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BETA-STACY PROCESSES AND A GENERALIZATION
OF THE PÓLYA-URN SCHEME

By Stephen Walker and Pietro Muliere
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A random cumulative distribution function (cdf) F on �0;∞� from a
beta-Stacy process is defined. It is shown to be neutral to the right and a
generalization of the Dirichlet process. The posterior distribution is also
a beta-Stacy process given independent and identically distributed (iid)
observations, possibly with right censoring, from F. A generalization of
the Pólya-urn scheme is introduced which characterizes the discrete beta-
Stacy process.

1. Introduction. Let F be the space of cumulative distribution functions
(cdfs) on �0;∞�. This paper considers placing a probability distribution on F
by defining a stochastic process F on ��0;∞�;A �, where A is the Borel σ-
field of subsets, such that F�0� = 0 a.s., F is a.s. nondecreasing, a.s. right
continuous and limt→∞F�t� = 1 a.s. Thus, with probability 1, the sample
paths of F are cdf ’s.

Previous work includes the Dirichlet process [Ferguson (1973, 1974)], neu-
tral to the right processes [Doksum (1974)], the extended gamma process
[Dykstra and Laud (1981)], the beta process [Hjort (1990)] and Pólya trees
[Lavine (1992, 1994), Mauldin, Sudderth and Williams (1992)].

The purpose of this paper is twofold: (1) to introduce a new stochastic pro-
cess which generalizes the Dirichlet process, in that more flexible prior beliefs
are able to be represented, and, unlike the Dirichlet process, is conjugate to
right censored observations, and (2) to introduce a generalization of the Pólya-
urn scheme in order to characterize the discrete time version of the process.

The property of conjugacy to right censored observations is also a feature
of the beta process; however, with the beta process the statistician is required
to consider hazard rates and cumulative hazards when constructing the prior.
The beta-Stacy process only requires considerations on the distribution of the
observations. The process is shown to be neutral to the right.

The present paper is restricted to considering the estimation of an unknown
cdf on �0;∞�, although it is trivially extended to include �−∞;∞�. Finally, for
ease of notation, F is written to mean either the cdf or the corresponding
probability measure.

The organization of the paper is as follows. In Section 2 the process is
defined and its connections with other processes given. We also provide an
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interpretation for the parameters of the process in terms of the mean and
variance of F. Section 3 considers the construction and posterior distributions
of the discrete time process, while Section 4 considers the process in continuous
time. In Section 4.4 we present a numerical example illustrating the process
in continuous time. In Section 5 a generalization of Pólya’s urn scheme is
introduced which characterizes the discrete time process.

2. Definition of the process. First some preliminary information is re-
quired. Let B�α;β� for α;β > 0 represent the beta distribution. For the
purposes of the paper it is convenient to define G �α1; β1; : : : ; αm; βm� for
αj; βj > 0 to represent the generalized Dirichlet distribution, introduced by
Connor and Mosimann (1969). The density function is given, up to a constant
of proportionality, by

y
α1−1
1 �1− y1�β1−1 × y

α2−1
2 �1− y1 − y2�β2−1

�1− y1�α2+β2−1
× · · ·

× y
αm−1
m �1− y1 − · · · − ym−1 − ym�βm−1

�1− y1 − · · · − ym−1�αm+βm−1

× I
{
�y1; : : : ; ym�x yj ≥ 0;

m∑
j=1

yj ≤ 1
}
;

(1)

where I denotes the indicator function. The usual Dirichlet distribution,
D �α1; : : : ; αm; βm�, with density proportional to

y
α1−1
1 · · ·yαm−1

m �1− y1 − · · · − ym�βm−1I

{
�y1; : : : ; ym�x yj ≥ 0;

m∑
j=1

yj ≤ 1
}
;

follows if βj−1 = βj + αj for all j = 2; : : : ;m.

Definition 1. The distribution C �α;β; ξ� with α;β > 0 and 0 < ξ ≤ 1 is
said to be the beta-Stacy distribution if the density function is given by

1
B�α;β�y

α−1 �ξ − y�β−1

ξα+β−1
I�0;ξ��y�;

where B�α;β� is the usual beta function.

Note that if Y ∼ C �α;β; ξ�, then Y/ξ ∼ B�α;β� and the usual beta distri-
bution arises if ξ = 1. The name beta-Stacy is taken from the paper of Mihram
and Hultquist (1967).

Unlike the Dirichlet process which can be defined by the distribution of the
joint probabilities of any finite measurable partition of �0;∞�, the beta-Stacy
process is defined via the Lévy process and the representation of neutral to
the right processes introduced by Doksum (1974).
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Consider a Lévy process Z�t� such that the following hold:

1. Z�t� has nonnegative independent increments;
2. Z�t� is nondecreasing a.s.;
3. Z�t� is right continuous a.s.;
4. Z�t� → ∞ a.s. as t→∞;
5. Z�0� = 0 a.s.

