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Beta-Weibull Distribution: Some Properties and Applications to Censored Data 
 

Carl Lee  Felix Famoye   Olugbenga Olumolade 
Central Michigan University 

 
 
Some properties of a four-parameter beta-Weibull distribution are discussed. The beta-Weibull 
distribution is shown to have bathtub, unimodal, increasing, and decreasing hazard functions. The 
distribution is applied to censored data sets on bus-motor failures and a censored data set on head-and-
neck-cancer clinical trial. A simulation is conducted to compare the beta-Weibull distribution with the 
exponentiated Weibull distribution. 
 
Key words: Bathtub, unimodal, censored data, bootstrap. 
 

 
Introduction 

 
Let ( )F x  be the cumulative distribution 
function of a Weibull random variable X. 
Famoye, Lee, and Olumolade (2005) defined the 
cumulative distribution function for beta-
Weibull random variable as 
 

( ) ( ) 11
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( ) ( )
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α β
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Γ Γ ∫ . (1) 

                                                                         (1) 
From (1), the corresponding probability density 
function for the beta-Weibull distribution is 
given by 
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for x > 0, α, β, c, γ > 0. One may introduce a 
location parameter ξ  in the density in (2) by 
replacing x with x ξ−  where ξ−∞ < < ∞ . In 
the rest of this article, take ξ  to be zero. 

The Weibull distribution has wide 
applications in many disciplines. See, e.g., 
Hallinan (1993), Johnson, Kotz, and 
Balakrishnan (1994). Various extensions have 
appeared in the literature. For instance, Zacks 
(1984) introduced the Weibull-exponential 
distribution. Mudholkar and Kollia (1994) 
defined a generalized Weibull distribution by 
introducing an additional shape parameter. 
Mudholkar, Srivastava, and Kollia (1996) 
applied the generalized Weibull distribution to 
model survival data. They showed that the 
distribution has increasing, decreasing, bathtub, 
and unimodal hazard functions. 

Mudholkar, Srivastava, and Freimer 
(1995), Mudholkar and Hutson (1996) and 
Nassar and Eissa (2003) studied various 
properties of the exponentiated Weibull 
distribution. Mudholkar et al. (1995) applied 
exponentiated Weibull distribution to model 
failure data. Mudholkar and Hutson (1996) 
applied exponentiated Weibull distribution to 
extreme value data. They showed that 
exponentiated Weibull distribution has 
increasing, decreasing, bathtub, and unimodal 
hazard rates. The exponentiated exponential 
distribution proposed by Gupta and Kundu 
(1999, 2001) is a special case of the 
exponentiated Weibull family. 
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Recently, Famoye et al. (2005) 
introduced a four-parameter beta-Weibull 
distribution. They showed that the beta-Weibull 
distribution is unimodal and obtained some 
results on the non-central moments. The 
maximum likelihood technique was used for 
parameter estimation and a likelihood ratio test 
was derived for the beta-Weibull distribution. 
The exponentiated Weibull distribution, 
Rayleigh distribution (Johnson et al., 1994, p. 
686), the Type 2 extreme value distribution 
(Johnson, Kotz and Balakrishnan, 1995, p. 3), 
Burr Type (X) distribution (Johnson et al., 1994, 
p. 54), and the distribution of the order statistic 
from a Weibull population are special cases of 
the beta-Weibull distribution (Famoye et al., 
2005). 

In this article, the hazard function and 
entropy of the beta-Weibull distribution is 
examined. It is applied to several failure rate 
data and survival data. Some properties of the 
beta-Weibull model are discussed and the shapes 
of the hazard function are provided. Application 
of the beta-Weibull distribution to censored data 
sets is presented. Finally, the results of a 
simulation study are presented. The simulation 
study compares the beta-Weibull distribution 
with the exponentiated Weibull distribution. 
 
Some Properties of Beta-Weibull Distribution 

The survival function is given by S(x) = 
1 – G(x). The hazard function (or failure rate) of 
beta-Weibull distribution is given by 

 

                    
( ) ( )

( )
1 ( ) ( )

g x g x
h x

G x S x
= =

−
,              (3)  

  
where G(x) and g(x) are given by (1) and (2) 
respectively and S(x) is the survival function. 
 
