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Zusammenfassung

Um neue Halbleiter-Bauelemente zu entwickeln und die Effizienz bereits existierender zu
verbessern, müssen neue Materialien erkundet und untersucht werden. Für Anwendun-
gen in Hochleistungselektronik und UV-Optoelektronik werden momentan Halbleiter mit
ultraweiter Bandlücke erforscht. Mit seiner Bandlücke von 4.8 eV ist Ga2O3 ein vielver-
sprechender Kandidat in dieser Gruppe von Materialien. Seine Anwendung in „sonnen-
blinden“ UV-Detektoren und Hochleistungselektronik haben zu wachsendem Interesse an
seinen fundamentalen elektronischen und optischen Eigenschaften geführt. Diese Disser-
tation stellt eine umfassende ab initio-Untersuchung der elektronischen Anregungen in
Ga2O3 dar, um zu dem Verständnis dieser fundamentalen Eigenschaften beizutragen. Die
Dissertation besteht aus zwei Teilen:

Im ersten Teil präsentieren wir eine Methode zur konsistenten Berechnung der neutralen
Anregungen von Valenz- und Kernelektronen in kristallinen Halbleitern. Diese beschreibt
die Vielteilchen-Wechselwirkungen innerhalb des Rahmens der Vielteilchen-Störungstheorie,
und ermöglicht so die präzise Berechnung von Absorptions- und inelastischen Streuungs-
spektren im optischen, UV- und Röntgenbereich. Während diese spektroskopischen Me-
thoden entweder die Valenz- oder die Kernanregungen untersuchen, deckt resonante in-
elastische Röntgenstreuung (RIXS) die Wechselwirkungen zwischen den beiden Anregun-
gen auf. Wir präsentieren einen neuartigen Ausdruck für den RIXS-Wirkungsquerschnitts
innerhalb unseres Vielteilchen-Formalismus, der eine detaillierte Analyse dieser Wechsel-
wirkungen erlaubt. Mit ausgewählten Beispielen demonstrieren wir das Potential unserer
Implementation, die Spektren dieser verschiedenen spektroskopischen Methoden zu be-
rechnen, zu analysieren und zu interpretieren.

Im zweiten Teil der Dissertation verwenden wir unsere Methode, um die Anregungen der
Valenzelektronen, sowie der Ga 1s-, Ga 2p- und Sauerstoff 1s-Elektronen in Ga2O3 zu be-
rechnen. Wir finden ausgeprägte Unterschiede in den diversen Röntgenabsorptionsspek-
tren von Ga2O3-Polymorphen, die von der unterschiedlichen lokalen elektronischen Struk-
tur stammen. Wir bestimmen die Zusammensetzung der Valenz- und Kernanregungen,
analysieren ihre Signatur in den verschiedenen Absorptions- und Streuungsspektren und
untersuchen wie ihr Charakter mit der elektronischen Struktur zusammenhängt. Abschlie-
ßend demonstrieren wir wie RIXS einen zusätzlichen Blickwinkel auf die Valenz- und Ker-
nanregungen und deren Wechselwirkungen ermöglicht.
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Summary

To develop new semiconductor devices and improve the performance of existing ones, the
exploration and understanding of novel materials is required. The group of ultra-wide
band-gap semiconductors are currently being investigated for application in power elec-
tronics and UV optoelectronics. With a band gap of around 4.8 eV, Ga2O3 is a promising
candidate in this group of materials. Its applications in solar-blind UV detectors and power
electronics have led to an increasing interest in its fundamental electronic and optical prop-
erties. In this thesis, we present a comprehensive first-principles study of the electronic
excitations of Ga2O3 to contribute to the understanding of these fundamental properties.
The thesis consists of two parts:

In the first part, we present an all-electron approach for consistent calculations of neutral
core and valence excitations. It yields an accurate description of the electronic interactions
within the framework of many-body perturbation theory (MBPT) and thus enables accu-
rate calculation of absorption and inelastic scattering spectra in the optical, UV, and x-ray
region. While these spectroscopic techniques probe either the valence or core excitations,
resonant inelastic x-ray scattering (RIXS) reveals the interplay between the two. We present
a novel expression for the RIXS cross section within our all-electron many-body formalism
that allows for a detailed analysis of this interplay. We demonstrate the capability of our
implementation to compute, analyze, and interpret the different spectroscopic techniques
with selected examples of prototypical insulators.

In the second part, we apply our approach to study valence excitations, as well as excita-
tions of various core states, i.e. the gallium 1s , gallium 2p, and oxygen 1s states in Ga2O3.
Comparing the core spectra of Ga2O3 polymorphs, we find distinct differences that orig-
inate from their local environments. We determine the composition of valence and core
excitons, and analyze their signatures in the various absorption and scattering spectra. We
investigate how the character of various valence excitons depends on the electronic struc-
ture. Finally, we demonstrate how RIXS can be employed to provide a different viewpoint
on the core and valence excitations and unravel the interplay between them.
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Preface

Modern semiconductor technologies have transformed human society with an unprece-
dented speed since the invention of the transistor in 1947 [1]. The fields of electronics
and optoelectronics as we know them today were initially based on Ge-, Si-, and GaAs-
devices. All of these materials are characterized by their relatively small band gaps below
approximately 2.3 eV [2]. As such, devices produced with these materials have severe lim-
itations, most notably the fact that green and blue lasers could not be manufactured. Yet,
the development of devices based on novel semiconducting compounds with larger band
gaps has proved challenging. In the 1980s and 1990s, crucial material breakthroughs [3, 4]
opened the field of wide band-gap semiconductor technologies based on GaN- and InGaN-
devices and led to the first development of a blue light emitting diode (LED). For these
breakthroughs, Akasaki, Amano, and Nakamura were rewarded with the Nobel prize in
2014 [5]. Since then, the development of ultra-wide band-gap semiconductors has become
the new frontier, promising another substantial step in device performance and opening
the path towards UV optoelectronics [2]. Several materials, such as AlN, diamond, Ga2O3,
and cubic BN, all with band gaps beyond 3.4 eV, are actively being investigated for their
potential application in a new generation of devices, with a wide range of applications [2,
6], such as UV lasers, UV photodetectors [6], and high-power electronics.

Ga2O3 is a promising candidate in the group of ultra-wide band-gap materials [7–9] due to
its large band gap of around 4.8 eV. It has been employed in solar-blind UV detectors [10–
13] both in bulk [14–16] and nanostructure [17–19] geometries. It also emerged as a favor-
able material in power electronics due to the large breakdown field [8, 20], beyond those
of SiC and GaN. Another benefit of Ga2O3 is that excellent growth in large sample sizes
has been achieved [2, 7, 9], an important advantage for industrial device production. These
advantages have led to an increasing interest in its fundamental electronic and optical prop-
erties [7, 21]. To get insight into these from a theoretical point of view, a number of ab initio
studies have shed light on the electronic structure [22–29], effects of doping [25, 30–32],
and surface states [33, 34] and its optical properties [28, 35]. Nevertheless, essential open
questions remain to be addressed from first principles. In this thesis, we focus on two
groups of questions:

The first one concerns the influence of the local structure on valence and core excitations.
Bulk Ga2O3 consists of networks of either distorted octahedra or tetrahedra, with their
centers being gallium atoms and their corners being oxygen ones. Combining these dis-
torted polyhedra in various ratios lead to different structural phases, resulting in a pro-
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0 Preface

nounced polymorphism of this material, similar to that of other oxides such as Al2O3 [36,
37], In2O3 [38, 39], and Sb2O3 [40]. Due to the low symmetry of the Ga2O3 polymorphs,
the local electronic structure in the vicinity of different oxygen atoms differs depending
on the number of bonds they share with either tetrahedral or octahedral gallium atoms.
Even more distinct is the local bonding environment of the gallium atoms. Previous ab
initio studies have focussed either on the electronic structure [23, 24, 28, 41, 42], the optical
excitations [28, 43, 44], or the core excitations [45] of selected polymorphs. Experimental x-
ray absorption near-edge spectra (XANES) have shown pronounced signatures of the local
electronic structure in the excitations of both gallium [46–51] and oxygen core states [45,
358], yet a systematic ab initio study of the core excitations in Ga2O3 polymorphs is still
missing. The open questions are therefore:

What are the signatures of the local geometry in the absorption and scattering spectra? Do

they allow us to distinguish the spectra of different structural phases?

The second group of questions is related to the formation of bound excitons in the core and
valence excitations. Considering the large band gap, the formation of bound excitons with
considerable binding energies has been postulated within the Wannier-Mott model [52].
Experimentally, such binding energies of several hundred meV have been derived from
reflectance studies [53, 54]. In optical absorption measurements [43, 44], however, the
pronounced peaks originating from bound excitons, which have been predicted by ab initio
calculations [35], have not been observed. Overall, little is known about bound excitons in
the optical spectra, and, for core excitations, only binding energies for the oxygen 1s spectra
have been reported [45]. In this thesis, we aim to answer the questions:

What is the nature of the valence and core excitations in Ga2O3? How strongly are excitons

bound in this material? How are they formed and what is their signature in excitation spec-

tra?

First-principles theoretical spectroscopy can yield valuable insight to answer these ques-
tions. In the last decades, many-body perturbation theory (MBPT) [55–61] has become the
state of-the-art approach to determine neutral excitations and has been applied to solids
with considerable success to determine optical and x-ray absorption spectra. However,
theoretical studies so far have focussed on a specific energy region, studying either core or
valence excitations. This has hindered comprehensive studies of excitations over a large
energy range. In this thesis, we present an all-electron MBPT approach that overcomes
this limitations and thus enables consistent calculations of neutral electronic excitations.
We show how it can be used to calculate absorption and inelastic scattering spectra, from
the optical to the x-ray region. While these spectroscopic techniques probe either the va-
lence or core excitations, the interplay of the two can be revealed by resonant inelastic
x-ray scattering (RIXS). We present a novel many-body approach to determine RIXS spec-
tra in solids, which makes use of the valence and core excitations determined within our
all-electron approach.
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In this thesis, we apply our first-principles framework to answer the above raised ques-
tions on the neutral electronic excitations of Ga2O3. To this end, we present results for
the valence excitations, as well as for various core edges, i.e. the gallium 1s , gallium 2p,
and oxygen 1s . We explore the influence of the local and global structure by analyzing and
contrasting the excitation spectra of polymorphs, and by identifying signatures of the local
structure in the core excitation spectra. We present a comprehensive analysis of the bind-
ing and structure of excitons in the core and valence excitations and discuss the signatures
of bound excitons in the various absorption and scattering spectra in detail. Moreover,
we propose resonant inelastic x-ray scattering (RIXS) as a complementary tool to unravel
the nature of the elementary excitations in this material. It yields not only a different view-
point on the core and valence excitations, but furthermore gains insight into the interaction
between the two.

Combining all these puzzle pieces, this thesis contributes to a deeper understanding of
Ga2O3 and, in particular, its excitations.
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CHAPTER 1

Electronic Structure Theory

1.1 The Many-body Problem

Theoretical spectroscopy aims at determining the interaction of a system of electronswith a
probe particle, typically a photon or an electron, as a function of its energy and momentum.
In any spectroscopic experiment, the probe particle transfers energy and momentum to the
electronic system, driving it out of its ground state. In this way, information on the excited
states of the electronic system can be inferred. Formally, the ground state and excited states
of any system of N electrons and M ions are the eigenstates Ψ of the time-independent
Schrödinger equation ĤΨ = EΨ, where the many-body Hamiltonian is given by

Ĥ = −1
2

N∑

i

∇2i −
N∑

i

M∑

I

ZI

|ri − RI |
+

1

2

N∑

i,j

1

|ri − rj |
−

M∑

I

1

2MI
∇2I +

1

2

M∑

I,J

ZIZ J

|RI − RJ |
. (1.1)

Here, the sums over i and j include all electrons in the system, the sums over I and J

all atomic nuclei. The many-body wavefunction Ψ({r}, {R}) is a function of all electronic
positions {r} = {r1, · · · , ri , · · · , rj , · · · , rN }, as well as all nuclear positions
{R} = {R1, · · · ,RI , · · · ,RJ , · · · ,RM }. The first term of Eq. 1.1 yields the kinetic energy of the
electrons, the second one the Coulomb interaction of the electrons with the ions of charge
ZI . The third term describes the Coulomb interaction between the electrons. Finally, the
fourth and fifth term describe the kinetic energy of the ions with massMI and the Coulomb
repulsion between the ions, respectively.

Although the Hamiltonian in Eq. 1.1 appears compact, a straight-forward solution is impos-
sible for any system containing more than a few electrons. Due to the Coulomb interaction
between all particles, the Hamiltonian does not factorize and leads to a coupled system
of differential equations of enormous dimensionality [62, 63]. Therefore, established al-
ternative approaches exist that yield spectroscopic properties without knowledge of the
full many-body wavefunctions. The derivation of these approaches and their application
to real crystalline materials requires a number of approximations, which we will motivate
and discuss in the following.

The first approximation that is typically introduced in theoretical spectroscopy concerns

3



1 Electronic Structure Theory

the dynamics of the electrons and the nuclei. Since the nuclei are at least three orders of
magnitude heavier than the electrons, their dynamics is much slower. As such, the elec-
trons follow the atomic motion almost instantaneously, while the nuclei cannot follow the
electron motion and rather encounter a time-averaged electronic potential [62]. This mis-
match in the dynamics can be formalized by expanding the Hamiltonian in Eq. 1.1 in terms

of
(
me/MI

)1/4
[64]. An expansion up to first order yields a Hamiltonian for the electronic

system at a fixed set of nuclear positions {R}. This approximation is known as the Born-
Oppenheimer approximation [64], and results in a Schrödinger equation ĤBO

Ψe = EeΨe for
the electronic wavefunction Ψe (r1, r2, ..., rN ), where the electronic Hamiltonian is given
by

ĤBO
= −1

2

N∑

i

∇2i +
1

2

N∑

i,j

1

|ri − rj |
+

N∑

i

Ve−n (ri , {R}) +Vn−n ({R}) (1.2)

with the electron-nucleus potential Ve−n (r) =
∑

I
ZI
|ri−RI | and the nucleus-nucleus potential

Vn−n =
1
2

∑

I,J
ZIZ J

|RI−RJ | . The Hamiltonian in Eq. 1.2 is a function of the electronic posi-

tions {r} and only depends parametrically on the nuclear configuration {R} through the
electron-nucleus potential Ve−n. For a given nuclear configuration, the potential Vn−n adds
only a constant to the total energy, without affecting the electronic wavefunctions. The
Hamiltonian in Eq. 1.2 thus yields the wavefunctions and energies of interacting electrons
in the external potential of the ions. We note that Eq. 1.2 is not the most general Hamil-
tonian for the electronic system in spectroscopic experiments. Generally, the Hamiltonian
should include the probe particle and its interaction with the electrons as well. In Chap-
ter 3, we will show the generalized form of the Hamiltonian (Eqs. 3.4 and 3.28) including
the quantized electromagnetic field and a fast-moving probe electron, respectively. A solu-
tion of the full coupled system is not necessary within linear-response theory, and we only
have to consider the excited states of the Hamiltonian in Eq. 1.2.

While the Born-Oppenheimer approximation simplifies the Hamiltonian, the electronic-
structure problem, i.e. the solution of Eq. 1.2 for a system of N electrons, is still highly non-
trivial. In the remaining chapter, we will discuss two successful approaches to obtain the
electronic structure in solids: density functional theory (DFT) and many-body perturbation

theory (MBPT). We will then see how spectroscopic quantities for a wide range of photon
energies from the hard x-ray to the optical region, can be obtained from the solutions of
the electronic structure problem.

1.2 Density Function Theory

Solving the Schrödinger equation 1.2 for a system of N interacting is a daunting task, since
it requires the determination of the many-electron wavefunction Ψe (r1, r2, ..., rN ), which
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depends on the 3N electronic coordinates. The problem thus becomes extremely complex,
especially in solids, where the number of electrons is of the order of Avogadro’s constant,
i.e. N ∝ 1023. A way to reduce the complexity of the problem is offered by density func-

tional theory (DFT), which allows one to reformulate the problem in terms of the ground-
state density n0(r) instead of the wavefunction. In DFT, the special role of the ground-state
density is employed: Any property of a system of interacting particles can be expressed
as a unique functional of the ground-state density. Thus, the ground-state density can
be employed as the basic variable of any property. In recent decades, DFT has become
the workhorse in materials science, computational solid-state physics and quantum chem-
istry [65–68], as it allows for efficient and accurate calculations of ground-state properties,
such as total energies, crystal structures, phonon dispersions, and many more [69, 70]. In
this chapter, we will shortly introduce the basics of DFT as it is relevant for this work. More
detailed introductions into DFT and its application can be found e.g. in Refs. [69, 70].

1.2.1 Hohenberg-Kohn Theorems

A mathematically rigorous foundation of DFT is provided by the two Hohenberg-Kohn
theorems [71]. The first one states that for any system of interacting particles in an external
potential Vext , the potential is uniquely determined by the ground-state density n0(r) and
vice-versa. This theorem guarantees that any property of the system is determined by the
density alone. The second theorem states that one can define a universal functional E[n(r)]
of the electron density n(r) for the total energy (for which the variational principle can
be used), and that for any external potential, the ground-state total energy E0 is given by
E0 = minn(r) E[n(r)]. The density which minimizes the total energy is the exact ground-
state density n0(r). The most general expression for the energy functional is given by

E[n] = T [n] + Einter[n] +

∫

d3r Vext (r)n(r) +Vn−n, (1.3)

where T [n] is the kinetic energy, Einter[n] is the interaction energy of the electrons, and
Vn−n is the nuclei-nuclei interaction of Eq. 1.1. Proofs of the Hohenberg-Kohn theorems are
not provided here, they can be found in numerous reviews of DFT, e.g. Refs. [69, 70].

1.2.2 Kohn-Sham Equations

While the Hohenberg-Kohn theorems prove that it is sufficient to determine the ground-
state density to obtain all properties of the many-electron system, they do not determine
any approach to determine this density. Such an approach is provided by the Kohn-Sham
ansatz [72]. The actual interacting many-body system is replaced by an auxiliary system
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of non-interacting electrons that yield the same ground-state density and thus the ground-
state total energy. The energy functional EKS for these fictitious non-interacting particles
is given by

EKS[n] = Ts[n] +

∫

d3rVext (r)n(r) + EH [n] + Exc[n] +Vn−n, (1.4)

where Ts is the kinetic energy of the non-interacting system, and EH the Hartree energy,
which describes the classical electrostatic energy term for the charge density n(r):

EH [n] =
1

2

∫ ∫

d3rd3r ′
n(r)n(r′)

|r − r′| . (1.5)

In Eq. 1.4, the exchange-correlation energy Exc ensures that the energies in Eqs. 1.4 and 1.3
are identical. It can thus be expressed as

Exc[n] =
(
T [n] −Ts[n]

)
+

(
Einter[n] − EH [n]

)
, (1.6)

which shows that the exchange-correlation energy is given by two contributions, the dif-
ference of the kinetic energy between the interacting and non-interacting system on the
one hand, and the electron-electron interactions beyond the Hartree energy on the other
hand. A set ofN non-interacting electronic orbitalsψKS

i can now be defined as the solutions
of the Kohn-Sham Hamiltonian ĤKS

ĤKSψKS
i = ϵ

KS
i ψKS

i , (1.7)

such that the ground-state density n0(r) of the interacting electrons is obtained as

n0(r) =

N∑

i

|ψKS
i (r) |2. (1.8)

The Kohn-Sham Hamiltonian ĤKS is obtained from Eq. 1.4 by minimizing the functional
under the constraint that the particle number is constant. We obtain it as

ĤKS
= −1

2
∇2 +vext (r) +vH (r) +vxc (r), (1.9)

where the Hartree potential vH (r) is given by

vH (r) =
δEH

δn(r)
=

∫

d3r ′
n(r′)

|r − r′| , (1.10)
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and the exchange-correlation potential vxc (r) by

vxc (r) =
δExc

δn(r)
. (1.11)

In the Kohn-Sham approach, a set of fictitious non-interacting orbitals {ψKS
i } is determined

to yield the exact ground-state density of the interacting system. The complexity of the
many-body problem is contained in the exchange-correlation functional in Eq. 1.6. While
the expression may appear simple, neither the difference in kinetic energy nor the inter-
action beyond the Hartree energy are known. Nevertheless, successful approximations to
this universal functional have been developed in the last decades.

A simple approximation for the exchange-correlation functional Exc[n(r)]was already sug-
gested in the seminal work of Hohenberg and Kohn [71]. Here, the exchange-correlation
energy per particle is given, for each point r in space, by the corresponding exchange-
correlation energy per particle exc (n(r)) of the homogeneous electron gas (HEG), i.e.

ELDAxc [n(r)] =

∫

d3rn(r)eHEG
xc (n(r)). (1.12)

This approximation is known as the local density approximation (LDA), since the exchange-
correlation energy only depends locally on the electronic density. Several analytical param-
eterizations of eHEG

xc (n) are obtained from Monte Carlo calculations of the homogeneous
electron gas, combined with exact limits and scaling laws of exc [73–75]. Even though the
LDA appears as a crude approximation, as it neglects any non-local dependence of the
functional on the density, it has been applied to a wide range of materials with remarkable
success.

The exchange-correlation functional can be improved beyond the LDA, if effects of the non-
homogeneous electronic density are included in the exchange-correlation functional. This
is done in the generalized gradient approximation (GGA), where the exchange-correlation
functional EGGAxc is expressed as

EGGAxc [n(r)] =

∫

d3r f (n(r),∇n(r)), (1.13)

where f (·) is a local function of the density and the density gradient. Therefore GGA
functionals are denoted as semilocal functionals. Numerous expressions for GGA func-
tionals have been developed, the most popular choices for crystalline materials are the
Perdew-Burke-Ernzerhof (PBE) functional [76] and the optimized PBE functional for solids
(PBEsol) [77]. While these GGA functionals yield quantitatively improved results for a
number of properties compared to LDA, formal deficiencies of both LDA and GGA func-
tionals can lead to quantitatively and qualitatively incorrect results for specific observ-
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ables [78], most notably the band gap [79, 80]. These shortcomings occur since any semilo-
cal functional disobeys two important restraints, the derivative discontinuity [81–85] and
the cancellation of the self-interaction [78, 86].