For such a process there exist at most countably many fixed points of disconti-
nuity at time points t1; t2; : : : with jumps S1; S2; : : :, independent nonnegative
random variables. ThenX�t� = Z�t�−∑tk≤tSk is a nondecreasing process with
independent increments and with no fixed points of discontinuity and there-
fore has a Lévy formula [Lévy (1936)] for the moment generating function of
the process given by

logE exp�−φX�t�� = −φb�t� +
∫ ∞

0
�exp�−φv� − 1�dNt�v�;

where b is nondecreasing and continuous, with b�0� = 0, and Nt is a Lévy
measure satisfying:

1. for every Borel set B, Nt�B� is continuous and nondecreasing;
2. for every real t > 0, Nt�·� is a measure on the Borel sets of �0;∞�;
3.
∫∞

0 v�1+ v�−1 dNt�v� <∞;
4.
∫∞

0 v�1+ v�−1 dNt�v� → 0 as t→ 0.

Since b represents a nonrandom component it is not considered in this paper
and we assume it to be identically zero.

Let c�·� be a positive function, let G ∈ F be right continuous and let �tk�
be the countable set of points of discontinuity of G, that is, G�tk� = G�tk� −
G�tk−� > 0 for all k. Now put Gc�t� = G�t� − ∑tk≤tG�tk� so that Gc�·� is
continuous.

Definition 2. F is a beta-Stacy process on ��0;∞�;A � with parameters
c�·� and G, written F ∼ S �c�·�;G�, if, for all t ≥ 0, F�t� = 1 − exp�−Z�t��,
where Z is a Lévy process with Lévy measure for Z�t� given, for v > 0, by

dNt�v� =
dv

�1− exp�−v��
∫ t

0
exp�−vc�s�G�s;∞��c�s�dGc�s�(2)

and moment generating function given by

logE exp�−φZ�t�� =
∑
tk≤t

logE exp�−φSk� +
∫ ∞

0
�exp�−vφ� − 1�dNt�v�;(3)

where 1− exp�−Sk� ∼ B�c�tk�G�tk�; c�tk�G�tk;∞��.

It is easy to show that

EF�t� = 1− exp
(
−
∫ t

0
dGc�s�/G�s;∞�

) ∏
tk≤t
�1−G�tk�/G�tk;∞��;
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which can be written as the product integral [Gill and Johansen (1990)], given
by

1−
∏
�0; t�
�1− dG�s�/G�s;∞��:(4)

Expression (4) gives EF�t� = G�t� [Hjort (1990), page 1260]. Here a straight-
forward result is given as a lemma.

Lemma 1. If Uk is a sequence of nonnegative random variables such that
Uk ≤ 1 a.s., �Uk� is a.s. nondecreasing and EUk→ 1, then Uk→ 1 a.s.

Since G�t� → 1 as t → ∞, F�t� ≤ 1 a.s. and F�t� is a.s. nondecreasing, it
follows from this lemma that F�t� → 1 a.s. (This can be seen by considering
an increasing sequence of time points �sk� such that sk→∞). It follows that
a.s. F ∈ F and that F is a neutral to the right process [Doksum (1974)]. In
addition, as Z has no nonrandom component, Z increases only in jumps a.s.
and F is with probability 1 a discrete member of F .

According to Ferguson and Phadia (1979) the fundamental result of Doksum
(1974) on the posterior of a process neutral to the right is that F�2 is also
neutral to the right for any observation of the type 2 = θ or 2 > θ, where 2
is a random sample from F. It is shown later that F�2 is also beta-Stacy and
hence the conjugacy property of the process.

Remark 1. The beta-Stacy process generalizes the Dirichlet process, which
can be seen more easily if G is taken to be continuous, since, if c�s� = c > 0
for all s ≥ 0, then (2) becomes

dNt�v� =
dv

�1− e−v�
[
v−1 exp�−vc�1−G�s���

]t
0

= dv

v�1− e−v�
(
exp�−vc�1−G�t��� − e−vc

)
;

the Lévy measure given in Ferguson (1974) which represents the Lévy process
corresponding to the Dirichlet process when viewed as a neutral to the right
process.

Here the Lévy processZ which leads to the beta-Stacy process is considered
with more general parameters. Let the right continuous measure α�·� [α�0� =
0� and the positive function β�·� both be defined on �0;∞�, and let �tk� be the
countable set of points of discontinuity of α�·�. Put αc�t� = α�t� −

∑
tk≤t α�tk�

so that αc�·� is a continuous measure.

Definition 3. Z is a log-beta process on ��0;∞�;A �, with parameters α�·�
and β�·�, if Z is a Lévy process with Lévy measure for Z�t� given, for v > 0,
by

dNt�v� =
dv

�1− exp�−v��
∫ t

0
exp�−v�β�s� + α�s���dαc�s�(5)
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and with moment generating function given by

logE exp�−φZ�t�� =
∑
tk≤t

logE exp�−φSk� +
∫ ∞

0
�exp�−φv� − 1�dNt�v�;(6)

where 1− exp�−Sk� ∼ B�α�tk�; β�tk��.

Hjort (1990) considered Lévy processes given by dA = 1 − exp�−dZ� and
used A (a beta process) as a prior distribution for the space of cumulative
hazard functions.

Remark 2. If A is a beta process and dZ = − log�1 − dA�, then F�t� =
1 − exp�−Z�t�� is a beta-Stacy process. Therefore if interest is in F�a; b� =
exp�−Z�0; a���1−exp�−Z�a; b��� [and note that Z�0; a� and Z�a; b� are inde-
pendent], then one should consider the beta-Stacy process, whereas if interest
is in the cumulative hazard A�a; b�, then one should consider the beta process
(in particular, when it comes to sampling F�a; b� and A�a; b�).

