for online detection of outbreaks of infectious diseases, for example,
Woodall (2006) and Unkel et al. (2012). To this aim, the first step is the iden-
tification of a model describing the pattern of ordinary influenza seasons. Then,
departures from the model-expected influenza levels are interpreted as symptoms
of anomalies. Cumulative sum (CUSUM) charts [Montgomery (2009), Chapter 9]
are appropriate for monitoring long-lasting illnesses such as ILI, given the ca-
pability of early detection of small variations in the mean disease level. In fact,
CUSUM charts are employed by the Centers for Disease Control and Prevention
for routinely syndromic surveillance [Hutwagner et al. (2003)].
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TABLE 1
Average (ave), standard deviation (s.d.), and average of standard errors (s.e.) for 1000

simulated estimates based on a beta regression model with ARMA(2,1) errors and with
independent errors

ARMA(2,1) Independence

true ave s.d. s.e. ave s.d. s.e.

Mean intercept −4.00 −4.01 0.06 0.05 −4.01 0.06 0.02
trend 0.15 0.15 0.05 0.04 0.15 0.05 0.02

cosine term −0.22 −0.22 0.07 0.06 −0.22 0.07 0.02
sine term −0.67 −0.67 0.08 0.07 −0.67 0.08 0.03

Precision intercept 6.00 6.11 0.17 0.17 6.15 0.18 0.08
trend 0.10 0.10 0.07 0.07 0.12 0.18 0.07

cosine term −0.06 −0.06 0.11 0.11 −0.06 0.24 0.10
sine term −0.19 −0.20 0.11 0.11 −0.22 0.25 0.11

Errors ar1 1.50 1.51 0.12 0.11 – – –
ar2 −0.60 −0.62 0.11 0.09 – – –
ma1 −0.30 −0.33 0.15 0.13 – – –

CUSUM charts are typically constructed under the assumption of independent
observations from a normal distribution, at least approximately. Accordingly, be-
low we suggest to monitor influenza disease through predictive quantile residu-
als rt . The bilateral CUSUM chart is based on the positive C+

t and the negative
C−

t cumulative sums of rt ,

C+
t = max

{
0, rt − k + C+

t−1

}
,

C−
t = max

{
0,−k − rt + C−

t−1

}
for a reference value k and with C0 = 0. The process is out-of-control if either
C+

t or C−
t exceeds the decision limit h. Parameters k and h are chosen in order to

guarantee an acceptable capability to detect influenza levels anomalies and, in the
meanwhile, a low number of false alarms. Following standard recommendations

TABLE 2
Empirical coverage of prediction intervals at various lags ahead for 1000 simulated time series

based on a beta regression model with ARMA(2,1) errors and with independent errors

ARMA(2,1) Independence

lag 1 lag 2 lag 3 lag 4 lag 1 lag 2 lag 3 lag 4

Levels 90% 0.895 0.886 0.870 0.885 0.880 0.868 0.857 0.851
95% 0.948 0.933 0.930 0.930 0.932 0.932 0.913 0.900
99% 0.985 0.985 0.978 0.973 0.971 0.970 0.956 0.948
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in quality control literature [Montgomery (2009)], the chart parameters can be set
to values k = 0.5 and h = 4.

Standard application of CUSUM charts involves two phases. In Phase I, his-
torical data are analyzed to calibrate the chart when the process is under control.
Phase II is the online monitoring stage based on the chart calibrated at the previous
phase. Details are given below:

1. Phase I
(a) Fit the beta marginal regression model including trend, seasonality, and

ARMA(p, q) errors, with p and q large enough to guarantee residual auto-
correlation to be captured. As a rule of thumb, we suggest p = q = 3.

(b) Remove the anomalous observations identified by a CUSUM chart of the
predictive quantile residuals derived from the model fitted at step (a).

(c) Re-estimate the beta marginal regression model on the time series with-
out the anomalous observations. Choose the most appropriate ARMA(p, q)

structure, p ≤ 3 and q ≤ 3, via information criteria or cross-validation. The
chosen model is the best model representation of a regular seasonal in-
fluenza.

2. Phase II
(d) Online monitor influenza outbreaks by the unilateral positive CUSUM

chart of the predictive quantile residuals derived from the model selected at
Phase I, step (c).

7. Application to Canada Google® Flu Trends. In this section we illustrate
the application of the methodology previously described to the analysis of Canada
Google® Flu Trends data.

In order to illustrate the surveillance procedure of Section 6, we used data un-
til June 2010 for model calibration (Phase I), while the following three years of
observations are used for online monitoring (Phase II). The initial CUSUM chart
based on the ARMA(3,3) model in Phase I identifies 19 anomalous observations
over 354 observations. The subsequent step is the estimation of all possible mod-
els with ARMA(p, q) errors, p ≤ 3 and q ≤ 3, to the data after removal of the
19 anomalous observations. Table 3 ranks the sixteen possible models in terms of
Akaike Information Criterion. The preferred model is the one with ARMA(2,1)

errors. However, results highlight that a precise identification of p and q is not
crucial, since many models induce essentially the same autocorrelation structure;
see Table 3.

The application of the CUSUM chart in Phase II requires the predictive quantile
residuals being comparable to a set of independent normal variables. The graphical
examination of the predictive quantile residuals reported in Figure 3 sustains such
a requirement.