By reducing the self-interaction [86, 87], hybrid functionals yield improved results for the
electronic and structural properties [78, 88, 89], especially the band gap [90–92]. These
approximations to the exchange-correlation functional combine semilocal approximations
with the Hartree-Fock exchange energy EHF

x . Formally, they are derived either from the
adiabatic connection [93, 94] between the non-interacting and the fully interacting system,
or from generalized Kohn-Sham theory [95, 96], where the system of non-interacting elec-
trons is described by a single Slater determinant. The hybrid functional PBE0 [93, 94], for
example, approximates the exchange-correlation energy as

EPBE0xc = EPBExc +
1

4

(

EHF
x − EPBEx

)

. (1.14)

The mixing parameter of 1
4
is fixed a priori [93]. Many other hybrid functionals exist, with

various combinations of GGA functionals and different mixing parameters. Splitting the
exchange-correlation functional into long- and short-range interactions and employing dif-
ferent levels of approximations for the different ranges, yields further improvement of the
hybrid functionals. These functionals are known as range-separated hybrid functionals [97,
98].

1.2.3 Time-dependent Density Functional Theory

While the Kohn-Sham approach formally yields the exact ground-state energy and ground-
state density, theoretical spectroscopy aims at determining the electronic system under a
time-dependent external potential. DFT provides access to spectroscopic observables via its
time-dependent extension, time-dependent density functional theory (TDDFT) [99]. Analo-
gously to the Hohenberg-Kohn theorem, the Runge-Gross theorem [100] ensures the one-
to-one correspondence between a given time-dependent external potential, vext (r, t ), and
the time-dependent density, n(r, t ), for any many-body system which evolves from a given
initial state. In close correspondence to the Kohn-Sham scheme, a set of non-interacting
electrons can be constructed that yield the correct time-dependent density of the system.
The electronic wavefunctionsψKS

i (r, t ) obey

i
∂

∂t
ψKS
i (r, t ) = ĤKSψKS

i (r, t ) =

[

−∇
2

2
+vKS[n](r, t )

]

ψKS
i (r, t ). (1.15)

The effective potentialvKS includes, as in the Kohn-Sham scheme, the exchange-correlation
potential, for which approximations have to be found. More information are provided in
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several reviews of TDDFT [101–103].

The description of spectroscopic techniques, such as optical absorption, has originally been
approached from TDDFT, employing widely used approximations such as the adiabatic
local density approximation (ALDA) [104, 105], with unsatisfactory results, in particular
for insulating solids [106, 107]. To overcome the problem, several approximations beyond
ALDA have been proposed [108–113], with important improvements over ALDA. An im-
portant class of functionals, particularly successful for the description of absorption in
solids, was derived from the Bethe-Salpeter equation (BSE) (see Section 1.3.3) [114–119],
but at a comparable computational cost. While long-range corrected approximations to
the exchange-correlation functional [101, 120, 121] work well for continuum excitons and
require modest computational efforts, they fail in reproducing strongly bound excitons.
Range separated hybrid functionals [112, 122–124] behave similarly to the long-range cor-
rected ones, yet with additional computational effort and reliance on adjustable parame-
ters. A comparative review of TDDFT and many-body perturbation theory can be found in
Ref. [103].

1.3 Many-body Perturbation Theory

In the previous sections, we have shown how the complexity of the many-body problem
can be reduced by expressing the energy as a functional of the electronic density n(r) in-
stead of as an eigenvalue of the many-body Hamiltonian. This reformulation is powerful
as it allows us to calculate properties of the electronic structure from the density, an ob-
ject with much reduced dimensionality compared to the many-body wavefunction. On the
other hand, we have also seen the limitations of this approach when it comes to the cal-
culation of spectroscopic observables, limiting the applicability of DFT in theoretical spec-
troscopy considerably. In this chapter, we therefore consider the Green’s function theory,
an approach that employs the one-particle Green’s function G (r1, t1, r2, t2), and the corre-
sponding two-particle one,G2(r1, t1, r2, t2; r

′
1, t
′
1, r
′
2, t
′
2), as fundamental ingredients. We will

show how these Green’s functions yield spectroscopic observables. Our derivation follows
that in Refs. [63] and [57].

1.3.1 One- and Two-particle Green’s Function

The time-ordered one-particle Green’s function G (r1, t1, r2, t2) = G (1, 2) is defined as

G (1, 2) = (−i)〈0|T̂ [ψ̂ (1)ψ̂ †(2)]|0〉, (1.16)
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where ψ̂ (1) is the field operator and T̂ the fermionic time-ordering operator. Here, we have
introduced a shorthand notation that contracts space- and time-variables as (r1, t1) = (1).
The expectation value in the definition is taken with respect to the many-body groundstate
|0〉. The one-particle Green’s function G (1, 2) describes the propagation of an electron or
hole (depending on the sign of the time difference t1−t2) from 1 = (r1, t1) to 2 = (r2, t2).1 The
corresponding time-ordered two-particle Green’s function G2(1, 2; 1

′, 2′) is defined as

G2(1, 2; 1
′, 2′) = (−i)2〈0|T̂ [ψ̂ (1)ψ̂ (2)ψ̂ †(2′)ψ̂ †(1′)]|0〉, (1.17)

and describes the correlated propagation of two particles. Generally, the n-particle Green’s
function Gn is defined as

Gn (1, . . . ,n; 1
′, . . . ,n′) = (−i)n〈0|T̂

[

ψ̂ (1) . . . ψ̂ (n)ψ̂ †(1′) . . . ψ̂ †(n′)
]

|0〉 (1.18)

The equation of motion for these Green’s functions is derived from the equation of motion
for the field operators in the Heisenberg picture [125, 126]. For the one-particle Green’s
function, the equation of motion is given by 2

[

i
∂

∂t1
− ĥ(r1)

]

G (1, 1′) + i

∫

d3r2 vC (r1, r2)G2(1, 2; 1
′, 2+)

∣
∣
∣
∣
∣
t2=t

+

1

= δ (1, 1′), (1.19)

where we define the single-particle Hamiltonian as ĥ(r) = 1
2
∇2 + Ve−n (r), and vC is the

Coulomb potential. The corresponding equation of motion for G2 is given by [126]

[

i
∂

∂t1
− ĥ(r1)

]

G2(1, 2; 1
′, 2′) + i

∫

d3r3 vC (r1, r3)G3(1, 2, 3; 1
′, 2′, 3)

∣
∣
∣
∣
∣
t3=t

+

1

= δ (1, 1′) − δ (1, 2′)G (2, 1′).

(1.20)

It can be seen in Eqs. 1.19 and 1.20 that the determination of the Green’s functions G and
G2 require knowledge of higher order Green’s functions, G2 and G3, respectively, due to
the two-body nature of the Coulomb interaction. Generally, the determination of the n-
particle Green’s functionGn requires knowledge of bothGn−1 andGn+1. The set of equations
connecting the Green’s functions is called theMartin-Schwinger hierarchy [63, 125, 126]. It
is apparent that, at this point, the determination of the one-particle Green’s function is as
complex as the solution of the many-body Hamiltonian in Eq. 1.2 as it requires knowledge
of all higher-order Green’s functions.

The correlation between the propagation of the two particles in the Green’s functionG2 of

1In addition to this, a simplification consists in neglecting the spin degree of freedom.
2In the treatment of time-ordered quantities, it is often necessary to introduce positive infinitesimal time

differences δt , and we define t+ = t + δt .
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Eq. 1.19 can be made explicit by introducing the two-particle correlation function L as

L(1, 2; 1′, 2′) = −G2(1, 2; 1
′, 2′) +G (1, 1′)G (2, 2′), (1.21)

such that the independent propagation of the electron hole, given by G (1, 1′)G (2, 2′) is
removed from the two-particle Green’s function. Inserting Eq. 1.21 into Eq. 1.19 yields

G (1, 1′) = G0(1, 1
′) +G0(1, 2̄)vH (2̄)G (2̄, 1′) + iG0(1, 2̄)vC (2̄, 3̄)L(2̄, 3̄

+; 1′, 3̄++). (1.22)

Here, we have introduced the Green’s functionG0 for a system of independent electrons in
an external potential. G0 is determined by the equation of motion

[

i
∂

∂t1
− ĥ(r1)

]

G0(1, 1
′) = δ (1, 1′), (1.23)

which is obtained from Eq. 1.19 when the Coulomb is removed.

1.3.2 Dyson Equation

While the one-particle Green’s function is fully determined by the equation of motion 1.19,
we have seen that the calculation of the Green’s function requires knowledge of the two-
particle Green’s function. Thus, in principle, the Green’s functions Gn to all orders have
to be determined, and the task of calculating G1 has the same complexity as the task to
solve the many-body Schrödinger equation in Eq. 1.2. A way to eliminate the undesired
dependence of higher-order Green’s function is to express L in Eq. 1.21 as the variation
of the one-particle Green’s function with respect to a fictitious perturbation u (1, 2), which
vanishes at the end of the calculation [62, 63]:

L(1, 2, 1′, 2′) =

[

δG (1, 1′)[u]

δu (2′, 2)

]

u=0

. (1.24)

In general, Eq. 1.24 does not require the potential u to vanish. Calculations with a non-
vanishing external potential yield the non-equilibrium dynamics of a system in an external
potential. We will not consider this case here, and refer the interested reader to Ref. [63].
To determine the one-particle Green’s function, only knowledge of selected components
of L, namely L(2, 3, 1′, 3+), is required. In this case, the fictitious potential is local, i.e.
u (3, 3+) ≡ u (3), while for the calculation of the full correlation function L, a non-local
fictitious potential u (1, 2) has to be employed. Using Eq. 1.24 above, we can now express
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Eq. 1.22 for the Green’s function Gu in the presence of the fictitious potential as

Gu (1, 1
′) = G0(1, 1′) +G0(1, 2̄)] ×

[

[u (2̄, 2̄+) +vH (2̄)]Gu (2̄, 1
′) + ivC (2̄, 3̄)

δGu (2̄, 1
′)

δu (3̄+, 3̄++)

]

.

(1.25)
The inverse Green’s function G−1u is then given by

G−1u (1, 1′) =G−10 (1, 1′) −
[

u (1+, 1) +vH (1)
]

δ (1, 1′) − ivC (1, 3̄)
δG−1u (1, 2̄)

δu (3̄++, 3̄+)
G−1u (2̄, 1′)

=G−10 (1, 1′) −
[
u (1) +vH (1)

]
δ (1, 1′) − Σxc (1, 1

′)

=G−10 (1, 1′) − Σu (1, 1
′),

(1.26)

where we have introduced the self-energy Σu = u +vH + Σxc with the so-called exchange-
correlation self-energy Σxc defined as

Σxc = ivC (1, 3̄)
δG−1u (1, 2̄)

δu (3̄++, 3̄+)
G−1u (2̄, 1′). (1.27)

G−1u in Eq. 1.26 describes the propagation of the particle that deviates from the free prop-
agation, given by G−10 , due to the influence of the many-body surrounding. The deviation
from the free propagation originates from the external fictitious potential u, the Hartree
potential vH , and an additional term Σxc , which includes both the effects of exchange and
correlation beyond the interaction of electrons due to the Hartree potential. Equation 1.25
is well-behaved for the limit u → 0, and we arrive at the Dyson Equation [127] for the
one-particle Green’s function:

G (1, 1′) = G0(1, 1′) +G0(1, 2̄)Σ(2̄, 2̄′)G (2̄′, 1′), (1.28)

with the self-energy Σ(1, 2) = vH (1)δ (1, 2) + Σxc (1, 2).

At this point, we have found a closed equation to determine the one-particle Green’s func-
tion (Eq. 1.28) without requiring explicit information on higher-order Green’s functions.
The complexity of the problem has been transferred to the problem of finding the self-
energy Σ (Eq. 1.27). A main benefit of this reformulation is that even low-order approxi-
mations to the self-energy yields contributions to all orders in the Green’s function. These
contributions are conveniently contained in an infinite sum in the Dyson equation. In the
following, we will show how to apply a similar treatment to the two-particle Green’s func-
tion G2. We will then present how these Dyson equations can be combined in a closed set
of integro-differential equations, known as Hedin’s equations.
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1.3.3 The Bethe-Salpeter Equation

As for the one-particle Green’s function G in the previous section, the two-particle corre-
lation function is also determined by a Dyson equation. Inserting the identity G (1, 1′) =
G (1, 3̄)G−1(3̄, 3̄′)G (3̄′, 1′) in Eq. 1.22 and using the product rule, we obtain

L(1, 2, 1′, 2′) = G (1, 3̄)
δG−1(3̄, 3̄′)

δu (2, 2′)
G (3̄, 1′) + 2L(1, 2, 1′, 2′)

⇒L(1, 2, 1′, 2′) = −G (1, 3̄)
δG−1(3̄, 3̄′)

δu (2, 2′)
G (3̄, 1′).

(1.29)

The functional derivative δG−1/δu can be evaluated using Eq. 1.26, which yields

L(1, 2, 1′, 2′) = G (1, 2′)G (2, 1′) +G (1, 3̄)
δΣ(3̄, 3̄′)

δu (2′, 2)
G (3̄′, 1′). (1.30)

Since the self-energy is a functional of the Green’s function, we can employ the chain rule
and obtain

δΣ(3̄, 3̄′)

δu (2̄, 2̄′)
=

δΣ(3̄, 3̄′)

δG (5̄, 5̄′)

δG (5̄, 5̄′)

δu (2̄, 2̄′)
=

δΣ(3̄, 3̄′)

δG (5̄, 5̄′)
L(5̄, 2, 5̄′, 2′), (1.31)

where in the last step, the definition of L in Eq. 1.21 is used. We now express the Hartree
potential vH of Eq. 1.10 in terms of the Green’s function by using n(1) = −iG (1, 1+), such
that vH (3̄) = −iG (5̄, 5̄+)v (5̄, 3̄). Combining the expression for the Hartree potential with
the self-energy in Eq. 1.26, we define the interaction kernel Ξ as

Ξ(3̄, 4̄, 3̄′, 4̄′) ≡ δΣ(3̄, 3̄′)

δG (4̄′, 4̄)
= −iδ (3̄, 3̄′)δ (4̄′+, 4̄)vC (4̄, 3̄+) +

δΣxc (3̄, 3̄
′)

δG (4̄′, 4̄)
. (1.32)

Finally, inserting the definition of the interaction kernel of Eq. 1.32 into Eq. 1.30 yields
the Dyson equation for the two-particle correlation function, known as the Bethe-Salpeter
equation [128, 129] as

L(1, 2, 1′, 2′) = L0(1, 2, 1
′, 2′) + L0(1, 3̄

′, 1′, 3̄)Ξ(3̄, 4̄, 3̄′, 4̄′)L(4̄′, 2, 4̄, 2′), (1.33)

where we define
L0(1, 2, 1

′, 2′) = G (1, 2′)G (2, 1′). (1.34)

1.3.4 Hedin’s Equation

The Dyson equations 1.28 and 1.33 for the one- and two-particle Green’s functions can
be combined to obtain a closed set of integro-differential equations. In the previous sec-
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tions, the Green’s functions were expressed using the fictitious non-local potential u (1) =
u (1, 1+). As we anticipate the effects of the electronic screening to be strong, we now want
to find expression in terms of a potential that already contains some contributions from
the screening. Consequently, we will find expressions in terms of the total classical poten-
tial [63]vcl (1) = u (1)+vH (1), wherewe add theHartree potentialvH (1) = vC (1, 2̄)n(2̄). The
total classical potential thus includes the classical electrostatic screening. We first employ
the chain rule to re-write the exchange-correlation self energy as

Σxc (1, 2) = −ivC (1+, 3̄′)G (1, 2̄)
δG−1(2̄, 1′)

δu (3̄)

= −ivC (1+, 3̄′)G (1, 2̄)
δG−1(2̄, 1′)

δvcl (4̄)

δvcl (4̄)

δu (3̄)
.

(1.35)

The variation of the classical potential with respect to the external potential is given by the

inverse dielectric function ε−1(1, 2) = δvcl (1)
δu (2)

. We furthermore define the screened Coulomb

interaction W as
W (1, 2) = ε−1(1, 3̄)vC (3̄, 2). (1.36)

Lastly, we define the vertex function as

Γ(1, 2; 3) = −δG
−1(1, 2)

δvcl (3)
. (1.37)

These definitions yield the exchange-correlation self energy as

Σxc (1, 2) = iG (1, 2̄)W (4̄, 1+)Γ(2̄, 1′; 4̄). (1.38)

Equation 1.26 is used to determine the vertex function, starting from Eq. 1.37:

Γ(1, 2; 3) = δ (3, 2)δ (1, 3) +G (4̄, 6̄)G (7̄, 5̄)
δΣ(1, 2)

δG (4̄, 5̄)
Γ(6̄, 7̄; 3̄). (1.39)

So far, the vertex function Γ, the self-energy Σ, and the Green’s function G are connected
by Eqs. 1.38, 1.28, and 1.39. In order to close the equations, an expression for the screened
Coulomb potential W is needed. To find this expression, we introduce the retarded re-
ducible polarizability χ and its irreducible counterpart χ̃ .3 These are defined as

χ (1, 2) =
δn(1)

δu (2)
(1.40)

3We have defined here the time-ordered polarizability, as we are working in the framework of time-
ordered Green’s functions. More details on the time-ordered polarizability and the retarded polarizability are
provided in Section 2.2.1 and Appendix B
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and

χ̃ (1, 2) =
δn(1)

δvcl (2)
. (1.41)

As such, the reducible correlation function χ describes the variation of the density with
respect to the external potential u, while the irreducible correlation function χ̃ yields the
variation with respect to the total classical one,vcl . The inverse dielectric function ε

−1(1, 2)
is then given as

ε−1(1, 2) =
δvcl (1)

δu (2)
=

u (1) +vH (1)

δu (2)
= δ (1, 2) +vC (1, 3̄)χ (3̄, 2), (1.42)

where we use the explicit form vH (1) = vC (1, 3̄)n(3̄) of the Hartree potential. Equivalently,
the dielectric function ε (1, 2) is obtained as

ε (1, 2) =
δu (1)

δvcl (2)
=

vcl (1) −vH (1)
δvcl (2)

= δ (1, 2) −vC (1, 3̄) χ̃ (3̄, 2), (1.43)

where we use that the total classical potential is given by vcl = u + vH . The reducible and
irreducible correlation functions are connected by a Dyson equation as

χ (1, 2) =
δn(1)

δu (2)
=

δn(1)

δvcl (3̄)

δvcl (3̄)

δu (2)
= χ (1, 3̄)ε−1(3̄, 2)

= χ̃ (1, 2) + χ̃ (1, 3̄)vC (3̄, 4̄)χ (4̄, 2).

(1.44)

Equations 1.43,1.42, and 1.40 yield a Dyson equation for the screened Coulomb potential
as

W (1, 2) = ε−1(1, 3̄)vC (3̄, 2) =
[
δ (1, 3̄) +vC (1, 5̄)χ (5̄, 3̄)

]
vC (3̄, 2)

= vC (1, 2) +vC (1, 5̄)
[
χ̃ (5̄, 3̄) + χ̃ (5̄, 6̄)vC (6̄, 6̄

′)χ (6̄′, 3̄)
]
vC (3̄, 2)

= vC (1, 2) +vC (1, 5̄) χ̃ (5̄, 6̄)ε
−1(6̄, 3̄)vC (3̄, 2)

= vC (1, 2) +vC (1, 5̄) χ̃ (5̄, 6̄)W (6̄, 2).

(1.45)

Finally, the irreducible polarizability χ̃ is expressed in terms of the Green’s function and
the vertex function using n(1) = −iG (1, 1+):

χ̃ (1, 2) =
δn(1)

δvcl (2)
= −iδG (1, 1+)

δvcl (2)
= iG (1, 3̄)G (4̄, 1)Γ(3̄, 4̄; 2). (1.46)

Equations 1.28, 1.35, 1.46, 1.39, and 1.45 form a closed set of equation, commonly referred
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1 Electronic Structure Theory

Figure 1.1: Schematical representation of the Hedin’s equations 1.47-1.49. The ar-
rows indicate in which order one quantity can be obtained from the previous one. The
quantities are arranged on a circle to indicate that a full solution has to be obtained
self-consistently.

to as Hedin’s equations [130]:

Σxc (1, 2) = iG (1, 2̄)W (4̄, 1+)Σ(2̄, 1′; 4̄)

G (1, 1′) = G0(1, 1′) +G0(1, 2̄)Σ(2̄, 2̄′)G (2̄′, 1′)

Γ(1, 2; 3) = δ (3, 2)δ (1, 3)

+G (4̄, 6̄)G (7̄, 5̄)
δΣxc (1, 2)

δG (4̄, 5̄)
Γ(6̄, 7̄; 3̄)

χ̃ (1, 2) = −iG (1, 3̄)G (4̄, 1)Γ(3̄, 4̄; 2)

W (1, 2) = vC (1, 2) +vC (1, 5̄) χ̃ (5̄, 6̄)W (6̄, 2)

Hedin’s equations

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

1.3.5 The GW Approximation

While Hedin’s equations are formally exact, finding a full solution is a challenging task
even for model systems. Therefore, a vast variety of iterative approaches are employed,
starting with Σxc = 0 or Γ = δ , with different initial guesses for G0, such as Kohn-Sham or
Hartree-Fock Green’s functions, and with different levels of self-consistency. In the follow-
ing, we only introduce the approximations that we will employ to determine spectroscopic
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observables. More detailed reviews can be found in Refs. [63, 131]. A common approxi-
mation is obtained by neglecting vertex corrections, i.e. setting Γ(1, 2; 3) = δ (1, 2)δ (1, 3).
Inserting this approximation into Eq. 1.50 for the irreducible polarizability, one obtains the
random-phase approximation [132–134] (RPA) as

χ̃ (1, 2) ≈ χ̃0(1, 2) ≡ −iG (1, 2)G (2, 1). (1.52)

In this approximation, the polarizability is due to the formation of a non-interacting electron-
hole pair, which can be seen in the opposite time-ordering of the Green’s functions in
Eq. 1.52. The vertex correction, which are neglected in RPA, introduce the effect of electron-
hole correlation in the polarizability. The RPA polarizability can be employed to calculate
the screened Coulomb potential as

W (1, 2) = ε−1RPA(1, 5̄)vC (5̄, 3) =
[
1 −vC χ̃0

]−1
(1, 5̄)vC (5̄, 3). (1.53)

Successively, the approximation to both the vertex and the screened Coulomb potential
yield the exchange-correlation self energy as

Σ
GW
xc (1, 2) ≈ iG (1, 2)W (2, 1+). (1.54)

Due to schematic expression for the self-energy as Σxc = iGW , this approximation is known
as the GW approximation (GW) . In this approximation, the self energy is given by the
interaction of the particle with the screened potentialW . The screening of the Coulomb
potential, in turn, is determined by the polarizability of the system. Finally, the interaction
kernel in Eq. 1.32 is expressed in the GWA as

Ξ(1, 2, 1′, 2′) ≈ −iδ (1, 1′)δ (2, 2′+)vC (2, 1+) + iδ (1, 2′)δ (2′, 1)W (1′, 1+) + iG (1, 1′)
δW (1′, 1+)

δG (2′, 2)
.

