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ABSTRACT

Molecular cavities, which include voids and chan-

nels, are critical for molecular function. We present

a webserver, BetaCavityWeb, which computes these

cavities for a given molecular structure and a given

spherical probe, and reports their geometrical prop-

erties: volume, boundary area, buried area, etc. The

server’s algorithms are based on the Voronoi dia-

gram of atoms and its derivative construct: the beta-

complex. The correctness of the computed result

and computational efficiency are both mathemati-

cally guaranteed. BetaCavityWeb is freely accessi-

ble at the Voronoi Diagram Research Center (VDRC)

(http://voronoi.hanyang.ac.kr/betacavityweb).

INTRODUCTION

Molecular structure determines molecular function.
Of particular importance are the ‘gaps’ within a
structure––internal voids, channels running through
it, pockets in the surface––because biological molecules
perform their tasks via interactions with other molecules in
their environment and these interactions often take place
in these spaces. This paper reports a webserver, BetaCavi-
tyWeb, which recognizes voids and channels in molecular
structures and measures their geometrical properties such
as volume, area of cavity boundary and atoms contributing
to geometric features.
Here we de�ne a void as a cavity in a molecular in-

terior that is not accessible to bulk solvent around the
molecule and can be either hydrated or free from any sol-
vent molecule. A channel is de�ned as a hole penetrating a
molecular structure with two or more openings toward the
exterior space through which a solvent or ligand molecule
can freely pass (1,2).
The �rst work on the properties of voids in molecular

structures wasConnolly’sMSprogram in the early 80s (3,4).

MS used a rolling ball on the surface of a molecule to de�ne
a shell corresponding to the external molecular boundary
and an internal void boundary. Many methods have since
been developed for identifying the empty regions, specif-
ically for locating potential binding sites. In 1994, Kley-
wegt and Jones developedVOIDOOwhich recognized voids
by embedding the molecule in a grid and checking which
grid points were not within any of the atoms (5). Another
method using a grid was AVP (6). The SURFNET pro-
gram �tted spheres into the spaces between pairs of atoms
and then identi�ed the voids as clusters of these spheres
(7). Shef�er and Baker developed RosettaHoles to recog-
nize voids by �rst generating a set of void-�lling balls that
cover the interstitial space in a molecule and then apply-
ing the statistical learning technique of support vector ma-
chines (8). Liang et al. developed theVOLBLprogramusing
the alpha-shape which was based on the power diagram (9)
and further improved into CASTp (10). Most recently the
BetaVoid programwas developed byKim et al. and used the
beta-complex derived from the Voronoi diagram of spheri-
cal atoms and its derivative constructs. They showed that it
outperforms existing methods (11) including CASTp (10).

The earliest efforts on the recognition of molecular chan-
nels came during the mid 90s for computing the pore di-
mensions of ion channels. The HOLE program (12) re-
quired the user to specify an initial location within a chan-
nel and its direction. It then used Monte Carlo simula-
tion to recognize the channel. Subsequent studies on chan-
nel recognition have been reported relatively recently. In
2006, Voss et al. showed that channel geometry is impor-
tant for ribosomal polypeptides in determining biomolec-
ular function (13). Channel geometry is also important
for transmembrane proteins in selecting transport of ions,
small molecules and even large molecules (14–18). In 2006,
Damborský and colleagues reported a grid-based method
for extracting cavities by tracing routes from buried active
sites to the external solvent and developed CAVER (19) as a
plug-in to PyMOL (20). Otyepka and colleagues developed
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MOLE using the ordinary Voronoi diagram of atom cen-
ter points (21). TheMolAxis program used the alpha-shape
of the molecule, where atoms were approximated by a num-
ber of identically sized balls (22). In 2009, Pellegrini-Calace
et al. reported the PoreWalker server which computed chan-
nels in transmembrane proteins. The method took advan-
tage of the knowledge that secondary structures are usually
aligned with the medial axis of the channel, and addition-
ally used to geometric information (23). An important step
forward was made by Hege and colleagues in 2011 (24) who
adapted an algorithmwhich traced the edges in the Voronoi
diagram of atoms (25). In 2012, Otyepka’s group reported
theMOLEonline 2.0 server, which was an improved version
of the original MOLE program mentioned above (26), and
Damborský’s group produced a new version of CAVER,
as CAVER 3.0, which could analyze both static structures
andmolecular dynamic trajectories, now using the ordinary
Voronoi diagram of points by approximating atoms with
several spherical balls with identical radii (27).
There are two critical issues in cavity recognition. First,

