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Abstract. The integrin heterodimer  a6134 is expressed 

in many epithelia and in Schwann cells. In stratified ep- 

ithelia, et6134 couple with B P A G I - e  and BPAG2 to 

form hemidesmosomes, attaching externally to laminin 

and internally to the keratin cytoskeleton. To explore 

the function of this atypical integrin, and its relation to 

conventional actin-associated integrins, we targeted the 

removal of the ~4 gene in mice. Tissues that express 

o~6134 are grossly affected. Stratified tissues are devoid 

of hemidesmosomes, display only a very fragile attach- 

ment to the basal lamina, and exhibit signs of degenera- 

tion and tissue disorganization. Simple epithelia which 

express et6134 are also defective in adherence, even 

though they do not form hemidesmosomes. In the ab- 

sence of [34, a6 is dramatically downregulated, and 

other  integrins do not appear to compensate for the 

loss of this heterodimer.  These data have important im- 

plications for understanding integrin function in cell- 

substratum adhesion, cell survival and differentiation, 

and for understanding the role of e~6134 in junctional 

epidermolysis bullosa, an often lethal human disorder 

with pathology similar to our mice. 

I 
NTEGRINS are transmembrane receptors implicated in 

mediating cell-substratum attachment or cell-cell ad- 
hesion, and in transducing signals that regulate such 

diverse processes as growth, differentiation, and migration 
(for review see Hynes, 1992; Watt et al., 1993). Most inte- 
grins use specific components of extracellular matrix (ECM) 
to recognize and receive cues from their environment. In- 
tracellularly, integrins associate dynamically with the cy- 
toskeleton to transmit and translate these cues. Hemides- 
mosomes are specialized, integrin-mediated adherens 
junctions characteristic of stratified epithelia (for review 
see Garrod, 1993). These junctions are composed of oL6134 
integrin heterodimers (Stepp et al., 1990; Sonnenberg et 
al., 1991), which use laminin 5 anchoring filaments to at- 
tach an epithelium to the underlying basal lamina (Carter 
et al., 1991; Rousselle et al., 1991). Interactions between 
integrins and anchoring filaments appear to be essential 
for cell-substratum adhesion, as judged by the fact that a 
number of patients with the severe (Herlitz) form of junc- 
tiona ! epidermolysis bullosa (JEB) 1 have mutations in 
both alleles of any one of the three genes encoding laminin 
5 (Aberdam et al., 1994; Pulkkinen et al., 1994a,b; Kivir- 
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1. Abbrevia t ions  used in this paper. BPAG, bullous pemphigoid antigen; 

GABEB, generalized atrophic benign epidermolysis bullosa; JEB, junc- 
tional epidermolysis bullosa. 

ikko et al., 1995; McGrath et al., 1996). Patients with this 
disorder display trauma-induced denuding of skin, and 
whole-scale mesenchymal-epithelial separations in tissues 
that attach to a basal lamina through laminin-anchoring 
filaments (Fine et al., 1991). 

Hemidesmosomes differ from conventional integrin ad- 
herens junctions in several ways. Specifically, they connect 
with the keratin filament rather than actin filament net- 
work, and they associate with two unique proteins, 
BPAGI-e (230 kD) and BPAG2 (180 kD), first identified 
as antigenic determinants of circulating antibodies of pa- 
tients with the acquired autoimmune disease bullous pem- 
phigoid (BPAG, bullous pemphigoid antigen; for review 
see Stanley, 1993). Based on immunoelectron microscopy, 
BPAGI-e localizes to a region referred to as the inner 
plate, on the cytoplasmic surface of the hemidesmosome. 
Ablation of BPAGI-e in mice removes this plate and sev- 
ers the connection between hemidesmosomes and keratin 
filaments, creating a cytoplasmic zone of mechanical fra- 
gility just above the hemidesmosomes (Guo et al., 1995). 
Surprisingly, neither hemidesmosome stability and struc- 
ture nor cell substratum adhesion appear to be weakened 
in these mice. 

In contrast to BPAGI-e,  BPAG2 is a novel member of 
the collagen superfamily. It has a transmembrane domain, 
lacks a significant cytoplasmic domain, and has a promi- 
nent extracellular domain with classical collagen repeat se- 
quences (Giudice et al., 1991; Li et al., 1993). Gene target- 
ing of BPAG2 in mice has not yet been conducted, 
although mutations in both BPAG2 alleles have recently 
been described in two different patients with generalized 
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atrophic benign epidermolysis bullosa (GABEB), a rare, 
milder variant of JEB (McGrath et al., 1995). If these mu- 
tations are causative, BPAG2 is involved in maintaining 
adhesion between the epidermis and the dermis. This said, 
hemidesmosomes and anchoring filaments are still present 
in the basal epidermal layer of GABEB patients, although 
the lamina lucida is wider than normal (McGrath et al., 
1995). 

Even though hemidesmosomes occur only in cells that 
express both ot6134 integrin and BPAG proteins (Owaribe 
et al., 1990; Sonnenberg et al., 1990; Stepp et al., 1990), 
a6134 integrins exist in simple epithelia and Schwann cells, 
neither of which have hemidesmosomes (Sonnenberg et 
al., 1990; Natali et al., 1992; Einheber et al., 1993). All cells 
that express 134 also express et6, although a6 is found in 
some tissues where 134 is not expressed; in these cases, a6 
probably binds to 131, which it can do both in vitro and also 
in transfected cells (Hall et al., 1990; Cooper et al., 1991; 
Natali et al., 1992; Kennel et al., 1992; deCurtis and Rei- 
chardt, 1993). 

134's functions in the various tissues that express it have 
not yet been demonstrated, although 134 has been impli- 
cated in many different processes. Recently, a patient with 
a severe case of junctional epidermolysis bullosa and py- 
loric atresia (gastrointestinal blockage) was found to con- 
tain a frameshift mutation in one 134 allele and a potential 
internal deletion mutation in the other (Vidal et al., 1995). 
The basal epidermal cells of this patient displayed fewer 
and seemingly rudimentary hemidesmosomes, which still 
attached to keratin filaments. However, in the absence of 
functional evidence and chromosomal linkage analysis, it 
remains unclear whether 134 mutations are causative for 
severe junctional EB. Moreover, given the nature of the 
134 mutations, even if causative, it cannot be assessed whether 
the phenotype and pathology reflect gain of function or 
partial loss of function mutations, or whether they are rep- 
resentative of a true 134 null mutation. 