Remark 3. Let α�·� and β�·� satisfy the condition given by

∏
k

(
1− α�tk�

β�tk� + α�tk�

)
exp

(
−
∫ ∞

0

dαc�s�
β�s� + α�s�

)
= 0:(7)

Condition (7) can be written in the form of a product integral given by

∏
�0;∞�

(
1− dα�s�

β�s� + α�s�

)
= 0:

This condition becomes
∫∞

0 dα�s�/β�s� = ∞ if α�·� is continuous. If now F�t� =
1− exp�−Z�t�� and α�·� and β�·� satisfy condition (7), then F�t� is beta-Stacy
with parameters G and c�·� given by

G�t� = 1−
∏
tk≤t

(
1− α�tk�

β�tk� + α�tk�

)
exp

(
−
∫ t

0

dαc�s�
β�s� + α�s�

)

or

G�t� = 1−
∏
�0; t�

(
1− dα�s�

β�s� + α�s�

)
(8)

and

c�t� = β�t�
G�t;∞� :(9)

Similarly α�·� and β�·� can be obtained from c�·� and G via

α�t� =
∫ t

0
c�s�dGc�s� +

∑
tk≤t

c�tk�G�tk�

and

β�t� = c�t�G�t;∞�:
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If α�·� is continuous, then G is continuous and given by

G�t� = 1− exp
(
−
∫ t

0
dα�s�/β�s�

)
:

Remark 4. If 1 − exp�−v� is replaced by v in the Lévy measure for the
log-beta process, then it can be shown that, for continuous α�·�,

logE exp�−φZ�t�� = −
∫ t

0
log�1+φ/β�s��dα�s�;

which characterizes the extended gamma process [Dykstra and Laud (1981)].
Also the Lévy measure for the beta process, dLt�s� with support on �0;1�
[Hjort (1990)], can be obtained via a simple transformation of the Lévy mea-
sure from the log-beta process:

dLt�s� =
1

1− s dNt�− log�1− s��:

2.1. Prior specifications. It is important to be able to use any available
prior information to center F and express uncertainty in F about this center-
ing, that is, to assign arbitrarily EF�t� and varF�t�. We do this by considering
the first two moments of S�t� = 1−F�t�. Using the Lévy representation of a
beta-Stacy process (without fixed points of discontinuity), it follows that

µ�t� = − log�ES�t�� =
∫ ∞

0

∫ t
0

exp�−vβ�s��dα�s�dv

and

λ�t� = − log�E�S2�t���

=
∫ ∞

0

∫ t
0

{
1− exp�−2v�
1− exp�−v�

}
exp�−vβ�s��dα�s�dv:

Note it is necessary that 0 < µ�t� < λ�t� < 2µ�t�, which corresponds to
�ES�t��2 < E�S2�t�� < ES�t�. The first of these conditions is satisfied when

∫ t
0
dα�s�/β�s� = µ�t�;

that is, when

dα�t� = β�t�dµ�t�:
The second condition becomes, using the transformation u = 1− exp�−v�,

λ�t� =
∫ t

0
�2− 1/�1+ β�s���dµ�s�;

leading to

dλ�t�/dµ�t� = 2− 1/�1+ β�t��
and hence the solution.
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For example, if ES�t� = exp�−at�, a > 0, and E�S2�t�� = exp�−b�t��, b ≥ 0,
b�0� = 0, then

β�t� = 1/�2− a−1 db/dt� − 1

and

dα�t� = aβ�t�dt:
Note that here we need the condition a < db/dt < 2a, which corresponds to the
necessary condition µ�t� < λ�t� < 2µ�t�. This also provides an interpretation
for c�·� in the alternative parameterization of Definition 2.

3. Discrete time process. Here the discrete time version of the pro-
cess is studied. Section 3.1 gives the construction and Section 3.2 derives the
posterior distributions having observed an iid sequence possibly with right
censoring.

3.1. The construction. Let 0 < t1 < t2 < · · · be a countable sequence of
time points in �0;∞� indexed by k = 1;2; : : : : With each k there is associated
a positive random variable Yk defined as follows:

Y1 ∼ C �α1; β1;1�;
Y2�Y1 ∼ C �α2; β2;1−Y1�;

:::

Yk�Yk−1; : : : ;Y1 ∼ C �αk; βk;1−Fk−1�;

(10)

where

Fk =
k∑
j=1

Yj

and each αk and βk is positive. It follows that a.s. Yk < 1 −∑k−1
j=1Yj so that

a.s. Fk < 1. Also, for any m > 1,

L �Y1; : : : ;Ym� = G �α1; β1; : : : ; αm; βm�:

Lemma 2. For all k ≥ 1,

EFk = γk + �1− γk�EFk−1;(11)

where F0 = 0 a.s. and γk = αk/�αk + βk�.

Proof. The proof follows immediately from (10) and the construction of
Fk. 2

Lemma 3. If
∏∞
k=1�1− γk� = 0, then Fk→ 1 a.s.
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Proof. From Lemma 2 it follows that
∞∏
k=1

(
1−EFk

1−EFk−1

)
= 0;

which implies that limk→∞
(
1−EFk

)
= 0: Using Lemma 1 combined with �Fk�

a.s. nondecreasing and Fk ≤ 1 a.s., it is seen that Fk→ 1 a.s., completing the
proof. 2

Proposition 1. If F�0� = 0, F�t� = ∑tk≤tYk and the condition of Lemma
2 is satisfied, then, with probability 1, F ∈ F .

