
Noname manuscript No.
(will be inserted by the editor)

BETaaS: a platform for development and execution

of Machine-to-Machine applications in the Internet

of Things

Carlo Vallati · Enzo Mingozzi · Giacomo

Tanganelli · Novella Buonaccorsi ·

Nicola Valdambrini · Nikolaos Zonidis ·

Belen Martinez Rodriguez · Alessandro

Mamelli · Davide Sommacampagna ·

Bayu Anggorojati · Sofoklis Kyriazakos ·

Neeli Prasad · Javi Nieto De-Santos ·

Oliver Barreto Rodriguez

Received: date / Accepted: date

Abstract The integration of everyday objects into the Internet represents the
foundation of the forthcoming Internet of Things (IoT). Smart objects will be
the building blocks of the next generation of applications that will exploit inter-
action between machines to implement enhanced services with minimum or no
human intervention in the loop. A crucial factor to enable Machine-to-Machine
(M2M) applications is a horizontal service infrastructure that seamlessly in-

Carlo Vallati, Enzo Mingozzi, Giacomo Tanganelli
Department of Information Engineering, University of Pisa Via Diotisalvi, 2. I-56122 Pisa.
Italy. E-mail: {c.vallati, e.mingozzi, g.tanganelli}@iet.unipi.it

Novella Buonaccorsi, Nicola Valdambrini
Intecs S.p.A. Via U.Forti 5, 1-56121, Pisa. Italy. E-mail: {novella.buonaccorsi,
nicola.valdambrini}@intecs.it

Nikolaos Zonidis
CONVERGE ICT Solutions & Services SA 74 Panormou Street, 125 23 Athens, Greece.
E-mail: nzonidis@converge.gr

Belen Martinez Rodriguez
Tecnalia Research & Innovation Parque Tecnolgico de Bizkaia, E-48170 Zamudio. Spain.
E-mail: belen.martinez@tecnalia.com

Alessandro Mamelli, Davide Sommacampagna
Hewlett-Packard Italiana s.r.l. Via G. Di Vittorio 9, 20063 Cernusco sul Naviglio (MI), Italy.
E-mail: {alessandro.mamelli, davide.sommacampagna}@hp.com

Bayu Anggorojati, Sofoklis Kyriazakos, Neeli Prasad
Center for TeleInFrastruktur, Aalborg University Fredrik Bajers Vej 7, DK-9220 Aalborg
st. Denmark. E-mail: {ba, sk, np}@es.aau.dk

Javi Nieto De-Santos, Oliver Barreto Rodriguez
ATOS Research & Innovation C/ Albarracn, 25, 28037 Madrid, Espaa. E-mail:
{francisco.nieto, oliver.barreto}@atos.net



2 Carlo Vallati et al.

tegrates existing IoT heterogeneous systems. The authors present BETaaS, a
framework that enables horizontal M2M deployments. BETaaS is based on a
distributed service infrastructure built on top of an overlay network of gate-
ways that allows seamless integration of existing IoT systems. The platform
enables easy deployment of applications by exposing to developers a service
oriented interface to access things (according to a Things-as-a-Service model)
regardless of the technology and the physical infrastructure they belong to.

Keywords IoT platforms · M2M · Local cloud · Fog computing · Context-
awareness

1 Introduction

The recent advancements in embedded computing and sensor technologies
are turning the Internet of Things into reality. Many solutions commercially
available today exploit networked smart objects to provide end-users with
advanced services connected to the physical world. Such solutions are however
often vertical, isolated, systems based on ad-hoc HW/SW realizations which
are not able to cooperate with each other to share common smart object
capabilities. Isolation is not the only drawback: from a software developer
perspective, the lack of a common software fabric to interact with smart objects
entails great limitations on software portability and maintenance [1].

To overcome such limitations, a layered horizontal approach is by far more
appropriate and desirable, since it eases the integration of heterogeneous ex-
isting systems, and also facilitates the development of IoT applications based
on a unified interface to a converged infrastructure. In fact, several horizontal
IoT platforms have been recently designed and developed exposing standard
inter-faces to access smart objects. Most of these solutions are characterized
by a centralized cloud-based approach, which yields the usual benefits in terms
of scalability (potentially infinite computation and storage capacity), ease of
maintenance, time to market and low development costs. On the other hand,
running an IoT platform in a cloud infrastructure deployed far from where
the smart objects are physically located may result in a sub-optimal choice for
many classes of IoT applications, e.g., Machine-to-Machine (M2M) ones, which
typically have a limited scope in time and space (data need to be processed
only when and where it is generated), require simple and repetitive closed-
loop interactions, and often must respond with stringent latency guarantees
to avoid service disruption.