Theorem 1: The limit of beta-Weibull hazard 
function as 0x →  is 
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                                                                         (4) 

and the limit of beta-Weibull hazard function as 
x → ∞  is given by 
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                                                                         (5) 
 
Proof: When 0x → , the limit of h(x) is the 
same as the limit of g(x). Famoye et al. (2005) 
obtained the limit in (4) for g(x). When x → ∞ , 
the beta-Weibull hazard function in (3) is 
indeterminate as both numerator and 
denominator become 0. By using L’Hôpital’s 
rule, the limit of h(x) as x → ∞  is given by (5). 
This completes the proof. 
 
Theorem 2: The beta-Weibull distribution has 
 
(a) a constant (= β/γ) failure rate when α = c 

= 1, 
(b) a decreasing failure rate when αc ≤  1 and 

c ≤  1, 
(c) an increasing failure rate when αc ≥  1 

and c ≥  1, 
(d) a bathtub failure rate when αc < 1 and c > 

1, and 
(e) upside down bathtub (or unimodal) failure 

rate when αc > 1 and c < 1. 
 
Proof: It follows from Theorem 1. 

Glaser (1980) gave sufficient conditions 
to characterize a given failure rate distribution as 
being bathtub shaped (BT), increasing failure 
rate (IFR), upside-down bathtub (UBT), or 
decreasing failure rate (DFR). Glaser defined the 
quantity ( ) ( ) / ( )t g t g tη ′= −  where g(t) is the 
probability density function and gave a list of 
conditions to characterize a given failure rate 
based on ( )tη′ . It is not difficult to show that the 
beta-Weibull distribution satisfies all the 
conditions given by Glasser (1980). In Figure 1, 
the various shapes for the beta-Weibull hazard 
functions are provided. 
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Entropies 

Entropy has been used in various 
situations in science and engineering. Numerous 
entropy measures have been studied and 
compared in the literature. See the recent work 
of Nadarajah and Zografos (2005) and the 
references therein. Nadarajah and Zografos 
(2003) derived formulas for Renyi and Shannon 
entropies for 26 continuous univariate 
distributions. 

 
 
 
 
 
 
 

 
 
 

 
 
 
The entropy of a random variable X with 

density ( )g x  is a measure of variation of the 
uncertainty. Renyi entropy is defined by 

 

               { }1
( ) log ( )

1RI g x dxρρ
ρ

=
− ∫ ,        (6)

 
where 0ρ >  and 1ρ ≠ , Renyi (1961). For the 
beta-Weibull density see equation 7. By using 
the substitution ( )/ ct x γ=  and simplifying the 
resulting quantity, equation 8 is obtained. Hence,
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A: a=1.0, c=1.0
B: a=0.5, c=0.2
C: a=0.5, c=4.0
D: a=0.2, c=3.0
E: a=2.0, c=0.8

 
Figure 1: Beta-Weibull hazard functions for β = 2.0, γ = 4.0 and various values of α = a and c 
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Renyi entropy for the beta-Weibull density is 
given by equation 9. 

The Shannon’s (1948) entropy is 
defined as ( )E log ( )g x−⎡ ⎤⎣ ⎦ . This is a special 
case of (6) when 1ρ → . Hence, the Shannon 
entropy is obtained by taking the limit of (9) as 

1ρ → . On taking the limit of (9) as 1ρ → , 0/0 
is obtained and hence, the L’Hopital’s rule is 
applied. After using this rule and simplifying, 
equation 10 is obtained, where ( )ψ ⋅  is the 
digamma function and ( )′Γ ⋅  is the derivative of 
the gamma function. 
 
 
 
 
 
 

 
 

 
 
Applications of beta-Weibull distribution to 
censored data 

In survival analysis, the data may be in 
grouped form or in ungrouped form and quite 
often, the data involve censoring. In the case of 
grouped data, the right censoring is in the form 
of a last open interval as provided in Tables 1 
and 2. Suppose a grouped data consisting of k 
intervals and the jth interval ( )1,  j jI I−  contains 

jn  observations for j = 1, 2, 3, …, k–1. The 

boundary   0I    is equal   to 0 and the kth interval  
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( )1,  jI − ∞  has kn  observations. The total 

number of observations is 
1

k

j
j

n n
=

=∑ . By using 

the result in Lawless (1982), the log-likelihood 
function for the grouped data is 

 

                   

[ ]
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c
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n S I
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                                                                       (11) 
 
where S(.) is the beta-Weibull survival function. 
Estimates of the parameters are obtained by 
maximizing (11), the logarithm of the censored 
likelihood function. 