The proof of this follows from the construction of F and Lemmas 2 and 3.
Define the sets �Bk� in �0;∞� by Bk = �tk−1; tk� and the sets �Ak� by

Ak = �0; tk�. It is possible to center the process on a particular G ∈ F with
G�Bk� > 0 for all k: let γ1 = G�B1� and, for k > 1,

γk =
G�Bk�

1−G�Ak−1�
y

it is then straightforward to show that EYk = G�Bk�. A particular choice of
αk and βk is given by αk = ckG�Bk� and βk = ck�1−G�Ak�� with ck > 0.

Remark 5. If ck = c for all k, then αk + βk = βk−1 with the consequence
that F is a discrete time Dirichlet process.

Lemma 4. IfVk = Yk/�1−Fk−1�, then, for anym > 1, the random variables
V1;V2; : : : ;Vm are independent and marginally each Vk ∼ B�αk; βk�.

Proof. Consider pY1;:::;Ym
�y1; : : : ; ym� given, up to a constant of propor-

tionality, by (1). By considering the transformation V1 = Y1, V2 = Y2/�1 −
Y1�,: : : ,Vm = Ym/�1 − Y1 − · · · − Ym−1�, so that Y1 = V1, Y2 = V2�1 −
V1�; : : : ; Ym = Vm

∏m−1
j=1 �1−Vj�, the Jacobian of which is

∏m−1
j=1 �1−Vj�m−j,

the joint distribution of V1; : : : ;Vm can be obtained, from which the result
follows, completing the proof. 2

Note the equality in law of 1−∑k
j=1Yj and

∏k
j=1�1−Vj�, which implies that

− log�1−Fk� can be expressed as the sum of k independent random variables.

3.2. Posterior distributions. Throughout this section let 0 = t0 < t1 <
t2 < · · · be any fixed partition of �0;∞�. Let 21; : : : ; 2n, with each 2i ∈ �tkx k ≥
1�, be an iid sample, possibly with right censoring (with 2i being the censoring
time if applicable), from an unknown cdf F on �0;∞� which is defined by the
countable sequence of random variables �Yk� given by (10). ThenF is referred
to as a discrete time beta-Stacy process with parameters �αk; βk� and jumps
at �tk�. The likelihood function, assuming that there are no censoring times
or exact observations for t > tL, is given by

l�y1; y2; : : : ; yL�data� ∝ yn1
1 · · ·y

nL
L �1− y1�r1 · · · �1− y1 − · · · − yL�rLI;
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where nk is the number of exact observations at tk, rk is the number of cen-
soring times at tk, I is the indicator function given in (1) and n1 + · · · + nL +
r1+ · · · + rL = n. The generalized Dirichlet distribution is clearly seen to be a
conjugate prior.

Theorem 1. Let 21; : : : ; 2n, with each 2i ∈ �tkx k ≥ 1�, be an iid sample,
possibly with right censoring, with an unknown cdf F on �0;∞�. If F is a
discrete time beta-Stacy process with parameters �αk; βk� and jumps at �tk�,
then, given 21; : : : ; 2n, the posterior distribution for F is also a discrete time
beta-Stacy process with jumps at �tk� but with parameters �α∗k; β∗k�, where

α∗k = αk + nk and β∗k = βk +mk;(12)

nk is the number of exact observations at tk and mk is the sum of the number
of exact observations in �tjx j > k� and censored observations in �tjx j ≥ k�,
that is, mk =

∑
j>k nj +

∑
j≥k rj.

Proof. The proof is immediate on combining the likelihood function with
the generalized Dirichlet prior. 2

The posterior expectation of �F�tk�−F�tk−1��, which is the predictive prob-
ability p�2n+1 = tk�21; : : : ; 2n�, is given by

E�Yk�21; : : : ; 2n� =
α∗k

α∗k + β∗k

k−1∏
j=1

β∗j
α∗j + β∗j

:(13)

Expression (13) is fundamental to the results obtained in Section 5.

4. Continuous time process. In this section we consider the Lévy pro-
cess from which the beta-Stacy process is derived and constructed. The poste-
rior processes are also obtained.

4.1. The construction. For the continuous time process the search is on for
a stochastic process F�t�, defined on ��0;∞�;A �, such that, infinitesimally
speaking,

dF�t��F�t� ∼ C �dα�t�; β�t�;1−F�t��;(14)

with F�0� = 0, and, with probability 1, F ∈ F . Note that if α�·� has a fixed
point of discontinuity at t, then

F�t��F�t−� ∼ C �α�t�; β�t�;1−F�t−��:

It is shown in this section that such a process exists and is obtained from a
log-beta process. First it is shown that the (Lévy) log-beta process exists, with
representation given by (5) and (6) and with parameters given by dα�t� =
c�t�dG�t� and β�t� = c�t�G�t;∞�.
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Theorem 2. LetG ∈ F be continuous and let c�·� be a piecewise continuous
positive function. There exists a Lévy process Z with Lévy representation given
by

logE exp�−φZ�t�� =
∫ ∞

0
�exp�−vφ� − 1�dNt�v�;

where

dNt�v� =
dv

�1− exp�−v��
∫ t

0
exp�−vc�s�G�s;∞��c�s�dG�s�:

Proof. The proof is along lines similar to the proof of Theorem 3.1 in
Hjort (1990). Let, for k = 1;2; : : : ; αn;k = cn;kG��k − 1�/n; k/n� and βn;k =
cn;kG�k/n;∞�, where cn;k = c��k−1/2�/n�. Then define the independent ran-
dom variables Vn;k ∼ B�αn;k; βn;k� and the corresponding Wn;k = − log�1 −
Vn;k�. Let

Zn�0� = 0 and Zn�t� =
∑
k/n≤t

Wn;k for t ≥ 0:

The first aim is to show that �Zn� converges in distribution for each Borel
set D in �0;∞� to a Lévy process Z with the required representation. Now
Zn�t� = −

∑
k/n≤t log�1−Vn;k� so

logE exp�−φZn�t�� =
∑
k/n≤t

log
0�αn;k + βn;k�0�βn;k +φ�
0�βn;k�0�αn;k + βn;k +φ�

;

where 0�·� denotes the gamma function. Using a result contained in the proof
of Lemma 1 from Ferguson (1974),

logE exp�−φZn�t��

=
∑
k/n≤t

∞∑
l=0

log
�αn;k + βn;k +φ+ l��βn;k + l�
�αn;k + βn;k + l��βn;k +φ+ l�

=
∑
k/n≤t

∫ ∞
0
�exp�−vφ� − 1�exp�−βn;kv��1− exp�−αn;kv��

v�1− exp�−v�� dv

=
∫ ∞

0

exp�−vφ� − 1
v�1− exp�−v��

∑
k/n≤t

exp�−βn;kv��1− exp�−αn;kv��dv:

It can now be seen that
∑
k/n≤t

exp�−βn;kv��1− exp�−αn;kv�� → v
∫ t

0
exp�−vc�s�G�s;∞��c�s�dG�s�;

which implies that

logE exp�−φZn�t��

→
∫ ∞

0

exp�−vφ� − 1
1− exp�−v�

∫ t
0

exp�−vc�s�G�s;∞��c�s�dG�s�dv:
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By a similar argument it can also be shown, for any 0 = t0 < t1 < · · · < tk <∞,
that

logE exp
(
−

k∑
j=1

φjZn�tj−1; tj�
)
→

k∑
j=1

∫ ∞
0
�exp�−vφj� − 1�dN�tj−1; tj��v�;

which ensures that all the finite-dimensional distributions of �Zn� converge
as they should. It also needs to be shown that the sequence �Zn� is tight. If

An�0� = 0 and An�t� =
∑
k/n≤t

Vn;k for t ≥ 0;

then �An� converges in distribution to a (Lévy) beta process A and, from Hjort
(1990), �An� is tight. Since dZn = − log�1−dAn� it follows straightforwardly
that �Zn� is also tight. This completes the proof. 2

Corollary 1. If F�t� = 1− exp�−Z�t��, then, infinitesimally speaking,

dF�t��F�t� ∼ C �dα�t�; β�t�;1−F�t��
and, with probability 1, F ∈ F .

Proof. Consider the dependent random variables �Yn;k� given by

Yn;1 = Vn;1;

Yn;2 = Vn;2�1−Vn;1�;
:::

Yn;k = Vn;k

k−1∏
j=1

�1−Vn;j�;

with the �Vn;k� defined as in Theorem 2, so that, from Lemma 4, for any
m > 1,

L �Yn;1; : : : ;Yn;m� = G �αn;1; βn;1; : : : ; αn;m; βn;m�;
and also

− log�1−Fn�t�� = −
∑
k/n≤t

log�1−Vn;k� =
∑
k/n≤t

Wn;k = Zn�t�;

where

Fn�0� = 0 and Fn�t� =
∑
k/n≤t

Yn;k for t ≥ 0;

implying that �Fn� is a discrete time beta-Stacy process and Fn�t� = 1 −
exp�−Zn�t��. Clearly �Fn� satisfies, for all k ≥ 1,

L
(
Fn��k− 1�/n; k/n�

∣∣Fn�0; �k− 1�/n�
)

= C
(
αn;k; βn;k;1−Fn�0; �k− 1�/n�

)
:
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Also �Fn� converges in distribution to F. That F ∈ F a.s. follows from∫∞
0 dG�s�/G�s;∞� = ∞, completing the proof. 2

4.2. Posterior distributions. The main aim in this section will be to find the
posterior distribution of F given a set of possibly right censored observations.
Posterior representations are typically achieved through the posterior Lévy
measures [Ferguson (1974), Ferguson and Phadia (1979)]. Here we give the
result for the posterior of the more general neutral to the right process.

Let F�t� = 1 − exp�−Z�t�� be a neutral to the right process. The prior
distribution for Z�t� is characterized by

M =
{
t1; t2; : : :

}
;
{
ft1; ft2; : : :

}
;

the set of fixed points of discontinuity with corresponding densities for the
jumps, and Nt�·�, the Lévy measure for the part of the process without fixed
points of discontinuity. We now give the posterior characterization given a sin-
gle observation2 (the case for n observations can then be obtained by repeated
application). In the following we assume the Lévy measure to be of the type
dNt�v� = dv

∫
�0; t�K�v; s�ds [the beta-Stacy process with parameters α�·� and

β�·� arises when K�v; s�ds = �1− exp�−v��−1 exp�−v�β�s� + α�s���dα�s�].