an accurate, ef�cient and convenient approach is neces-
sary for recognizing and measuring cavities. Vlassi et al.
have pointed out the dif�culty of comparing void sizes pro-
duced from different programs due to the different com-
putational methods and parameters used (28). They con-
cluded that cavity volume was a poor parameter for ana-
lyzing structural responses to mutation because of the un-
reliable and somewhat contradictory computational results.
This suggests that a more accurate and reliable mathemat-
ical method and its implementation is necessary. Second,
there are various types of information to be analyzed and re-
ported regarding cavities. The volume and area are only two
of these. For example, Hubbard et al. pointed out that there
were numerous types of analysis possible regarding molec-
ular voids (29): position, size and shape, number of voids,
polarity, packing of solvent in cavities, distribution of cavity
volumes for solvated and empty cavities, amino acid prefer-
ences for accessible and buried protein surfaces, hydrogen
bonding of polar atoms and solvent within voids, mobil-
ity of cavity atoms, etc. For this purpose, it is necessary to
have a formal representation of molecular structure. These
two issues are the motivation for BetaCavityWeb. Voids and
channels are indeed important quality measures of compu-
tational protein design (30). BetaCavityWeb is accurate, ef-
�cient and convenient and is freely available at the VDRC
(http://voronoi.hanyang.ac.kr/betacavityweb).

METHODS AND MATERIALS

Voronoi diagrams, quasi-triangulations and beta-complexes

Let A = {a1, a2, . . . , an} be a set of three-dimensional
spherical atoms where ai = (ci, ri) is an atom with
center ci and vdW-radius ri. Consider A a molecule.
Let VC(ai ) be the Voronoi cell for ai de�ned as
VC(ai ) = {x ∈ R

3|d(x, ci ) − ri ≤ d(x, c j ) − r j , i �= j}.
Then, the Voronoi diagram VD for the atom set A is
de�ned as VD = {VC(a1),VC(a2), · · · ,VC(an)} where the
connectivity among the topological entities are appropri-
ately represented. In the three-dimensional space, VD can
be represented as VD = (VV , EV , FV ,CV ) where VV is the
set of Voronoi vertices, EV is the set of Voronoi edges, FV is

Figure 1. Voronoi diagrams and derivative constructs (�gures drawn by
the BetaConcept program). (a) Ordinary Voronoi diagram of center points
of circle generators, (b) power diagram of circle generators, (c) Voronoi
diagram of circle generators, (d) invariant Voronoi diagram of offset, (e)
quasi-triangulation and (f) beta-complex.

the set of Voronoi faces and CV is the set of Voronoi cells.
The topology among vertices, edges, faces and cells in VD
are properly maintained in the radial-edge data structure
(31). Suppose that AO is an offset model where aOi ∈ AO is
an offset atom where its radius is increased by a constant
amount δ from the atom ai ∈ A. Then, it is known that the
topology of the Voronoi diagram VDO for AO is identical
to that of VD. Thus, we call the Voronoi diagram of
atoms VD offset-invariant. Formally, in the computational
geometry community, VD is called the additively weighted
Voronoi diagram. Note that VD in Figure 1(c) is different
from both the ordinary Voronoi diagram of points where
the points correspond to atom centers in Figure 1(a) and
the power diagram in Figure 1(b). For the details of VD
and its algorithm, refer to (25,32) and for the Voronoi
diagram in general, refer to (33). Figure 1(c) shows the
VD of a two-dimensional atom set A which consists of six
circular disks. Figure 1(d) shows the two offset curves for
different offset amounts where the intersections between
offset circles are always placed on the Voronoi edges.
The quasi-triangulation QT is the dual structure of VD

and is represented as QT = (VQ, EQ, FQ,CQ) where vQ ∈
VQ, eQ ∈ EQ, fQ ∈ FQ and cQ ∈ CQ are one-to-one dual-
mapped from cV ∈ CV , f V ∈ FV , eV ∈ EV and vV ∈ VV , re-
spectively. As VD is different from the ordinary Voronoi di-
agram of points, QT is different from the Delaunay trian-

 at H
an

y
an

g
 U

n
iv

 L
ib

 o
n
 O

cto
b
er 1

1
, 2

0
1
6

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://voronoi.hanyang.ac.kr/betacavityweb
http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015, Vol. 43, Web Server issue W415

Figure 2. An output page for human carbonic anhydrase XII (PDB id: 1jd0).

gulation which is the dual structure of the ordinary Voronoi
diagram.VD is offset-invariant and so isQT . For the details
of QT , see (34–36). Figure 1(e) shows QT of A.