The log-likelihood function for the 
ungrouped data jx , j = 1, 2, 3, …, n is given by 
 

1

( , , , ) log ( ) log ( )
n

j ju
j

c h x S xα β γ
=

= ⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦∑ ∑ , (12) 

                                                                       (12) 
 
where h(.) is the beta-Weibull hazard function 
given by (3) and uΣ  denotes the summation 
over the uncensored observations. Estimates of 
the parameters are obtained by maximizing (12), 
the log-likelihood function. Both the log-
likelihood functions in (11) and (12) are 
maximized directly by using nlminb, an SPLUS 
non-linear optimization routine with bounds. 
Taking the first and second partial derivatives of  
(11)   and   (12)   with   respect   to   the    model 
parameters are quite involving. Hence, the 
Bootstrap method is used, Efron (1981), to 
estimate the standard errors of the parameter 
estimates for the beta-Weibull distribution. 
 
 
 
 
 
 
 
 

Mudholkar et al. (1995) re-analyzed the 
classical bus-motor-failure data, first considered 
by Davis (1952), for a fleet of 191 buses. 
Mudholkar et al. (1995) re-analyzed the first, 
second, third, fourth, and fifth motor failures. 
They found that only the exponentiated Weibull 
provides a good fit to the first two data sets. 
However, the exponential, the Weibull, and the 
exponentiated Weibull provide good fits to the 
last three data sets. In this article, the beta 
Weibull is applied to all data sets and it provides 
excellent fits to all. However, the result for the 
first and the second motor failures are presented 
in Tables 1 and 2. 

The beta-Weibull parameter estimates 
(standard errors in parentheses) in Table 1 are as 
follows: α̂  = 0.3707(.0610), β̂  = 
0.1256(.0189), ĉ  = 4.5753(.1853), γ̂  = 
76.2155(1.5219). The beta-Weibull model has 
an increasing hazard rate for these parameter 
estimates because ˆ ĉα  > 1 and ĉ  > 1. 

The beta-Weibull maximum likelihood 
estimates (standard errors in parentheses) in 
Table 2 are as follows: α̂  = 0.1479(0.0634), β̂  
= 0.1757(0.0821), ĉ  = 5.5104(1.3385), γ̂  = 
81.4003(5.6775). The beta-Weibull model has a 
bathtub hazard rate for these parameter estimates 
because ˆ ĉα  < 1 and ĉ  > 1. 

The exponentiated Weibull and beta-
Weibull distributions provided adequate fits to 
the two data sets, but the fit from beta-Weibull 
distribution is better by using the chi-square 
goodness of fit measure. Also, the expected 
frequencies from the beta-Weibull model are 
much closer to the observed frequencies than the 
corresponding results from exponentiated 
Weibull model. In particular, it is noticed that 
only Beta-Weibull identifies that the failure rate 
has a bathtub shape, which logically fits the 
failure rate of motors well as shown in the above 
data. The last class (120,000 miles and up) had 
lower occurrence because the data is right-
censored. 
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Table 1. Re-analysis of the First Bus-Motor Failure 

 
Class interval 
(1,000 miles) 

 
Observed 
frequency 

 
 

Weibull 

Expected frequency 
Exponentiated 

Weibull 

 
Beta 

Weibull 
0 – 20 

20 – 40 
40 – 60 
60 – 80 

80 – 100 
100 – 120 
120 – 140 
140 – 160 
160 – up 

Total 
 

Pearson 2χ  
df 

p-value 
Log-likelihood 

 6 
 11 
 16 
 25 
 34 
 46 
 33 
 16 
 4 
 191 

 1.4066 
 8.9031 
 21.2228 
 33.5374 
 39.8566 
 36.7799 
 26.3822 
 14.5357 
 8.3757 
 191.0 
 
 26.218 
 6 
 0.0002 
–389.936 

 3.8965 
 11.7722 
 19.6848 
 27.4955 
 34.5251 
 38.3690 
 33.8352 
 18.0184 
 3.4034 
 191.0 
 
 3.979 
 5 
 0.5524 
 –381.811 

 5.2925 
 11.8987 
 17.4895 
 24.2573 
 34.1451 
 42.5039 
 35.5682 
 16.2516 
 3.5932 
 191.0 
 
 0.836 
 4 
 0.9336 
 –380.335 

 
 
 

Table 2. Re-analysis of the Second Bus-Motor Failure 
 

Class interval 
(1,000 miles) 

 
Observed 
frequency 

 
 