Theorem 3 [Ferguson (1974), Ferguson and Phadia (1979)]. Let F be
neutral to the right and let 2 be a random sample from F.

(i) Given 2 > θ the posterior parameters (denoted by an asterisk) are
M∗=M,

f∗tj�v� =
{
κe−vftj�v�; if tj ≤ θ;
ftj�v�; if tj > θ;

and K∗�v; s� = exp�−vI�θ ≥ s��K�v; s� (here κ is the normalizing constant).
(ii) Given 2 = θ ∈M the posterior parameters are M∗ =M,

f∗tj�v� =





κe−vftj�v�; if tj < θ;
κ�1− e−v�ftj�v�; if tj = θ;
ftj�v�; if tj > θ;

and, again, K∗�v; s� = exp�−vI�θ ≥ s��K�v; s�.
(iii) Given 2 = θ /∈ M the posterior parameters are M∗ = M ∪ �θ�, with

fθ�v� = κ:�1− e−v�K�v; θ�,

f∗tj�v� =
{
κe−vftj�v�; if tj < θ;
ftj�v�; if tj > θ;

and, again, K∗�v; s� = exp�−vI�θ ≥ s��K�v; s�.

Corollary 2. Let Z be a log-beta process, with parameters α�·� and β�·�
satisfying (7), and let F�t� = 1 − exp�−Z�t��. For an observation 2 from F
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with 2 = θ or 2 > θ the posterior Lévy measure for Z�t� is given by

dNt�v�θ� =
dv

�1− exp�−v��
∫ t

0
exp

(
− v�β�s� + α�s� + I�s ≤ θ��

)
dαc�s�:(15)

Additionally, for the observation 2 = θ, there is a fixed point of discontinuity
at t = θ in the posterior Lévy process with jump Jθ, where 1 − exp�−Jθ� ∼
B�α�θ� + 1; β�θ��.

Proof. The proof is immediate from Theorem 3. 2

Corollary 3. Given a sample of size n, �21; : : : ; 2n�, then Z�data is a
log-beta process with parameters α∗�t� = α�t� + N�t� and β∗�t� = β�t� +
M�t� −N�t�, where N�·� is the counting process for uncensored observations
and M�t� =∑i I�2i ≥ t�.

Proof. The posterior Lévy measure

dNt�v�data� = dv

�1− exp�−v��
∫ t

0
exp

(
− v�β�s� + α�s� +M�s��

)
dαc�s�(16)

follows from repeated application of Theorem 3. For the jump J, corresponding
to exact observation(s) at θ, it needs to be shown that J = − log�1 − S� in
distribution with S ∼ B�α∗�θ�; β∗�θ��. From Theorem 3 it is easily seen that
the density function for J is given by

fJ�x� ∝ exp
(
− x�β�θ� +M�θ� −N�θ��

)
�1− exp�−x��α�θ�+N�θ�−1:(17)

Now it is possible to show that J = − log�1 − S� in distribution with S ∼
B�α�θ� +N�θ�; β�θ� +M�θ� −N�θ�� and this completes the proof. 2

Let the location of the exact observations be the set �ti� with corresponding
jumps �Ji�. Then, given the data,

logE exp�−φZ�t�� =
∑
ti≤t

logE exp�−φJi�

+
∫ ∞

0
�exp�−φv� − 1�dNt�v�data�;

(18)

where

1− exp�−Ji� ∼ B
(
α�ti� +N�ti�; β�ti� +M�ti� −N�ti�

)
:(19)

Typically it would be the case that N�ti� = 1 and α�ti� = 0, which gives
Ji ∼ E �β�ti� +M�ti� − 1�, where E �β� is the exponential distribution with
mean 1/β.

The next theorem gives the parameters of the posterior process, which is
also a beta-Stacy process, given possibly right censored observations.

Theorem 4. Let 21; : : : ; 2n be an iid sample, possibly with right censoring,
from an unknown cdf F on �0;∞� and F ∼ S �c�·�;G�. Then, given the data,
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F is a beta-Stacy process with parameters c∗�·� and G∗, where

G∗�t� = 1−
∏
�0; t�

{
1− c�s�dG�s� + dN�s�

c�s�G�s;∞�+M�s�

}
;

c∗�t� = c�t�G�t;∞�+M�t� −N�t�
G∗�t;∞� :

Proof. That F�data is a beta-Stacy process follows from Z�data being a
log-beta process. For the parameters of the posterior beta-Stacy process, using
(8) and (9),

G∗�t� = 1−
∏
�0; t�

{
1− dα∗�s�/�β∗�s� + α∗�s��

}

and c∗�t� = β∗�t�/G∗�t;∞�, where α∗�t� = α�t�+N�t� and β∗�t� = β�t�+M�t�−
N�t�, which completes the proof. 2

The result generalizes the work of Susarla and Van Ryzin (1976), who take
a Dirichlet process prior for F. This follows since if F is from a Dirichlet
process then F�data is from a beta-Stacy process if the data includes right
censored observations.