The beta-complex BC is de�ned from QT when a spher-
ical probe with radius � is given. Consider an edge e inQT
and the two atoms corresponding to the vertices of e. If the
probe can pass between the two atoms without any inter-
section, we remove e from QT . Similarly, if the probe can
pass among the three atoms corresponding to the vertices
of a triangular face f in QT , we remove f from QT . If we
apply this operation for all the simplexes inQT , we eventu-
ally have the beta-complex BC which is therefore a subset of
QT . The region of Euclidean space bounded by BC is called
the beta-shape BS. Hence, each simplex on the boundary
of BS determines the proximity among the atoms on the
boundary of the molecule where the boundary is de�ned
by the probe. Each simplex in BC determines the proximity
among all atoms on andwithin the boundary of themolecu-
lar structure. We emphasize here that the beta-complex can
be computed very ef�ciently from the quasi-triangulation.
For details, see (37). Figure 1(f) shows an example of BC
for β-value. Note that Figure 1 was drawn by BetaConcept
(38).

The BetaCavity algorithm

Consider a vdW-molecule A and its offset model AO, offset
by an amount δ ≥ 0. The boundary ∂AO of the offset model
is equivalent to the Lee–Richards (solvent accessible) sur-
face for a solvent molecule probe with the radius δ.
Suppose that VD = (VV , EV , FV ,CV ) of A is computed.

Due to the offset invariant property, VD is also the Voronoi

diagram of AO. Let Vor = (VV , EV , FV ) be an abstraction
of VD without V-cells. We compute the Voronoi comple-
ment VorC = (VC, EC, FC) by trimming the structure of Vor
with each offset atom in the offset model AO. VorC can be
computed in O(m) time in the worst case, where m repre-
sents the number of entities in theVoronoi diagram. The Be-
taCavity algorithm is detailed in (39) from which we quote
the following theorem fundamental for the BetaCavityWeb
server. Note that the BetaVoid program is the implementa-
tion for voids (11).
THEOREM 1. The Voronoi complement VorC and the space

external to an offset model are homotopy equivalent.
Therefore, a Voronoi complement and the exterior of an

offset model have an identical topological property and its
structure can be used to correctly recognize the voids and
channels of the offset model. A Voronoi complement con-
sists of one or more components. If there is only one com-
ponent, it corresponds to the external space possibly with
channels without any void. If there are two or more com-
ponents, the one connected to in�nity corresponds to the
external space and each of the others corresponds to a void.
GivenVorC = {ξ 1, ξ 2, . . .}where ξ i is a component, we clas-
sify its components corresponding to the unbounded exter-
nal region and voids.
There are two types of Voronoi edges in the component

ξ of VorC for the unbounded region: those intersecting the
boundary of an offset model and those non-intersecting.
Similarly, there are two types of Voronoi faces: those inter-
secting and those non-intersecting Voronoi faces. Given ξ ,
we remove the intersecting edges and faces. Then, the con-
traction of each Voronoi face to one of its bounding Vornoi
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edges reduces ξ to a graph called the Voronoi graph which
consists of vertices and edges. Then, the Euler-Poincaré for-
mula of the Voronoi graph of ξ gives the information about
the topology of the channel (i.e. the existence of handles).
In the case of channels, the Voronoi graph is called its spine
and reveals the topology of the channel. For details about
the Euler-Poincaré formula, see (31). The volume and area
of each cavity can be correctly and ef�ciently computed by
applying the beta-decomposition algorithm (40). The Sup-
plementary material illustrates the recognition of channels
and voids using two example molecules.

RESULTS AND DISCUSSION

The functions of the BetaCavityWeb server

BetaCavityWeb has two ways of taking an input molecular
structure. As the server mirrors the molecular structures in
the PDB (41), users can simply enter a PDB accession code.
Alternatively, users may upload their own molecular struc-
tures stored in PDB format.Users can indicate whether they
wish to compute voids and/or channels with respect to a
solvent probe with a speci�ed radius, �.

BetaCavityWeb produces both text and graphics output
as shown in Figure 2 (For 1jd0, see (42); For the role of the
channel in carbonic anhydrase, see (43)). The textual out-
put consists of three sections: the header, containing over-
all information about the session, and two other sections
containing information on the voids and channels in the
structure. Statistics such as the van der Waals volume and
area and the computation time are also reported. Each of
the void and channel sections contain information such as
the number of cavities, their geometrical properties, a list of
atoms de�ning their boundary, etc.
A probe radius of zero corresponds to the van der Waals