Weibull 

Expected frequency 
Exponentiated 

Weibull 

 
Beta 

Weibull 
0 – 20 

20 – 40 
40 – 60 
60 – 80 

80 – 100 
100 – 120 
120 – up 

Total 
 

Pearson 2χ  
df 

p-value 
Log-likelihood 

 19 
 13 
 13 
 15 
 15 
 18 
 11 
 104 

 13.3474 
 19.4117 
 18.7796 
 15.7765 
 12.1399 
 8.7520 
 15.7929 
 104.0 
 
 18.2291 
 4 
 0.0011 
–208.872 

 16.7866 
 15.8037 
 15.4234 
 15.1924 
 15.0160 
 14.6341 
 11.1438 
 104.0 
 
 1.9485 
 3 
 0.5832 
 –201.707 

 18.6316 
 14.1624 
 13.0820 
 13.4357 
 16.0268 
 17.5898 
 11.0717 
 104.0 
 
 0.3611 
 2 
 0.8348 
 –200.918 
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Mudholkar et al. (1995) applied the 
exponentiated Weibull distribution to model 
Efron’s (1988) Arm A data on the survival times 
of 51 head-and-neck cancer patients given in 
Table 3. The beta-Weibull model was applied to 
fit the data in Table 3 and the result were 
grouped into 13 classes as in Table 12 of 
Mudholkar et al. (1995). For more details about 
the data, see Mudholkar et al. (1995). The results 
of   the   analysis   and   that  of Mudholkar et al.  

 
 

(1995) are presented in Table 4. The fits from 
both exponentiated Weibull and beta-Weibull 
distributions are very similar for the data. It 
appears the exponentiated Weibull distribution is 
slightly better because it has only three 
parameters compared to the beta-Weibull 
distribution with four parameters. A likelihood 
ratio test can be applied to test the adequacy of 
beta-Weibull distribution against a reduced 
special case (Famoye et al. 2005). 
 

 
 
 

Table 3. Survival Times (in days) for the Patients in Arm A of the Head-and-Neck-Cancer Trial 
7, 34, 42, 63, 64, 74+, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157,  
160, 160, 165, 173, 176, 185+, 218, 225, 241, 248, 273, 277, 279+, 297, 319+, 405, 417, 420, 
440, 523, 523+, 583, 594, 1101, 1116+, 1146, 1226+, 1349+, 1412+, 1417. 

Note. Data is from Efron (1988); + indicates observations lost to follow-up. 
 
 
 

Table 4. Re-analysis of Arm A of the Head-and-Neck-Cancer Trial 
 

jth class interval 
(in months) 

 
 

jN  

 
 
jS  

 
 

Weibull 

Expected Deaths ( jE ) 
Exponentiated 

Weibull 

 
Beta 

Weibull 

0 – 1 
1 – 2 
2 – 3 
3 – 4 
4 – 6 
6 – 8 

8 – 11 
11 – 14 
14 – 18 
18 – 24 
24 – 31 
31 – 38 
38 – 47 

 
13 2

1 jj
R

=∑  

Approx. df 
p-value 

 51 
 50 
 48 
 42 
 72 
 49 
 56 
 45 
 45 
 46 
 49 
 47 
 28 
 
 
 
 
 

 1 
 2 
 5 
 2 
 15 
 3 
 4 
 3 
 2 
 2 
 0 
 2 
 1 

 4.2739 
 3.8787 
 3.5922 
 3.0697 
 5.1380 
 4.4120 
 3.8190 
 3.0079 
 2.9567 
 2.9666 
 3.0988 
 2.9258 
 1.7189 
 
 27.930 
 
 11 
 0.0033 

 1.8814 
 4.2669 
 4.6938 
 4.1702 
 6.8828 
 4.3158 
 4.4572 
 3.1773 
 2.8248 
 2.5099 
 2.2784 
 1.9072 
 1.0029 
 
 17.490 
 
 10 
 0.0642 

 1.8374 
 4.2335 
 4.6845 
 4.1676 
 6.8742 
 4.3023 
 4.4353 
 3.1583 
 2.8091 
 2.5019 
 2.2833 
 1.9241 
 1.0197 
 
 17.410 
 
 9 
 0.0427 

Note. ( )
1/ 2

2sign log( / ) ( ) log j j
j j j j j j j j

j j

N S
R S E S S E N S

N E
= − + −

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

. 
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The parameter estimates (standard errors 
in parentheses) from beta-Weibull model are as 
follows: α̂  = 11.2139(3.3705), β̂  = 
0.5874(0.1791), ĉ  = 0.3859(0.0622), γ̂  = 
0.2947(0.1451). The estimates show that the 
model has a unimodal hazard function because 
ˆ ĉα  > 1 and ĉ  < 1. 