(1.55)
The interaction kernel describes the interaction of electrons and holes, and the terms in
Eq. 1.55 allow for a physical interpretation of their interaction: The first term introduces the
exchange interaction of two fermionic particles, while the second term introduces the at-
tractive Coulomb interaction of these oppositely charged particles. The interaction is given
by the screened Coulomb potentialW due to the presence of all the other electrons in the
system. Finally, the last term describes how the screened Coulomb interaction changes due
to the propagation of these particles, and it thus describes the feedback of the propagating
particles on the many-electron system.
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1.3.6 Quasiparticle Approximation

The approach presented in the previous section allows for the determination of the one- and
two-particle Green’s functions, including a full treatment of many-body effects. In many
systems, however, it has been observed that the structure of the charged excitations around
the band gap, i.e. the energy addition and removal energies, resemble 4 those of a system
of non-interacting particles, even though the Coulomb interaction between the electrons
is comparable to the kinetic energies of the electrons. The concept was first introduced by
Landau to analyze the excitation in liquid HeI I [135]. The elementary excitations of these
systems behave as quasiparticles: The propagation of an electron or hole induces a pertur-
bation in the charge density. Thus, a charge cloud forms around the particle, and what is
observed is not the propagation of the bare electrons or holes, but rather the dressed quasi-
particles. The interaction of these quasiparticles is screened by the charge cloud, therefore
they often behave as weakly interacting particles, even in systems where the propagation
of the bare electrons is strongly correlated. More rigorously, it can be shown that the Dyson
equation 1.48 can be approximately solved within the quasiparticle approximation as

G (r1, r2;ω) =
∑

vk

ψ
QP
vk (r1)

[

ψ
QP
vk (r2)

]∗

ω − ϵQPvk − iη
+

∑

ck

ψ
QP
ck (r1)

[

ψ
QP
ck (r2)

]∗

ω − ϵQPck + iη
, (1.56)

where ψQP
ik and ϵQPik are the quasiparticle wavefunctions and energies, respectively. These

quasiparticles are obtained from the quasiparticle Schrödinger equation

ĥ0ψ
QP
ik (r) +

∫

d3r ′Σ(r, r′, ϵQPik )ψ
QP
ik (r′) = ϵQPik ψ

QP
ik (r). (1.57)

We then describe the N -particle many-body groundstate |0〉 as a single Slater determinant
of the quasiparticles. The (N + 1)- and (N − 1)-particle excited states are then given as
independent-particle excitations and de-excitations of the groundstate, i.e.

∑

n |N + 1,n〉 ≈∑

ck ĉ
†
ck |0〉 and

∑

n |N −1,n〉 ≈
∑

vk ĉvk |0〉, where ĉ and ĉ† are the quasiparticle annihilation
and creation operators, respectively. In the following, the quasiparticle approximation will
mostly be employed in the form

∑

ik

∑

jk′

ĉ†ikĉjk |0〉 ≈
∑

ik

∑

jk′

Θ(ϵ
QP
ik > ϵF )Θ(ϵ

QP
jk′ 〈ϵF )ĉ

†
ikĉjk |0〉 =

∑

ck

∑

vk′

ĉ†ckĉvk′ |0〉, (1.58)

such that we treat the groundstate as the Slater determinant of a system of quasiparticles,
where excitations require that a hole is created in a valence state (vk′) and an electron in
a conduction state (ck). While this statement may sound trivial, it can only be formulated

4More accurately, the shape of the spectral function A(ω) = 1
π
|Im G (ω) | is similar to the independent-

particle one. For a more in-depth discussion, see Ref. [63]
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in the quasiparticle approximation, where the strong many-body interactions are already
included in the formation of the quasiparticle, such that the resulting particles can be ap-
proximated as non-interacting.

1.3.7 Tamm-Dancoff Approximation

In general, the Bethe-Salpeter Eq. 1.33 contains the information on all charge-neutral ex-
cited states. Generally, any charge-neutral excited state | f 〉 can be expanded as

| f 〉 =
∑

ck

∑

vk′

A
f
ck,vk′ĉ

†
ckĉvk′ |0〉+

∑

ik′′′

∑

jk′′

∑

ck

∑

vk′

B
f
ik′′,jk′′′,ck,vk′ĉ

†
ik′′ĉjk′′′ĉ

†
ckĉvk′ |0〉+ . . . (1.59)

where A
f
ck,vk′ and B

f
ik′′,jk′′′,ck,vk′ are the expansion coefficients of | f 〉 in singlet excitations,

containing one valence hole and one excited electron, and doublet excitations, containing
two valence holes and two excited electrons, respectively. Generally, we employ an infi-
nite summation over all possible neutral excitations of the groundstate to obtain the excited
state | f 〉. Often, the possible excited states inMBPT calculations are restricted to singlet ex-
citations, i.e. it is assumed that the excited states contain one hole and one excited electron
at a given time [125]. In this approximation, known as Tamm-Dancoff approximation [136,
137], the excited state is now approximated as5 [60, 125, 138, 139]

| f 〉 ≈
∑

ck

∑

vk′

Ã
f
ck,vk′ĉ

†
ckĉvk′ |0〉, (1.60)

where the excited state is given as a linear combination in terms of excitations from a

valence state vk′ to a conduction state ck with expansion coefficient Ã
f
ck,vk′ . The main ad-

vantage of the Tamm-Dancoff approximation is that it allows to express the Bethe-Salpeter
Eq. 1.33 as a Hermetian eigenvalue problem, which can be approached with general linear
algebra algorithms [140, 359]. The Tamm-Dancoff approximation is valid for excited states
that dominantly have the form of singlet excitations, such as excitons and band transi-
tions in solid semiconductors [141, 142] and molecules [143–145]. Nevertheless, it has been
shown that the TDA systematically underestimates excitation energies [146] and exciton
binding energies [147]. For collective excitations, such as plasmons, the TDA introduces
a larger error, as these excitations can not be represented as singlet excitations [148–151].
Nevertheless, in many nanostructured materials, such as nanotubes, the separation of exci-
tations into collective excitations and excitons becomes invalid and the TDA fails [149].

5In Eqs. 1.59 and 1.60, we employ the quasiparticle approximation (Eq. 1.58).
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CHAPTER 2

X-Ray and Optical Absorption

Spectroscopy

The optical absorption spectrum can be obtained by directing light of known wavelength
on a sample and recording the transmitted light. This allows one to determine the ab-
sorbance of the sample, defined as the logarithm of the ratio of incoming and transmitted
radiant flux. However, the direct measurement of the transmission is only possible for thin
films or transparent materials, since otherwise the intensity of the transmitted beam is too
low compared to the noise level of the measurement. To obtain optical properties of bulk
materials, the reflectance on the sample surface is measured under normal light incidence.
Through a Kramers-Kronig analysis of the reflectance data, the complex dielectric tensor
of the material can be recovered. Since the Kramers-Kronig analysis requires knowledge
of the reflectance over a wide frequency range, one has to extrapolate the recorded ab-
sorption spectra, which introduces uncertainties for the dielectric function [152]. Another
experimental approach to the dielectric function is offered by ellipsometry [153], where
the change of polarization of the reflected light beam is observed at non-normal incidence.
From the parallel and perpendicular polarized reflectance, the complex dielectric tensor
can be recovered without the need of Kramers-Kronig analysis. Nevertheless, the deter-
mination of the dielectric function requires to interpolate the reflectance using analytical
models [154, 155].

For spectroscopy in the x-ray region, different modes to record absorption spectra are avail-
able: In transmission mode, the intensity of the transmitted x-ray beam is measured di-
rectly. In the fluorescence mode, the fluorescent light, emitted by in the decay process of
the excited states, is gathered. In the total-electron-yield mode, the number of electrons
emitted from the sample due to the absorption of the x-ray photon is measured. All modes
yield consistent results for the x-ray absorption spectra, if the data is corrected for the
mode-specific deviations [156, 157].

In this chapter, wewill introduce how the dielectric response that ismeasured by absorption
spectroscopies in the optical and the x-ray region is calculated on amicroscopic level within
the many-body perturbation theory introduced in the previous chapter.
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2 X-Ray and Optical Absorption Spectroscopy

2.1 Microscopic Dielectric Theory

In general, the absorption of light by a system of interacting electrons is obtained from
the solutions of the Hamiltonian that contains both the electronic and photonic degrees of
freedom, as well as the interactions between the two. We will introduce this Hamiltonian
in Eq. 3.4 to describe the scattering of photons. The full solution of this Hamiltonian is pro-
vided within quantum electrodynamics [158–160], which has been employed to determine
the response of systems in optical cavities, where the interactions between the electrons and
the electrodynamic fields are strong [158, 161]. In the absorption spectroscopy that wewant
to describe here, however, the intensity of the electrodynamic fields are weak. Therefore, a
semi-classical approach is applicable, where the radiation field is described classically by the
Maxwell equations, while the electronic system is treated quantum-mechanically [162].

2.1.1 Maxwell Equation

The microscopic Maxwell equations1 in atomic units are given as [163, 164]

∇ · E = 4πn

∇ × E = −∂tB
∇ · B = 0

∇ × B = 4π j + ∂tE

Maxwell equations

(2.1)

(2.2)

(2.3)

(2.4)

These connect the electric field E, the magnetic field B, the charge density n, and the
charge current j. The electric field originates from the total charge density n, which can
be separated into the external charge density next and the induced charge density nind , i.e.
n = next + nind . We then define the electric displacement D, which is generated by the ex-
ternal charge density next by ∇ · D = 4πnext . The electric displacement is then connected
to the electric field by

D = E + P, (2.5)

where the polarization P is connected to the induced charge density by ∇ · P = −nind .
We can expand the electric displacement in orders of the electric field. To first order, the
polarization depends linearly on the electric field, and the microscopic dielectric function

εij (r, r
′, t − t ′) is the expansion coefficient, such that Eq. 2.5 becomes

Di (r, t ) =

∫

d3r ′
∫

dt ′εij (r, r
′, t − t ′)Ei (r′, t ′). (2.6)

1In the following, we assume that the systems are non-magnetics, such that the magnetic permeability
µ = 1.
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2.1.2 Transversal and Longitudinal Fields

Any electric field E propagating along a wave vector q can be separated into a longitudinal
part EL (q×EL = 0) and a transversal part ET (q ·ET = 0), such that E = ET +EL. Physically,
the longitudinal electric field oscillates along the direction of motion, while the transversal
field oscillates in the plane normal to the wave vector. Formally, we define longitudinal and
transversal projectors T̂L and T̂T as

T̂L =
q·qT
|q |2 T̂T = δij − q·qT

|q |2 (2.7)

These projectors are applied to the electric field and the electric displacement in Eq. 2.6,
and Eq. 2.5 becomes

(

DL

DT

)

=

(

εLL εLT
εTL εTT

)(

EL
ET

)

, (2.8)

where the matrix elements of the dielectric tensor are defined as εXY = T̂XεT̂Y , e.g. the
longitudinal-longitudinal dielectric tensor is given by εLL = T̂LεT̂L =

∑

ij
qiεi jqj
|q |2 . We note

thatwhile the dielectric function is fundamentally a 3×3 tensor, the longitudinal-longitudinal
dielectric function is a scalar function, since it describes the response to an electric field po-
larized along the wave vector q. The transversal-transversal dielectric function εTT is then
a 2 × 2 tensor, as it describes the response to an electric field polarized in the plane or-
thogonal to the wave vector q. The longitudinal-transversal and transversal-longitudinal
components describe the mixing of transversal and longitudinal response.

In homogeneous media, e.g. the homogeneous electron gas, the response to a longitudinal
(transversal) external field is purely longitudinal (transversal), and thus εLT = εTL = 0. In
inhomogeneous media, such as crystalline solids, however, a longitudinal (transversal) field
induces both transversal and longitudinal currents. As we are interested in the response
to light, which is described by a transversal electro-magnetic field, we are interested to
the response to an external transversal field DT . Due to the coupling of transversal and
longitudinal response, the full dielectric tensor has to be determined in general. In the
long-wavelength limit, i.e. for q → 0, it has been shown that the transversal response to a
transversal external field is identical to the response to a longitudinal perturbation[165,
166]. Therefore, we will limit our discussion to the longitudinal-longitudinal dielectric
function εLL and we drop the index LL in the following.

The Maxwell equations are formally solved by introducing the scalar potential V and the
vector potential A, which yield the electric field E = −∇V − ∂tA and the magnetic field
B = ∇×A. Within the Coulomb gauge (∇ ·A = 0), we obtain the longitudinal electric field
DL = P̂L (−∇V ext ) and the electric displacement EL = P̂L (−∇V ), with the external potential
V ext and the total Coulomb potential V . The total potential V = V ext

+ V ind is defined as
the sum of the external potentialV ext and the induced potentialV ind . This finally allows us
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to rewrite Eq. 2.6 in terms of potentials instead of fields:

V ext (r, t ) =

∫

d3r ′
∫

dt ε (r, r′, t − t ′)V (r′, t ′). (2.9)

The inverse dielectric function is then given by

V (r, t ) =

∫

d3r ′
∫

dt ε−1(r, r′, t − t ′)V ext (r′, t ′). (2.10)

In Eqs. 1.42,1.43, and 1.40 in Chapter 1, the dielectric function and the polarizability are
introduced in the context of many-body perturbation theory. There, the reducible and
irreducible polarizability describe the change in density due to external and total potential,
respectively. We now see that the definition in Eq. 2.9 is identical to the one in Eq. 1.43,
where we identify the external potential u (1+, 1) = V ext (1) and the total potential vcl (1) =
V (1). Since the electrons interact through the Coulomb potential, the external perturbation,
which is introduced in Chapter 1 to derive Hedin’s equations 1.47-1.48, is identical to the
external potential in the Maxwell equations. Thus, we can write the dielectric function and
its inverse as

ε (r, r′, t , t ′) = δ (r − r′)δ (t − t ′) −
∫

d3r ′′vC ( |r − r′′|) χ̃ (r′′, r′, t ′′, t ′)δ (t − t ′′), (2.11)

and

ε−1(r, r′, t , t ′) = δ (r − r′)δ (t − t ′) +
∫

d3r ′′dt ′′vC ( |r − r′′|)χ (r′′, r′, t ′′, t ′)δ (t − t ′′). (2.12)

This way, we have found away to calculate the response of a system of interacting electrons
to an external electric field from many-body perturbation theory.

2.1.3 Macroscopic Dielectric Function

The dielectric function, defined in the previous sections, relates the total and external po-
tentials, where the total potential may oscillate on a microscopic scale due to the quantum-
mechanical response of the electrons to the external potential. In absorption experiments,
however, only the macroscopic response of the material to an external macroscopic poten-
tial is accessible. To determine the macroscopic dielectric function, we first have to define
what macroscopic quantities are. We define a macroscopic counterpart fM (R) to a micro-
scopic function f (r) as the average for each lattice position R over the surrounding unit
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cell volume V0:

fM (R) =
1

V0

∫

V0

d3r f (R + r) =
∑

G,q

eiqR fG(q)
1

V0

∫

V0

d3reiGreiqr

≈
∑

G,q

eiqR fG(q)
1

V0

∫

V0

d3reiGrδq,0 =
∑

G,q

eiqR fG(q)δG,0δq,0.

(2.13)

Here, we have used the definitions of the Fourier transformation in Eq. A.7. The approxima-
tion in Eq. 2.13 is obtained by assuming eiqr ≈ δq,0, i.e. q being small compared to the dimen-
sions of the unit cell. Furthermore, we employ Eq. A.10 to evaluate the integral over the unit
cell volume V0. Comparing Eq. 2.13 with the definition of the Fourier transform in Eq. A.7
shows that Fourier components of the macroscopic function

[
fM
]

G
(q) = fG=0(q = 0) are

given by the q = 0,G = 0 element of the Fourier transform of the corresponding micro-
scopic function.

To obtain the macroscopic dielectric function εM , we first consider which potentials vary
on a macroscopic scale, and which of them additionally have microscopic components. We
assume that the external potential is macroscopic, i.e. V ext

G = V ext
G δG,0, as the incoming light

is a plane wave with a long wavelength. The total potential, on the other hand, has both
macroscopic and microscopic components, i.e. VG , VGδG,0 since the induced potentialV ind

varies on the microscopic scale. Nevertheless, we can define the macroscopic component
of the total potential VM = VG=0(q = 0) from Eq. 2.13. The macroscopic total potential can
now be expressed in terms of the external potential through Eq. 2.10 as

VM (ω) = VG=0(q = 0,ω) =
∑

G′
ε−10G′ (q = 0,ω)V ext

G′ (q = 0,ω) =
∑

G′
ε−10G′ (q = 0,ω)V ext

M δG′,0

(2.14)
As such, the macroscopic inverse dielectric function ε−1M is defined as

VM = ε
−1
00 (q = 0,ω)V ext

M ≡ ε−1M V ext
M . (2.15)

Thus, the macroscopic inverse dielectric function ε−1M (ω) = ε−100 (ω) is given by the G =

0,G′ = 0 element of the microscopic dielectric function. The macroscopic dielectric func-
tion εM (ω) is then given by inverting of Eq. 2.14 as

εM (ω) =
1

ε−100 (q = 0,ω)
=

1

1 +v0(q = 0)χ00(q = 0,ω)
, ε00(q = 0,ω). (2.16)

The macroscopic dielectric function is identical to the head ε00, only if the microscopic
variations of the induced potential are neglected. This approximation is known as the
neglecting local field effects (NLFE). For the response at finite momentum transfer, where
the external potential oscillates with a wavevector Q = G + q, Eq. 2.14 can be generalized,
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such that the macroscopic dielectric function at finite momentum transfer is defined as

εM (Q,ω) =
1

ε−1GG(q,ω)
. (2.17)

2.2 Bethe-Salpeter Equation Formalism

2.2.1 BSE for the Polarizability

The previous section shows that the absorption spectrum can be obtained from the lon-
gitudinal reducible polarizability χ defined in Eq. 1.40, which is connected to the inverse
dielectric function through Eq. 2.12. Following linear response theory [167], the retarded
polarizability χR can be expressed as [57, 63, 125]

χR (r1, r2, t1, t2) =
n(r1, t1)

δu (r2, t2)
= −iΘ(t1 − t2)〈0|

[
n̂(r1, t1), n̂(r2, t2)

]
|0〉, (2.18)

where we have defined the time-dependent density operator as

n̂(r, t ) = e−iĤt
[
∑N

j δ (r − rj)
]

e iĤt . The Heaviside step function Θ(t1−t2) ensures causality,
such that the response of the density at t1 follows the perturbation at t2. Within many-body
perturbation theory, the reducible polarizability is given as

χ (1, 2) =
δn(1)

δu (2)
= −iδG (1, 1+)

δu (2+, 2)
= −iL(1, 2; 1+, 2+), (2.19)

where n(1) = −iG (1, 1+) and we use Eq. 1.24. While we have defined the retarded polar-

izability χR in Eq. 2.18, Eq. 2.19 defines the time-ordered polarizability χ . The relationship
between the two is discussed in detail in appendix B. The polarizability can be obtained
from the Bethe-Salpeter equation 1.33 for the correlation function L(1, 2; 1′, 2′) by contract-
ing the indices. The BSE then takes the form

L(1, 2; 1+, 2+) = L0(1, 2; 1
+, 2+) + L0(1, 3̄

′, 1+, 3̄)Ξ(3̄, 4̄, 3̄′, 4̄′)L(4̄′, 2, 4̄, 2+), (2.20)

where the interaction kernel in the GWA is given in Eq. 1.55 as

Ξ
GWA(3, 4, 3′, 4′) = −iδ (3, 3′)δ (4′+, 4)vC (4, 3+) + iδ (3, 4′)δ (3′, 4)W (3′, 3+). (2.21)

The last term in Eq. 1.55, δW /deltaG, describes the change in the screened Coulomb inter-
action due to the presence of an excitation, and is neglected in Eq. 2.21 since it is assumed to
be small [168]. We note that there is no corresponding Dyson-like equation for the polariz-
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ability, since Eq. 2.20 can not be written in a closed form in the contracted correlation func-
tion, but instead requires, at least, knowledge of the three-point function L(4̄′, 2, 4̄, 2+).

The full electron-hole correlation function L(1, 2, 3, 4) depends on four points in space and
time, which is reduced for time-independent potentials to three points in time due to trans-
lational symmetry in time. For the calculation of optical properties, only the contracted
correlation function L(1, 2; 1+, 2+) in Eq. 2.20 is required, which depends only on the time
difference t ≡ t2 − t1 if translational symmetry in time holds, i.e. for the case of time-
independent potentials. Yet, the interaction kernel Ξ depends on four points in space and
time. Formost ab initio Bethe-Salpeter equations in solid-state physics, as well as for the im-
plementation presented here, the dependence of Ξ in Eq. 2.21 on four different time points
is computationally too involved [63]. To simplify the expression further, the interaction is
assumed to be static and instantaneous, i.e. W (3′, 3+) =W (r3′, r3)δ (t3′ − t+3 ). In that way,
the interaction kernel does not depend on time anymore, and both the independent-particle
correlation function L0 and the full one, L, depend solely on the time difference t2 − t1. We
can express the BSE for the Fourier-transformed correlation function L(1, 2;ω)2 as

L(1, 2;ω) = L0(1, 2;ω) + L0(1, 3̄
′, 1, 3̄;ω)Ξ(3̄, 4̄, 3̄′, 4̄′)L(4̄′, 2, 4̄, 2;ω) (2.22)

To obtain the polarizability directly from Eq. 2.19 directly, a prefactor −i should be multi-
plied to the Bethe-Salpeter equation, which leads to Dyson’s equation for −iL in terms of
−iL0

− iL(1, 2;ω) =
[
−iL0(1, 2;ω)

]
+

[
−iL0(1, 3̄′, 1, 3̄;ω)

] [
iΞ(3̄, 4̄, 3̄′, 4̄′)

] [
−iL(4̄′, 2, 4̄, 2;ω)

]
.