In addition to unanswered questions regarding the role 
of [34 in hemidesmosome formation, keratin filament at- 
tachment, cell adhesion, and JEB, issues still remain that 
relate to 134 function in hemidesmosome and nonhemides- 
mosome containing tissues. What is the fate of a6 in the 
absence of 134? Can other integrin heterodimers compen- 
sate for the loss of 134? What is the role of 134 in non- 
hemidesmosomal tissues? Is et6134 necessary for cell sur- 
vival? In this report, we describe the isolation of the 
mouse 134 integrin gene and its ablation using homologous 
recombination and embryonic stem cell technology. Our 
findings have led to the answers to many of the questions 
outlined above. 

Materials and Methods 

Screening the 129/sv Genomic Library 

A radiolabeled 558-bp PCR fragment encompassing the 5' end of the 
mouse 134 coding sequence (Kennel et al., 1993) was used to screen a 129/ 
sv mouse genomic library (Stratagene, Palo Alto, CA). Processed filters 

were prehybridized at 42°C in a solution containing 50% deionized forma- 
mide, 0.02 M Hepes, 5x  SSC, 1× Denhardt 's mixture, 0.1 i~g/ml tRNA, 
and 0.1 p~g/ml denatured salmon sperm DNA. A radiolabeled probe was 
made using Stratagene PrimeItII kit, and 2 x 106 cpm/ml were added to 

fresh hybridization solution. After 12 h, hybridized filters were then 
washed and exposed to X-ray film as described by Guo et al. (1995). Five 

hybridizing clones were identified and subsequently purified. One clone, 

m134intkC, was subcloned as a 16-kb NotI restriction fragmerit into blue- 

script KS+. This clone, referred to as pKSC10, was subjected to extensive 
restriction map analyses, and was subsequently used for the preparation 
of the targeting vector. 

Electroporation and Analysis of  ES Cells and 
Knockout Mice 

Embryonic stem cells (R1 strain from Andreas Nagy and Janet Rossant, 

University of Toronto) were transfected by electroporation, followed by 

culture and selection in the presence of G418 (250 ~g/ml) and gancyclovir 

(1 p.M) (Hogan et al., 1994). A fraction of each surviving colony was as- 

sayed for the presence of the desired homologous recombination event. 
To isolate DNAs, cells were incubated for 12 h at 55°C in the presence of 

TE buffer (1 mM EDTA, 50 mM Tris-HC1, pH 8) containing 20 mM 

NaCI, 1% SDS and 1 mg/ml Proteinase K. Cell solutions were then ex- 
tracted with an equal volume of buffer-equilibrated phenol, followed by 

precipitation with 20 mM sodium acetate in 100% ethanol. After 75% eth- 
anol washes, DNAs were resuspended in TE buffer. DNAs were assayed 

by Southern Blot analysis, and ES cells harboring the desired targeting 

event were injected into mouse SV129 blastocysts, which were then trans- 
ferred to C57BL/6 mothers. After breeding, heterozygous and homozy- 

gous mice were identified by PCR and Southern Blot analysis of tail 
DNAs, isolated as outlined above. 

For Southern analysis, DNAs were digested with EcoRI restriction en- 

donuclease and the fragments were separated by electrophoresis through 
0.8% agarose gels. DNAs were transferred to nitrocellulose, and then hy- 

bridized with 32p-labeled cDNA probes corresponding to m134 sequences 

just 3' from those taken for the targeting vector. After hybridization, blots 
were washed and exposed to X-ray film for 1 d. 

Immunofluorescence Microscopy on Frozen 
Tissue Sections 

Frozen tissue sections (10 ~m) were cut onto Superfrost plus slides. Sec- 
tions were briefly fixed with methanol (-20°C) for 10 min, and then 

washed 2x with PBS. Sections were preblocked with a solution containing 
1% BSA, 0.1% Triton X-100 and 1% gelatin in PBS. Primary antibodies 
were then added to fresh solution and incubated with sections at r.t. for 1 h. 

Antibody concentrations used were anti-134 antibody against a segment of 
the 134 extracellular domain not included in the region chosen for target- 

ing, 1:100 (Kennel et al., 1989, 1990); mAb-5E (anti-BPAG1), 1:50; anti- 
a6 (Kennel et al., 1989), 1:50; anti-BPAG2 (J17; Jones et al., 1991), 1:50; 
anti-laminin 5 (J18; Jones et al., 1991), 1:50; anti-K5, 1:50; and anti-K6, 1: 

400 (gift from D.R. Roop, Baylor University, Houston, TX); anti-K10, 1: 
500 (gift from S. Yuspa). After washing the slides 3x with PBS for 10 min 
each, sections were incubated with fresh solution containing secondary 
Texas red or FITC-conjugated antibodies (1:100 dilution) for 30 min be- 

fore washing as before and mounting. Sections were examined using a 
Zeiss Axiophot immunofluorescence microscope. 

Routine Histology and Ultrastructural Analyses 

Animals were taken shortly after birth or by Caesarean of pregnant moth- 
ers. Tissues were gently removed from the animal, being careful not to ap- 

ply any mechanical stress or pressure to the regions of interest. Tissues 
were processed for either (a) electron microscopy, by fixing in 2.5% glu- 

taraldehyde in 0.1 M cacodylate buffer, pH 7.4, followed by partial oxida- 

tion with H202, followed by the same fixation without H202, both at r.t. 
(stratified tissues), or (b) paraffin embedding, sectioning and hematoxy- 

lin-eosin staining, by fixing in Bouin's fixative. Semithin sections were 
stained with toluidine blue, and these and hematoxylin-eosin-stained sec- 
tions were visualized by light microscopy. Ultrathin sections on copper 
grids were treated with uranyl acetate and lead citrate, and these grids 
were examined in a JEOL-CX electron microscope. 

Results 

Isolation of  the Murine r4 Gene and Generation of  
Mutant Mice 

The mouse 134 integrin eDNA has been cloned and charac- 
terized in its entirety (Kennel et al., 1993). Based on the 
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published sequence, specific oligonucleotide primers were 
designed to encompass a 558-bp sequence beginning at the 

ATG translation start codon of the mouse 134 integrin 
mRNA and extending 3' to this codon. These primers 

were used in combination with reverse transcribed mouse 
skin mRNA to generate this fragment by polymerase chain 
reaction (PCR). The fragment was then subcloned, se- 
quenced to verify its identity, radiolabeled, and used as a 
probe to isolate genomic clones from a mouse 129/sv ge- 
nomic D N A  library. One clone, m134inthC, was found 
which included the 5' end of the m134 integrin gene within 
16 kb of genomic sequence. A restriction map of this se- 
quence is shown in Fig. 1 A. This map extends and modi- 
fies the partial 5' map of a murine genomic clone reported 

previously (Kennel et al., 1993). Sequence analyses re- 
vealed that the two EcoRI sites indicated in Fig. 1 A en- 
compass exons I-IV of the 134 gene. 