 
Comparison between beta-Weibull and 
exponentiated Weibull distributions 

In the previous section, the fits from 
both beta-Weibull and exponentiated Weibull 
distributions are very close. In this section, a 
simulation is conducted to compare these two 
distributions. The parameters are estimated by 
the method of maximum likelihood. Samples of 
sizes n = 250, 500, and 1000 were generated 
from beta-Weibull and exponentiated Weibull 
distributions. The parameter sets for which the 
beta-Weibull hazard function is bathtub (Table 
5), unimodal (Table 6), increasing (Table 7), and 
decreasing (Table 8) are simulated. For each 
simulated sample, the likelihood ratio test 
proposed by Famoye et al. (2005) is applied to 
compare the beta-Weibull and exponentiated 
Weibull distributions. In each case, there is no 
significance difference between the two models. 
The biases were examined (actual parameter 
value minus the estimated value) and the 
standard errors of the maximum likelihood 
estimates. These biases and the standard errors 
tell a different story. 

For each sample size, 100 different 
samples were generated in order to obtain 100 
parameter estimates which are used to compute 
the biases and the standard errors. The biases 
and the standard errors of the maximum 
likelihood estimates (mle) are reported in Tables 
5 through 8. When the parameter β = 1, the 
simulated data is considered to be from the 
exponentiated Weibull distribution. The 
following are some observations from the 
simulation study. 

 
a. For the parameter set of a bathtub hazard 
function (Table 5): 
 
a.1 When β < 1, the biases of the mle from 
beta-Weibull estimates are smaller than the 
corresponding biases from the exponentiated 

Weibull distribution. The standard errors of the 
mle of α and c for the two distributions are 
comparable, while the standard errors of the mle 
of γ are larger for beta-Weibull distribution. 
 
a.2 When β = 1, the biases and standard 
errors of the mle of α and c for the two 
distributions are comparable. When comparing 
the mle of γ, the beta-Weibull distribution seems 
to have larger bias and standard error. 
 
a.3 When β > 1, the biases and standard 
errors of the mle for beta-Weibull distribution 
seem to be larger than the biases and standard 
errors of the mle for exponentiated Weibull 
distribution. 
 
b. For the parameter set of a unimodal hazard 
function (Table 6): 
 
b.1 When β < 1, similar results as in (a.1) are 
observed. 
 
b.2 When β = 1, similar results as in (a.2) are 
observed. 
 
b.3 When β > 1, the biases of the mle of α and c 
are larger for beta-Weibull, while the standard 
errors of the mle of α and c for the two 
distributions are comparable. The mle of γ have 
comparable biases for the two distributions. The 
mle of γ have larger standard errors for the beta-
Weibull distribution. 
 
c. For the parameter set of an increasing 
hazard function (Table 7): 
 
c.1 When β < 1, similar results as in (a.1) are 
observed. 
 
c.2 When β = 1, the biases and standard errors 
of the mle of α for beta-Weibull are smaller than 
the biases and standard errors of the mle from 
exponentiated Weibull. The biases of the mle of 
c are larger for beta-Weibull but the standard 
errors are comparable for the two distributions. 
Both biases and standard errors of the mle of γ 
are larger for beta-Weibull. 
c.3 When β > 1, the biases and standard errors 
of the mle of α for the two distributions are 



LEE, FAMOYE, & OLUMOLADE 181

comparable. The biases of the mle of c are 
slightly larger for beta-Weibull but the standard 
errors are comparable for the two distributions. 
The estimates of γ have larger biases and 
standard errors for the beta-Weibull. 
 
d. For the parameter set of a decreasing hazard 
function (Table 8): 
 
d.1 When β < 1, both biases and standard 
errors of the mle of α, c and γ are smaller for 
beta-Weibull. 
 
d.2 When β = 1, similar results as in (c.2) 
are observed. 
 
d.3 When β > 1, the biases and standard 
errors of the mle of α and c for the two 
distributions are comparable. The estimates of γ 
have comparable biases with larger standard 
errors for the beta-Weibull. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 
The biases of the mle from beta-Weibull 
distribution are smaller than the biases of the 
mle from exponentiated Weibull model with 
comparable standard errors when β < 1. The 
biases and standard errors are, in general, 
smaller for the exponentiated Weibull 
distribution when β ≥  1. In all the three 
examples in previous section, the estimates for 
parameter β are less than 1.0 and thus, this 
simulation study supports the use of the beta-
Weibull distribution for describing the data sets. 
In addition, another implication of the 
simulation results is that one can take the 
advantage of the Beta-Weibull distribution and 
the exponentiated Weibull distribution by using 
the Beta-Weibull distribution and setting up the 
upper bound of parameter estimate of β to be 
one. 
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Table 5: Bias (standard error) of parameter estimate for α = 0.5, c = 1.5 and various values of β and γ 