(2.23)
Inserting the explicit form of Ξ in Eq. 2.21, we obtain

− iL(1, 2;ω) =
[
−iL0(1, 2;ω)

]
+

[
−iL0(1, 3̄′, 1, 3̄;ω)

] [
δ (3̄, 3̄′)δ (4̄, 4̄′)vC (3̄, 4) − δ (3̄, 4̄′)δ (3̄′, 4̄)W (3̄′, 3̄)

]
×

×
[
−iL(4̄′, 2, 4̄, 2;ω)

]
.

(2.24)

This equation is the final result of this Chapter, the Bethe-Salpeter equation for the polariz-
ability. The dielectric properties, especially the macroscopic dielectric tensor, are obtained
from the solutions of Eq. 2.24.

2.2.2 Lehmann Representations

Equation 2.19 shows that the polarizability χ is obtained by a contraction of the electron-
hole correlation function L. Lehmann representations of L0 and χ similar to the ones known

2Here, we introduce an additional notation for non-local functions, where (1, 2;ω) = (r1, r2;ω). This
differs from the notation used before, but the chosen notation will be clear from context.
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for the one- and two-particle Green’s function [63, 125] can be derived. These Lehmann
representations are employed in the next chapters to connect observables in absorption and
scattering spectroscopy to quantities determinedwithinmany-body perturbation theory.

A fundamental ambiguity in the Lehmann representation exists for time-ordered quantities
that only depend on time differences t1 − t2, since the Fourier transformations with respect
to either time differences τ (1) = t1 − t2 or τ (2) = t2 − t1 yield distinctly different Lehmann
representations. While physical observables are unaffected by the choice of Lehmann rep-
resentation, the implementation of absorption and scattering spectroscopy differ depending
on the choice of time direction in the Fourier transformation. For the polarizability χ (1, 2),
we obtain the Lehmann representation χτ (1) (r1, r2,ω) with respect to τ (1) as

χτ (1) (r1, r2,ω) =
∑

N,0

〈0|ψ̂ †(r1)ψ̂ (r1) |N 〉〈N |ψ̂ †(r2)ψ̂ (r2) |0〉
ω − EN + iη

−〈0|ψ̂
†(r2)ψ̂ (r2) |N 〉〈N |ψ̂ †(r1)ψ̂ (r1) |0〉

ω + EN − iη
,

(2.25)

where the sum includes all excitedmany-body states |N 〉with total energy EN . Without loss
of generality, the total energy of the ground state is set to zero, i.e. E0 = 0. The polarizability
is given as the sum of two terms, where the first, called the resonant contribution, has
poles at the excitation energies ω = EN , while the second, the anti-resonant contribution,
has poles at negative excitation energies, ω = −EN . Matrix elements of the polarizability
χijk,i ′j ′k′ (q) in an arbitrary single-particle basis {ψik(r)} are given as

χijk,i ′j ′k′ (q,ω) =
∑

N,0

〈0|ĉikĉ†j (k+q) |N 〉〈N |ĉ
†
i ′(k′+q)ĉj ′k′ |0〉

ω − EN + iη
+

〈0|ĉikĉ†j (k+q) |N 〉〈N |ĉ
†
i ′(k′+q)ĉj ′k′ |0〉

ω + EN − iη
.

(2.26)
Equation 2.25 can be simplified by applying both the quasiparticle approximation (Eq. 1.58)
and the Tamm-Dancoff approximation (Eq. 1.60). As such, the field operators ψ̂ (r) =
∑

ik ϕik(r)ĉik are expanded in quasiparticle wavefunctions ϕik, and we obtain

χτ (1) (r1, r2,ω) =
∑

q

∑

cvk

∑

c ′v ′k′

ϕ∗vk(r1)ϕc (k+q) (r1)χ
R,1
cvk,c ′v ′k′ (q,ω)ϕ

∗
c ′(k′+q) (r2)ϕvk′ (r2)

+ϕvk(r1)ϕ
∗
c (k+q) (r1)χ

A,1
cvk,c ′v ′k′ (q,ω)ϕc ′(k′+q) (r2)ϕ

∗
v ′k′ (r2).

(2.27)

Here, we have used the translational symmetry of the non-local polarizability, i.e. χ (r +
R, r′ + R;ω) = χ (r, r′;ω) for any lattice vector R, such that we can write the polarizability
as χ =

∑

q χ (q). As in Eq. 2.27, we find resonant and anti-resonant contributions, and the
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corresponding matrix elements of the polarizability are given by

χR1cvk,c ′v ′k′ (q,ω) =
∑

N,0

〈0|ĉ†vkĉc (k+q) |N 〉〈N |ĉ
†
c ′(k′+q)ĉv ′k′ |0〉

ω − EN + iη
, (2.28)

and

χA1vck,v ′c ′k′ (q,ω) =
∑

N,0

〈0|ĉ†v ′k′ĉc ′(k′+q) |N 〉〈N |ĉ
†
c (k+q)ĉvk |0〉

ω + EN − iη
. (2.29)

Alternatively, a Lehmann representation χτ (2) (r1, r2,ω) with respect to τ (2) = t2 − t1 is
obtained as

χτ (2) (r1, r2,ω) =
∑

N,0

〈0|ψ̂ †(r2)ψ̂ (r2) |N 〉〈N |ψ̂ †(r1)ψ̂ (r1) |0〉
ω − EN + iη

−〈0|ψ̂
†(r1)ψ̂ (r1) |N 〉〈N |ψ̂ †(r2)ψ̂ (r2) |0〉

ω + EN − iη
,

(2.30)
which, in quasiparticle and Tamm-Dancoff approximation, becomes

χτ (2) (r1, r2,ω) =
∑

q

∑

cvk

∑

c ′v ′k′

ϕvk(r1)ϕ
∗
c (k+q) (r1)χ

R,2
cvk,c ′v ′k′ (q,ω)ϕc ′(k′+q) (r2)ϕ

∗
vk′ (r2)

+ϕ∗vk(r1)ϕc (k+q) (r1)χ
A,2
cvk,c ′v ′k′ (q,ω)ϕ

∗
c ′(k′+q) (r2)ϕv

′k′(r2).
(2.31)

The matrix element in this representation are defined as

χR2cvk,c ′v ′k′ (q,ω) =
∑

N,0

〈0|ĉ†v ′k′ĉc ′(k′+q) |N 〉〈N |ĉ
†
c (k+q)ĉvk |0〉

ω − EN + iη
, (2.32)

and

χA2vck,v ′c ′k′ (q,ω) =
∑

N,0

〈0|ĉ†vk′ĉc (k+q) |N 〉〈N |ĉ
†
c ′(k′+q)ĉv ′k′ |0〉

ω + EN − iη
. (2.33)

It is apparent, that the matrix elements χR1 in Eq. 2.28 and χR2 in Eq. 2.32, as well as their
antiresonant counterparts in Eqs. 2.29 and 2.33, are closely related. The denominator is
identical in the two representations, while the nominator in the second one is complex con-
jugated with respect to the first one. Although the difference appears miniscule, we will
demonstrate that it leads to different expressions for the dielectric function and other spec-
troscopic observables in the two different representations. More details on the Lehmann
representations, and their relationship to the retarded polarizability are provided in Ap-
pendix B.
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CHAPTER 3

Inelastic X-ray and Electron Sca�ering

Spectroscopy

In a general x-ray or electron scattering experiment, a collimated beam of monochromatic
particles, either x-ray photons or electron, is focussed on a sample, and the scattered beam
is recorded at a certain solid angle Ω2. The scattered beam is then analyzed spectrally
with an energy resolution d~ω2. The probability of scattering into the solid angle element
[
Ω2,Ω2 + dΩ2

]
within an energy range

[
~ω2, ~ω2 + d~ω2

]
is given by the double differen-

tial cross section d2σ/dΩ2dω2. Quantum-mechanically, the many-body systems is scattered
from an initial many-body state |i,K1λ1〉, which consists of the initial many-electron state
|i〉 and the state |K1λ1〉 of the incident particle, where K1 is the momentum of the incoming
particle and λ1 is a generic quantum number. The final state | f ,K2λ2〉 is a superposition of
the final (excited) electronic many-body state | f 〉 and the state |K2λ2〉 of the scattered par-
ticle. For photons, λ1 and λ2 characterize the polarization states of the incoming and scat-
tered photon, respectively, which can be either two linear polarization states or left- and
right-hand circular polarization states. Generally, the scattering rate d2σ is given by [169,
170]

d2σ =
j2(r,K2, λ2)l̂r

2dΩ2dE1

j1
, (3.1)

where j1 is the incoming current, and the numerator describes the number of scattered par-
ticles, since j2(r,K2, λ2) is the current of scattered particles in state |K2, λ2〉 in the direction
of r, and l̂ = r/r is the direction vector along r. In the quantum-mechanical scattering
theory, the numerator of Eq. 3.1 is given by the transition probabilityw (i,K1, λ1; f ,K2, λ2)

as
j2(r,K2, λ2)l̂r

2dΩ2dE1 = N0

∑

f

∑

K2λ2

w (i,K1, λ1; f ,K2, λ2)D (K2)d
3K2, (3.2)

where N1 is the number of probing particles that impinge on the sample andD (K2) =
(

V
2π

)

is the density of states of the scattered particle. We write D (K2)d
3K2 =

V
2π
K2dΩ2. The
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double differential cross section is given as

d2σ

dΩ2dK2
=

N0V

2π j1

∑

K2λ2

w (i,K1, λ1; f ,K2, λ2). (3.3)

The initial current j1 and the dispersion E2(K2) differ depending on the probing particle,
and the transition probabilityw depends on the interaction of the probing particle with the
sample.

In the following chapter, an expression for the double differential cross section, known as
the generalized Kramers-Heisenberg formula, is derived from a perturbative treatment of
the electron-photon interaction. We will then show that two distinctive scattering pro-
cesses occur depending on the energy of the probing particle, known as the resonant and
non-resonant scattering. For the non-resonant scattering, we will derive a simplified ex-
pression that connects the cross section to the dielectric tensor introduced in Chapter 2.
Finally, we discuss the process of resonant inelastic scattering.

3.1 Generalized Kramers-Heisenberg Formula

In Eq. 1.2, the Hamiltonian of a system of interacting electrons in the electrostatic potential
of the nuclei has been introduced. For a system of interacting electrons in a quantized elec-
tromagnetic field, a more general Hamiltonian is needed, which also includes the Hamilto-
nian of the photons and the interaction between electrons and photons. The most general
form of this Hamiltonian is given by [170]

H = H0 +
α2

2

∑

j

A2(rj ) − α
∑

j

A(rj ) · pj

− α
2

∑

j

σ j ·
[

∇ × A(rj )
]

− α
2

4

∑

j

σ j ·
[

Ȧ(rj ) × A(rj )
]

− α
3

4

∑

j

[

∇V (rj ) × A(rj )
]

+

α3

4

∑

j

Ȧ(rj ) × pj + HR

⇒ H = H0 + Hi + HR,

(3.4)

where A is the electromagnetic vector potential ,Ȧ = ∂/∂tA its time-derivative, and V the
scalar potential, as introduced in Section 2.1.2, andα = 1

c
≈ 1

137
is the fine-structure constant

in atomic units. In the last line of Eq. 1.2, we have introduced the electronic Hamiltonian
H0, the radiation-field Hamiltonian HR , and the Hamiltonian Hi of the electron-phonon
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interaction. H0 gathers all terms that describe solely the electronic system, i.e.

H0 =

∑

j

1

2
p2j +

1

2

∑

j,j ′

1

|rj − rj ′ |
+

∑

j

Ve−n (rj ) +Vn−n +
α2

4

∑

j

σ j ·
[

∇ϕ × pj
]

. (3.5)

The Hamiltonian H0 differs from the one in Eq. 1.2 only by the last term, which introduces
the spin-orbit coupling. This relativistic effect is not included in the non-relativistic Hamil-
tonian in Eq. 1.2. The radiation-field Hamiltonian HR is given by

HR =

∑

Kλ

ωK

(

â†KλâKλ +
1

2

)

, (3.6)

with the photon creation and annihilation operators â†Kλ and âKλ of a phonon state (K, λ)

with energy ωK, respectively. Here, λ enumerates the two orthogonal polarization states
of the photon field, K is the photon wavevector. The interaction between electrons and
photons originates from terms proportional to the electromagnetic vector potential A and
its time derivative Ȧ. We recall the expression of the vector potential A(r) in terms of
creation and annihilation operators of the photon field, â†Kλ and âKλ:

A(r) =
∑

Kλ

(

2πc2

VωK

) 1
2 [

eKλâKλe
iKr−iωKt

+ e∗Kλĉ
†
Kλe
−iKr+iωKt

]

(3.7)

where eKλ is the polarization vector of the photon in state (Kλ). We express the interaction
Hamiltonian as the sum of six terms, given by

Hi1 =
α2

2

∑

j

A2(rj ) (3.8)

Hi2 = −α
∑

j

A(rj ) · pj (3.9)

Hi3 = −
α

2

∑

j

σj ·
[

∇ × A(rj )
]

(3.10)

Hi4 = −
α2

4

∑

j

σj ·
[

Ȧ(rj ) × A(rj )
]

(3.11)

Hi5 = −
α3

4

∑

j

[

∇ϕ (rj ) × A(rj )
]

(3.12)

Hi6 =
α3

4

∑

j

Ȧ(rj ) × pj . (3.13)
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According to Fermi’s Golden Rule [171], the transition ratew is obtained from a perturba-
tive treatment of the electron-photon interaction Ĥi up to second order as

w = 2π
∑

F

∣
∣
∣
∣
∣
∣

〈F |Ĥi |I 〉 +
∑

N

〈F |Ĥi |N 〉〈N |Ĥi |I 〉
EI − EN

∣
∣
∣
∣
∣
∣

2

δ (EI − EF ), (3.14)

where |I 〉, |F 〉, and |N 〉 are initial, final, and intermediate many-body state, respectively.
We furthermore restrict our perturbation series to terms of order α2 in Eqs. 3.8-3.13, i.e. to
the non-relativistic case [170, 172]. The electron-photon interaction terms in Eq. 3.8-3.13
contain the vector potential A, and thus the photonic annihilation and creation operators
through Eq. 3.7, to different orders. Not all terms contribute to the scattering, since we
have restricted the possible many-body states by imposing that the initial state |i,K1λ1〉
and the final state | f ,K2λ2〉 contain only one photon each1. As such, in the first-order treat-
ment of Eq. 3.14 only the terms Hi1 and Hi4 contribute, as these contain terms of the form
c (Kλ)c†(K′λ′) that conserve the number of photons. To second order, both terms in O

(
A
)

and O
(

A2
)

contribute. Inserting the termsHi1 orHi4 for the second-order term in Eq. 3.14,

the intermediate states |N 〉 contain a photon, as these terms conserve the photon number.
However, these terms are proportional to α4 and are neglected in our non-relativistic treat-
ment. Similarly, within first- and second-order perturbation theory the terms Hi5 and Hi6

only contribute for orders of O
(

α4
)

. Thus, only the interaction terms Hi2 and Hi3 remain.

Since in this work we focus on non-magnetic systems, we neglect the spin-dependent in-
teractions Hi3 and Hi4. Thus, we express the transition rate as

w = 2π
∑

F

∣
∣
∣
∣
∣
∣

〈F |Hi1 |I 〉 +
∑

N

〈F |Hi2 |N 〉〈N |Hi2 |I 〉
EI − EN

∣
∣
∣
∣
∣
∣

2

δ (EI − EF ). (3.15)

Combining Eqs. 3.8,3.9,3.15, and 3.7, the photonic states can be traced out, such that the
expression only contains expectation values for the electronic states |i〉, |n〉, and | f 〉. We
obtain

w =2π

(

V 2ω2α
3

(2π )2

)2
∑

f

∣
∣
∣
∣
∣
∣

α2〈f |e1 · e∗2
∑

j

eiQrj |0〉

+α2
∑

n

〈f |
∑

j e
−iK2rje∗2 · pj |n〉〈n |eiK2rje1 · pj |0〉

ω1 − En

∣
∣
∣
∣
∣
∣

2

× δ ((ω1 − ω2) − E f ),

(3.16)

1With other boundary conditions, the transition rate of other spectroscopies can be calculated. For ex-
ample, the absorption rate is obtained with |F 〉 = | f , 0〉
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where we have used that the energies are given by EI = E0 + ω1 where E0 is the energy of
the initial electronic system, EN = En, where En is the energy of the intermediate electronic
system, and EF = E f +ω2, where E f is the energy of the final electronic state. Furthermore,
before the scattering process the electronic system is in the groundstate, such that |i〉 = |0〉
and Ei = 0. We now employ Eqs. 3.3 to obtain the double differential cross section. For
photons, the dispersion relation is E2(K2) = cK2 and the initial current is j1 =

N0c
V
. This

yields the double differential cross section as

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)
∑

f

∣
∣
∣
∣
∣
∣

〈f |e1 · e∗2
∑

j

eiQrj |0〉

+

∑

n

〈f |
∑

j e
−iK2rje∗2 · pj |n〉〈n |eiK2rje1 · pj |0〉

ω1 − En

∣
∣
∣
∣
∣
∣

2

× δ ((ω1 − ω2) − E f ).

(3.17)

This expression, known as the generalized Kramers-Heisenberg formula [171, 173], con-
tains the two scattering processes that occur up to second order in non-magnetic materials:
the first term represents the Non-Resonant Inelastic Scattering (NRIXS), the second term the
Resonant Inelastic Scattering (RIXS).

3.2 Non-Resonant Inelastic X-ray Scattering

Spectroscopy

For excitation energies ω1 far from any excitation energies En of the system, the resonant
term in Eq. 3.17 vanishes and the double differential cross section becomes

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

|e1 · e∗2 |2
∑

f

∑

jj ′
〈i |e−iQrj | f 〉〈f |eiQrj ′ |i〉δ (ω − E f )

=

(

dσ

dΩ2

)

�

∑

f

∑

jj ′
〈i |e−iQrj | f 〉〈f |eiQrj ′ |i〉δ (ω − E f ),

(3.18)

where the prefactors are gathered in the Thompson cross section
(

dσ
dΩ2

)

�
= α4

(
ω2

ω1

)

|e1 ·
e2 | and we have define the energy loss ω = ω1 − ω2. The many-body operator D̂ =
∑

j exp
(

iQrj

)

can be represented in the quasi-particle basis with the quasiparticle wave-

functions ψQP
ik (r) of Eq. 1.57. With ĉik and ĉ†ik as the annihilation and creation operator,
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respectively, the operator is expressed as

D̂ =
∑

mn

∑

kk′

〈mk|eiQr |nk′〉ĉmkĉ
†
nk′

=

∑

mn

∑

k

Mmnk(−G − q)ĉ†mkĉn(k−q)

=

∑

mn

∑

k

M∗nm(k−q) (G + q)ĉ
†
mkĉn(k−q),

(3.19)

where we have used that any reciprocal vector can be expressed as Q = G + q, with a
reciprocal lattice vector G and a vector q from the 1st Brillouin zone. We furthermore
introduce the plane-wave matrix elementsM f ikf (G + q) as

M f ikf (G + q) = 〈f k|e−i(G+q)r |i (kf + q)〉V0 . (3.20)

In this definition, 〈..|..|..〉V0 indicates that the integral of the expectation value is only per-
formed in the unit cell with volume V0. Any plane-wave expectation value can then be
expressed as 〈mk| exp

(
−i(G + q)r

)
|nk′〉 = Mmnk(G+q)δk′(k+q) . We now insert the form of

the operator of Eq. 3.19 into Eq. 3.18. The δ -function δ (ω − E f ), which ensures the energy
conservation of the total process, is expressed as

δ (ω − E f ) = lim
η→0+
− 1
π
Im

1

ω − E f + iη
(3.21)

using the Sokhotski-Plemelj theorem. This yields

d2σ

dΩ2dω2
= − 1

π

(
dσ

dΩ2

)

Th

Im
∑

ijk

∑

i ′j ′k′

Mijk(G + q)






∑

f

〈0|ĉ†ikĉj (k+q) | f 〉〈f |ĉ
†
i ′k′ĉj ′(k′−q′) |0〉

ω − E f + iη




M∗j ′i ′(k′−q′) (G + q).

(3.22)

The central bracket in Eq. 3.22 is identical to the matrix elements χijk,j ′i ′k′ (q,ω) of the po-
larizability in Eq. 2.26. This allows us to express Eq. 3.22 as

d2σ

dΩ2dω2
= − 1

π

(
dσ

dΩ2

)

Th

Im
∑

ijk

∑

j ′i ′k′

Mijk(G + q)χijk,j ′i ′k′ (q,ω)M
∗
j ′i ′k′ (G + q)

= − 1
π

(
dσ

dΩ2

)

Th

Im χGG(q,ω),

(3.23)
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wherewe have introduced the Fourier components χGG(q,ω) of the polarizability following
Eq. A.15. Additionally, we have shifted the summation over k′, such that k′ → k′+qwithout
loss of generality. Using the relation ϵ−1GG = 1+vG(q)χGG(q,ω) and the fact that the Fourier
components vG(q) are real-valued, the double-differential cross section can be expressed
in terms of the inverse dielectric function as

d2σ

dΩ2dω2
= − 1

π

(
dσ

dΩ2

)

Th

v−1G (q)Im ϵ−1GG(q,ω). (3.24)

Alternatively, the double-differential cross section is expressed in terms of the structure
factor [169, 170] S (G + q,ω) = − 1

π
Im χGG(q,ω) as

d2σ

dΩ2dω2
=

(
dσ

dΩ2

)

Th

S (G + q,ω). (3.25)

A more intuitive interpretation of Eq. 3.22 can be obtained by applying the quasiparticle
approximation of Eq. 1.58, which restricts the sums over i and j′ to valence, the sums over
j and i′ to conduction states. We thus obtain

d2σ

dΩ2dω2
= − 1

π

(
dσ

dΩ2

)

�

Im
∑

cvk

∑

c ′v ′k′

Mvck(G + q)






∑

f

〈0|ĉ†vkĉc (k+q) | f 〉〈f |ĉ
†
c ′(k′+q)ĉv ′k′ |0〉

ω − E f + iη




M∗v ′c ′k′ (G + q).