The m[34 targeting vector was constructed from m134inthC 
genomic DNA (Fig. 1 A). A 4-kb Eco47III-Afl  II  frag- 
ment was targeted for deletion. This fragment begins in 
exon I (at nucleotide 173), 115 nucleotides 5' from the 

ATG translation start codon. The fragment ends in intron 
III, 3' from nucleotide 758 of the [34 mRNA. This frag- 
ment was replaced with a 1.8-kb fragment containing a 
pgkl-neomycin resistance gene for positive selection. The 
pgkl neo gene was flanked 5' with a 2.8-kb m134 fragment 
and 3' with a 1-kb m134 fragment. A pgkl-Herpes thymi- 
dine kinase gene was used for negative selection as out- 
lined in Fig. 1 A (Adra et al., 1987). 

The targeting vector was transfected into embryonic 
stem (ES) cells, and the transfectants were subjected to 
positive (G418) and negative (Gancyclovir) selection. DNAs 
from surviving colonies were isolated and screened for the 
desired homologous recombinants. Fig. 1 B shows repre- 
sentative Southern blot data from targeted ES clones illus- 
trating the diagnostic bands for a homologously recom- 
bined 134 allele. Of a total of 20 clones analyzed, three 
scored positive for homologous recombination and dis- 
played identical hybridization patterns. A PCR strategy 

was then devised to facilitate screening. The 1.8-kb frag- 

ment diagnostic for the homologous recombination event 
was present in the clones that had been identified initially 
on the basis of Southern blot analysis (Fig. 1 C). 

The mutant clones were injected separately into C57BL/ 

6 blastocysts to produce chimeric animals, which were 
mated with C57BL/6 females. Heterozygous offspring 
were then mated to produce homozygous mutants, and 
offspring were tested for the ml34 null mutation (Fig. 1 D). 
These data verified that the targeting of both 134 alleles 
had been successful. 

The ( - / - )  [34 Mice Display Extremely Severe Skin 
Blistering over Their Entire Body Surface 

The phenotype of the ( - / - )  134 mice was unmistakable. 
These animals were born with large sections of the skin 
peeled from their body surface (Fig. 2 A). Animals died 
within a few hours after birth, apparently from multiple 
complications, including respiratory failure, gastrointesti- 
nal problems, and gross skin denuding. The blistering was 

extremely severe, and following our initial set of observa- 
tions, we subsequently conducted Cesarean deliveries of 
offspring to minimize the mechanical stress to their skin. 

Skin sections of these animals revealed a marked sepa- 
ration at the dermo-epidermal junction (Fig. 2 B, control; 

Fig. 2 C, - / - ) .  Other 134 ( - / - )  tissues that possess 
hemidesmosomes, such as tongue and esophagus, were 
similarly affected, except that for internal tissues, the sepa- 
ration at the epithelial-mesenchymal junction was not as 
pronounced, presumably because internal tissues were not 

as exposed to as much mechanical stress as external tis- 
sues. Abnormalities were found in complex epithelial tis- 

sues such as trachea and bronchus. In all of these tissues, 
the basal layer, i.e., the cells known to express 134 and con- 
tain hemidesmosomes, displayed some signs of detach- 
ment from the underlying mesenchyme. 

Taken together, the severity of the skin blistering in 
mice, the involvement of internal epithelial tissues, and 

Figure 1. Targeting vector, Southern, and PCR analyses of ES cells and mice lacking the [34 integrin gene. (A) Restriction map of clone 
m[34inthC (top) and the targeting vector used for gene ablation (bottom). The 2.8-kb and 1-kb [34 arms are shown (light gray boxes), 
along with the ,'-~4-kb [34 genomic sequence replaced with PGK-NEO. Black arrow set denote primers used for PCR of targeted alleles. 
NotI denotes site of linearization of the targeting vector; white arrow is the 5' primer for the endogenous allele screen. E, EcoRI; 47, 
Eco47 III; A, AfllI; N, NheI. (B) Southern blot analyses of EcoRI-digested genomic DNAs from five representative control and tar- 
geted ES clones from the first plate of colonies (ES1, clones 2--6). The blot was probed with the 3' fragment indicated in the gray box in 
the upper right in A. The ~4.3-kb hybridizing band is diagnostic for the homologous recombination event, and the ,-~10-kb band is char- 
acteristic of the wild-type [34 allele (see A). (C-D) PCR data from 3' probe analysis of representative DNAs of ES clones (C) and of an 
embryo litter from a heterozygous mating of mice germline for transmission of clone ES2-10. (D) Genomic DNAs were subjected to 
PCR using primers specific for the mouse 134 gene and targeted event. The 3-kb band is diagnostic of the wild-type DNA (primer set 
only used in D); the 1.8-kb band is diagnostic of the targeted event. 
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Figure 2. Separation at the mesenchymal- 
epithelial junctions in skin of 134 integrin 
( - / - )  mice. (A) Newborn 134 null mouse. 
Note gross denuding of the body trunk skin. 
This occurred at birth of all animals ho- 
mozygous for the 134 null allele, and it re- 
sembled denuding seen in junctional epider- 
molysis bullosa in humans. (B-C) 
Hematoxylin-eosin stained sections of skin 
from control (B) and null (C) mice. In C, 
note (1) gross separation at the dermo-epi- 
dermal junction (asterisk); (2) pearl-like or- 
ganization of some groups of cells in 