(bathtub hazard function) 
Actual values 

 β γ n 
 Exponentiated Weibull distribution 
 α̂  ĉ  γ̂  

 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 
 

 .006 (.097) -.093 (.224) -1.457 (0.397) 
 .036 (.067) -.151 (.164) -1.577 (0.262) 
 .036 (.048) -.143 (.118) -1.597 (0.217) 
 .005 (.097) -.093 (.224) -2.909 (0.793) 
 .037 (.067) -.155 (.168) -3.158 (0.528) 
 .036 (.047) -.144 (.119) -3.192 (0.431) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 

 -.030 (.147) -.036 (.317) .021 (0.364) 
 -.009 (.105) -.035 (.229) -.003 (0.270) 
 .000 (.058) -.023 (.133) -.010 (0.157) 
 -.031 (.147) -.038 (.318) .046 (0.722) 
 -.011 (.105) -.030 (.228) .004 (0.537) 
 .000 (.058) -.023 (.133) -.021 (0.314) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.017 (.137) -.024 (.289) .821 (0.200) 
 -.012 (.101) .000 (.200) .815 (0.149) 
 -.023 (.070) .042 (.133) .839 (0.102) 
 -.020 (.134) -.016 (.278) 1.658 (0.378) 
 -.012 (.100) .001 (.198) 1.631 (0.294) 
 -.023 (.070) .042 (.133) 1.677 (0.204) 

 
Actual values 

 β γ n 

 
Beta-Weibull distribution 

 α̂  β̂  ĉ  γ̂  
 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 

 -.030 (.094) -.104 (.253) .032(.210) -.171 (0.897) 
 -.005 (.068) -.066 (.237) -.002 (.163) -.143 (0.853) 
 -.013 (.051) -.018 (.232) .026 (.123) .024 (0.825) 
 -.030 (.094) -.106 (.250) .030 (.210) -.360 (1.778) 
 -.004 (.069) -.069 (.239) -.007 (.170) .311 (1.728) 
 -.013 (.052) -.018 (.231) .025 (.123) .041 (1.641) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 

 -.049 (.145) .185 (.395) .033 (.291) .392 (0.731) 
 -.035 (.107) .261 (.385) .053 (.227) .508 (0.749) 
 -.027 (.065) .245 (.378) .061 (.157) .489 (0.710) 
 -.049 (.143) .163 (.409) .028 (.292) .717 (1.481) 
 -.037 (.106) .253 (.405) .058 (.224) 1.003 (1.539) 
 -.027 (.065) .245 (.378) .061 (.157) .977 (1.421) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.036 (.132) 1.126 (.497) .047 (.255) .999 (0.496) 
 -.040 (.100) 1.261 (.384) .086 (.198) 1.127 (0.429) 
 -.051 (.075) 1.203 (.509) .119 (.154) 1.098 (0.516) 
 -.038 (.133) 1.124 (.490) .047 (.259) 1.994 (0.992) 
 -.039 (.099) 1.240 (.415) .085 (.197) 2.217 (0.902) 
 -.052 (.073) 1.224 (.486) .123 (.148) 2.237 (0.990)  
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Table 6: Bias (standard error) of parameter estimate for α = 1.5, c = 0.75 and various values of β and γ 

(unimodal hazard function) 
Actual values 

 β γ n 
 Exponentiated Weibull distribution 
 α̂  ĉ  γ̂  

 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 

 -.562 (.449) .119 (.056) -1.080 (0.399) 
 -.450 (.303) .103 (.043) -1.277 (0.555) 
 -.343 (.197) .090 (.029) -1.496 (0.402) 
 -.594 (.511) .121 (.059) -2.090 (1.457) 
 -.446 (.303) .103 (.043) -2.572 (1.110) 
 -.337 (.198) .089 (.029) -3.016 (0.800) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 