(3.26)

In the quasiparticle approximation, the double-differential cross section is therefore deter-
mined by the matrix elements χR1cvk,c ′v ′k′ (q,ω) of Eq. 2.28 between transitionsvk→ c (k+q)

andv′k′ → c′(k′+q). The details of the matrix representation are discussed in Appendix A.
Equation 3.26 then becomes

d2σ

dΩ2dω2
= − 1

π

(
dσ

dΩ2

)

Th

Im
∑

cvk

∑

c ′v ′k′

Mvck(G + q)χ
R1
cvk,c ′v ′k′ (q,ω)Mv ′c ′k′ (G + q). (3.27)

3.3 Electron Energy-Loss Spectroscopy

The non-resonant inelastic x-ray scattering is closely related to the scattering of high-
energy electrons [169, 174], as probed in electron energy-loss spectroscopy (EELS). Instead
of considering the total Hamiltonian of the electronic system and the photonic field of
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Eq. 3.4, we start with the Hamiltonian for the electronic system with an additional fast-
moving electron in a plane-wave state with momentum K:

Ĥ = Ĥ0 +

∑

j

1

|r − rj |
+

K2

2

= Ĥ0 + Ĥi + Ĥe ,

(3.28)

where Ĥ0 is the Hamiltonian of the electronic system, Ĥe =
K2

2
is the Hamiltonian of the

probing electron with momentum K, and Ĥi =
∑

j 1/|r − rj | is the interaction Hamiltonian
with r being the position of the probing electron. Here, we assume that the probing electron
is scattered from the initial plane-wave state |K1〉 to the final plane-wave one |K2〉, such that
the wavefunctions of both states are known. To first order, the transition rate of Eq. 3.14 of
scattering is given by

w = 2π
∑

F

∣
∣
∣〈F |Ĥi |I 〉

∣
∣
∣

2

δ (EI − EF ). (3.29)

Since the wavefunction of the probing, high-energy electron |K1〉 = 1√
V
eiK1r is known, we

can express the expectation value of the interaction Hamiltonian as

〈F |Ĥi |I 〉 =
1

V
〈f |
∑

j

〈K1 |
1

|r − rj |
|K0〉|i〉

=

1

V
〈f |
∑

j

∫

d3r
eiQr

|r − rj |
|i〉 = 4π

VQ2
〈f |
∑

j

eiQrj |i〉,
(3.30)

where we have inserted the Fourier transform of the Coulomb potential in the last line of
Eq. 3.30. To obtain the double-differential cross section for electron scattering, we insert

the dispersion of the electronic state, E2(K2) =
~2K2

2

2m
, and the initial current of electrons

j1 =
N0

V
~K1

m
into Eq. 3.3. This yields

d2σ

dΩ2dω2
=

(

dσ

dΩ2

)

R

√
ω1

ω2

∑

f

∑

jj ′
〈i |e−iQrj | f 〉〈f |eiQrj ′ |i〉δ (ω − E f ), (3.31)

with
(

dσ
dΩ2

)

R
=

4
Q4 . Comparing Eqs. 3.31 and 3.18, it becomes apparent that electron energy-

loss spectroscopy and non-resonant inelastic x-ray scattering probe the same electronic
excitations, albeit with different pre-factors which originate from the different interaction
Hamiltonians. As such, we can use the derivation of the previous section to express the
EELS cross section in terms of the inverse dielectric function, analogously to the expression

38



Electron Energy-Loss Spectroscopy 3.3

found in Eq. 3.24:

d2σ

dΩ2dω2
= − 1

π

(

dσ

dΩ2

)

R

√
ω2

ω1
v−1G (q)Im ϵ−1GG(q,ω). (3.32)

A main difference between NRIXS and EELS arises from the Q-dependence of the prefac-

tors: For Q = 0, the NRIXS signal vanishes, since
(

dσ
dΩ2

)

Th
v−1G=0(q = 0) = 0, while for the

EELS signal
(

dσ
dΩ2

)

R
v−1G (q) ∝ Q−2. As such, the forward-scattering rate in EELS does not

vanish.
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3 Inelastic X-ray and Electron Scattering Spectroscopy

Figure 3.1: Schema of RIXS processes described by Eq. 5.7: The a) absorption of an x-
ray photon with energy ω1 leads to b) an excited state with a core hole, which through
the emission of an x-ray photon with energyω2 yields c) an excited state with a valence
hole. Filled and open circles represent occupied and unoccupied states, respectively.
Blue lines indicate transitions, while black lines denote x-ray absorption and emission.

3.4 Resonant Inelastic X-ray Scattering

In the previous section, only the non-resonant part of the Kramers-Heisenberg formula
in Eq. 3.17 was considered. If the excitation energy ω1 is in resonance with an excitation
energy En of the electronic system2, the resonant term of Eq. 3.17 dominates. In this case,
the non-resonant part can be neglected and we obtain

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)
∑

f

∣
∣
∣
∣

∑

n

〈f |T̂ †(e2,K2) |n〉〈n |T̂ (e1,K1) |i〉
ω1 − En + iη

∣
∣
∣
∣

2

δ (ω1 − ω2 − E f ), (3.33)

where we define here the transition operator T̂ (e,K) =
∑

j e · pj exp
(

iKrj

)

. The micro-

scopic resonant scattering process is schematically shown in Fig. 3.1 for a semiconducting
or insulating system: The absorption of the initial x-ray photon with energy ω1 excites a
core electron into the conduction band, leaving a core hole behind. The intermediate sys-
tem, after the excitation, is in an excited many-body state |n〉 in Eq. 3.33. The core hole can
now be filled by a valence electron, which loses the energy ω2 by emitting a x-ray photon.
In the final many-body state | f 〉, a hole is present in a valence state and an excited electron
in a conduction state. While both the absorbed and emitted photon have energies in the x-
ray region, the difference between them, i.e. the energy lossω1−ω2, is typically in the range
of several eV. The final excited many-body states of the RIXS process correspond to the ex-
cited states of optical absorption. The schema of the RIXS process in Fig. 3.1 completely

2Note that throughout this thesis, E0 = 0 for the electronic groundstate without loss of generality.
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neglects many-body effects, i.e. the relaxation of the electronic system due to the presence
of the excited electron and the hole, as well as the quantum-mechanical interaction of the
excited electron and the core hole. This inherent complexity of the microscopic RIXS pro-
cess poses challenges for any theoretical description, as both the effects of electron-hole
interaction, as well as the coherence of the RIXS process have to be included.

3.4.1 Raman and Fluorescence Features in RIXS

Energy Loss

Ex
cit

at
io

n
En

er
gy

1 Raman feature

Fluorescence 
 feature

0.25
0.50
0.75
1.00

Figure 3.2: Schematical RIXS double-differential cross
section as a function of the energy loss ω and excita-
tion energy ω1. Prototypical Raman and fluorescence
features are shown.

The double differential cross sec-
tion d2σ/dΩ2dω2 is a function
of both the excitation energy ω1

and the energy loss ω = ω1 − ω2.
Alternatively, the cross section
can be expressed as a function
of the excitation energy ω1 and
the emission energy ω2. Gener-
ally, two different groups of fea-
tures in the RIXS cross section,
denoted Raman and Fluorescence

features, can be identified [175–
177]. Raman features occur at an
energy loss ω independent of the
excitation energy ω1. As such,
they appear as vertical features
in theω−ω1 plane in Fig. 3.2. The
constant energy loss implies that
the Raman features are due to
scattering processes to the same
final state independent of the ex-
citation energy. For fluorescence
features, on the other hand, the

energy loss ω increases linearly with the excitation energy ω1 in Fig. 3.2. Fluorescence fea-
tures occur at constant emission energy ω2 = ω1−ω with increasing excitation energy. We
note that the schematics in Fig. 3.2 is highly idealized. For both Raman and fluorescence
features, the intensity of the features can be a function of the excitation energy. Fluores-
cence with non-linear dispersion have been observed in the RIXS spectra of solids [178].
Additionally, the features can have fine structures that depend on both the excitation en-
ergy and the energy loss. The non-linear dispersion, the change of intensity, and the fine
structure can hamper the distinction between Raman and fluorescence features.
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3 Inelastic X-ray and Electron Scattering Spectroscopy

Figure 3.3: Schema of the indirect RIXS process: The a) absorption of an x-ray photon
leads to b) an excitation of the core electron to a high-energy conduction state. Through
scattering with the core-hole potential, a valence electron-hole pair is created. The c)
subsequent de-excitation of the excited electron fills the core-hole. The d) final state of
the scattering contains the valence electron-hole pair.

3.4.2 Direct and Indirect RIXS

The schema of RIXS presented in Fig. 3.1 ignores any effects of electron-hole interaction,
both for the intermediate and the final state of the resonant scattering. This interaction of
the excited electron and the core hole in the intermediate state renormalizes the energy En
of the intermediate state in Eq. 3.33, the interaction between the excited electron and the
valence hole that of the final state E f . Additionally, the oscillator strength of the scattering
is renormalized due to the electron-hole correlation. The excitation from the core state
generates an intermediate many-body state where the excited electron is distributed in
the conduction band, but due to the electron-hole interaction it is not in a well-defined
single-particle state. The subsequent de-excitation of a valence electron yields the final
state, which contains the excited electron distributed in the conduction bands and the hole
distributed in the valence band. As in the intermediate many-body state, the electron and
the valence hole do not occupy a well-defined single-particle state due to the electron-hole
interaction. We denote resonant scattering that follows this schema as direct RIXS [175].
The direct RIXS requires that both the excitation from the core state to the conduction band,
as well as the de-excitation from the valence band to the core state are dipole-allowed.

While the direct RIXS occurs already in the independent-particle approximation (IPA), a
qualitatively different kind of resonant scattering is induced by the electron-hole interac-
tion in the intermediate state. In this process, schematically shown in Fig. 3.3, the electron
is excited to a high-energy conduction band by the absorption of the initial x-ray photon.
In the intermediate state, the strong electron-core-hole interaction leads to the creation of
an electron-hole pair where the electron is found in a low-energy conduction band and the

42



Resonant Inelastic X-ray Scattering 3.4

hole in the valence band. As such, the intermediate state contains two electron-hole pairs.
The final state of the scattering is reached by the de-excitation of the high-energy elec-
tron, which fills the core hole. The final state again contains a valence electron-hole pair.
This kind of resonant scattering is denoted as indirect RIXS [175, 179]. Indirect RIXS occurs
mainly, when the transitions from the core state to the bottom of the conduction band are
dipole-forbidden. It has been observed for example at the Mn K edge LaMnO3 [180] and
the Ni K edge in NiO and NiCl2 [179].
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CHAPTER 4

A Brief History of BSE Calculations

The Bethe-Salpeter equation (BSE) was first derived for excitations in solids by Sham and
Rice in 1966 [181], providing an ab initio foundation for previous semi-empirical models. It
was successively employed for the calculation of exciton binding energies in core [182, 183]
and optical [184–187] spectra of model systems, and of real materials using tight-binding
models [187–190]. The first fully ab initio results for exciton binding energies were pre-
sented in 1995 for sodium clusters by Onida and coworkers [58] and for crystalline Li2O by
Albrecht and coworkers [59]. Full ab initio optical absorption spectra were first calculated
by Albrecht and coworkers [141, 191], Benedict and coworkers [139, 142], and Rohlfing and
Louie [61, 138]. Shortly afterwards, BSE calculations of the optical absorption spectra and
exciton binding energies were performed for molecular crystals [192–201]. Later, the ap-
proach was extended to determine excitations in molecules [199, 202]. The first core-level
excitation spectra for solids were calculated within the BSE formalism by Shirley [203],
Soinen [204], and Rehr [205]. This approach was later extended to describe x-ray scatter-
ing spectroscopy as well [206]. A BSE approach to RIXS has been presented by Shirley and
co-workers [206–208] and by Vinson [209–211].

Most implementations of the BSE formalism make use of a plane-wave basis representa-
tion for the underlying electronic structure [212–221], where the wavefunctions and en-
ergies for the valence and conduction bands are explicitly calculated, while the effects of
the remaining strongly-bound core states are implicitly included in the so-called pseudopo-
tential [222–224]. As such, the valence and conduction pseudowavefunctions from these
calculation are not identical to their all-electron counterparts. The difference between the
wavefunctions is especially pronounced close to the nuclear positions [225]. Therefore, the
pseudopotential implementations require approximations to the all-electronwavefunctions
to determine XANES and RIXS spectra. Most BSE calculations of XANES [203, 206, 226]
and RIXS spectra [206, 210, 227] rely on approximations to the all-electron wavefunctions
by the projector augmented wave (PAW) expansion [178, 228–230]. The core states are
calculated from atomic-structure codes in the frozen core approximation [231], i.e. it is as-
sumed that the core energies and wavefunctions in the solid are identical to the ones of the
free atom.

All-electron full-potential methods on the other hand, in particular those employing the
LAPW+lo basis [232–235], treat core and valence electrons on the same footing, i.e. the
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energies and wavefunctions of all electronic states, from the core region to the conduction
states, are obtainedwithout any approximation to the crystal potential. The first implemen-
tation of the BSE approach in an all-electron LAPW+lo framework was presented in 2002
by Puschnig and Ambrosch-Draxl [225] for optical excitations. Subsequently, it was applied
to determine optical [198, 201, 236, 237] and core absorption spectra [45, 238–245] in solids
and molecular crystals. While, in principle, an all-electron full-potential implementation
of the BSE approach can consistently generate optical and core excitation spectra, exist-
ing implementations have either treated core states as deep valence ones, and were thus
limited to shallow core excitations [241], such as those from the beryllium 1s states [244],
aluminium 2p states [243], lithium 1s states [241], or the oxygen 1s states [45]. Other all-
electron studies have focused solely on core excitations [238, 239].

From a computational point of view, solving the BSE is a cumbersome problem (compare
Section 2.2.1 and Chapter 6), and several approaches to reduce the numerical workload
have been proposed. Iterative [142, 149, 246, 247] and evolution schemes [248] avoid the
computationally expensive diagonalization, while other approaches employ the inherent
structure of the BSE problem [146, 360] to reduce the computational effort. Due also to
these important efforts, the BSE approach has become the state of the art for the calcu-
lation of neutral excitations in solids, and implementations are available in a number of
codes. Plane-wave codes such as (in alphabetical order) BerkeleyGW [249], EXC [250] (also
included in Abinit [251]), WEST [252], and yambo [215, 216] enable calculations of optical
excitations, and OCEAN [226, 228] those of core-level excitations. All-electron implementa-
tions are available in exciting [253, 254] and WIEN2k [225]. Additionally, a number of codes
allow BSE calculations for molecular systems, such as FHI-aims [255, 256], FIESTA [257],
molgw [258], rgwbs [259], and turbomol [260].

In this thesis, we have generalized the existing BSE implementation [239, 253] in the all-
electron full-potential code exiting [254] to enable consistent calculations of electronic
excitations with arbitrary momentum transfer and arbitrary excitation energies from the
hard x-ray to the optical region. The development is based on our previous all-electron
full-potential BSE implementation for core excitations [239], and from the one of Benjamin
Aurich for optical excitations at finitemomentum transfer [261]. Our development provides
several benefits: It allows for a consistent study of core and optical excitations in a givenma-
terial, where inconsistencies or even misinterpretations due to different treatments of the
electronic structures or the solution of the BSE in the two regimes are avoided. Additionally,
it is a starting point for our all-electron full-potential implementation of resonant-inelastic
x-ray scattering (RIXS).We have derived a novel expression of the RIXS cross sectionwithin
many-body perturbation theory and implemented in an all-electron full-potential frame-
work. This new expression provides a powerful analysis tool to resolve the origin and the
making of a RIXS spectrum. It allows us to determine what the most important contribu-
tions are, how they interfere, why spectral features may be masked, and more. By offering
an intuitive interpretation of the RIXS process, our formalism represents a significant step
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forward in the overall understanding of RIXS.

In the following chapters, we describe howwe have extended the range of the BSE approach
within the all-electron framework: In Chapter 5, we derive the RIXS cross section includ-
ing many-body effects. In Chapter 6, we present our novel all-electron full-potential BSE
implementation for optical and x-ray absorption and scattering spectra. The latter chapter
describes work performed in close collaboration with Benjamin Aurich, and the chapter
itself is based on our joint publication [359]. In Chapter 7, we present our implementation
for the RIXS cross section, based on the derivation of Chapter 5. We describe how it allows
for accurate calculations of RIXS spectra in solids, while also providing an intuitive inter-
pretation of the RIXS process. Finally, in Chapter 8, we demonstrate these capabilities with
selected examples.

49





CHAPTER 5

Many-body Approach to Resonant

Sca�ering

In this chapter, we derive a novel expression for the RIXS cross section in terms of selected
matrix elements of the polarizability. To do so, we first reconsider the RIXS cross section
within the independent-particle approximation (IPA). The derivation within this approxi-
mation then informs our derivation that includes many-body effects in the scattering pro-
cess. Finally, we show how the cross section of non-resonant x-ray emission spectroscopy
(XES) is obtained as a limiting case of our RIXS expression.

5.1 Independent-particle Approximation

It is instructive to discuss the RIXS process within the independent-particle approximation
(IPA) before the scattering in the fully interactive system is considered. In the independent-
particle approximation, the many-body ground-state wavefunction is given by a single
Slater determinant, and both the intermediate many-body state |n〉 and the final one | f 〉
are singlet excitations of the groundstate without any relaxation of the system. We know a

priori that the intermediate states contain a core hole µk and an excited electron in a con-
duction state c (k+q1), such that we can express them in second quantization as |n〉 = |c (k+
q1)µk〉 = ĉ†c (k+q1)ĉµk |0〉. These intermediate states have a total energy En = ϵc (k+q1)−ϵµk. Fur-
thermore, the final states contain in the IPA an excited electron in a specific conduction state
c′(k′+q2) and a valence hole in the statevk′, such that | f 〉 = |c′(k′+q2)vk′〉 = ĉ†c ′(k′+q2)ĉvk′ |0〉
and E f = ϵc ′(k′+q2) − ϵvk′ . Here, we have introduced the momentum transfers q1 and q2 as
the projection of the photon momentum on the first Brillouin zone, i.e. K1 = G1 + q1 and
K2 = G2 + q2, where G1 and G2 are reciprocal lattice vectors. We assume that the interme-
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diate and the final states have the same lifetime broadening η. Then, Eq. 3.33 becomes

d2σ

dΩ2dω2

∣
∣
∣
∣
IP

=α4

(
ω2

ω1

)
∑

c ′vk′
︸︷︷︸

f

∣
∣
∣
∣

∑

cµk
︸︷︷︸
n

〈c′(k′ + q2)vk′|T̂ †(e2) |c (k + q1)µk〉〈c (k + q1)µk|T̂ (e1) |0〉
ω1 − (ϵc (k+q1) − ϵµk) + iη

∣
∣
∣
∣

2

×

× δ (ω − (ϵc ′(k′+q2) − ϵvk′ )),
(5.1)

where we have introduced the energy loss ω = ω1 − ω2. In the following, we employ the
dipole approximation, i.e. the momenta K1 and K2 of the incoming and scattered photon are
assumed to be small compared to the momenta of the electrons involved in the absorption
and emission process. This approximation is typically employed in the calculation of x-
ray absorption and emission spectroscopy. The approximation allows us to express the
transition operator of Eq. 3.33 as T̂ (e) = e

∑

j pj exp
(
iKr
)
≈ e
∑

j pj , where the summation
over j includes all electrons in the system. We now insert the expression for the transition
operator T̂ in second quantization, analogously to the scattering operator D̂ in Eq. 3.19:

T̂ = e1
∑

mn

∑

kk′

〈mk|p|nk′〉ĉ†mkĉnk′ = e1
∑

mn

∑

kk′

〈mk|p|nk′〉V0δkk′ĉ
†
mkĉnk′

=

∑

mn

∑

k

e1 · Pmnkĉ
†
mkĉnk,

(5.2)

where we have introduced the momentum matrix elements Pmnk = 〈mk|p|nk〉V0 . Inserting
Eq. 5.2 into Eq. 3.33, we obtain

d2σ

dΩ2dω2

∣
∣
∣
∣
IP

=

∑

c ′vk′

∣
∣
∣
∣

∑

cµk

∑

mnk′′

∑

pqk′′′

[
e∗2 · Pmnk′′

]
×

×
〈c′vk′|ĉ†mk′′ĉnk′′ |cµk〉〈cµk|ĉ

†
pk′′′ĉqk′′′ |0〉

ω1 − (ϵck − ϵµk) + iη

[

Ppqk′′′ · e1
]
∣
∣
∣
∣
∣

2

×

× δ (ω − (ϵc ′k′ − ϵvk′ )).

(5.3)

We note that the summations over p and q in Eq. 5.3 are not restricted to either core, va-
lence, or conduction states. Restrictions to these indices can be inferred from to the matrix
elements of the creation and annihilation operators. We find that

〈cµk|ĉ†pk′′′ĉqk′′′ |0〉 = 〈0|ĉ
†
µkĉckĉ

†
pk′′′ĉqk′′′ |0〉 = δµqδcpδkk′′′ . (5.4)

The term 〈c′vk′|ĉ†mk′′ĉnk′′ |cµk〉 requires a more careful treatment. We can write it as

〈c′vk′|ĉ†mk′′ĉnk′′ |cµk〉 = 〈0|
[

ĉ†vk′ĉc ′k′
] [

ĉ†mk′′ĉnk′′
] [

ĉ†ckĉµk
]

|0〉 (5.5)
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Using Wick’s theorem [125], we can evaluate the expectation value and obtain:

〈c′vk|ĉ†mk′′ĉnk′′ |cµk
′〉 = δvµδcnδc ′mδkk′δkk′′

︸ ︷︷ ︸

(a)

+δc ′cδmnδvµδkk′δkk′′
︸ ︷︷ ︸

(b)

−δc ′cδµmδvnδkk′δkk′′
︸ ︷︷ ︸

(c)

. (5.6)

Inserting Eq. 5.6 into Eq. 5.3 yields the cross section as a sum of three terms with additional
cross terms, since the cross section is given by the square of the sum. Ignoring interference
terms, the double differential cross section in the IPA has the following contributions,

d2σ

dΩ2dω2
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∣
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
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∣
∣
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∣
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∣
∣
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∣
∣
∣
∣

2

δ (ω − (ϵck − ϵµk)) (b)

+

∑

cvk

∣
∣
∣
∣

∑

µ
e∗2·PµvkPcµk·e1
ω1−(ϵck−ϵµk)+iη

∣
∣
∣
∣

2

δ (ω − (ϵck − ϵvk)) (c)

(5.7)

each of the them corresponding to different physical processes. In the following, we will
demonstrate that only one of them represents the RIXS process.