As a practical example, consider a confined environment, like a smart home,
where a number of M2M systems are already deployed, such as an alarm sys-
tem equipped with presence sensors for surveillance, an environmental control
system including temperature sensors for heating and cooling control as well as
light switch actuators, and a garden watering system with humidity sensors. In
this scenario, one might want to deploy and run an all-in-one IoT platform to
enable the development of new applications leveraging sensors and actuators
from all the available M2M systems. Solutions relying on centralized cloud

106384
Texto escrito a máquina

106384
Texto escrito a máquina

106384
Texto escrito a máquina
The final publication is available at Springer via http://dx.doi.org/10.1007/s11277-015-2639-0

106384
Texto escrito a máquina

106384
Texto escrito a máquina

106384
Texto escrito a máquina



Title Suppressed Due to Excessive Length 3

storage and computational capabilities would obviously re-quire continuous
connection and data offloading towards remote external systems, even to sup-
port applications that only need to exploit data generated locally. Moreover,
a centralized architecture fails to support applications that require proximity
to physical deployments. As an example, an ap-plication for home security
would very much increase its effectiveness at a minimum cost if, in case of an
alarm event, it could also directly control the smart lights available at home
as part of a different system. This however requires real-time interaction with
the latter and accurate context collection, which can be guaranteed only by a
fully local deployment.

BETaaS, Building the Environment for the Things-as-a-Service a European
project funded under the 7th Framework Programme aims at overcoming such
limitations through the creation of a horizontal runtime platform. A distinc-
tive and novel feature of the BETaaS platform is its architecture, which is
based on a distributed runtime environment made of a so-called local cloud of
nodes that allows accessing smart objects connected to the platform regardless
of their technology and physical location. The distributed environment can be
installed on devices such as network gateways, home routers, set-top boxes,
etc., characterized by heterogeneous storage and computational capabilities,
generically hereafter referred shortly as gateways. Such architecture does not
only en-able the deployment of private/isolated platforms but also allows ap-
plications to run close to the IoT physical deployments, with a scope that can
span over different domains by means of direct interaction among gateways.
The proximity between applications and smart objects is of paramount impor-
tance as a crucial enabler for M2M applications that rely on timed and fresh
information from smart objects.

On top of the distributed runtime environment, the BETaaS platform
provides a unified framework to the software developer of M2M applications
through a content-centric service-oriented interface, named Thing-as-a-Service.
Such unified programming interface, mandatory to cut software development
time and enable code re-usability, is exposed to applications to interact with
smart objects with the support of semantic technologies and regardless of
their location, technology or communication protocol. The platform is designed
with a modular structure that supports integration and expandability. This
structure facilitates the integration of existing vertical M2M systems to allow,
on the one hand, applications to interact with things from different environ-
ments, and, on the other hand, to preserve implementations and functionalities
of existing solutions. Such modular architecture allows also easy customiza-

tion that is supported by allowing the development of custom services (named
extended services) running on the platform.

In addition, the BETaaS platform provides built-in support for several non-
functional requirements. These extra functionalities are included to support
the wide variety of application environments envisaged for future IoT platforms
[3]. Although a subset of them are sporadically offered by existing platforms,
to the best of our knowledge BETaaS is the first one that provides applications
with all the following functionalities by design:



4 Carlo Vallati et al.

– Context Awareness is implemented by means of semantic support for
discovery and thing selection by means of efficient and scalable context
identification and management.

– Quality of Service (QoS) is supported for applications that require timed
interaction with physical objects.

– Security is included to secure access to sensitive data and to improve the
platform management through things and gateways trust assessments.

– Big Data Management is provided to handle the large amount of infor-
mation generated by things and to offer applications big data functionali-
ties.

– Virtualization is finally included to guarantee an efficient management
of storage and computation resources and isolation between different ap-
plications that share the same horizontal platform.

In this paper we first present the concept underlying the BETaaS project,
and then we provide an overview of the platform, recently released as open-
source product. The remainder of the paper is structured as follows. In Section
II an overview of the related work is presented, Section III introduces the
BETaaS concepts and overview the platform architecture, in Section IV we
present the interface offered to software developers to build applications for
the BETaaS platform, Section V provides some details of the open-source
platform implementation, finally in Section VI we draw the conclusions.