surface and thus the recognized cavities are the van der
Waals cavities. If the probe radius is nonzero, the recognized
cavities are the Lee–Richards (solvent accessible) cavities.
In the case of channels, BetaCavityWeb further reports the
topological properties of each one: the number of openings
(i.e. entrances and exits), the number of topological handles
within the channel, the number of atoms contributing to the
channel boundary, the atom triplets de�ning an area on the
channel boundary, etc. BetaCavityWeb also reports channel
spines and the bottleneck of each channel (i.e. its narrowest
point). We emphasize that solution correctness and com-
putational ef�ciency are mathematically guaranteed. Beta-
CavityWeb allows a user to choose individual cavities for
further analysis. The textual output can be customized by
the user before downloading.
The graphical output, which employs JSmol (44), is

shown in Figure 2. The computed voids and channels can be
displayed together with a molecular structure represented
by a space-�lling, ball-and-stick, stick, or linemodel. Figure
3(a) and (b) show the computed voids in the Lee–Richards
solvent accessible surface and the atoms contributing to the
boundary of the largest void, respectively. Channels can be
visualized in three different ways: (i) a spine, (ii) a radius-
varying ball sweeping through a spine where the radius is
determined by the perpendicular distance from its center
to the boundary of nearby atoms and (iii) the atoms con-
tributing to channel boundary. Figure 4 shows channels: (a)

Figure 3. Voids (1jd0, probe radius: 1.4Å) computed by and visualized in
BetaCavityWeb. (a) Lee–Richards (accessible) surface representation, and
(b) contributing atoms of the biggest void.

the spines of all recognized channels, (b) the spine-sweeping
ball of all channels, (c) the spine-sweeping ball of the largest
channel and (d) the atoms contributing to the boundary of
the largest channel. The largest channel is usually meaning-
ful from a biological point of view while the tiny ones, such
as those in Figure 4(b), are meaningless as they are de�ned
only from a geometric point of view.

The components of BetaCavityWeb

BetaCavityWeb is composed of four components: (i) a ge-
ometric kernel, (ii) a trimmer of the Voronoi diagram,
(iii) a classi�er of the Voronoi graph and (iv) an evalua-
tor of geometric properties. The geometric kernel computes
the Voronoi diagram, transforms to a quasi-triangulation
and extracts the beta-complex. The trimmer computes the
Voronoi complement by trimming the Voronoi structure in-
tersecting a van der Waals molecule or a Lee–Richards sol-
vent accessible surfacemodel (i.e. the offsetmodel) and con-
verts the Voronoi complement into the Voronoi graph. The
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Figure 4. The channels for 1jd0 (probe radius: 1.4Å) computed by and visualized in BetaCavityWeb. (a) the spines of all recognized channels, (b) the
spine-sweeping ball of all channels (Tiny ones are meaningless), (c) the spine-sweeping ball of the biggest channel and (d) the atoms contributing to the
boundary of the biggest channel.

Figure 5. The BetaCavityWeb server’s components and computational
�ow.

Figure 6. The computational acceleration with QTDB: n: # atoms; m: #
simplexes; m = O(n2) for general spheres but m = O(n) for molecules.

classi�er parses the Voronoi graph to recognize voids and
channels. The evaluator computes geometrical properties
such as volume, boundary area, etc. of the recognized voids
and channels. Figure 5 shows how these components are re-
lated: arrows denote the computational logic and data �ow.

QTDB: computational acceleration

The timing for the computation of the quasi-triangulation
for molecular structures in the PDB is important. In most
cases, a molecule of interest might have several analyses per-
formed. In such cases the quasi-triangulation only needs
to be computed once and can be reused for subsequent

analyses. Hence, it is convenient to compute the quasi-
triangulation in a preprocessing stage and store it in a
database so it can be recalled when required. This approach
is possible because the Voronoi diagram of atoms and the
quasi-triangulation are offset invariant. For this purpose,
we have de�ned a quasi-triangulation �le format (QTF) (45)
to store the data in a quasi-triangulation database (QTDB),
available from the VDRC. Users can simply download the
QTF �le corresponding to the PDB �le of interest and con-
vert it to a Voronoi diagram. The QTF �le takesO(m) mem-
ory for a quasi-triangulation withm simplexes and the con-
version from a quasi-triangulation to the Voronoi diagram
or vice versa takesO(m) time in the worst case. If it is neces-
sary or desirable, users can build their own QTDB by run-
ning the QTFier program available from the VDRC. Figure
6 shows this approach.

CONCLUSIONS

We report the BetaCavityWeb server which recognizes
molecular voids and channels and computes their geo-
metric properties. BetaCavityWeb is based on the Voronoi
diagram of atoms, its quasi-triangulation and the beta-
complex whose properties are all mathematically proven.
The algorithms used in the computation are correct and
ef�cient with mathematical guarantee. With the BetaCav-
ityWeb server, researchers can easily and freely access the
powerful capabilities of the Voronoi diagram of atoms to
analyze molecular voids and channels.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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