spinous layers (bracket); (3) general disor- 
ganization of cells in basal and spinous lay- 
ers; and (4) the difference in thickness of 
the stratum corneum in B and C is not real; 
the upper layers frequently detach during 
sectioning. (D-H) Newborn control (D and 
F) and null (E, G, and H) skin sections 
stained with antibodies against K5 (D and 
E), K6 (F and G), or K10 (green) and K5 
(red) (H). Note discontinuous layer of anti- 
K5 positive cells in E, presumably due to 
degeneration of basal cells (discussed later 
in text). B-C were taken with a 63x objec- 
tive and (D-G) were taken with a 40x ob- 
jective. Abbreviations: BL, basal layer; SP, 
spinous layer; GR, granular layer; SC, stra- 
tum corneum; De, dermis; white dotted line, 
dermo-epidermal junction; white line, a 
small blister separating the epidermis from 
the underlying dermis. White arrowheads 
point to stratum corneum; white asterisk in 
E, G, and H highlight a pearl of suprabasal 
keratinocytes displaying basal-like proper- 
ties. 
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the tissue separations at mesenchymal-epithelial junctions 
bore a striking resemblance to the severe form of junc- 
tional epidermolysis bullosa in humans (Fine et al., 1991). 
Additional parallels are the autosomal recessive pattern of 
inheritance in JEB and its high rate of infant mortality. 
The mutant mouse skin differed from the skin of most 
JEB cases in that cells within the basal and spinous layers 
of the epidermis were disorganized (Fig. 2 C). Most strik- 
ing was the presence of pearls of cells with closely spaced, 
different-sized nuclei, and very little cytoplasm (an exam- 
ple is bracketed in Fig. 2 C). These pearls were found in a 
number of stratified squamous epithelia, and included re- 
gions that were at least partially attached to their substra- 
tum. The cells within these pearls appeared basal-like in 
character and stained with antibodies against keratin 5, 
typically found only in basal cells (Fig. 2, D and E; pearl 
marked by asterisk). These cells did not stain with anti- 
bodies against keratin 6, typically induced in suprabasal 
cells during wound-healing (Fig. 2, F and G; Mansbridge 
and Knapp, 1987), nor did they stain with antibodies 
against the suprabasal marker, keratin 10 (Fig. 2 H; double 
label anti-K5, red; anti-K10, green). In addition to these 
biochemical differences, spinous layer cells did not flatten 
out as they typically do during the course of terminal dif- 
ferentiation. This said, granular and stratum corneum lay- 
ers seemed normal, and gave a normal pattern of staining 
with anti-loricrin, a granular layer marker (data not 
shown). These differences were most prominent, but not 
exclusive to, areas where the epidermis was detached from 
the underlying dermis. 

The Skin of the ( - / - )  Mice Do Not Have Detectable f14 
Integrin mRNA or f14 Integrin Protein 

To assess whether the targeted homologous recombina- 
tion resulted in ablation of the normal 134 integrin mRNA, 
we conducted RT-PCR on total RNAs extracted from 
skins of these mice. To verify the amount and quality of 
each RNA sample, we used primers selective for mouse 
[3 actin. To test for expression of the normal 134 RNA, we 
used a primer set corresponding to a segment of 134 se- 
quence encompassing the segment expected to be missing 
in the 134 null genome. As shown in Fig. 3, no 134 band was 
amplified in the skin isolated from the [34 knockout 
mouse. These data indicated that normal 134 integrin 
mRNA expression is fully compromised in the skin of the 
( - / - )  mice. 

While normal 134 mRNAs were not produced by our 
knockout mice, we did detect aberrant 134 integrin RNAs 
when PCR primers were used to 3' downstream regions of 
the 134 transcript (not shown). However, as judged by im- 
munoblot analysis, no 134 protein was produced in the 
knockout mouse (Fig. 4 A). In this case, we used an anti- 
134 antibody against an epitope encoded by a cytoplasmic 
[34 segment that is still present within the ( - / - )  genome 
(Tamura et al., 1990). This anti-134 antibody recognized an 
,-,~200-kD band in skin protein extracts from a ( + / - )  ani- 
mal, but not in the extracts from a ( - / - )  animal. Taken 
together, the RNA and protein analyses demonstrated 
convincingly that the targeting event to ablate the 134 gene 
was successful. 

Figure 3. PCR analysis of RNAs reveals the absence of normal 
[34 integrin mRNA in the knockout mice. For analyzing 134 
mRNA expression in putative knockout mice, total RNAs were 
isolated from the skins of E15.5 control (+/-)  and knockout ( - / - )  
mice using the Trizol reagent and procedure described by the 
manufacturer (GIBCO BRL, Gaithersburg, MD). RNAs were 
reverse transcribed, and then subjected to PCR using primers 
specific for lanes 1-2, actin mRNA; and lanes 3-4, [34 integrin 
mRNA. Each primer set was designed to generate an ~600-bp 
PCR fragment. 

Anti-~4 Antibody Staining Is Absent Near 
the Dermo-Epidermal Junction o f ( - ~ - )  Mice, and 
Some Other Immunodeterminants of 
Hemidesmosomes Are Perturbed 

To further examine the loss of 134 integrin in our knockout 
mice, we conducted immunofluorescence microscopy. In 
control skin, the 134 antibody localized to the dermo-epi- 
dermal junction as expected (Fig. 5 A). In contrast, anti-134 
showed no reactivity to ( - / - )  mouse skin (Fig. B). These 
data are consistent with the RNA and immunoblot data, 
and verify that the homologous recombination resulted in 
the loss of 134 integrin expression. 

To assess whether the loss of 134 protein affected the lo- 
calization of any of the other hemidesmosome components, 
we subjected the mouse skin sections to further immuno- 
fluorescence analysis. Interestingly, antibodies against a6 
integrin displayed strong staining in control skin, but staining 
was barely detectable in the ( - / - )  skin (Fig. 5, C and D, 
respectively). A reduction of c~6 staining was also observed 
in the skin of the JEB-PA patient with 134 mutations 
(Vidal et al., 1995). To test whether the reduction in a6 an- 
tibody staining reflected a downregulation in a6 protein, 
we conducted immunoblot analysis. In the absence of 134, 
the levels of a6 protein were markedly reduced relative to 
the wild-type control (Fig. 4 B, a6; Fig. 4 C, K14 control 
for equal loading of protein). Taken together, our studies 
suggest that a6 integrin may be unstable in the absence of [34. 