The physical process of term (a) in Eq. 5.7 is schematically shown in Fig. 5.1. The cross
section has poles at excitation energies ω1 = ϵck − ϵµk, where a core state µk is excited
to a conduction state ck. The poles in the emission energy occur at ω2 = ϵc ′k − ϵck, with
the transition c′k → ck of the excited electron ck to a different conduction state c′k at the
same k-point. The final state contains a core hole in state µk, which is created by the initial
excitation, and the excited electron has scattered to a different conduction state c′k. This
process, shown in Fig. 3.1, does not correspond to RIXS. The final state still contains the
initial core hole µk, and the emission energy is typically within a few eV, due to the energy
difference between two conduction electrons, such that the energy loss ω = ω1 − ω2 is in
the x-ray region.

The term (b) in Eq. 5.7 can be neglected, since it does not correspond to a resonant scattering
process. Poles occur at excitation energies ω1 = ϵck − ϵµk and at emission energies ω2 = 0.
The emission of photon occurs due to transitions mk → mk in Eq. 5.7b), where the sum
overm includes all valence and conduction states. For each statemk, the momentummatrix
Pmmk vanishes, i.e. Pmmk = 0, since the occupation factor fmk has to be included in thematrix
elements, such that Pmmk = fmk(1 − fmk)〈mk|p|mk〉V0 . Both for valence electrons ( fmk = 1)

and for conduction electrons ( fmk = 0), the matrix elements vanish.

The physical process of term (c) in Eq. 5.7 is schematically shown in Fig. 5.1. The cross
section has poles at excitation energiesω1 = ϵck−ϵµk and at emission energiesω2 = ϵvk−ϵµk.
This corresponds to an excitation µk → ck and subsequent de-excitation vk → µk, where
valence electron vk fills the core hole in µk. In the final state, the system contains the
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Figure 5.1: Schema of the processes that contribute to the RIXS cross section in Eq. 5.7.
Filled and open circles represent occupied and unoccupied states, respectively. Vertical
light blue lines indicate dipole transitions, while horizontal black lines indicates x-ray
absorption and emission.

valence hole in the statevk and the excited electron in state ck. Thus, this term corresponds
to the RIXS process, as the initial core hole µk is filled. If the valence statevk is close to the
Fermi energy, both the initial excitation energy ω1 and the emission energy ω2 are in the
x-ray region, while the energy loss ϵck − ϵvk corresponds to an optical excitation energy.

This physical analysis of the cross sections resulting from the sum in Eq. 5.6 demonstrates
that only one term yields the RIXS process. Neglecting cross terms, we can thus write

〈cvk|ĉ†mk′′ĉnk′′ |c
′µk′〉 ≈ −δcc ′δµmδvnδkk′δkk′′ . (5.8)

The analysis also justifies why we neglect the cross terms in Eq. 5.7, because the different
contributions have poles in vastly different energy regions. Finally, the expression for the
RIXS double-differential cross section within the IPA is obtained as

d2σ

dΩ2dω2

∣
∣
∣
∣
IP

= α4

(
ω2

ω1

)
∑

cvµk

∣
∣
∣
∣
∣

e∗2 · PµvkPcµk · e1
ω1 − (ϵck − ϵµk) + iη

∣
∣
∣
∣
∣

2

δ (ω − (ϵck − ϵvk)). (5.9)

Furthermore, we employ Eq. 3.21 to express the δ -function that enforces the overall energy
conservation with a finite Lorentzian broadening η, and obtain

d2σ

dΩ2dω2

∣
∣
∣
∣
IP

= −α
4

π

(
ω2

ω1

)

Im
∑

cvk

∣
∣
∣
∣

∑

µ
e∗2·PµvkPcµk·e1
ω1−(ϵck−ϵµk)+iη

∣
∣
∣
∣

2

ω − (ϵck − ϵvk) + iη
. (5.10)

The equation above has been widely applied in the literature to calculate the RIXS cross
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section in solids [262–267].

5.2 Many-body Formalism

In the previous section, we have derived a compact expression for the RIXS cross section
within the IPA. Within this approximation, it is possible to enumerate all possible interme-
diate |n〉 and final many-body states | f 〉 in Eq. 3.33 as each of these states is described as
a singlet excitation above the ground state with no relaxation of the electronic system. It
is known, however, that electron-hole interaction, which is neglected in the IPA, signifi-
cantly alters the intermediate many-body states, which contain a core hole and an excited
electron, and the final states, which contain a valence hole and an excited electron. This
electron-hole interaction is the reason for the poor performance of the IPA for optical and
x-ray excitation spectra in crystalline semiconductors and insulators. A more accurate ap-
proach is provided by many-body perturbation theory based on solutions of the BSE [55,
57, 103]. This approach has become the state of the art in the last decades to determine
the optical [55, 56, 58–61] and x-ray absorption spectra [45, 226, 228, 237–245, 268–270]
in solids. In order to describe many-body effects in RIXS within many-body perturbation
theory, the cross section of Eq. 3.33 has to be expressed in quantities that can be obtained
from the solution of the Bethe-Salpeter equation 1.33, more specifically the polarizability
χ defined in Eq. 2.19.

Following Refs. [206, 209], we define an intermediate many-body state as

|Y (ω1)〉 =
∑

n

|n〉〈n |
ω1 − En

T̂ (e1) |0〉. (5.11)

Similar intermediate states have been defined as response vectors in the context of non-
linear spectroscopy in molecular systems [271, 272]. Inserting these intermediate states
into Eq. 3.33, the RIXS cross section becomes

d2σ

dΩ2dω2
=α4

(
ω2

ω1

)
∑

f

|〈f |T̂ †(e2) |Y (ω1)〉|2δ (ω − E f )

=α4

(
ω2

ω1

)
∑

f

〈Y (ω1) |T̂ (e2) | f 〉〈f |T̂ †(e2) |Y (ω1)〉δ (ω − E f ).

(5.12)

The intermediate states |Y (ω1)〉 contain the information about all possible excitation pro-
cesses and can be understood as the excited many-body states produced by the absorption
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of a photon with energy ω. Using Eq. 3.21, the cross section becomes

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

f

〈Y (ω1) |T̂ (e2) | f 〉〈f |T̂ †(e2) |Y (ω1)〉
ω − E f + iη

. (5.13)

We now introduce a crucial approximation for the many-body treatment of the RIXS pro-
cess by assuming the intermediate and final many-body states to be represented completely
in terms of singlet excitations of the groundstate, i.e. both intermediate and final state con-
tain only one electron hole pair. Thus, we can approximate unity as

1 ≈
∑

ik

∑

jk′

ĉ†jk′ĉik |0〉〈0|ĉ
†
ikĉjk′ . (5.14)

We note that this approximation does not imply that the excited electron and the hole
are in a specific single-particle state, but rather assume that the interacting many-body
states can be expressed as linear combinations of singlet excitations. This approximation
is identical to the Tamm-Dancoff approximation in Eq. 1.60, such that Eq. 5.14 does not
introduce an additional level of approximation if the polarizability is obtained in the Tamm-
Dancoff approximation. Due to the limitation to singlet excitations, indirect RIXS can not be
described, as it explicit requires the presence of two electron-hole pairs in the intermediate
state (compare Section 3.4.2). Inserting Eq. 5.14 into Eq. 5.13 yields

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

f

∑

ijk

∑

lk′′,mk′′′

∑

nkIV ,okV

∑

pqkV I

[

e∗2 · Pijk
]∗
〈Y (ω1) |ĉ†jkĉikĉ

†
mk′′′ĉlk′′ |0〉

〈0|ĉ†lk′′ĉmk′′′ | f 〉〈f |ĉ†okV ĉnkIV |0〉
ω − E f + iη

×

× 〈0|ĉ†
nkIV

ĉokV ĉ
†
pkV I ĉqkV I |Y (ω1)〉

[

e∗2 · PpqkV I

]

.

(5.15)

We can insert the matrix elements of the polarizability of Eq. 2.28 and obtain

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

ijk

∑

lk′′,mk′′′

∑

nkIV ,okV

∑

pqkV I

[

e∗2 · Pijk
]∗
〈Y (ω1) |ĉ†jkĉikĉ

†
mk′′′ĉlk′′ |0〉χmk′′′lk′′,nkIV okV (ω)×

× 〈0|ĉ†
nkIV

ĉokV ĉ
†
pkV I ĉqkV I |Y (ω1)〉

[

e∗2 · PpqkV I

]

.

(5.16)

While this reformulation does not appear to simplify the problem, we note that the sum-
mation over the final many-body states | f 〉 is now implicitly included in the polarizability.
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Equation 5.16 yields an expression for the RIXS cross section in terms of the polarizabil-
ity χ (ω) evaluated at the energy loss ω = ω2 − ω1, once the intermediate states |Y (ω1)〉
are known. In the quasiparticle approximation of Eq. 1.58, the summations over indices
for creation and annihilation operators acting directly on the groundstate are restricted to
conduction and valence states, respectively. Thus, the expression in Eq. 5.15 simplifies, and
one obtains

d2σ

dΩ2dω2
=α4

(
ω2

ω1

)

Im
∑

ijk

∑

ckc ,vkv

∑

c ′k′c ,v ′k′v

∑

lmk′

[

e∗2 · Pijk
]∗
×

× 〈Y (ω1) |ĉ†jkĉikĉ
†
ckc

ĉ†vkv |0〉χckcvkv ,c ′k′cv ′k′v (ω)×
× 〈0|ĉ†v ′k′v ĉc ′k′c ĉ

†
lk′ĉmk′ |Y (ω1)〉

[
e∗2 · Plmk′

]
.

(5.17)

The summations over the single-particle indices (ijk) and (lmk′) are not restricted to either
occupied or unoccupied states, since the corresponding creation and annihilation operators
do not act on the ground state directly. To evaluate the expectation values 〈Y (ω1) |ĉ†jkĉikĉ

†
ckc

ĉ†vkv |0〉
and 〈0|ĉ†v ′k′v ĉc ′k′c ĉ

†
lk′ĉmk′ |Y (ω1)〉, the explicit form of |Y (ω1)〉 has to be known. Similar to the

treatment of Eq. 5.3, we also use our a priori knowledge that the intermediate many-body
state |n〉 is supposed to contain a core hole. As such, we express the approximation to the
unity operator in Eq. 5.14 in terms of electron-core hole pairs, where the electron is in the
state ck and the core hole in the state µk. Inserting the projection operator in Eq. 5.11
yields

|Y (ω1)〉 =
∑

n

∑

cµk

∑

c ′µ ′k′

ĉ†ckĉµk |0〉
〈0|ĉ†µkĉck |n〉〈n |ĉ

†
c ′k′ĉµ ′k′ |0〉

ω1 − En

[

e1 · Pc ′µ ′k′
]

=

∑

cµk

∑

c ′µ ′k′

ĉ†ckĉµk |0〉χcµk,c ′µ ′k′ (ω1)
[

e1 · Pc ′µ ′k′
]

.

(5.18)

This expression for the intermediate many-body state |Y (ω1)〉 allows us to evaluate the
expectation values in Eq. 5.17, and we obtain

〈Y (ω1) |ĉ†jk′′ĉik′′ĉ
†
c ′′′k′′′ĉ

†
v ′′′k′′′ |0〉

=

∑

cvk

∑

c ′v ′k′

χ ∗cµk,c ′µ ′k′ (ω1)
[

e1 · Pc ′µ ′k′
]∗
〈0|ĉ†µkĉckĉ

†
jk′′ĉik′′ĉ

†
c ′′′k′′′ĉ

†
v ′′′k′′′ |0〉

= −
∑

cµk

∑

c ′µ ′k′

χ ∗cµk,c ′µ ′k′ (ω1)
[

e1 · Pc ′µ ′k′
]∗
δcc ′′′δv ′′′jδµiδkk′′′δkk′′

(5.19)

where in the last line, Eq. 5.8 is used to obtain an analytical expression for the expectation
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value. Finally, this yields the double-differential cross section as

d2σ

dΩ′dω′
= α4

(
ω2

ω1

)

Im
∑

c,c ′,c ′′,c ′′′

∑

µ,µ ′,µ ′′,µ ′′′

∑

v,v ′

∑

kk′k′′k′′′

[[

e∗2 · Pµvk
]

χcµk,c ′µ ′k′ (ω1)
[

e1 · Pc ′µ ′k′
]]∗

χcvk,c ′′v ′k′′ (ω)

[[

e∗2 · Pµ ′′v ′k′′
]

χc ′′µ ′′k′′,c ′′′µ ′′′k′′′ (ω1)
[

e1 · Pc ′′′µ ′′′k′′′
]]

.

(5.20)
Equation 5.20 represents the main result of this section: The RIXS cross section is expressed
solely in terms of the polarizability χ . The polarizability is evaluated twice, once at the x-ray
excitation energyω1, and once at the energy lossω = ω1−ω2. The cumbersome summations
over all intermediate and final many-body states are thus included in the polarizability, and
Eq. 5.20 does not include explicit summations over many-body states.

5.3 Non-resonant X-ray Emission Spectroscopy

Non-resonant x-ray emission spectroscopy (XES) is a widely used technique to study the
valence electronic system, thus complementing x-ray absorption spectroscopy, which re-
veals the conduction electronic structure. From a theoretical viewpoint, XES is a special
case of RIXS, where the excitation energy is chosen high above the absorption edge, and
the emission spectrum from the valence-core transitions is observed. In order to avoid the
explicit calculation of the polarizability for high energies above the absorption edge, we em-
ploy the fact that the excited electron is in a conduction state high above the Fermi energy.
Both the correlation between the excited electron and the core hole, and the correlation
between the excited electron and the final valence hole, can be neglected in this case. Thus,
we can employ the cross section in the independent particle approximation from Eq. 5.9
as

d2σ

dΩ2dω2

∣
∣
∣
∣
IP

= α4

(
ω2

ω1

)
∑

cvµk

∣
∣
∣
∣
∣

e∗2 · PµvkPcµk · e1
ω1 − (ϵck − ϵµk) + iη

∣
∣
∣
∣
∣

2

δ (ω − (ϵck − ϵvk)). (5.21)

Furthermore, we assume a fixed excitation energy resonant to a specific independent-
particle excitation, i.e. ω1 = ϵck − ϵµk. Then, the δ -function becomes δ (ω − (ϵck − ϵvk)) =
δ (ϵvk −ϵµk −ω2) and the cross section becomes a function of the emission energy ω2 alone.
As we have fixed the excitation energy to a specific core excitation, all terms depending on
the conduction state ck yield only a constant factor to the cross section. Focussing on the
dependence on the emission energy, we then write the cross section as

d2σ

dΩ2dω2
|IP ∝

∑

vµk

∣
∣
∣e2 · Pµvk

∣
∣
∣

2

δ (ϵvk − ϵµk − ω2) ∝ Im
∑

µv

∣
∣
∣e2 · Pµvk

∣
∣
∣

2

ω2 − (ϵvk − ϵµk) + iη
(5.22)
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where we consider it only as a function of the emission energyω2. Equation 5.22 is identical
to expressions in literature [273, 274] used to calculate XES spectra. Within our approxima-
tion, there are no effects of electron-hole correlation on the x-ray emission spectra, and the
spectrum is thus given by single-particle energy differences, ϵvk − ϵµk, and the transition
matrix elements Pµvk, fully determined by the electronic band structure. As such, the XES
yields direct insight into the valence electronic structure.
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CHAPTER 6

Absorption and Non-resonant

Sca�ering in exciting

In this chapter, we present the implementation of the BSE formalism in exciting [254].
In general, BSE calculations require the knowledge of the quasiparticle energies for the
construction of Eq. 6.26 which can be obtained from the GW approach of MBPT. Existing
all-electron implementations ofGW typically adopt a basis set that is optimized to represent
products of all-electronwavefunctions, know as product basis [275–277]. Details on theGW
implementation in the exciting code within the product basis representation can be found
in Refs. [254, 277, 278]. For the BSE implementation, the plane-wave representation for the
non-local operators is chosen, which provides a description of the optical properties [225]
at lower computational cost. Since momentum and plane-wave matrix elements are central
quantities, they are discussed in detail in this section.

The work described in this chapter was developed in close collaboration with Benjamin
Aurich [261], extending the existing implementation in the exciting [253, 279]. Benjamin
Aurich implemented optical BSE calculations for finite momentum transfer and optical BSE
calculations beyond the Tamm-Dancoff approximation, while we have combined the imple-
mentations for the calculations of optical excitations with the one for core excitations [239].
This consistent implementation is the starting point for our code development to determine
the RIXS cross section (compare Chapter 7). This chapter in large parts follows the corre-
sponding sections in Ref. [359].

6.1 Linearized Augmented Plane-wave Basis

exciting employs the (L)APW+lo basis set [232–235] for the Kohn-Sham equations Eq. 1.7
to compute valence and conduction states. These states subsequently enter the expressions
of the matrix elements of the BSE Hamiltonian. To obtain the basis functions, the unit cell
is divided into non-overlapping muffin-tin (MT) spheres centered at the atomic positions
and the interstitial region between the spheres. Different functions are employed in the two
regions in order to account for both the rapid variation of the Kohn-Sham wavefunctions
close to the nuclei and the smoother behavior in the interstitial region. In the MT sphere
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surrounding an atom α , the wavefunctions are expanded in atomic-like basis functions
uαl (r )Ylm (r̂ ), while plane waves e−i(G+k)r are used in the interstitial region. As such, the
basis functions ϕk+G are expressed as

ϕk+G(r) =







1√
V0
e−i(G+k)r r ∈ I

∑

lm,p A
k+G
lm uαl ,p (r )Ylm (r̂ ) r ∈ MT .

(6.1)

Here, V0 is the unit-cell volume and Ak+G
lm,p are expansion coefficients that ensure that the

basis functions are continuous at the boundaries of the MT spheres. The radial functions
uαl ,p (r ) are obtained from the solutions of the radial Schrödinger equation using the spher-
ically averaged Kohn-Sham potential. The index p denotes p-th derivative with respect to

the energy, i.e. uαl ,p =
∂puαl
∂ϵp

. For p = 0, we recover the APW+lo basis set [235], while the
summation up to p = 1 yields the LAPW+lo basis set [232, 233]. Higher-order derivatives
of the radial functions can also be included. In order to increase the variational degrees
of freedom in the MT spheres, local orbitals (LOs) [235] ϕν (r) are used to complement the
basis. These basis function are expressed as

ϕν (r) =







0 r ∈ I
δαανδllνδmmν

∑

p Bν ,pu
α
l ,p (r )Ylm (r̂ ) r ∈ MT

. (6.2)

The local orbitals vanish outside of the MT spheres and the coefficients Bν ,p ensure that
they are continuous and smooth at the MT-sphere boundary. As the LOs are added for
specific MT spheres and (lm)-channels, they allow for a systematic improvement of the
basis. For a review on the family of (L)APW+lo basis sets, see Ref. [254]. The eigenstates
ψik of the Kohn-Sham Hamiltonian in Eq. 1.9 are expressed in the LAPW+lo basis as

ψKS
ik (r) =

∑

G

Ci (k+G)ϕk+G(r) +
∑

ν

Ciνkϕν (r) =

{
1√
V0

∑

GCi (k+G)e
−i(G+k)r r ∈ I

∑

lm uikl (r )Ylm (r̂ ) r ∈ MT
(6.3)

where the radial functions are defined as

uikl =
∑

p

∑

G

Ci (k+G)A
k+G
lm,pu

α
l ,p (r ) +

∑

ν

CiνkBν ,pu
α
l ,p (r ). (6.4)

Ci (k+G) and Ciνk are the expansion coefficients, obtained from the diagonalization of the
Kohn-Sham Hamiltonian.

While the expansion in this basis is convenient for the extended valence and conduction
states, the highly localized core states ψKS

α ,κ,M require a different treatment. These states
are fully localized in the muffin-tin sphere of the atom α . As spin-orbit coupling can play
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Figure 6.1: Schematics of a unit cell in the LAPW framework.

a dominant role for these states, they are obtained from the solution of the radial Dirac
equation in the respective spherically symmetrized crystal potential. The spinor solutions
ψKS
α ,κ,M of these equations can be written as

ψKS
α ,κ,M (r) =

(

uα ,κ (r )Ωκ,M (r̂ )

−ivα ,κ (r )Ω−κ,M (r̂ )

)

, (6.5)

where we have introduced a unique index κ for a core state 2S+1L J , such that

κ =







−L − 1 for J = L + 1
2

L for J = L − 1
2

. (6.6)

The spherical part of the core wavefunctionsψKS
α ,κ,M is given by the spin spherical harmonics

ΩL,S,J ,M (r̂ ), defined as

ΩL, 12 ,L+
1
2 ,M

(r̂ ) =






√
L+M+ 1

2

2L+1
YL,M− 1

2
(r̂ )

√
L−M+ 1

2

2L+1
YL,M+ 1

2
(r̂ )




 , (6.7)

and

Ω(L, 12 )L−
1
2 ,M

(r̂ ) =






−
√

L−M+ 1
2

2L+1
YL,M− 1

2
(r̂ )

√
L+M+ 1

2

2L+1
YL,M+ 1

2
(r̂ )




 . (6.8)

As such, the core wavefunctions ψKS
α ,κ in Eq. 6.5 are four-dimensional Dirac vectors com-

63



6 Absorption and Non-resonant Scattering in exciting

posed of the two-dimensional spinors of the large and small component. The radial func-
tions uα ,κ (r ) for the large component and −ivα ,κ (r ) for the small component, respectively,
are given by the coupled radial Dirac equations

∂uα ,κ

∂r
=

1

c

(

vαe f f − ϵα ,κ
)

vα ,κ +

(
κ − 1
r

)

uα ,κ (6.9)

∂vα ,κ

∂r
= −κ + 1

r
vα ,κ + 2c

[

1 +
1

2c2

(

ϵα ,κ −vαe f f
)]

, (6.10)

In the calculation of matrix elements between core states and conduction states, the small
component is neglected, and we obtain the core wavefunctionψKS

α ,κ,M at an atomic site α :

ψKS
α ,κ,M (r) =







uα ,κ (rα )Ωκ,M (r̂α ) for rα ≤ RMT

0 else
. (6.11)

More details about the treatment of core states in the (L)APW+lo basis can be found in
Ref. [239].