2 Related Work

Several initiatives have been carried out towards the definition of horizon-
tal platforms for the development of IoT applications. Differently from the
BETaaS approach, the majority of such initiatives adopts a centralized ar-
chitecture. The OpenIoT project 1, for instance, exploits cloud computing to
run an open-source middleware that supports the creation of services offer-
ing virtualization of IoT devices and context awareness. The ClouT project
2 adopts a cloud-based approach as well, however their efforts are specifically
tailored to the smart-city use case. The COMPOSE project 3, instead, focuses
on mobile applications to enable easy access to things through a cloud-based
architecture for integration and scalability. Finally, a number of open horizon-
tal cloud-based platforms are also commercially available, such as, for example,
Xively 4, originated by the former infrastructure named Pachube.

More recently, a novel approach that goes beyond traditional centralized
computing towards a geographically distributed architecture has been pro-
posed. This is referred as Fog Computing [6], which fosters the move of com-
putational and storage capabilities to the edge of the network. Although such

1 http://openiot.eu/
2 http://clout-project.eu/
3 http://www.compose-project.eu/
4 http://xively.com/



Title Suppressed Due to Excessive Length 5

Fig. 1 BETaaS concept and architecture.

approach is recognized as the long-term evolution to support M2M applica-
tions [7], only a few decentralized solutions have been proposed in literature
so far. However, they are usually bounded to a specific technology, e.g. [8],
that exploits the CoAP protocol, or provide only a basic set of functionalities
to applications, e.g. [9], that focuses only on interoperability and integration.

Regarding standardization, it is worth to mention the work of the oneM2M
consortium 5, which aims at developing technical specifications of a common
Service Layer to rely upon interconnecting M2M devices. Finally, among the
many research projects on the field it is worth to mention the IoT-A project 6

that defined an architectural reference model and an initial set of key building
blocks to foster the future IoT, though no actual implementation has been
provided.

3 BETaaS Concept and Architecture

The BETaaS concept and reference architecture are illustrated in Figure 1.
The logical steps bringing forth a converged M2M service platform starting
from a number of already existing systems are shown from bottom to top
on the left side of the picture. More specifically, M2M systems composed of
different smart objects (1) are integrated through a set of gateways, each one
providing access to its locally connected M2M system (2). Gateways then
cluster together through a tight mutual interaction so as to logically form a
local cloud of gateways, which provides the distributed runtime environment
hosting the BETaaS platform (3). The term ”local cloud” referring to the set

5 http://www.onem2m.org/
6 http://www.iot-a.eu/



6 Carlo Vallati et al.

Fig. 2 BETaaS platform Use-Case example.

of gateways hosting the platform has been adopted to highlight the locality
of such deployments, often physically confined in space, and because of some
inherent characteristics of the general cloud systems that are incorporated in
the BETaaS platform, i.e.,

– Resource pooling. An application cannot know/control which physical de-
vice will provide the required service. Efficient service selection based on
context information is implemented to optimize the usage of resources.

– Rapid elasticity. The distributed nature of the architecture makes it highly
scalable and suitable to handle bursts of requests.

– Measured service. Execution of services is based on the current status of
physical devices hosting the gateways, which is therefore monitored to im-
plement resource optimization.

On top of the local cloud of gateways, a number of extended services can
be further deployed (4), in addition to basic ones, in order to expose to appli-



Title Suppressed Due to Excessive Length 7

cations the underlying sensing and actuating infrastructure as a service. The
BETaaS reference architecture (on the right side of Figure 1) reflects the logi-
cal steps previously described by means of a corresponding layered structure.
This structure guarantees the proper level of abstraction to applications at the
top layer, and the flexibility needed to integrate different systems character-
ized by heterogeneous technologies at the bottom layer. Transparent integra-
tion of existing systems is achieved through platform-side adapters installed
at the adaptation layer which provides a uniform interface to the layer above
and converts requests from the latter to access existing systems according to
their respective technology. On top of the adaptation layer there is the TaaS
layer, which is at the core of the BETaaS platform. This layer implements the
Things-as-a-Service model, which defines a common interface to access things
as a service regardless of their specific technology, communication protocol
and location. For each smart thing, one or more thing service(s) are derived in
a content-centric manner and exposed to applications. In order to provide also
abstraction from physical location, i.e., allow applications to transparently ac-
cess thing services irrespectively of the gateway, the TaaS layer is implemented
in a distributed fashion to cooperatively share resources among gateways, thus
realizing the concept of local cloud previously introduced. We refer the reader
to our previous work [2] for a detailed description of the functional view of the
BETaaS architecture.