The marked decline in a6 in the complete absence of 134 
integrin was surprising given that (a) a6 integrin can part- 
ner with 131 integrin in ceils that do not contain 134 (Natali 
et al., 1992 and references therein), and (b) c~6134 and a6131 
seem to co-exist under certain circumstances in vivo (Na- 
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Figure 4. Immunoblot analysis reveals the absence of 134 and 
downregulation of et6 integrin proteins in the knockout mice. 
Skins of E15.5 control ( + / - )  and knockout ( - / - )  mouse em- 
bryos were minced, frozen in liquid nitrogen, and then pulver- 
ized. Total proteins were extracted and resolved by electrophore- 
sis through SDS polyacrylamide gels (6%). Proteins were 
transferred to nitrocellulose paper by electroblotting. Transfer 
efficiency of blots was verified using Ponceau S staining (Sigma 
Biochemicals, St. Louis, MO; data not shown). Blots were devel- 
oped using an antibody (1:3,000 dilution) against an epitope of 134 
within the cytoplasmic tail portion of 134 (Tamura et al., 1990). 
Blots were also developed with an anti-ct6 antibody (1:1,000; Cur- 
tis and Reichardt, 1993; see Results section) and an anti-keratin 
14 antibody (control; 1:2,000). In all cases, horseradish peroxi- 
dase-conjugated secondary antibodies were used to detect bound 
antibody, and the blots were processed with a chemiluminescent 
substrate (ECL method; Amersham Corp., Arlington Heights, 
IL). Relevant molecular mass standards are indicated in kilodal- 
tons at left. Known sizes: 134 (200 kD); a6 (130 kD); K14 (52 kD). 

tali et al., 1992; Niessen et al., 1994). Since 131 is normally 

expressed in stratified epithelia (Hynes, 1992), we won- 

dered whether 131 does not stabilize et6 because it is down- 

regulated. As judged by immunohistochemistry with an 

anti-[31 antibody, no apparent difference was detected be- 

tween the control and the ( - / - )  skin (not shown). Thus, 

even in the presence of [31, et6 levels dropped in the ab- 

sence of 134. It remains to be established whether this is be- 

cause 131 has a stronger affinity for the other a integrins 

present, or alternatively, because or6 adopts a conforma- 

tion that is unable to interact with 131 in the [34 null cells. 

Surprisingly, ant i -BPAG2 stained strongly the basal 

layer of the epidermis in both control and ( - / - )  skin (Fig. 

5, E-F) .  In fact, the staining was somewhat stronger in the 

knockout  skin than in control skin. Interestingly, at this 

early stage in neonatal development,  B P A G 2  staining was 

not restricted to the base of the basal keratinocyte, as it is 

in older animals (Fig. 5, E; compare with inset). While the 

( - / - )  animals did not survive long enough to analyze 

their skin at an age where B P A G 2  became more restricted 

in its localization, these data suggest that at least at this 

early age, BPAG2 ' s  presence is not dependent upon [34, 

nor does it appear to be dependent upon et6. This is in- 

triguing in light of recent studies suggesting that a6 inter- 

acts with the noncollagenous extracellular domain of BPAG2 

(Hopkinson et al., 1995). 

In contrast to ant i -BPAG2 staining patterns, antibodies 

against BPAG1 displayed a markedly reduced staining 

pattern (Fig. 5, G-H). The protein was barely detectable, 

and in blistered areas, it appeared to form aggregates 

within the cytoplasm (Fig. 5, H 3. These data suggest that 

in the absence of [34, B P A G I - e  expression is either re- 

duced or unable to maintain its location within the cell. If 

protein levels are affected, this could either be due to de- 

creased transcription or translation, or most likely to a de- 

crease in stability. This result was expected given that 

B P A G I - e  resides in the inner plate of the hemidesmo- 

somes, and attaches the hemidesmosomes to keratin fila- 

ments (Guo et al., 1995 and references therein). Finally, 

antibodies against laminin 5 displayed a pattern that was 

indistinguishable between control and ( - / - )  skin sections 

(Fig. 5, l-J). Only upon skin blistering was the anti-laminin 

staining pattern more diffuse than normal (Fig. 5, J ' ) .  

These data suggest that laminin 5 remains at or near the 

basement membrane in the absence of 134. 

Marked Ultrastructural Differences between the 
Epithelium of f14 Integrin Null Mice and That of 
Patients with Severe JEB: Loss of [34 Results in Loss 
of Hemidesmosomes 

To examine in more detail the consequences of ablating 

[34 integrin, we performed ultrastructural analyses on skin 

and other stratified squamous epithelial tissues of  wild- 

Figure 5. Immunohistochemistry of mutant mouse skin. Newborn mice were frozen in OCT compound, sectioned, and subjected to im- 
munohistochemistry (Albers and Fuchs, 1987). First section of each pair is from control skin and second is from ( - / - )  skin. A and B, 
anti-134 integrin; C and D, anti-et6 integrin; E and F, anti-BPAG2; inset to E, anti-BPAG2 of adult skin; G and H, anti-BPAG1 (mAb- 
5E); H', anti-BPAG1 of region where skin has separated at the dermo-epidermal junction (note punctate staining); I, J and J',  anti-lami- 
nin 5; J', region where epidermis has separated from the laminin and basal lamina. All staining is near or at the dermo-epidermal junc- 
tion. All frames were photographed at the same magnification (40× objective), except BPAG1 (100× objective). 
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type and ( - / - )  mice taken at birth (Fig. 6). Wild-type 

cells at the mesenchymal-epithelial junction of  these tis- 

sues display numerous electron dense hemidesmosomal 

plaques at their basal surface (Fig. 6 A, schematic of 

hemidesmosome; Fig. 6 B, control mouse skin). At tached 

to the dense plaque is the inner plate, composed of 

B P A G I - e ,  which attaches the keratin filament framework 

to the membrane (Guo et al., 1995). In striking contrast, 

hemidesmosomes were completely absent in 134 null kera- 

tinocytes (Fig. 6, C and D). This was true both for regions 

Figure 6. The absence of hemidesmosomes in 134 mutant mice. (A) Schematic of hemidesmosome (for review see Schwarz et al., 1990; 
also see Guo et al., 1995). Double arrow denotes lamina lucida. (B) Electron microscopy of basal layer of control newborn mouse skin, 
fixed and embedded in Epon. Inset shows hemidesmosome at higher magnification to illustrate the features characteristic of the dia- 
gram in A (the plaque is the most electron dense structure). (C) Region of newborn esophagus of 134 null mouse, illustrating the com- 
plete absence of hemidesmosomes at the cell membrane, even though the cell is still attached to the underlying lamina densa. Inset, 
higher magnification of mesenchymal-epithelial junction to show that fine filaments, resembling anchoring filaments, are still present. 
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where the epithelium was still attached to its underlying 
lamina densa (Fig. 6 C), and for regions where it had com- 
pletely separated from the underlying mesenchyme (Fig. 6 
D). Despite the lack of hemidesmosomes, some connect- 
ing fibers still spanned the lamina lucida in areas where 
the epithelium had not detached from the lamina densa 
(Fig. 6, inset to C). These thin filaments resembled anchor- 
ing filaments, i.e., the specialized laminin fibers responsi- 
ble for attaching the hemidesmosome to the lamina densa 
(see Fig. 6 A). When taken together with our immunofluo- 
rescence data demonstrating that laminin 5 is still present 
in the ( - / - )  skin, we surmise that the lack of 134 does not 
prevent laminin 5 from assembling into anchoring fila- 
ments. This said, the fragility of the attachment between 
the lamina densa and the epithelium underscored the fact 
that these filaments were not able to anchor efficiently in 
the absence of the hemidesmosomes. 