6.2 Momentum and Plane-wave Matrix Elements

The momentum matrix elements P j
nmk = 〈nk| − i∇j |mk〉 between conduction and valence

states, where j represents the polarization direction of the incoming light, are expanded in
the (L)APW+lo basis

P
j
nmk =

∑

GG′
C∗n(k+G)Cm(k+G)P

j
GG′k +

∑

Gν

C∗n(k+G)CmνkP
j
Gνk

+

∑

ν ′G′
C∗mν ′kCn(k+G)P

j
ν ′G′k +

∑

ν ′ν

C∗mν ′kCnνkP
j
ν ′νk.

(6.12)

Cik and Ciνk are the coefficients of Eq. 6.3, and P
j
GG′k, P

j
Gνk, P

j
ν ′G′k, and P

j
ν ′ν are LAPW-

LAPW, LAPW-LO, LO-LAPW, and LO-LOmomentummatrix elements, respectively, which
are defined as

P
j
GG′k = 〈ϕk+G | − i∇j |ϕk+G′〉

P
j
Gνk = 〈ϕk+G | − i∇j |ϕν 〉

P
j
ν ′G′k = 〈ϕν ′ | − i∇j |ϕk+G′〉
P
j
ν ′ν = 〈ϕν ′ | − i∇j |ϕν 〉.

(6.13)
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These matrix elements of the general form P
j
ab can be decomposed into contributions from

the MT spheres P j,MT
ab and from the interstitial region P

j,MT
ab , such that we can write all

plane-wave matrix elements as P j
ab = P

j,MT
ab + P

j,I
ab . Since the local orbitals vanish in the in-

terstitial region, only P j
GG′ have a non-vanishing contribution. The interstitial contribution

of thematrix elements is calculated analytically, as the action of the nabla-operator on plane
waves can be determined analytically. In the MT spheres, the action of the nabla-operator

is expanded in terms of spherical harmonics, ∇j
[

uαlp (r )Ylm (r̂ )
]

=

∑

l ′m′ u
α ,j
lmp,l ′m′Yl ′m′ (r̂ ).

This expansion allows for the analytic evaluation of the spherical integral, while the radial
integration within the MT spheres is performed numerically on a grid.

Plane-wave matrix elements Mmnk(G, q) = 〈mk|e−i(G+q)r |n(k + q)〉 are calculated accord-
ingly:

Mmnk(G, q) =
∑

G′G′′
C∗m(k+G′)Cn(k+q+G′′)MG′G′′k(G, q)

+

∑

G′ν ′
C∗m(k+G′)Cnν ′kMG′ν ′k(G, q)

+

∑

νG′
C∗mν ′kCn(k+q+G′)MνG′k(G, q)

+

∑

νν ′
C∗mν ′kCnνk+qMνν ′k(G, q),

(6.14)

where the LAPW-LAPW, LAPW-LO, LO, LAPW-LO, and LO-LO plane-wave matrix ele-
ments are given by

MG′G′′k(G, q) = 〈ϕk+G′ |e−i(G+q)r |ϕk+q+G′′〉
MG′νk(G, q) = 〈ϕk+G′ |e−i(G+q)r |ϕν 〉
Mν ′G′k(G, q) = 〈ϕν ′ |e−i(G+q)r |ϕk+q+G′〉
Mν ′ν (G, q) = 〈ϕν ′ |e−i(G+q)r |ϕν 〉.

(6.15)

Equivalently to the case of the momentum-matrix elements, the plane-wave matrix ele-
ments are decomposed into an interstitial and a MT part. The integration in the interstitial
part is performed analytically. In the MT spheres, we employ the Rayleigh expansion of
plane waves in products of spherical harmonics and spherical Bessel functions of first kind
jl (r ), i.e. e

−i(G+q)r
= 4π

∑

lm (−i)l jl ((G+q)r )Ylm (r̂ )Ylm ( ˆG + q). As in the case of the momen-
tum matrix elements, the spherical integral is performed analytically, while a numerical
integration is performed on the radial grid. More details on the calculation of momentum
and plane-wave matrix elements in the (L)APW+lo basis can be found in Refs. [239, 279].

We furthermore define modified plane-wave matrix elements Nnmk(G, q) as

Nmnk(G, q) = 〈mk|e−i(G+q)r |
(
n(k + q)

)∗〉, (6.16)
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6 Absorption and Non-resonant Scattering in exciting

that are employed to evaluate plane-wave matrix elements of states at −(k + q), i.e. |n −
(k + q)〉 = |

(
n(k + q)

)∗〉. They are expressed in the (L)APW+lo basis as

Nmnk(G, q) =
∑

G′G′′
C∗m(k+G′)C

∗
n(k+q+G′′)NG′G′′k(G, q)

+

∑

G′ν ′
C∗m(k+G′)C

∗
nν ′kNG′ν ′k(G, q)

+

∑

νG′
C∗mν ′kC

∗
n(k+q+G′)NνG′k(G, q)

+

∑

νν ′
C∗mν ′kC

∗
nνk+qNνν ′k(G, q).

(6.17)

Analogously to the calculation of the plane-wave matrix elements in Eq. 6.15, we define
modified plane-wave matrix elements between basis functions as

NG′G′′k(G, q) = 〈ϕk+G′ |e−i(G+q)r |ϕ∗k+q+G′′〉
NG′νk(G, q) = 〈ϕk+G′ |e−i(G+q)r |ϕ∗ν 〉
Nν ′G′k(G, q) = 〈ϕν ′ |e−i(G+q)r |ϕ∗k+q+G′〉
Nν ′ν (G, q) = 〈ϕν ′ |e−i(G+q)r |ϕ∗ν 〉.

(6.18)

The LAPW-LAPWmatrix elementsNG′G′′k, LAPW-LO elementsNG′νk, LO-LAPWelements
Nν ′G′k, and LO-LO elements Nν ′ν are calculated equivalently to those of Eq. 6.15, where we
employ the analytic property Y ∗lm (r̂ ) = Yl (−m) (r̂ ) for the MT contributions.

For additional details regarding the calculation of the plane-wave matrix elements in the
(L)APW+lo basis of exciting, we refer the readers to Refs. [225, 253]. For additional infor-
mation on matrix elements between states in the (L)APW+lo basis and core states, we refer
to Ref. [239].

6.3 BSE in Matrix Form

Since the quantities L(1, 2; 1′, 2′) and L0(1, 2; 1
′, 2′) in the BSE (Eq. 2.24) depend on four

points in space and time, they can be represented in a basis of non-local functions ϒα (r, r′),
where α is a generic index. The matrix elements Aαβ of a generic non-local function
A(r1, r

′
1, r2, r

′
2) are defined as

Aαβ =

∫ ∫ ∫ ∫

d3r1 d
3 r ′1 d

3r2 d
3r ′2 ϒ

∗
α (r1, r

′
1)A(r1, r

′
1, r2, r

′
2)ϒβ (r2, r

′
2), (6.19)
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BSE in Matrix Form 6.3

and the full function can be constructed from the matrix elements via

A(r1, r
′
1, r2, r

′
2) =

∑

αβ

ϒα (r1, r
′
1)Aαβϒ

∗
β (r2, r

′
2). (6.20)

Typically, products of quasiparticle wavefunctions are chosen as basis representation. This
choice of basis is motivated by the Lehman representation of the independent-particle cor-
relation function L0(q,ω) in Eq. B.6. This basis is split into the resonant part, i.e. transitions
from occupied to unoccupied states with positive transition energies, and the anti-resonant
part, i.e. transitions from unoccupied to occupied states with negative transition energy.
Here, we define such a basis with the functions ϒr and ϒ

a [140, 359] for the resonant and
anti-resonant space, respectively:

ϒ
r
α ,q(r, r

′) = ϕok+ (r)ϕ
∗
uk− (r

′) (6.21)

and
ϒ
a
α ,q(r, r

′) = ϕu (−k−) (r)ϕ
∗
o(−k+) (r

′), (6.22)

with the index o (u) denoting occupied (unoccupied) states, and the k-point set chosen
such that k± = k ± q

2
. α is a combined index α ↔

{
o,u, k

}
which, together with the

index q, uniquely labels independent-particle transitions from ϕok+ to ϕuk− . This specific
choice of basis functions allows us to exploit the symmetry properties ϕnk(r) = ϕ∗n(−k) (r)
and ϵnk = ϵn(−k) of the Bloch states under time-reversal, such that [140, 261]

ϒ
a
α ,q(r, r

′) = ϒ
r
α ,q(r

′, r). (6.23)

The matrix elements of L in this basis are obtained as

Lij (q) =

∫

d3r1d
3r ′1d

3r2d
3r ′2 ϒ

∗
iq(r1, r

′
1)L(r1, r2, r

′
1, r
′
2)ϒjq(r

′
2, r2), (6.24)

where i and j combine the indices of the transition (α ) and of the resonant or anti-resonant
subspace (r or a). As L0 is diagonal in this representation, the inverse L−10 takes the form

L−10 (q,ω) = −





(

∆ϵ IP(q) 0

0 ∆ϵ IP(q)

)

− ω
(

1 0

0 −1

)

 , (6.25)

where
∆ϵ IPα ,α ′ (q) =

(

ϵuk− − ϵok+
)

δα ,α ′ (6.26)

contains the quasiparticle energies ϵo/uk± .
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6 Absorption and Non-resonant Scattering in exciting

We now write Eq. 2.24 as a matrix equation in the basis of Eqs. 6.21 and 6.22, and obtain

L(q,ω) =
[

L−10 (q,ω) − Ξ(q)
]−1
. (6.27)

Inserting the explicit form of L0 (Eq. 6.25) into this equation, we arrive at

L(q,ω) = −
[
H(q) − ω∆

]−1
, (6.28)

where H(q) includes all frequency-independent terms and ∆ =

(

1 0

0 −1

)

. The matrix

H(q) represents an effective Hamiltonian, the BSE Hamiltonian, the eigenstates of which are
also eigenstates of L. Using time-reversal symmetry [140] and making use of the symmetry
property of Eq. 6.23, the Hamiltonian becomes hermitian and takes the form:

H(q) =

(

A(q) B(q)

B(q) A(q)

)

, (6.29)

with the diagonal block expressed by

A(q) = Eip(q) + 2γxV
rr(q) − γcWrr(q) (6.30)

and the coupling block being

B(q) = 2γxV
rr(q) − γcWra(q). (6.31)

Here, we introduce the resonant-resonant and resonant-antiresonant screened Coulomb
interaction asW rr (q) andW ra (q), respectively, as well as the resonant-resonant exchange
interaction V rr (q).

6.4 Spin Structure of the BSE Hamiltonian

For non-spin-polarized systems where the spin-orbit coupling can be neglected, the BSE
Hamiltonian of Eq. 6.29 has a particular spin structure, which can be exploited to reduce
the size of the BSE problem. Let us consider a minimal example of a system with two va-
lence states vk ↑ and vk ↓ and two conduction states ck ↑ and ck ↓ in the long-wavelength
limit, i.e. q = 0. Since the system is non-spin-polarized, we impose that the electronic
wavefunction does not depend on the spin, i.e. ψik↑(r) = ψik↓(r). In the basis of the tran-
sitions {|v ↑ c ↑ k〉, |v ↑ c ↓ k〉, |v ↓ c ↑ k〉, |v ↓ c ↓ k〉}, the resonant BSE Hamiltonian
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Ambiguity of the Matrix Formulation 6.5

A(q = 0) then becomes [138, 280, 281]

A =








Eip −Wrr
+ Vrr 0 0 Vrr

0 Eip −Wrr 0 0

0 0 Eip −Wrr 0

Vrr 0 0 Eip −Wrr
+ Vrr







. (6.32)

The Hamiltonian decouples into two blocks: The singlet excitations are defined by the spin
state 1√

2
( |v ↑ c ↑ k〉 + |v ↓ c ↓ k〉) determined by the singlet Hamiltonian AS

= Eip −Wrr
+

2Vrr . The triplet excitations are given by {|v ↑ c ↓ k〉, |v ↓ c ↑ k〉, 1√
2
( |v ↑ c ↑ k〉−|v ↓ c ↓ k〉)}

and are determined by the triplet Hamiltonian AT
= Eip −Wrr . The results of the model

can be generalized, and we obtain the singlet BSE Hamiltonian as

AS (q) = Eip(q) + 2Vrr(q) −Wrr(q) (6.33)

and
BS (q) = 2Vrr(q) −Wra(q), (6.34)

while the triplet Hamiltonian is determined by

AT (q) = Eip(q) −Wrr(q) (6.35)

and
BT (q) = −Wra(q). (6.36)

Since spin flips are forbidden by the optical selection rules, only singlet excitations are
observed in absorption spectroscopy. In this case, only the singlet Hamiltonian needs to de
diagonalized, which reduces the size of the problem to 25% of the original problem. Note
that for system with non-negligible spin-orbit coupling, this separation is not possible,
since in this case spin is not a good quantum number any more. In these systems, the full
Hamiltonian of Eq. 6.29 needs to be considered.

6.5 Ambiguity of the Matrix Formulation

We note that the choice of basis functions in Eqs. 6.21 and 6.22 is not unique, even if
only basis functions are considered where L0 is diagonal. This ambiguity occurs since
L0(1, 2; 1

+, 2+) is a time-ordered quantity that depends on the energy difference t1 − t2.
As such, we can define a time difference as τ (1) = t1 − t2 or as τ (2) = t2 − t1. For re-
tarded quantities, such as the retarded polarizability, the time direction τ (1) is unique, since
χR (τ (1) < 0) = 0, as the response of the system at t1 has to follow the perturbation at t2 to
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6 Absorption and Non-resonant Scattering in exciting

preserve causality. As the time-ordered polarizability includes both the information of the
retarded and the advanced response, no time direction is unique.

The two different choices of time-direction, either τ (1) = t1 − t2 or τ (2) = t2 − t1, yield
two different Lehmann representations and thus two distinct sets of basis functions. The
basis functions in Eqs. 6.21 and 6.22 are obtained from the Lehmann representation of L0
with respect to τ (2) (see Appendix B for more details). A different set of basis functions is
obtained from the Lehmann representation with respect to τ (1) = t1−t2, shown in Eq. B.6.

The two possible product-basis representations and their connection to the retarded polar-
izability is discussed in detail in Appendix B, where we show that both basis representations
can be used to obtain the retarded polarizability. In the following, we will drop the super-
script (1), which denotes the matrix representation in the basis functions of Eqs. 6.21 and

6.22, such that χα ,α ′ ≡ χ (1)
α ,α ′ and

[
L0
]

α ,α ′ ≡
[
L0
](1)

α ,α ′ .

6.6 Matrix Elements of the BSE Hamiltonian

The matrix elements of the exchange interaction in Eqs. 6.30 and 6.31 are given by

V rr
αβ (q) =

∫

d3rd3r ′ ϒ∗α ,q(r, r)v (r, r
′)ϒβ ,q(r

′, r′). (6.37)

We introduce the Fourier transform of the bare Coulomb potential

v (r, r′) =
∑

G,q

1

V

4π

|G + q|2
︸ ︷︷ ︸

=vG (q)

ei(G+q) (r−r
′) , (6.38)

where V denotes the crystal volume. The matrix elements V rr
αβ of Eqs. 6.30 and 6.31 are

computed in reciprocal space as

V rr
αβ (q) =

1

V

∑

G

vG(q)M
∗
uok− (G, q)Mu ′o′k′− (G, q). (6.39)

The matrix elements of the screened Coulomb interaction are given by

Wαβ (q) =

"
d3rd3r ′ ϒ∗α ,q(r, r

′)w (r, r′)ϒα ′,q(r, r
′). (6.40)
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The statically screened Coulomb potential is given by

w (r, r′) =

∫

d3r ′′ v (r, r′′)ε−1(r′′, r′,ω = 0). (6.41)

Again, we make use of its Fourier representation

w (r, r′) =
∑

GG′

∑

q

ei(G+q)rwGG′ (q,ω = 0) e−i(G
′
+q)r′, (6.42)

where the Fourier components are given by

wGG′ (q) = vG(q)ε
−1
GG′ (q,ω = 0). (6.43)

Here, the dielectric function is computed in the random-phase approximation (RPA) [282]
as

εRPAGG′ (q,ω) = δGG′ −
1

V0
vG′ (q)

∑

ijk

f (ϵjk+q) − f (ϵik)

ϵjk+q − ϵik − ω
× ×

[

MG
ij (k, q)

]∗
MG′

ij (k, q), (6.44)

where f (ϵik) are the occupation factors of the single-particle state with energy ϵik. In terms
of the plane-wavematrix elements, the resonant-resonant block of Eq. 6.40 can be rewritten
as

W rr
αα ′ (q) =

1

V

∑

GG′
wGG′ (k − k′)M∗o′ok′

+

(G, k − k′)Mu ′uk′− (G
′, k − k′). (6.45)

The elements of the resonant-anti-resonant block can be computed as

W ra
αα ′ (q) =

1

V

∑

GG′
wGG′ (−k′ − k)N ∗uo′k− (G,−k

′ − k)Nou ′k+ (G
′,−k′ − k). (6.46)

6.7 BSE as an Eigenvalue Problem

The resolvent L(q,ω) = −
[
H(q) − ω∆

]−1
of Eq. 6.28 can be found using the solutions of

the generalized eigenvalue problem (the index q is dropped for simplicity)

H

(

Xλ

Yλ

)

= Eλ∆

(

Xλ

Yλ

)

, (6.47)
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where, according to Ref. [283],

[
H − ω∆

]−1
=

∑

λ

1

Eλ − ω

(

Xλ

Yλ

)(

Xλ

Yλ

)†

+

1

Eλ + ω

(

Yλ
Xλ

)(

Yλ
Xλ

)†

. (6.48)

For the solution of the full BSE, a direct diagonalization scheme is adopted in exciting. This
scheme [140, 283] maps the generalized eigenvalue problem of Eq. 6.47 onto an auxiliary
eigenvalue problem of half its size. The auxiliary Hamiltonian is constructed as

S =
(
A − B

) 1
2
(
A + B

) (
A − B

) 1
2 , (6.49)

and the solutions of
SZλ = E2λZλ (6.50)

are used to reconstruct eivenvalues and eigenvectors of Eq. 6.47. As long as A−B andA+B
are positive definite, the solutions of Eq. 6.47 are given by

Xλ + Yλ =
(
A − B

) 1
2

1√
Eλ

Zλ (6.51)

and
Xλ − Yλ =

(
A − B

) 1
2
√

EλZλ . (6.52)

For an analysis of the BSE eigenstates, we define the (resonant) exciton valence weightwλ
vk

and exciton conduction weightwλ
ck as

wλ
vk =

∑

c

|Xcvk,λ |2

wλ
ck =

∑

v

|Xcvk,λ |2.
(6.53)

The valence and conduction weight represent the distribution of the hole and excited elec-
tron for a given eigenstate Xλ, respectively.

6.8 Dielectric Properties from the Solutions of the BSE

From the eigenvalues Eλ and eigenvectors Xλ, the retarded polarizability is obtained fol-
lowing Eq. B.54 as

χR(−G) (−G) (−q,ω) =
∑

λ

tλ (G, q)
[
tλ (G, q)

]∗

ω − Eλ (q) + iη −
tλ (G, q)

[
tλ (G, q)

]∗

ω + Eλ (q) + iη
, (6.54)
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where the oscillator strength tλ (G, q) is defined as in Eq. B.53:

tλ (G, q) =
1√
V

(
Xλ + Yλ

)T
M (G, q). (6.55)

These terms represent a sum of weighted plane-wave transition matrix elements, where
the weights are computed from the corresponding BSE eigenvectors. We then obtain the
macroscopic dielectric function εM (G + q,ω) following Eq. 2.15 as

εM (G + q,ω) =
1

1 +vG(q)χ
R
GG(q,ω)

(6.56)

In the optical limit, i.e. for G = 0 and q→ 0, we obtain the macroscopic dielectric function
as

εM (q→ 0,ω) =
1

limq→0 ε
−1
00 (q,ω)

. (6.57)

Alternatively, an effective polarizability χ̄R can be employed to obtain the macroscopic di-
electric tensor directly [103, 140, 261]. Details of the effective polarizability are provided in
Appendix B. We obtain the dielectric tensor as

ϵ
ij
M(ω) = δij − 4π

∑

λ






[

tλ,i

]∗
tλ,j

ω − Eλ + iη
+

[

tλ,i

]∗
tλ,j

−ω − Eλ − iη




 , (6.58)

where the oscillator strength is given in Eq. B.60 as

tλ,i =
1√
V

(
Xλ + Yλ

)T Pi

∆ϵ
, (6.59)

where P = 〈ck|p̂|vk〉 are the momentum matrix elements and ∆ϵ = ϵck − ϵvk.