On top of the TaaS layer, the platform implements the service layer, which
defines the interface to external applications. By default, this layer exposes all
thing services available in a running instance of the platform as basic services
that enable applications to interact directly with smart objects. In addition,
the service layer also allows the dynamic deployment of custom services, named
extended services, possibly developed by a third party. Extended services can
be used to extend the functionalities of the platform by implementing complex
logic tailored to a specific running instance, or can be exploited by applications
to push functionalities, such as real-time control, close to the platform, where
they can run independently of the status of the remote application. In-platform
deployment of extended services does not only allow the platform to support a
wide range of application environments through customization, but also opens
the possibility to establish a digital market of extended services that can be
installed dynamically by end users on demand.

Figure 2 shows BETaaS potential usage in the smart-home use case pre-
viously presented. The alarm, environmental and irrigation systems are inte-
grated into an all-inclusive runtime environment and a unified standard inter-
face is exposed to developers that can create applications leveraging resources
from all systems in a seamless manner. In order to enable this integration,
a number of BETaaS gateways need to be installed. This can be performed
through a combination of (i) installing additional hardware that is natively
running the BETaaS software and connects to the M2M system through a
dedicated adapter; and (ii) modifying whenever possible the original system
in order to implement all or a subset of layer functionalities of the BETaaS
platform, e.g., through an update of the software running on the control unit.



8 Carlo Vallati et al.

While the existing systems preserve their original functionalities, new en-
hanced ones are now enabled by BETaaS. For instance, an extended service
can be installed on the platform to enhance the environmental control system
by exploiting humidity and presence information available from the others,
e.g., turning down the air-conditioning when a window is opened as results
from the magnetic sensor part of the alarm system. Applications interacting
with the platform and running on external devices, instead, can be installed
on a smartphone to expose a uniform control interface to end users. An all-
in-one application running on a smartphone, for example, can offer users the
remote control of all the systems according to users preference and context
information, e.g., by turning on/off the heating/cooling system depending on
whether the user is approaching/leaving the house.

Finally, it is worth to highlight that as a matter of fact the complete separa-
tion between applications and the sensing and actuating infrastructure realized
by the TaaS layer allows third-party developers to build generic applications
which can be run in any instance of the BETaaS platform. This is key to en-
abling the development of an M2M application market from where BETaaS
applications/extended services can be downloaded and installed by users in
their own platforms.

4 Building Software for the BETaaS Platform

BETaaS provides software developers with two types of mechanisms to al-
low exploiting the resources managed by the platform. The first one consists
of developing external applications with their own logic that access the ser-
vices exposed by the platform. In the second case, BETaaS is dynamically
extended through the installation of custom services. On the resource side,
BETaaS provides mechanisms for an M2M system to be seamlessly integrated
into the platform through a transparent interface. Finally, a set of enhanced
capabilities is natively provided to applications/extended services to ease their
development by focusing on the implementation of the application logic.

4.1 Application programming interface

The BETaaS platform exposes services to applications through both Web Ser-
vices and RESTful APIs. The set of available operations is quite small so that
no complex interaction is required:

– Installation, an application requests the platform to allocate the resources
needed for its execution;

– Service invocation, applications request/send data from/to one basic or
extended service;

– Registration, an application register to a basic or extended service to receive
data notifications;

– Notification, the platform notifies to applications new available data;



Title Suppressed Due to Excessive Length 9

Fig. 3 Simplified example of application manifest.

The installation procedure requires a set of structured information about
the resources to be allocated. Applications pass such information to BETaaS
through a manifest document, as illustrated in Figure 3, which contains spec-
ifications on the required service through its semantic description through a
set of natural language keywords. In particular the manifest contains the re-
quired information type, e.g. presence information, and the required context
attributes, e.g. the location of interest. To complete the service description,
other additional requirements might be specified, such as the security level,
the QoS and the trust level. Given this description, the platform takes care of
selecting and aggregating the necessary thing services in order to match the
manifest description. Easy of usage and flexibility are the main strengths of
this approach, which allows developers to describe the required service through
a description, which is easy to understand and modify.

As the installation procedure terminates successfully, the application can
request/send data from/to one basic or extended service specified in the mani-
fest. In order to support a wide range of applications, the platform defines two
different methods to invoke basic or extended services: through single service
invocation or through registration/notifications. Through single service invo-
cation an application requests/sends data from/to a service one-time, e.g.,
to retrieve the current value from a sensor. Through registration/notification,
instead, an application registers its interest to the platform in unsolicited up-
dates on the value of a service. As the value of a given service changes, the
platform takes care of notifying all the applications that registered to the
service with the new available data.