4.3. Bayes estimates and simulation. Here the Bayes estimate for F is
given. If F ∼ S �c�·�;G�, then, given an iid sample from F, with possible
right censoring, the Bayes estimate of F�t�, with quadratic loss function, is
given by

F̂�t� = E
(
F�t��data

)
= 1−

∏
�0; t�

{
1− c�s�dG�s� + dN�s�

c�s�G�s;∞�+M�s�

}
:(20)

This is the same nonparametric estimate ofF as that obtained from the beta
process of Hjort (as was expected from Remark 2). The asymptotic distribution
of F̂ is discussed by Hjort [(1990), page 1286]. The standard nonparametric
estimate of Kaplan and Meier is obtained as c�·� → 0. The beta-Stacy process
can, however, be seen as more of a natural generalization of the Dirichlet
process than is the beta process, since the attention is focused on the cdf.

A full Bayesian analysis is available by sampling from the posterior dis-
tribution of Z�1�, where 1 represents an interval �t; t + h� for t; h > 0. Let
Zc�1� = Z�1� − J�1�, where J�1� is the total jump from the fixed points of
discontinuity in 1, then

logE exp
{
−φZc�1�

}
=
∫ ∞

0
�exp�−zφ� − 1�dN1�z�data�:

Damien, Laud and Smith (1995) describe an algorithm which can be adapted
to obtain a sample from Zc�1�: take Xlx l = 1; : : : ;L, iid from the density
proportional to �1− e−v�dN1�v�data�. Let γ =

∫∞
0 �1− e−v�dN1�v�data� and

take, for l = 1; : : : ;L,

Ql ∼ P
(
γ/�L�1− exp�−Xl���

)
;
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where P represents the Poisson distribution. Finally put ZL
c =

∑L
l=1XlQl

with the result that ZL
c → Zc�1� in distribution, which can be proven by

showing that logE exp�−φZL
c � → logE exp�−φZc�1��.

4.4. Numerical example. We use the beta-Stacy to model survival data. A
numerical example is taken from the paper of Ferguson and Phadia (1979).
The data consist of exact observations at 0.8, 3.1, 5.4 and 9.2 months and right
censored data at 1.0, 2.7, 7.0 and 12.1 months. We follow Ferguson and Phadia
(1979) and take β�s� = exp�−0:1s� and dα�s� = 0:1 exp�−0:1s�ds. The prior
therefore is a Dirichlet process but, with the inclusion of censored observations
within the data set, the posterior process is beta-Stacy. We obtain samples from
the posterior distribution of F�0;1�. This will involve sampling Z∗c�0;0:8�,
Z∗c�0:8;1�, which we do using the algorithm of Damien, Laud and Smith
(1995), and sampling J0:8, the jump at 0.8, which has an exponential dis-
tribution with mean 1/�exp�−0:08�+7�. A required sample from the posterior
distribution of F�0;1� is then given by 1−exp�−Z∗c�0;0:8�−Z∗c�0:8;1�−J0:8�.

Here we briefly consider the sampling of Z∗c�0;0:8� using the algorithm of
Damien, Laud and Smith (1995). This will involve sampling from the density
given up to a constant of proportionality by

f�v� ∝ exp�−8v�
∫ 0:8

0
exp�−v exp�−0:1s�� exp�−0:1s�ds:

We define the joint density of v and w, a latent variable defined on �0;1�, by

f�v;w� ∝ exp�−8v− vw�I�w ∈ �exp�−0:08�;1��:
Clearly the marginal distribution for v is as required. We can now use a Gibbs
sampling scheme [Smith and Roberts (1993)] to generate iid samples (using L
chains) from the required density. Straightforward calculations give γ = log 9−
log�8+exp�−0:08��. We collected 1000 samples from the posterior distribution
of F�0;1� and the resulting histogram estimate is given in Figure 1.

5. A generalization of the Pólya-urn scheme. It is well known that
the Pólya-urn sampling scheme (on a finite sample space) leads to an ex-
changeable sequence of variables. From the representation theorem of de
Finetti this guarantees the existence of a random probability measure F con-
ditional on which the variables of the sequence are iid with distribution F.
These random probability measures can be shown to be from a Dirichlet pro-
cess (with finite support).

A description of the Pólya-urn sampling scheme and its connections with
the Dirichlet process is given in Blackwell and MacQueen [(1973), page 354].
It is reviewed and generalized here. Let θ1; : : : ; θm representm different colors
in an urn. Let c be a positive number. On the first draw a ball of color j is
drawn with probability qj. The color drawn is replaced in the urn and a ball
of its color is added. On the second draw color j is now drawn with probability

p1�j�j1� = �cqj + I�j = j1��/�c+ 1�;
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Fig. 1. Histogram estimate of posterior density of F�0;1�.

where j1 was the first color drawn. The second color drawn is replaced and a
ball of its color added to the urn. In general at the �n+ 1�th draw the color j
is taken with probability pn�j�j1; : : : ; jn�, where

pn�j�j1; : : : ; jn� =
{
cqj +

∑n
i=1 I�j = ji�

}

c+ n :(21)

The connection with the Dirichlet process is that if F has finite support on
�θjx j = 1; : : : ;m� and is from a Dirichlet process, with precision parameter
c and discrete location parameter G given by weights qj at θj, then

pn�j�j1; : : : ; jn� = E
(
F�θj��j1; : : : ; jn

)
;

where now F�θ� represents the random weight assigned to θ. Let α̃j = cqj,
for j = 1; : : : ;m, and β̃1 = c�1− q1� so that

pn�j�j1; : : : ; jn� =
α̃j + nj

α̃1 + β̃1 + n
;(22)

where nj =
∑n
i=1 I�j = ji�.
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The beta-Stacy process suggets the existence of a more general scheme for
generating an exchangeable sequence fromm different colors. This generalized
scheme allows a generalization of the finite population Bayesian bootstrap [Lo
(1988)], which uses the Pólya-urn scheme, to include censored observations
[Muliere and Walker (1995)].