A remarkable and obvious feature of the stratified squa- 
mous epithelia of 134 null animals was the degeneration 
within the innermost layer (Fig. 6 D; see also Fig. 2). That 
the degeneration was a consequence of the lack of 
hemidesmosomes, rather than the converse, was clear 
from comparing 134 null epidermis with trauma-induced 
intracellular rupturing in BPAGI-e  null epidermis: in 
BPAGI-e  null cells, normal numbers of hemidesmosomes 
are retained at the base of each ruptured cell despite gross 
signs of degeneration (Fig. 6 F). These data demonstrate 
unequivocally that loss of [34, rather than cytolysis, leads 
to a loss of hemidesmosomes. 

In contrast to the basal layer, most regions of the supra- 
basal layers of stratified 134 null epithelia displayed fewer 
signs of degeneration (Fig. 6, cell with nucleus marked in 
D). Moreover, desmosomes appeared unaffected by the 
ablation of 134 integrin or by the resulting degeneration 
(Fig. 6 E). This is consistent with the knowledge that de- 
spite their similar ultrastructure, hemidesmosomes and 
desmosomes are composed of entirely different proteins 
(for review see Garrod, 1993). 

Some of the degeneration seen in the basal layer ap- 
peared to be mediated by apoptosis (Fig. 7). While bio- 
chemical studies have not yet been conducted, classical 
signs of apoptosis, including striking condensation of both 
nucleus and cytoplasm, were prevalent in basal cells (Fig. 
7, A and B). The most condensed cells were easily recog- 
nized by their electron dense appearance. Three of the 
seven cells shown in Fig. 7 A displayed highly condensed 
nuclei and cytoplasm (also see Fig. 7 B). Other basal cells 
showed milder signs of nuclear and/or cytoplasmic degen- 
eration (remaining four cells in Fig. 7 A). In addition, su- 
prabasal cells sometimes displayed apoptotic bodies and 
late-stage signs of apoptosis (not shown). Typical of apop- 
tosis, no neutrophils or inflammatory cells were seen in the 
vicinity of the dying basal cells. These data imply that sur- 

vival of mitotically active cells of stratified squamous epi- 

thelia is dependent upon 134 integrin. 
The absence of hemidesmosomes and the presence of 

epidermal cell degeneration was different from skin of 
PA-JEB patients, where rudimentary hemidesmosomes 
and keratin filament attachments are still seen, and where 
cell degeneration in nonlesional skin is minimal (Nazzaro 
et al., 1990; Lacour et al., 1992; Phillips et al., 1994; Vidal 
et al., 1995). To assess whether such differences may be at- 
tributed to variations in mechanical stress, exerted either 
on newborn mice during delivery or upon movement of 
the embryos in the womb, we repeated our studies on 
E15.5 mouse embryos, carefully isolated by Cesarean sec- 
tion of pregnant females. While the skin was largely at- 
tached in these embryos, it was still very fragile (not 
shown). Moreover, stratified squamous epithelia still 
lacked hemidesmosomes and displayed signs of degenera- 
tion (not shown). Therefore, unless species specific varia- 
tions account for the differences in severity between the 
epithelium of PA-JEB patients and 134 null mice, we would 
anticipate that bona fide null mutations in 134 genes in hu- 
mans will produce very severe JEB, with a complete lack 
of hemidesmosomes. 

A final intriguing aberration in the epidermis of new- 
born 134 null mouse skin was the presence of mitotic cells 
in the suprabasal layers. An example is shown in Fig. 7 C 
(large arrow). This mitotic cell was located within one of 
the pearls of basal-like cells (see also Fig. 2), and was 
many cells removed from the basal layer. Such suprabasal 
mitoses were never seen in normal control skin. Moreover, 
the pearls of cells contained very peculiar cell organiza- 
tion. Often, these cells were small and very closely spaced, 
with very little cytoplasm (Fig. 7 D: typical spinous cell is 
at left; cytoplasms of three pearl cells are at right). While 
pearl cells displayed desmosomes and keratin filament 
bundles (inset), such structures were fewer in number than 
typical suprabasal cells. While further experiments will be 
necessary to examine the sequence of events that lead to 
these remarkable changes within the epidermis, the initial 
event that led to these differences was ablation of 134. 

Degeneration in Cells That Express/34 Integrin but Do 
No t  Possess Heraidesmosomes 

Most single layered epithelia, including pyloric epithelium 
and the epithelium of the small intestine, do not possess 
hemidesmosomes and yet are known to express et6134 inte- 
grins (Owaribe et al., 1990; Sonnenberg et al., 1990; Natali 
et al., 1992). Interestingly, cell adhesion was also grossly 
perturbed in these nonhemidesmosomal, a6134 positive, 
tissues (Fig. 8; shown is transverse section of small intestine; 
A, control; B, - / - ) .  As judged by immunohistochemistry, 
134 integrin was not detectable in these knockout tissues 

Note: Hemidesmosomes were absent in all ( - / - )  stratified squamous epithelia examined. (D) Newborn paw epidermis of 134 null 
mouse, showing a region where the basal layer has separated from the underlying lamina densa. Note degeneration in basal cell. (E) 
Desmosome from 134 null mouse skin. No differences in desmosome number or structure were detected. (F) Basal epidermal layer from 
tail skin of a BPAG1 null mouse (Guo et al., 1995). Note zone of rupturing just above hemidesmosomes. Note also that despite cytolysis, 
hemidesmosomes are intact. Abbreviations: Hd, hemidesmosome; LD, lamina densa; Nu, nucleus; de, desmosome; Af, anchoring fila- 
ments; kf, keratin filaments; m, mitochondria; double arrows, mesenchymal-epidermal separation; asterisks, cell degeneration. Bar in B 
represents 0.3 Ixm in B, 0.6 Ixm in C, 1 ~m in D; 0.1 txm in inset to B and in E; 0.24 Ixm in inset to C; 0.55 ~m in F. 
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Figure 7. Ultrastructure showing apoptosis in basal epidermal layer and mitotically active basal-like cells in suprabasal pearls. Electron 
microscopy of basal layer of 134 null newborn mouse skin, fixed, and embedded in Epon. (A-B) Basal layer, separated from underlying 
basal lamina (double arrowheads denote separation), showing numerous examples of cells displaying highly condensed chromatin and 
condensed cytoplasm, giving the cells an electron dense appearance. All seven cells show some signs of apoptosis, and the first, fourth, 
and seventh cells in the row are in the most advanced stages. Cell in B is a higher magnification of first cell in A. Note the highly con- 
densed chromatin and signs of degeneration of mitochondria. (C) Boundary of a pearl of cells within the suprabasal layer. Arrowheads 
denote border: cells above are within the pearl; those below are normal looking spinous cells. Note cell in prophase (big arrow). (D). 
Higher magnification of a boundary region, showing normal looking spinous cell at left and cytoplasms of three different pearl cells to 
the right. Note abundance of keratin filaments (kfs) and desmosomes (de) in the spinous cell, but their paucity in the immature looking 
cells within the pearl. Inset shows keratin filaments and desmosome within a pearl cell, demonstrating that these cells are keratinocytes. 
Bar in A represents 1.9 i~m in A; 0.8 I~m in B; 3.3 Ixm in C, and 1 Ixm in D; 1.6 ~m inset to D. 