4.2 Extended Service support

BETaaS allows developers and vendors to implement extended services to inte-
grate custom services. The flexible framework that BETaaS is based on allows



10 Carlo Vallati et al.

their dynamic deployment as software bundles. Extended services operate just
like applications and are suitable for delivering complete solutions including
application logic. Extended services may operate as automatic processes (e.g.,
to implement closed-loop control logic as a true M2M application) or can also
expose an interface to applications.

4.3 Integration of existing systems

Integration of an existing M2M system can be performed transparently through
the definition of an Adaptation Layer. The major capabilities of each Adapta-
tion Layer are as follows:

1. ability to automatically detect, connect and communicate with the under-
lying device infrastructure,

2. gathering and creation of contextual information based on the information
provided by the hardware (or software) of the physical device

3. collect missing contextual information through supplementary configura-
tion documents that complete the semantic profile within the platform
represented by a software component called Thing object.

This object holds the necessary information and when forwarded to the upper
layers, creates services for handling the devices not as simple hardware com-
ponents but as smart objects. In parallel, the Adaptation Layer is responsible
for accommodating low level support available to the layers above such as
the periodic notification of values/metrics of particular things to subscribed
services, which are notified on periods described at subscription time.

4.4 Platform capabilities

The BETaaS platform implements by design a set of enhanced capabilities
that are available to applications and are briefly described in the following.

4.4.1 Context Management

BETaaS is a context aware platform, which means that it is aware of the
circumstances that may affect the behavior of the smart objects connected to
it. Among the circumstances that BETaaS considers we have concepts such as
the location of smart objects or the type of feature offered by them. Through
context management BETaaS is able to: (a) unify information coming from
heterogeneous resources in the physical environment, as information collected
by the Adaptation Layer is modeled by an ontology, i.e., the BETaaS ontology,
(b) generate unique thing service names for each of the smart objects, and
(c) infer new knowledge from raw data in a context-aware fashion. Knowledge
inference is performed by two different mechanisms. On the one hand, we have
defined semantic rules based on the BETaaS scenarios, e.g., we have defined a



Title Suppressed Due to Excessive Length 11

rule to detect equivalent thing services, which are those associated to things
of the same time in the same location. On the other hand, we have defined
two word-sense disambiguation (WSD) algorithms to infer information from
locations and from sensor/actuator types. Information is inferred both when a
smart object is attached, and when an application demands information, e.g.,
if an application demands the temperature at home, a temperature sensor
installed in the kitchen is valid (kitchen is meronym of home).

Every gateway in the platform stores a BETaaS ontology. The BETaaS
ontology is a network of ontologies that we have created reusing ontologies
that are relevant in their domains and that model the BETaaS scenarios. In
order to promote standardization, the BETaaS ontology is populated when-
ever possible with the common vocabulary provided by a lexical database
that groups English words into sets of synonyms or synsets. Such database is
based on the semantic relationships between synsets (hypernymy, hyponymy,
holonymy, meronymy). All synsets inserted in the BETaaS ontology are stored
following these relationships.

4.4.2 Quality of Service

Support for heterogeneous QoS requirements is a non-trivial challenge, consid-
ering the broad variety of applications that can run on the BETaaS platform.
Classic approaches define a standard QoS model to categorize QoS require-
ments into a pre-defined set of service classes [4]. Since at run-time applications
can only select one class with a fixed set of service parameters, supporting a
wide range of applications will increase dramatically the complexity.

In order to reduce the platform complexity, a simple schema composed by
three service classes has been adopted: Real-time service (applications with
hard response time requirements), Assured service (applications with soft re-
sponse time requirements) and Best-effort service (applications that do not
require any assurance). At the same time, flexibility is guaranteed allowing
applications to customize their requirements through a dynamic negotiation
procedure within the selected service class.

The negotiation is performed at the time of the installation following a two-
stage procedure: first, the application specifies the QoS parameters required
for the service, then the service negotiates with the TaaS layer the QoS of
the thing services required to fulfill application requirements. For the sake
of simplicity, application developers specify the QoS parameters required for
each service directly into the Manifest file. Developers of extended services
can exploit, instead, an advanced Service Level Negotiation interface to allow
complex developments. For the sake of interoperability, a standard protocol is
exposed by the TaaS layer: the WS-Agreement Negotiation protocol [5], which
is the de-facto standard for SLA agreement negotiation, establishment and
management for Web Services.