Phase II CUSUM chart for online monitoring is illustrated in Figure 4. The cor-
responding points above the decision limit h = 4 in the influenza time series are
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TABLE 3
Canada Google® Flu Trends data. Estimated beta marginal regression models with ARMA(p, q)

errors ranked according to the Akaike Information Criterion (AIC) and corresponding
autocorrelation of the errors at lags one to four

ARMA Autocorrelations

Rank p q AIC lag 1 lag 2 lag 3 lag 4

1 2 1 −3372.45 0.94 0.84 0.74 0.64
2 3 0 −3372.37 0.94 0.84 0.74 0.64
3 2 0 −3371.57 0.94 0.84 0.75 0.66
4 1 2 −3371.47 0.94 0.84 0.74 0.66
5 3 1 −3370.49 0.94 0.84 0.74 0.64
6 2 2 −3370.46 0.94 0.84 0.74 0.64
7 1 3 −3369.77 0.94 0.84 0.74 0.65
8 3 2 −3368.66 0.94 0.84 0.74 0.64
9 2 3 −3367.87 0.94 0.84 0.74 0.65

10 3 3 −3367.23 0.94 0.84 0.74 0.64
11 1 1 −3366.89 0.93 0.85 0.77 0.70
12 1 0 −3353.23 0.93 0.87 0.81 0.75
13 0 3 −3269.01 0.78 0.42 0.12 0.00
14 0 2 −3185.59 0.68 0.24 0.00 0.00
15 0 1 −3038.51 0.49 0.00 0.00 0.00
16 0 0 −2766.91 0.00 0.00 0.00 0.00

FIG. 3. Canada Google® Flu Trends data. Normal probability plot (left panel) and autocorrelation
function (right panel) of the predictive quantile residuals for the fitted marginal beta regression model
with ARMA(2,1) errors.
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FIG. 4. Canada Google® Flu Trends data. Positive CUSUM chart for surveillance of influenza
outbreaks. Circles indicate out-of-control weeks.

highlighted in the bottom panel of Figure 4. The process is under control until
December 9, 2012, and then it remains out-of-control for eight consecutive weeks
before returning under control. The out-of-control weeks correspond to the epi-
demic peak that occurred in December 2012–January 2013.

7.1. Holiday peaks. As observed by a referee, Canada Google® Flu Trends
data show a peak–valley–peak pattern within a couple of weeks at the beginning
of most of the observed years; see Figure 1. Accordingly, we investigated the pres-
ence of a “holiday effect,” related to the Christmas/New Year period. Table 4 re-
ports estimates and standard errors for the parameters of the beta marginal re-
gression model with trend, sine, and cosine terms describing seasonal temperature
variations, ARMA(2,1) errors, and the dummy variable for the holiday weeks.
Results indicate no significant trend in the mean, which is instead significant for
the precision. The annual seasonal component is highly significant in both mean
and precision, as expected. The analysis confirms a very significant increase of ILI
in correspondence with the holiday weeks, given an estimated holiday effect pa-
rameter in the mean equal to 0.11, with a standard error of 0.02. Conversely, there
is no significant effect in terms of precision (estimate 0.12, standard error 0.09).

Further confirmations of the relevance of the holiday effect are provided by AIC,
which increases from −5057.31 to −5028.74, and by the profile log-likelihood for
the associated coefficient, displayed in Figure 5.

A brief illustration of how to use package gcmr for replicating the analysis in
this section is provided in the supplement [Guolo and Varin (2013)].

8. Conclusions. This paper suggested a practical approach for analysis of
bounded time series defined on the unit interval. One of the advantages of the
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TABLE 4
Canada Google® Flu Trends data. Estimates and standard errors for the parameters of fitted

marginal beta regression model without and with holiday effect. Akaike Information Criterion (AIC)
statistic also reported

No holiday effect Holiday effect

Parameter est. s.e. est. s.e.

Mean intercept −4.14 0.05 −4.14 0.05
trend −0.16 0.33 0.05 0.33

sine term 0.66 0.06 0.65 0.06
cosine term −0.31 0.06 −0.31 0.06

Christmas/New Year – – 0.11 0.02

Precision intercept 6.23 0.11 6.19 0.11
trend 1.46 0.43 1.68 0.43

sine term −0.48 0.09 −0.37 0.10
cosine term −0.04 0.10 −0.08 0.09

Christmas/New Year – – 0.12 0.09

ARMA ar1 1.52 0.07 1.57 0.06
ar2 −0.60 0.07 −0.64 0.06
ma1 −0.25 0.09 −0.28 0.08

AIC −5028.74 −5057.31

proposed marginal model is the reproducible interpretation of the regression pa-
rameters, whose meaning does not depend on the ARMA structure. The robust
interpretation of the regression parameters is a property not shared by alternative
conditionally specified models, such as observation- and parameter-driven beta re-
gression models briefly described in Section 3. Another advantage of the proposed

FIG. 5. Canada Google® Flu Trends data. Profile log-likelihood for holiday effect parameter. Hor-
izontal dashed line corresponds to 95% asymptotic confidence interval.
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approach is that inferential and prediction tasks have convenient expressions, thus
making modeling time series on the unit scale feasible as a practical alternative to
the common logit-transformation approach.

Several extensions of the proposed modeling framework are possible. First, the
approach has a trivial extension to time series defined on an arbitrary (a, b) inter-
val. Second, spatial and spatio-temporal beta regression models can be constructed
by assuming that the errors are realizations of a Gaussian random field. Finally, the
model can be extended to allow for exact zeros and ones, by using the zero-or-one
beta inflated regression model [Ospina and Ferrari (2012)] to define the univariate
marginal distributions.
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SUPPLEMENTARY MATERIAL

R Code (DOI: 10.1214/13-AOAS684SUPP; .pdf). An example of R code im-
plementing beta regression for time series analysis of Google® Flu Trends.
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