and or6 integrin was marked ly  reduced (Fig. 8, C-F) .  The 

lesions in gastrointestinal epithelia were relevant in light of 

the fact that these tissues are affected in the severe forms of 

JEB, and in patients displaying JEB with pyloric atresia. Such 

defects were also seen in the one pat ient  thus far found to 

contain mutations in the 134 integrin alleles (Vidal et al., 1995). 

Interestingly,  our mice displayed a par t ia l  restr ict ion of 

epi thel ial  passages in esophagus and tongue, where the 

outer  layers from a de tached  area  were often fused 

through extracel lular  mater ia l  to an opposing a t tached 

area, a feature  reflecting the natural  abili ty of  outer  layer 

cells to interconnect.  
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Figure 8. Degeneration in epithelia lacking hemidesmosomes. (A-B) Hematoxylin- and eosin-stained sections of intestinal epithelium 
from newborn control and 134 null mouse, respectively. Note signs of degeneration at the epithelial-mesenchymal junction in B (double 
arrowhead denotes separation/degeneration). (C-F) Immunofluorescence of intestinal epithelium of newborn control (C and E) and 134 
null (D and F) mouse. C and D, anti-134; E and F, anti-or6. BM, basement membrane. Frames were photographed at 40× objective. 

We could not readily evaluate the effects of [34 ablation 

on Schwann cell myelination and axonal integrity. Al- 

though it appeared from our preliminary studies that 

Schwann cell development may be affected in these mice, 

tissue culture studies on Schwann cells from newborn [34 

null mice, and/or studies on Schwann cells in older [34 null 

mice (if possible) will be necessary to assess the extent 

to which the nervous system may be affected by [34 abla- 

tion. 

Discuss ion  

What Does the [34 Integrin Knockout Tell Us about the 
Structure of  the Hemidesmosome? 

Our results demonstrate that hemidesmosomal formation 

is dependent upon [34 integrin expression in stratified epi- 

thelia. Given the lack of  discernable hemidesmosomes in 

our [34 null mice, it is perhaps not surprising that the local- 

ization of some other hemidesmosomal components  is also 
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perturbed by ablation of [34. Remarkable in this regard is 
the dramatic reduction of et6 integrin, which is barely de- 
tectable by immunofluorescence staining or by immuno- 
blot analysis. 

Previous researchers have shown that or6 can pair with 
[31 in cells that do not possess [34 naturally (Hall et al., 
1990; Cooper et al., 1991; Sonnenberg et al., 1990; Niessen 
et al., 1994). It has always been assumed that if 134 were ab- 
sent in epithelial cells, then or6 would pair with 131. More- 
over, since both ot6131 and et6134 are receptors for laminin 5 
(Niessen et al., 1994), it seemed possible that the complete 
loss of [34 might affect hemidesmosome structure, but 
would not necessarily affect cell-substratum adhesion. In 
our studies, we show that when [34 is absent, a marked re- 
duction in a6 occurs in epithelial cells whose normal coun- 
terparts express 134. In addition, reduction of ~6 occurs un- 
der conditions where [31 seems to be present in normal 
amounts. Based on these observations, it would appear 
that a6 does not pair appreciably with 131 in mutant epi- 
thelial cells lacking 134, and that the bulk of et6 seems to be 
unstable in epithelia under conditions where [34 is absent. 

The substantial loss of cell adhesion in the absence of 
hemidesmosomes provides a graphic illustration that 
hemidesmosomes are essential structures for cell-substra- 
tum adhesion in stratified squamous epithelia. Yet basal 
epidermal keratinocytes express a number of integrins, in- 
cluding ct2lM and c~3131, in addition to ot6134 (Marchisio et 
al., 1991; Hertle et al., 1991; Watt et al., 1993), In vitro, 
these other integrins participate in cell-substratum adhe- 
sion (Carter et al., 1990, 1991). We do not yet know why 
these other integrins are not able to provide sufficient ad- 
hesion in vivo to counteract the loss of hemidesmosomes 
in our knockout mice. 

The {34 Null Mice Have a Severe Form of  Junctional 
Epidermolysis BuUosa 

JEB is a rare autosomal recessive disorder affecting ap- 
proximately 1:100,000 in the human population. With the 
exception of generalized atrophic benign EB, a high mor- 
tality rate is seen in JEB, previously referred to as EB leta- 
lis. In addition to severe blistering at the dermo-epidermal 
junction, recurrent erosions occur in the gastrointestinal 
and genitourinary tracts, as well as in the cornea and in the 
respiratory tract. Approximately 15% of patients with se- 
vere junctional EB have pyloric atresia, i.e., blockage of 
the gastroduodenal tract (Hayashi et al., 1991; Fine et al., 
1991). This blockage appears to arise from fusion of the 
detached epithelial lining of the atretic pyloric segment. 
The common link between the affected tissues in severe 
cases of JEB appears to be an expression of a6134 and 
laminin 5 and not merely hemidesmosomes (Sonnenberg 
et al., 1990; Natali et al., 1992). 

In the majority of JEB cases, antibodies against laminin 
5 label the dermoepidermal junction weakly, if at all 
(Schofield et al., 1990). In many of these cases, homozy- 
gous or compound heterozygous mutations have been de- 
tected in both alleles encoding any one of the laminin 5 
chains (Pulkkinnen et al., 1994a,b; Christiano et al., 1996; 
McGrath et al., 1996, and references therein). In contrast, 
skins from several JEB patients with pyloric atresia stain 
with antibodies against laminin 5, but not against 134 inte- 

grin (Nazzaro et al., 1990; Lacour et al., 1992). Weak anti- 

134 labeling has also been reported in the one JEB-PA case 
analyzed genetically (Vidal et al., 1995), as well as in a num- 
ber of conventional Herlitz JEB cases (Phillips et al., 1994). 