In order to enforce and monitor the negotiated QoS requirements, a QoS
framework has been defined and implemented in the platform in order to



12 Carlo Vallati et al.

ensure an efficient management of resources to optimize their usage and guar-
antee the fulfillment of the agreements. The framework included in BETaaS
is based on a two-phase procedure, namely, reservation and allocation. The
reservation phase is handled by a Broker. The Broker manages the QoS nego-
tiation, performs admission control and, most importantly, manages resource
reservation. The allocation phase, instead, is managed by a Dispatcher. The
Dispatcher performs allocation of resources at time of invocation. Resource
allocation can manage the resources following different optimization goals. In
the current release an algorithm that optimizes the energy efficiency of battery
powered smart-sensors has been implemented as described in [10].

For an exhaustive description of the QoS framework, the interested reader
can refer to [11].

4.4.3 Security Management

A capability-based approach for access control that includes access delega-
tion feature is used. The approach is coupled by a Public Key Infrastructure
(PKI), which is implemented through digital certificates. With this approach,
an application developer will receive a certificate signed by BETaaS trusted
Certificate Authority (CA) upon requesting to use BETaaS APIs through a
registration process. During installation, as the application has obtained the
certificate, it acquires a capability or token which states the access rights to
the thing services, such as access conditions, validity period, delegation in-
formation, and digital signature. After mapping each service specified in the
manifest to the required thing services, the platform evaluates the access poli-
cies. As a result, a set of tokens is granted to the application. Every time a
service is invoked, the token is verified confirming access rights and conditions.

Relying on external systems manufactured and maintained by independent
third-parties can raise trust issues. For this reason BETaaS includes a trust
model to monitor things and gateways behavior evaluating their reliability.
The trust model takes into account: the security mechanisms available for
interacting with entities, the QoS fulfillment, dependability measures related to
things and gateways, scalability as interactions increase, expected availability
because of battery load, stability in data generation and gateways reputation.

4.4.4 Big Data Management

In order to handle the amount of data generated by the things in large de-
ployments such as a smart city scenario, a big data manager that exploits
the BETaaS distributed architecture is included. A flexible data distribution
paradigm that allows gateways to distribute data from local things to remote
services and provides a storage service (through a SQL database) is adopted.
These data services overcome the limitation of a single gateway, where resource
could be limited. Moreover, more databases services could be deployed in a
BETaaS instance, so that a failure or the unavailability of a local data service
does not compromise the whole data layer.



Title Suppressed Due to Excessive Length 13

The big data manager connects these database services to a Big Data
platform for the purpose of storing and analytics processing of large amount
of data. Loading tasks from a SQL DMBS to a distributed file system are
performed at regular intervals, keeping local database data growth limited
to only recent data. The big data platform leverages a metastore to define
a structure for the data loaded into the distributed file system, leveraging a
Presto DB to offer clients a SQL interface to access the stored data.

The big data capabilities of the platform are exposed to applications through
a specific module of the big data manager, which provides an interface, named
data task, which allows the analytics deployment, i.e. queries run by PrestoDB
that returns results to client applications. Such interface provides a mechanism
to describe the input parameters that are used to specify the query and to rep-
resent the returned data. The module responsible for managing the data task
has different capabilities: it provides the list of the available data tasks that ap-
plications could run to perform analytics and controls the applications access
to tasks and used resources.

4.4.5 Virtualization

Virtualization capabilities are included in the BETaaS platform for two main
purposes: to provide a way for deploying applications locally (in an isolated
environment, protecting the core BETaaS platform) and to enable scalability
for the platform functionalities (such as computation and storage for big data
analysis).

The platform exploits both local virtualization capabilities provided by
gateways and external cloud resources provided by third parties. This is achieved
by providing a set of basic images that contain pre-installed software depend-
ing on their purpose, based on a very lightweight Linux operating system. In
case of big data, there is an image for computation nodes and another image
for storage nodes, while in the case of applications deployment, there is a Java
web container for deploying web applications.

It is possible to instantiate the same image with different resources, de-
pending on the requirements. The algorithm to allocate resources minimizes
fragmentation by taking into account the resources required by the existing
VMs and the potential requirements for new instances. The priority is to ex-
ploit those resources provided by local gateways but, in the case not enough
resources are available, the algorithm will try to use an external Cloud (if
external accounts have been configured).

Application developers may provide information about the resources re-
quired by their applications in the Manifest file used during the installation,
in an OVF-like format, so the platform can allocate resources accordingly.