Let F be from a finite discrete beta-Stacy process with parameters given
by �αj; βjx j = 1; : : : ;m−1� and support on �θ1; : : : ; θm�. Then, from (13), for
any n ≥ 1 and j = 1; : : : ;m− 1,

E
(
F�θj��j1; : : : ; jn

)
= αj + nj
αj + βj + nj +mj

j−1∏
l=1

βl +ml

αl + βl + nl +ml

;(23)

where mj =
∑n
i=1 I�j < ji�. Note that n1 +m1 = n, nj +mj =mj−1 and that

if αj + βj = βj−1, for all j = 2; : : : ;m− 1, then (23) reduces to (22).
A generalization of Pólya’s urn scheme is now given which leads to a

pn�j�j1; : : : ; jn� given by (23). Consider m Pólya-urns: the first urn has the
different colors θ1; : : : ; θm and the parameters of the urn are c1 > 0 and
q1; : : : ; qm. The second urn has the colors θ2; : : : ; θm and parameters c2 > 0
and q2/�1− q1�; : : : ; qm/�1− q1�. The third urn has the colors θ3; : : : ; θm and
parameters c3 > 0 and q3/�1−q1−q2�; : : : ; qm/�1−q1−q2�. Continue in this
fashion up to the mth urn, which only has the color θm. The scheme is now
described:

1. Start at urn j = 1.
2. Sample urn j once according to Pólya’s urn scheme.
3. If the color sampled is θj then go to 4 else j = j+ 1 and go to 2.
4. θj is a single sample from the generalized Pólya-urn scheme.

Theorem 5. The sequence of variables from the generalized Pólya-urn
scheme are exchangeable.

Proof. We first note that if

L �y1; : : : ; ym−1� = G
(
α∗1; β

∗
1; : : : ; α

∗
m−1; β

∗
m−1

)
;

where α∗j = αj+nj and β∗j = βj+mj, where mj =
∑m
k=j+1 nk, then the density

function for y1; : : : ; ym−1 is given, up to a constant of proportionality, by

y
n1
1 · · ·y

nm−1
m−1�1− y1 − · · · − ym−1�nmp�y1; : : : ; ym−1�;

where p�y1; : : : ; ym−1� is given by (1). Therefore E�xn1
1 · · ·x

nj
j · · ·x

nm
m � =

C�α∗; β∗�, where C�α;β� is the normalizing constant for (1), given by

C�α;β� =
m−1∏
j=1

0�αj�0�βj�/0�αj + βj�:

Therefore if

L �x1; : : : ; xm−1� = G �α1; β1; : : : ; αm−1; βm−1�;
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xm = 1− x1 − · · · − xm−1 and n1 + · · · + nm = n, then

E�xn1
1 · · ·x

nj+1
j · · ·xnmm �

E�xn1
1 · · ·x

nj
j · · ·x

nm
m �

= αj + nj
αj + βj + nj +mj

j−1∏
l=1

βl +ml

αl + βl + nl +ml

:

From the generalized Pólya-urn scheme the probability of taking the color j
at the �n+ 1�th iteration is given by

pn�j�j1; : : : ; jn� =
cjq

∗
j + nj

cj + nj +mj

j−1∏
l=1

(
1− clq

∗
l + nl

cl + nl +ml

)
;(24)

which implies

pn�j�j1; : : : ; jn� =
E�xn1

1 · · ·x
nj+1
j · · ·xnmm �

E�xn1
1 · · ·x

nj
j · · ·x

nm
m �

;

where nj =
∑n
i=1 I�j = ji�, αj = cjq∗j, βj = cj�1− q∗j� and q∗j = qj/�1− q1 −

· · · − qj−1�. It is now easy to see that a representation of the distribution of
�j1; : : : ; jn�, for any n = 1;2; : : : ; is given by

p�j1; : : : ; jn�x1; : : : ; xm−1� = xn1
1 · · ·xnmm

and

L �x1; : : : ; xm−1� = G �α1; β1; : : : ; αm−1; βm−1�;

completing the proof. 2

The usual Pólya-urn scheme, with parameters c and q1; : : : ; qm arises if the
condition βj−1 = βj+αj holds for all j = 2; : : : ;m−1, that is, if cj−1�1−q∗j−1� =
cj and c1 = c. This is straightforward to see by noting that the conditions
cjq

∗
j = c1qj and mj−1 = nj +mj hold for all j = 1; : : : ;m− 1, where m0 = n.

In fact for the usual Pólya-urn scheme

L �n1; : : : ; nm� =M �x1; : : : ; xmyn�;

where M denotes the multinomial distribution, and

L �x1; : : : ; xm−1� = D �α̃1; : : : ; α̃m�:

For the generalized Pólya-urn scheme the Dirichlet distribution is replaced by
the generalized Dirichlet distribution.

A further point to consider is replacing each of the Pólya-urns in the gen-
eralized case with generalized Pólya-urns themselves. This could obviously be
carried on ad infinitum.
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