Our results now provide functional demonstration of 
causality for a gene whose mutations have been implicated 
in JEB. This functional evidence is extremely important in 
light of the fact that chromosomal linkage studies have not 
been possible, due to the often small size of JEB families. 
Our findings reveal compelling similarities between the 
skin of 134 integrin null mice and severe junctional epider- 
molysis buUosa. In addition, internal epithelia typically af- 
fected in severe JEB, including the pyloric epithelium, are 
grossly affected in [34 null mice. Whether JEB-PA should 
be classified as a distinct genetic subtype is a separate issue 
that awaits further analysis of human patients. 

Differences between Severe JEB in Humans 
and in Our Knockout Mice and New Functions 
for Hemidesmosomes 

Unexpectedly, our mice exhibited a significantly more se- 
vere phenotype than most reported human JEB cases. De- 
nuding of the skin occurred with the mildest of mechanical 
stress, and the animals were unable to survive for more 
than a few hours after birth. Ultrastructurally, hemides- 
mosomes were completely lacking, even in esophageal tis- 
sue and in embryos, where mechanical trauma should be 
minimal relative to that exerted on neonatal skin. In con- 
trast, the JEB patients known to have reduced anti-[34 in- 
tegrin staining survived at least 6-8 too, and hemidesmo- 
somes, albeit rudimentary and sparser, were still present 
(Nazzaro et al., 1990; Lacour et al., 1992; Vidal et al., 1995). 

While we cannot exclude the possibility that species- 
specific differences account for these differences in disease 
severity, we think that the difference may reside in the fact 
that we have generated a true null mutation, while the ge- 
netic lesions thus far identified in either laminin 5 chains 
or [34 integrins of JEB patients are either splicing defects, 
frameshifts, internal deletion mutations, or premature ter- 
mination codons that are well within the coding segment 
of the hemidesmosomal gene. One of the two alleles of the 
only patient thus far reported to have [34 mutations was a 
T nucleotide insertion just 3' to the gt 5' donor splice site 
at nucleotide 3801 of the coding sequence (Vidal et al., 
1995). It was suggested that this insertion might lead to an 
in-frame deletion of 51 nucleotides from the mRNA tran- 
script (Vidal et al., 1995). Despite reports that anti-[34 anti- 
body staining is weak if present at all in this and in some 
other patients, even small amounts of a [34 protein pre- 
dicted to have a 17-amino acid residue internal deletion in 
a 200-kD protein could account for the presence of the ab- 
errant hemidesmosomes seen in these patients. Taken to- 
gether, we predict that in humans as in mice, hemidesmo- 
somes cannot form in epithelial cells in the absence of 134 
integrin. 

New Insights into Functions of  a6f14 Integrins 

Our results provide the first insights into the loss of cellu- 
lar functions in the complete absence of hemidesmosomes. 
Our findings imply that in the absence of hemidesmo- 
somes, cells are not only weakly adhesive, as described 
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above, but in addition, they are susceptible to degenera- 

tion and at least in some cases, apoptotic cell death. Cell 

degeneration and loss of cell-substratum adhesion was 

even seen in simple epithelia which express a6134 but do 

not have hemidesmosomes.  

While degeneration was clearly associated with loss of 

cell adhesion, it was interesting that even cells that re- 

mained attached to their underlying basal lamina still 

showed signs of degeneration. In nonadhering cells, signs 

of apoptosis, including chromatin condensation, cytoplas- 

mic condensation, and eventually the appearance of apop- 

totic bodies, were observed. These signs were similar to 

those described when cultured keratinocytes were placed 

in suspension so that they could not adhere to a substra- 

tum (Frisch and Francis, 1994). We cannot attribute the 

degeneration to defects in structural integrity caused by 

the inability of keratin filaments to anchor to hemidesmo- 

somes: in our BPAG1 knockout mice, we severed the con- 

nection between keratin filaments and a6134 integrin, and 

stratified squamous epithelia were still healthy, unless sub- 

jected to very severe mechanical stress (Guo et al., 1995). 

Thus, the inability of other integrins to compensate cannot 

readily be explained by the differences between the cy- 

toskeletons to which different integrins attach. Rather, it 

seems more likely that a6134 interacts with laminin 5 to 

mediate an additional, as yet unidentified signal, which is 

essential for cell survival in the animal. Such a function has 

typically been ascribed to the integrins that attach to actin- 

based cytoskeletons and form focal contacts, and the im- 

portance of a6134 in cell survival has not been hitherto ap- 

preciated. The underlying reason for this may reside in the 

fact that many of the studies on the relative importance of 

different integrins in cell adhesion and survival have been 

conducted on tissue culture cells, where adhesion and tis- 

sue architecture are very different from that which exists 

in vivo. 

Finally, it was intriguing that the stratified layers of 134 

null tissues often contained pearls of basal-like kerati- 

nocytes, sometimes mitotic, and with very immature cyto- 

plasm. Further studies will be necessary before we can as- 

sess whether all these basal keratin-expressing cells are 

mitotically active, or whether the prophase and metaphase 

cells that we observe are only aberrations within the popu- 

lation of immature pearl cells. This said, the ability of 

some suprabasal 134 null cells to maintain expression of 

basal cell markers and to undergo mitosis was remarkable. 

In this regard, it is interesting that spatial reorganization of 

basal cells and apparent loss of cell polarity occurs 8-24 h 

following detachment of epidermis from its substratum in 

culture (Poumay et al., 1994 and references therein). This 

spatial reorganization correlated with an internalization of 

hemidesmosomes; our studies now provide evidence that 

loss of spatial organization within the epidermis is directly 

linked to a loss of hemidesmosomes.  Moreover, the fact 

that such reorganization occurs even in attached 134 ( - / - )  

cells argues against this process arising merely from a me- 

chanical induced catapulting of basal cells into the supra- 

basal layers. Finally, it is interesting that squamous cell 

carcinomas, which contain similar cellular organizations, 

appear to lose 134 expression, but retain a3131 and a6131 

(for review, see Cress et al., 1995). As further studies are 

conducted, we should be able to address the possibility 

that a pearl of keratinocytes in 134 null epidermis might 
represent a clonal expansion of a basal keratinocyte which 

somehow escaped a cell death mechanism. 
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