14 Carlo Vallati et al.

5 Platform Implementation

The first release of the BETaaS platform, including a substantial subset of the
platform capabilities, has been released as open-source software on github 7.
This implementation is based on the OSGi 8 technology: BETaaS services are
designed to be modular and highly dynamic, and OSGi is a framework that
satisfies such requirements; in fact it allows the deployment of bundles that
expose services discoverable and accessible through a service registry, provided
by the OSGi container itself. The OSGi service registry is restricted to a local
container without possibility of sharing services: in order to overcome such
limitation, BETaaS takes also advantage of Distributed OSGi, which allows
sharing OSGi services between different containers through a distributed reg-
istry, implemented by using Apache Zookeeper and Web services. The BETaaS
platform, in order to offer a seamless deployment mechanism, also leverages
Apache Karaf as OSGi container. Karaf allows the provisioning of bundle
groups by using features. A feature is actually a list of bundles with their re-
lated dependencies, which can then be deployed inside the container directly
from the BETaaS repository. In this way, the deployment of a BETaaS gateway
can be performed through a feature or a set of features, without requesting
any manual installation of a bundle and its dependencies.

The modularity offered by OSGi is exploited to guarantee the expand-
ability of the platform, i.e., additional ”extended” services can be deployed as
third-party bundles at runtime, with a full automatic management of their life-
cycle. For the same reason, platform capabilities are implemented as bundles
as follows.

Context Awareness Look-up is implemented by the Context Manager (CM)
bundle. Every gateway has its own CM, which contains a BETaaS ontology
and a Semantic Parser. Through these two elements, the CM is able to unify
the information coming from heterogeneous resources and applications, and
to infer knowledge from raw data in a context-aware fashion. The BETaaS
network of ontologies has been created using used the following ontologies:
SSN 9, Time 10, CF 11, Phenonet 12, MUO 13, FIPA 14 and GeoNames 15.
Ontology development has been performed through Apache Jena 16.

Whenever a thing is connected to a gateway, contextual information about
this thing (location, type, etc.) is automatically or manually retrieved by the
Adaptation Layer of the gateway. This information is sent to the Semantic

7 https://github.com/BETaaS
8 http://www.osgi.org
9 http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628

10 http://www.w3.org/2006/time
11 http://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-property
12 http://www.w3.org/2005/Incubator/ssn/ssnx/meteo/phenonet
13 http://purl.oclc.org/NET/muo/muo
14 http://www.fipa.org/specs/fipa00091/PC00091A.html
15 http://www.geonames.org/ontology/ontology v3.1.rdf
16 https://jena.apache.org/



Title Suppressed Due to Excessive Length 15

Parser of the gateway. In order to promote standardization, the Semantic
Parser uses WordNet 17 to translate this contextual information to WordNet
synsets whenever possible, and stores this data in the ontology.

WordNet organization is based on semantic relationships between synsets
(hypernymy, hyponymy, holonymy and meronymy). All synsets inserted in the
BETaaS ontology are stored following these relationships, through SKOS 18.
The relationships between the terms are used as a mechanism of knowledge
inference: e.g. if an application demands the temperature at home, a temper-
ature sensor installed in the kitchen is valid (kitchen is meronym of home).

Using the semantic requirements of the Manifest file, the CM creates a
thing service for each of the things connected to a gateway. The information
of the things registered in a gateway is propagated in the instance by means of
the TaaSRM (the bundle that implements the TaaS layer in every gateway),
which communicates locally with its own CM.

The QoS Manger bundle implements QoS functionalities. At the TaaS
layer the module adopts the WS-Agreement Negotiation protocol, which has
been implemented leveraging on an existing publicly available implementa-
tion, WSAG4J a java-based implementation. The implementation has been
customized in order to store information within the distributed data storage
embedded in the platform.

Security management capabilities are implemented within the Security
Manager bundle. The implementation of digital certificate has been performed
based on Java cryptography library, namely bouncycastle 19. The implemen-
tation of access condition within the capability or token is done based on the
Condition field in the XACML (eXtended Access Control Markup Language)
standard, using a library called JBossXACML 20.

The Big Data Manager bundle provides services to store data in a SQL
database, e.g. MariaDB, H2 and Mysql. With respect to the analytics platform,
it uses the Apache Sqoop2 server to load data from a SQL database into a
Hadoop HDFS. The Big Data Manager also uses Apache Hive Metastore to
define a metatable on top of the HDFS imported data: leveraging Hive, such
data can be then processed by a data task, through the usage of the PrestoDB
query system.