 -.052 (.458) -.022 (.120) -.077 (0.680) 
 -.028 (.367) -.010 (.088) -.046 (0.509) 
 -.045 (.266) .002 (.066) .019 (0.388) 
 -.018 (.431) -.028 (.116) -.243 (1.310) 
 -.022 (.363) -.012 (.087) -.108 (1.006) 
 -.022 (.250) -.003 (.064) -.018 (0.747) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.058 (.532) -.035 (.137) 1.085 (0.328) 
 .004 (.338) -.032 (.099) 1.090 (0.238) 
 .061 (.213) -.035 (.066) 1.077 (0.159) 
 -.055 (.523) -.030 (.131) 2.172 (0.633) 
 .015 (.335) -.035 (.098) 2.164 (0.472) 
 .061 (.204) -.035 (.065) 2.151 (0.308) 

 
Actual values 

 β γ n 

 
Beta-Weibull distribution 

 α̂  β̂  ĉ  γ̂  
 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 

 -.412 (.399) -.107 (.221) .072 (.065) .153 (0.765) 
 -.305 (.269) -.071 (.225) -.052 (.052) .147 (0.791) 
 -.209 (.177) -.047 (.222) .039 (.042) .116 (0.782) 
 -.439 (.436) -.115 (.216) .075 (.066) .291 (1.519) 
 -.306 (.268) -.086 (.221) .055 (.051) .191 (1.562) 
 -.207 (.180) -.056 (.222) .040 (.043) .168 (1.565) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 

 -.019 (.439) .147 (.395) -.038 (.116) .227 (0.940) 
 -.001 (.373) .156 (.388) -.026 (.088) .281 (0.877) 
 -.006 (.247) .163 (.409) -.018 (.066) .320 (0.887) 
 .005 (.426) .139 (.393) -.041 (.115) .392 (1.833) 
 .004 (.373) .162 (.394) -.027 (.089) .580 (1.769) 
 .009 (.244) .148 (.402) -.020 (.067) .561 (1.744) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.041 (.558) 1.013 (.553) -.047 (.135) 1.074 (0.644) 
 .024 (.342) .975 (.678) -.045 (.098) 1.027 (0.749) 
 .071 (.224) .995 (.531) -.043 (.070) 1.055 (0.522) 
 -.048 (.575) 1.011 (.623) -.041 (.133) 2.179 (1.321) 
 .032 (.343) .974 (.678) -.047 (.099) 2.046 (1.495) 
 .076 (.214) 1.025 (.538) -.046 (.068) 2.159 (1.066)  
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Table 7: Bias (standard error) of parameter estimate for α = 1.5, c = 1.5 and various values of β and γ 

(increasing hazard function) 
Actual values 

 β γ n 
 Exponentiated Weibull distribution 
 α̂  ĉ  γ̂  

 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 
 

 -.149 (.451) .042 (.219) -.926 (0.494) 
 -.146 (.449) .067 (.190) -.908 (0.444) 
 -.120 (.274) .076 (.120) -.897 (0.293) 
 -.160 (.507) .039 (.225) -1.861 (1.037) 
 -.087 (.421) .038 (.185) -1.942 (0.849) 
 -.083 (.261) .063 (.114) -1.861 (0.562) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 
 

 -.054 (.621) -.064 (.284) -.034 (0.386) 
 -.046 (.401) -.017 (.187) .003 (0.274) 
 -.034 (.274) -.005 (.137) .009 (0.206) 
 -.047 (.620) -.068 (.284) -.081 (0.770) 
 -.007 (.375) -.037 (.181) -.047 (0.521) 
 -.006 (.261) -.017 (.134) -.024 (0.396) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.054 (.530) -.065 (.266) .667 (0.243) 
 .011 (.330) -.066 (.194) .659 (0.170) 
 .058 (.206) -.068 (.130) .646 (0.112) 
 -.038 (.526) -.074 (.271) 1.321 (0.488) 
 .026 (.330) -.074 (.194) 1.303 (0.343) 
 .068 (.208) -.075 (.130) 1.281 (0.226) 

 
Actual values 

 β γ n 

 
Beta-Weibull distribution 

 α̂  β̂  ĉ  γ̂  
 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 

 -.056 (.385) -.066 (.220) -.031(.197) -.125 (0.542) 
 -.045 (.378) -.030 (.214) -.013 (.165) -.032 (0.506) 
 -.029 (.229) -.081 (.224) -.002 (.103) -.145 (0.507) 
 -.055 (.413) -.045 (.222) -.038 (.196) -.178 (1.129) 
 -.002 (.368) -.031 (.215) -.035 (.168) -.135 (0.983) 
 -.001 (.228) -.072 (.235) -.013 (.107) -.265 (1.028) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 
 