Finally, the Virtual Manager bundle provides virtualization capability. Its
implementation relies on the usage of livbirt as the way to manage local VMs,
both for x86/x64 and ARM architectures, thanks to the last versions of Xen
hypervisor. Moreover, support for clouds built on OpenStack (through its API
libraries) and OpenNebula (through OCCI) is included.

For an exhaustive description of the platform implementation details, we
refer the interested reader to the public deliverables available on the project
website.

17 http://wordnetweb.princeton.edu
18 http://www.w3.org/2004/02/skos/intro
19 https://www.bouncycastle.org/java.html
20 http://picketbox.jboss.org/



16 Carlo Vallati et al.

In addition to closed laboratory tests performed periodically to check mod-
ule integration and proper basic software functionalities, the platform is vali-
dated through two field trials set in two different scenarios: smart home and
smart city. In the smart-home trial, an existing proprietary domotic system is
integrated into the platform to demonstrate how existing closed systems can
be successfully integrated. In the smart city trial, planned to test platform
scalability on large-scale and test features like QoS and Big Data, a smart
parking system is deployed to help drivers finding a parking spot using the
presence sensors installed on lamp posts, and to optimize the car distribu-
tion, using traffic information. In this scenario, the M2M systems integrated
in the platform are based on an open standard, i.e., the ETSI M2M and the
Constrained Application Protocol (CoAP). For a more detailed description of
the trials and a presentation of the experiment results we refer the interested
reader to the deliverables publicily available on the project website 21.

6 Conclusion

In this paper we have presented the BETaaS platform, an open-source run-
time platform for the execution of M2M applications that facilitates the in-
tegration of existing IoT systems, and provides software developers with a
high-level, content-centric, abstraction to access smart objects resources, along
with a built-in support for several non-functional requirements. The platform
leverages on a distributed architecture made of gateways that are intercon-
nected through the BETaaS software thus forming local cloud of gateways
on which M2M applications can run exploiting a unified interface to interact
with smart-objects. We believe that the BETaaS open-source framework will
play an important role in facilitating the creation of open IoT systems and on
which third-party M2M applications can run, breaking the barriers that are
refraining the expansion of the IoT market.

Acknowledgements This work has been carried out within the activities of the project
”Building the Environment for the Things-as-a-Service (BETaaS)”, which is a project co-
founded by the European Commission under the 7th Framework Programme (grant no.
317674).

References

1. Rellermeyer, Jan S., et al. The software fabric for the internet of things. In The Internet
of Things, Springer Berlin Heidelberg, 2008.

2. E. Mingozzi, G. Tanganelli, C. Vallati, V. Di Gregorio, An Open Framework for Accessing
Things as a Service in Proceedings of the 16th International Symposium on Wireless
Personal Multimedia Communications (WPMC 2013), Atlantic City, NJ, USA, June 24-
27, 2013.

21 http://www.betaas.eu/deliverables.html



Title Suppressed Due to Excessive Length 17

3. Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.
2013. Internet of Things (IoT): A vision, architectural elements, and future directions.
Future Gener. Comput. Syst. 29, 7 (September 2013)

4. Nef, Marie-Aurlie, et al. Enabling QoS in the Internet of Things. CTRQ 2012, The Fifth
International Conference on Communication Theory, Reliability, and Quality of Service.

5. Oliver Waeldrich, et al, Web Services Agreement Negotiation Specification, WS-
Agreement Negotiation.

6. Bonomi, et al. Fog computing and its role in the internet of things MCC ’12.
7. Abdelwahab, at al. Enabling Smart Cloud Services Through Remote Sensing: An Internet
of Everything Enabler, IEEE Internet of Things Journal, 2014.

8. Mainetti, et al. Discovery and Mash-up of Physical Resources through a Web of Things
Architecture. Journal of Communications Software & Systems, 2014.

9. Sarkar, et al. A scalable distributed architecture towards unifying IoT applications, WF-
IoT, 2014

10. G. Tanganelli, C. Vallati, E. Mingozzi, Energy-Efficient QoS-aware Service Allocation
for the Cloud of Things, Proceedings of the IEEE Workshop on Emerging Issues in Cloud
(EIC 2014) - co-located with IEEE CloudCom 2014, Singapore, December 15-18, 2014.

11. E. Mingozzi, G. Tanganelli, C. Vallati, A framework for Quality of Service support in
Things-as-a-Service oriented architectures, Journal of Communication, Navigation, Sens-
ing and Services (CONASENSE), Vol. 1, No. 2, May 2014.