 -.013 (.514) .113 (.415) -.090 (.266) .127 (0.577) 
 -.012 (.386) .141 (.408) -.049 (.179) .197 (0.518) 
 .003 (.251) .126 (.437) -.041 (.135) .184 (0.564) 
 -.009 (.515) .114 (.416) -.092 (.267) .250 (1.150) 
 .013 (.381) .108 (.387) -.059 (.181) .272 (0.956) 
 .013 (.253) .056 (.415) -.037 (.139) .170 (1.038) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.036 (.558) 1.012 (.588) -.091 (.262) .714 (0.473) 
 .030 (.337) .983 (.683) -.092 (.194) .695 (0.482) 
 .078 (.207) 1.053 (.531) -.094 (.132) .721 (0.398) 
 -.037 (.581) .962 (.624) -.091 (.275) 1.356 (0.921) 
 .038 (.342) .948 (.671) -.093 (.197) 1.321 (0.940) 
 .075 (.221) .977 (.523) -.089 (.139) 1.317 (0.739) 
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Table 8: Bias (standard error) of parameter estimate for α = 1.5, c = 0.5 and various values of β and γ 

(decreasing hazard function) 
Actual values 

 β γ n 
 Exponentiated Weibull distribution 
 α̂  ĉ  γ̂  

 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 
 

 -1.018 (.627) .111 (.035) -.644 (0.914) 
 -.742 (.270) .097 (.022) -1.145 (0.634) 
 -.633 (.180) .090 (.016) -1.433 (0.469) 
 -1.017 (.627) .112 (.035) -1.286 (1.829) 
 -.746 (.272) .097 (.022) -2.280 (1.269) 
 -.633 (.180) .090 (.016) -2.867 (0.937) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 
 

 -.114 (.478) -.002 (.071) -.028 (0.896) 
 -.043 (.363) -.004 (.056) -.067 (0.723) 
 .034 (.248) .001 (.042) -.004 (0.540) 
 -.095 (.467) -.005 (.072) -.130 (1.794) 
 -.043 (.364) -.004 (.056) -.136 (1.446) 
 -.029 (.246) -.000 (.042) -.028 (1.076) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.065 (.524) -.020 (.089) 1.361 (0.333) 
 .005 (.326) -.020 (.062) 1.374 (0.232) 
 .063 (.206) -.024 (.043) 1.366 (0.161) 
 -.054 (.522) -.022 (.090) 2.711 (0.667) 
 .019 (.318) -.022 (.060) 2.737 (0.455) 
 .061 (.204) -.023 (.043) 2.729 (0.320) 

 
Actual values 

 β γ n 

 
Beta-Weibull distribution 

 α̂  β̂  ĉ  γ̂  
 0.5 2 250 
   500 
   1000 
 0.5 4 250 
   500 
   1000 
 

 -.777 (.482) -.125 (.226) .076(.039) .564 (0.883) 
 -.549 (.247) -.093 (.203) -.061 (.030) .473 (0.795) 
 -.472 (.165) -.122 (.207) .059 (.024) .226 (0.879) 
 -.773 (.481) -.120 (.227) .076 (.039) 1.154 (1.774) 
 -.555 (.251) -.097 (.205) .062 (.031) .924 (1.598) 
 -.472 (.165) -.122 (.207) .059 (.024) .452 (1.758) 

 1.0 2 250 
   500 
   1000 
 1.0 4 250 
   500 
   1000 
 

 -.086 (.483) .164 (.370) -.012 (.072) .420 (1.088) 
 -.008 (.368) .205 (.357) -.017 (.057) .467 (1.055) 
 -.000 (.241) .166 (.400) -.012 (.044) .345 (1.142) 
 -.071 (.478) -.159 (.368) -.015 (.073) .772 (2.178) 
 -.009 (.369) .205 (.356) -.017 (.057) .933 (2.108) 
 .001 (.243) .155 (.402) -.011 (.045) .633 (2.287) 

 2.0 2 250 
   500 
   1000 
 2.0 4 250 
   500 
   1000 

 -.047 (.552) 1.061 (.529) -.029 (.088) 1.366 (0.607) 
 .029 (.330) 1.059 (.563) -.030 (.062) 1.342 (0.636) 
 .078 (.215) 1.028 (.541) -.031 (.046) 1.302 (0.595) 
 -.051 (.576) 1.023 (.578) -.028 (.091) 2.682 (1.236) 
 .037 (.329) 1.040 (.566) -.030 (.061) 2.631 (1.313) 
 .075 (.214) 1.023 (.536) -.030 (.045) 2.597 (1.185) 
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