6.9 Tamm-Dancoff Approximation

In the Tamm-Dancoff approximation (TDA), the coupling between resonant and antireso-
nant transition in the BSE Hamiltonian in Eq. 6.29 is neglected (B(q) = 0). As such, the
resonant and anti-resonant part of the Hamiltonian decouple and the eigenstatesXλ and Yλ
are identical [261]. Thus, only the reduced eigenvalue problem

HTDAXλ = AXλ = EλXλ (6.60)
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6 Absorption and Non-resonant Scattering in exciting

has to be solved. We finally obtain the Fourier transform of the polarizability following
Eq. 6.54, where the oscillator strength tTDAλ in the Tamm-Dancoff approximation is given
by

tTDAλ (G, q) =
1√
V
XT
λM (G, q). (6.61)

In the optical limit, the oscillator strength of Eq. 6.62 reduces in the TDA to

tTDAλ,i =
1√
V
XT
λ

Pi

∆ϵ
, (6.62)

6.10 BSE Formalism for Core Spectroscopy

The procedure described above naturally applies also in the case of core spectroscopy,
where the BSE is solved for transitions between core and conduction states. In this case,
the initial states are naturally selected among the core levels of Eq. 6.11. Since the spin-
orbit coupling of the core states is generally non-negligible, the full BSE Hamiltonian of
Eq. 6.29 has to be constructed even for non-spin-polarized systems, where the spin-orbit
coupling can be neglected for valence and conduction states. To reduce the size of the BSE
Hamiltonian, we introduce an approximation to the spin state of the conduction electrons,
such that a spinor stateψ spinor (r) is given by

ψ
spinor
ik (r) =

1√
2

(

1

1

)

ψKS
ik (r), (6.63)

where ψKS
ik is the Kohn-Sham wavefunction in Eq. 6.3 obtained from a non-spin-polarized

calculation. In Eq. 6.63, we thus assume that a given state of a non-spin-polarized calcula-
tion occupies the spin-up and spin-down channel equally. The approximation reduces the
size of the BSE Hamiltonian by 50%.

Following the approximation above, the implementation of the momentum and plane-wave
matrix elements of Eqs. 6.12 and 6.65 are modified to include core states. For the matrix ele-
ments between a core state (κ,M ) and a conduction state i at k, the interstitial contribution
vanishes, and the plane-wave matrix element is given by

P
j
(α ,κM ),ik = −i

∫

dΩ Ω
∗
κ,M (r̂α )

∫

RαMT

dr r 2u∗κ,α (rα )∇jψ
spinor
ik

= −i
∑

lm

∫

dΩ
1√
2
Ω
∗
κ,M (r̂α )

(

1

1

)
∫

RαMT

dr r 2u∗κ,α (rα )∇j
[

uikl (r )Ylm (r̂)
]

,

(6.64)
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where we have used in the second line the general form of the Kohn-Sham wavefunctions
of Eq. 6.3. Analogous to the MT contributions of the matrix elements between conduction
and valence states, the spherical integration is performed analytically, while the radial in-
tegration is performed numerically on a grid. Plane-wave matrix elements between core
and conduction states are expressed as

M (α ,κM ),ik(G, q) = 4π
∑

lm

∑

l ′m′

Yl ′m′ (Ĝ + q)×

×
∫

dΩ
1√
2
Ω
∗
κ,M (r̂ )

(

1

1

)

Yl ′m′ (r̂ )Ylm (r̂ )

∫

RMT

dr u∗α ,κ (r )jl ′ ((G + q)r )u
ik
l (r ).

(6.65)

More details about the determination of core states and the calculation of core-conduction
matrix elements are given in Ref. [239].

Due to the localized nature of the excited core states, the Bethe-Salpeter formalism can be
simplified for core-level excitations. We consider an unit cell withM atomic sites {α1, . . . ,αM }.
Since the core wave functions are localized at a specific atomic site (see Eq. 6.11), the mo-
mentummatrix elements between any two core-wavefunctions (αi ,κ,M )k and (αj ,κ′,M′)k
at different atomic sites i , j vanishes, i.e.

M (αi ,κ,M ) (α j ,κ ′,M ′)k = 〈(αi ,κ,M )k|e−i(G+q)r |(αj ,κ′,M′)〉 = 0. (6.66)

As a consequence of Eq. 6.66, the matrix elements of the direct interactionW rr in Eq. 6.45
vanish, if excitations from different atomic sites are involved. The same is not true for
the exchange interaction in Eq. 6.39, as the matrix elements between the core states at
the different atoms and the conduction states do not vanish. Nevertheless, the exchange
interaction between core excitations at different atomic sites are assumed to be small and
have, to the best of our knowledge, not been considered so far. In this approximation, the
BSE Hamiltonian in Eq. 6.29 takes a block-diagonal form:

HBSE
=







HBSE
α1

0
. . .

0 HBSE
αM






, (6.67)

where thematrix elements
[

HBSE
αi

]

o(αi ,κ,M )k
describe the excitations of the core state (αi ,κ,M )k+

to the conduction state ck− at the atomic site αi . Due to the block-diagonal form of Eq. 6.67,
the dielectric function is successively expressed as a sum of atomic contributions, and
Eq. 6.58 becomes

ε
ij
M (ω) = 1 +

M∑

n

εijαn (ω), (6.68)
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where the atomic contribution εijαn is given by

εijαn (ω) = −4π
∑

λ






[

t
αn
λ,i

]∗
t
αn
λ,j

ω − Eλ + iδ
+

[

t
αn
λ,i

]∗
t
αn
λ,j

−ω − Eλ − iδ




 . (6.69)

The transition coefficients tαnλ,i are obtained following Eq. 6.59 considering only the eigen-

states of the block Hamiltonian HBSE
αi

.
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CHAPTER 7

Resonant Inelastic Sca�ering in BRIXS

The implementation of RIXS in an all-electron many-body framework requires to infer
the polarizability as calculated from the solution of the BSE in Eq. B.45 into the expression
Eq. 5.20 for the RIXS cross section. The double differential cross section for the RIXS process
is given by

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

c,c ′,c ′′,c ′′′

∑

µ,µ ′,µ ′′,µ ′′′

∑

v,v ′

∑

kk′k′′k′′′
[[

e∗2 · Pµvk
]

χcµk,c ′µ ′k′ (ω1)
[

e1 · Pc ′µ ′k′
]]∗

χcvk,c ′′v ′k′′ (ω)×

×
[[

e∗2 · Pµ ′′v ′k′′
]

χc ′′µ ′′k′′,c ′′′µ ′′′k′′′ (ω1)
[

e1 · Pc ′′′µ ′′′k′′′
]]

= α4

(
ω2

ω1

)

Im
∑

cvk

∑

c ′′v ′k′′






∑

c ′µ ′k′

∑

µ

[

e∗2 · Pµvk
]

χcµk,c ′µ ′k′ (ω1)
[

e1 · Pc ′µ ′k′
]






∗

χcvk,c ′′v ′k′′ (ω)×

×






∑

c ′′′µ ′′′k′′′

∑

µ ′′

[

e∗2 · Pµ ′′v ′k′′
]

χc ′′µ ′′k′′,c ′′′µ ′′′k′′′ (ω1)
[

e1 · Pc ′′′µ ′′′k′′′
]




 .

(7.1)
The many-body nature of the coherent excitation and emission process in RIXS are con-
tained in thematrix-elements χcµk,c ′µ ′k′ (ω1) and χcvk,c ′′v ′k′′ (ω), which contain the sums over
all possible neutral excitations of the many-body system (compare Eqs. 2.28 and 2.29). The
implementation of Eq. 7.1 requires explicit access to both the matrix elements χcvk,c ′v ′k′ (ω)
in the basis of valence-conduction transitions, and matrix elements χcµk,c ′µ ′k′ (ω1) in the
basis of core-conduction transitions, but not cross terms of the form χcvk,c ′µ ′k′ (ω1). Thus,
the determination of all matrix elements of the polarizability can be separated into two
independent calculations, one for the core-conduction excitations and one for the valence-
conduction ones. Furthermore, momentum matrix elements Pcµk between core and con-
duction states and Pµvk between valence and core states describe the excitation and de-
excitation process, respectively. The coherence between core and valence excitations in
the RIXS process is apparent in Eq. 7.1 from the combined summations over k′ and k′′′,
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7 Resonant Inelastic Scattering in BRIXS

which enforce that core and valence excitations are calculated on the same {k}-grids. The
coherence occurs, since the absorption and emission processes conserve the crystal mo-
mentum k [284].

7.1 Polarizability Matrix Elements

At the center of our novel expression for the RIXS cross section presented in this work are
the resonant matrix elements of the (longitudinal) polarizability, as obtained from many-
body perturbation theory. First introduced in Chapter 2 in Eqs. 2.28 and 2.29, their ex-
plicit expression obtained from solutions of the BSE is given by Eq. B.19 in the transi-
tion space basis. Within the Tamm-Dancoff approximation, the resonant matrix elements
χR,Rijk,i ′j ′k′ (ω, q = 0) of the retarded polarizability are given by

χR,Rijk,i ′j ′k′ (ω, q = 0) =
∑

λ

[

Xijk,λ

]∗
Xi ′j ′k′,λ

ω − Eλ + iη , (7.2)

where Xijk,λ and Eλ are the BSE eigenstates and -values of Eq. 6.60. Inserting the polariz-
ability in the Tamm-Dancoff approximation is consistent with the application of the TDA
as defined in Eq. 1.59 in the derivation of RIXS cross section in Eq. 7.1. Note that the po-
larizability in Eq. 7.2 is transposed with respect to the one for the polarizability in Eq. 6.48.
Here, we consider matrix elements of the retarded polarizability, while in Chapter 6 matrix
elements of the time-ordered ones are provided as obtained from the Lehmann represen-
tation with respect to τ (1) . For the relationship between them, see Appendix B. As shortly
discussed in Section 3.4, the polarizability is evaluated in the RIXS cross section for two
very different energy scales, once for the excitation energy ω1, which is typically in the
hard x-ray region, and then for the energy loss ω = ω1 −ω2, which is typically in the range
of eV or tens of eV. Since transitions mix in the Bethe-Salpeter equation only over a lim-
ited range of energy [63], the mixing of core transitions µk → ck and valence transitions
vk → ck, which are typically separated by several hundred eV, can be neglected. This al-
lows us to neatly separate the transitions in Eq. 7.1 into valence and core transitions. Note
that due the presence of momentum matrix elements Pµvk in Eq. 7.1, any expression for the
RIXS DDCS cannot be written in the transition space of valence and core excitations alone,
but furthermore contains terms that connect the two spaces.
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Oscillator Strength and Excitation Pathways 7.2

7.2 Oscillator Strength and Excitation Pathways

The implementation of Eq. 7.1 appears as a daunting task, since it requires four summations
over conduction and core states and two sums over valence states. However, employing the
structure of the summations and inserting the explicit form of the polarizability in Eq. 7.2
yields a much more compact expression for the RIXS cross section, which furthermore
allows for an intuitive interpretation of the many-body process.

First, we consider the last bracket of Eq. 7.1 and insert Eq. 7.2:

∑

c ′′′µ ′′′k′′′

∑

µ ′′

[

e∗2 · Pµ ′′v ′k′′
]

χc ′′µ ′′k′′,c ′′′µ ′′′k′′′ (ω1)
[

e1 · Pc ′′′µ ′′′k′′′
]

=

∑

c ′′′µ ′′′k′′′

∑

µ ′′

∑

λc

[

e∗2 · Pµ ′′v ′k′′
]

[

Xc ′′µ ′′k′′,λc

]∗
Xc ′′′µ ′′′k′′′,λc

ω1 − Eλc + iη

[

e1 · Pc ′′′µ ′′′k′′′
]

≡
∑

µ ′′

∑

λc

[

e∗2 · Pµ ′′v ′k′′
]

[

Xc ′′µ ′′k′′,λc

]∗
t
(1)
λc

ω1 − Eλc + iη
,

(7.3)

where Eλc and Xcµ,λc are the eigenvalues and eigenvectors of the core-level BSE Hamilto-

nian. In the last line of Eq. 7.3, we have defined the core excitation oscillator strength t
(1)
λc

as
t
(1)
λc
=

∑

c ′′′µ ′′′k′′′

Xc ′′′µ ′′′k′′′,λc

[

e1 · Pc ′′′µ ′′′k′′′
]

. (7.4)

Note that the oscillator strength is closely related to the transition coefficients tλc (G =
0, q→ 0) in Eq. 6.55. The core single-particle energies are typically much larger than those
of the conduction states, i.e. |ϵµk | ≫ ϵck, and are independent of momentum, i.e. ϵµk = ϵµ as
the corewavefunctions are fully localized at an atomic site. Then, the energy difference ϵck−
ϵµk is approximately constant for all transitions, and the transition coefficient is connected

to the oscillator strength tλc (G, q) of core excitations as t
(1)
λc
∝ t∗λc (G = 0, q = e1). These

two quantities are closely related, as t (1)λc
describes the absorption step in the RIXS process.
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7 Resonant Inelastic Scattering in BRIXS

Inserting Eq. 7.3 into Eq. 7.1 yields

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

λc ,λ′c ,λo

∑

c,c ′′

∑

v,v ′

∑

kk′′





∑

µ

t
(1)
λ′c

[

Xcµk,λ′c

]∗ [
e∗2 · Pµvk

]

ω1 − Eλ′c + iη






∗ [
Xcvk,λo

]∗
Xc ′′v ′k′′′,λo

ω − Eλo + iη






∑

µ ′′

[

e∗2 · Pµ ′′v ′k′′
] [

Xc ′′µ ′′k′′,λc

]∗
t
(1)
λc

ω1 − Eλc + iη




 ,

(7.5)
where Eq. 7.2 is used to write the matrix elements χcvk,c ′′v ′k′ (ω) in terms of the eigenvec-
tors Xcvk,λo and eigenvalues E

λo of the BSE Hamiltonian of valence-conduction transitions.
Here, we discern the index of the valence-conduction excitations, λo , from the index λc of
the core-conduction ones.

The shape of Eq. 7.5 suggests to define the excitation pathway t
(2)
λo ,λc

as

t
(2)
λo ,λc
=

∑

cvk

∑

µ

Xcvk,λo

[

e∗2 · Pµvk
] [

Xcµk,λc

]∗
, (7.6)

which can be inserted in Eq. 7.5 to obtain

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

λo

∣
∣
∣
∣
∣

∑

λc

t
(2)
λo,λc

t
(1)
λc

ω1−Eλc+iη

∣
∣
∣
∣
∣

2

(ω1 − ω2) − Eλo + iη
. (7.7)

We define the RIXS oscillator strength t (3)λ (ω1) as

t
(3)
λo

(ω1) =
∑

λc

t
(2)
λo ,λc

t
(1)
λc

ω1 − Eλc + iη
. (7.8)

Using the definition of the oscillator strength t (1)λc
in Eq. 7.4 and the excitation pathway t (2)λo ,λc

in Eq. 7.6 allows for the compact expression for the RIXS cross section as

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

λo

|t (3)λo
(ω) |2

(ω1 − ω2) − Eλo + iη
, (7.9)

which strongly resembles the expression for the optical absorption spectrum in Eq. 6.58.
The dependence of the cross section on the energy loss ω = ω1 − ω2 is given explicitly,

while that on the excitation energy is contained in the oscillator strength t (3)λo
(ω1). The cross
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Coherence in Reciprocal Space 7.3

Figure 7.1: Schema of RIXS process taken from Ref. [361]: a) A core excitation yields b)
the intermediate many-body state |λc〉. c) The subsequent de-excitation leads to d) the
final state |λo〉. The distribution of the excited electron is shown as filled circles, those
of the hole in open circles. Blue circles indicate the intermediate state, green ones the
final one. Cyan arrows show dipole transitions.

section has poles in energy loss at the optical excitation energies Eλo of the system, inde-
pendent of the excitation energy, while the oscillator strength of each of these excitations
depends on the excitation energy. Furthermore, the definition of the oscillator strength in
Eq. 7.8 gives further insight into the many-body processes that occur in RIXS. Schemati-
cally, these processes are shown in Fig. 7.1. The rate of the initial x-ray absorption event is

given by t (1)λc
, combined with the energy conservation rule (the denominator ω1 − Eλc + iη

in Eq. 7.8). The absorption leads to an intermediate core-excited state, characterized by
the excitation index λc (schematically shown in Fig. 7.1). The final RIXS spectrum is then

given by the rate of the absorption combined with the pathway t
(2)
λo ,λc

that describes the
many-body transition |λc〉 → |λo〉 (see Fig. 7.1). These pathways are far from obvious, for

the mixing between t
(1)
λc

and t
(2)
λo ,λo

can develop in destructive or constructive interference,
attesting the many-body character of such process.

7.3 Coherence in Reciprocal Space

The expression for the RIXS cross sections through the core oscillator strength and exci-
tation pathway involves sums over all possible excitation and emission pathways in the
system. From early RIXS experiments, it has been observed that independent-particle cal-
culations following Eq. 5.10 only explains a fraction of the observed spectra, the so-called
coherent scattering [170]. This coherent contribution originates from processes, where both
the absorption and the emission process occur at one k-point in reciprocal space. The co-
herent scattering is schematically shown in Fig. 7.2. In this process, the crystal momentum
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7 Resonant Inelastic Scattering in BRIXS

Figure 7.2: a) Coherent RIXS process: Both the excitation of the core state and the
de-excitation of the valence state occur at the same point k in reciprocal space. b)
Incoherent RIXS process: The core electron is excited at point k. The electron-core
hole pair scatters to the point k′, where the core hole is filled through the de-excitation
of a valence electron.

k is conserved, as required within the IPA. The incoherent scattering originates from pro-
cesses where the absorption occurs at a point k in reciprocal space, while the emission
occurs at a different point k′. The incoherent scattering can only occur if the excited elec-
tron and the core hole are distributed over several k-points due to either electron-phonon
or electron-hole scattering. The contribution of the incoherent scattering has been esti-
mated to be around 40% for the RIXS cross section at the carbon K edge in diamond [262]
and the silicon L2,3 edge in silicon [285]. While ab initio methods have been developed to
account for the incoherent contribution due to electron-phonon interaction [210, 227], the
incoherent contribution due to electron-hole interaction has not been determined so far. In
this chapter, we show how our novel ab initio approach to RIXS allows us to disentangle
the coherent and incoherent contributions and to estimate how strongly the electron-hole
interaction affects the coherence in reciprocal space.

Both coherent and incoherent scattering are included in the RIXS cross section in Eq. 5.20.
The latter is contained in Eq. 5.20 solely due to electron-hole scattering as electron-phonon
interaction are neglected in our calculations. To separate coherent and incoherent contri-
butions, we first make the summations over k-points in Eq. 7.8 explicit:

t
(3)
λo

(ω) =
∑

λc

t
(2)
λo ,λc

t
(1)
λc

ω − Eλc + iδ

=

∑

λc

∑

cv,µ

∑

k

∑

c ′µ ′

∑

k′

Xcvk,λo

[

e∗2 · Pµvk
] [

Xcµk,λc

]∗
Xcµk′,λc

[

e1 · Pcµk′
]

ω − Eλc + iη .

(7.10)
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In Eq. 7.10, the excitation into the excited state |λc〉 occurs at k′, since this is where the
momentummatrix element Pcµk′ is evaluated. The de-excitation occurs at k, where the mo-
mentum matrix element Pµvk is evaluated. These two k-points do not have to be identical
if the BSE eigenstate Xcµk,λc has non-negligible contributions at both k′ and at k. Refor-
mulating the summation over k′ and k′ as

∑

k,k′ =
∑

k +
∑

k

∑

k′,k, we can disentangle
coherent and incoherent processes (see Fig. 7.2), where we identify the first term to repre-
sent the coherent scattering, the second one to represent the incoherent scattering. With
this separation, we obtain

t
(3)
λo

(ω) =
∑

λc

t cohλo ,λc
+ t incohλo ,λc

ω − Eλc + iδ , (7.11)

where the coherent contribution t cohλo ,λc
is defined as

t cohλo ,λc
=

∑

cv,µ

∑

c ′v ′,µ ′

∑

k

Xcvk,λo

[

e∗2 · Pµvk
] [

Xcµk,λc

]∗
Xcµk,λc

[

e1 · Pcµk
]

(7.12)

and represents all the contributions, where absorption and emission occur at the same k-
point. The incoherent contribution t incohλ,λ′ is given by

t incohλo ,λc
=

∑

cv,µ

∑

c ′v ′,µ ′

∑

k

∑

k′,k

Xcvk,λo

[

e∗2 · Pµvk
] [

Xcµk,λc

]∗
Xcµk′,λc

[

e1 · Pcµk′
]

(7.13)

and represents RIXS processes, where the absorption occurs at k′, while the emission occurs
at k.

7.4 Atomic Coherence

For a system with M inequivalent atoms γ1, ..,γM , each with multiplicity Nγ , any sum-
mations over core excitations γc can be separated into atomic contributions, i.e.

∑

λc
=

∑M
γ Nγ

∑

λc,γ
, where λc,γ are the core excitations of atom γ . With this separation of the

core excitations in atomic contributions, which is discussed in Section 6.10 in more detail,
the RIXS oscillator strength in Eq. 7.8 becomes

t
(3)
λo

(ω1) =
∑

γ

Nγ
∑

λc,γ

t
(2)
λo ,λc,γ

t
(1)
λc,γ

ω1 − Eλc,γ + iη
=

∑

γ

Nγ t
(3)
λo ,γ

(ω1). (7.14)
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Here, we have introduced the atomic RIXS oscillator strength t
(3)
λo ,γ

(ω) as

t
(3)
λo ,γ

(ω1) =
∑

λc,γ

t
(2)
λo ,λc,γ

t
(1)
λc,γ

ω1 − Eλc,γ + iη
(7.15)

While the RIXS oscillator strength is a sum of the atomic contributions, interference terms

occur in the RIXS cross section, since d2σ
dΩ2dω2

∝ |t (3) (ω1) |2. Equivalent atoms in the unit cell
do not contribute to the interference terms, since the excitonic eigenstates and eigenener-
gies of equivalent atoms are identical (compare Section 6.10). We can then define the atomic
double-differential cross section as

d2σγ

dΩ2dω2
= α4

(
ω2

ω1

)

Im
∑

λo

∣
∣
∣t
(3)
λo ,γ

(ω1)

∣
∣
∣

2

ω − Eλo + iη , (7.16)

which represents the RIXS double-differential cross section at the specific atom γ . The
total RIXS cross section is then the sum of all atomic terms and the interference term
d2σinterf/dΩ2dω2, such that

d2σ

dΩ2dω2
=

∑

γ

N 2
γ

d2σγ

dΩ2dω2
+

d2σinterf

dΩ2dω2
. (7.17)

To quantify the contribution of an atomγ to the RIXS spectrum at a given excitation energy
ω1, we define the relative atomic contribution ∆σγ (ω1) as

∆σγ (ω1) =
N 2
γ

∫ d2σγ
dΩ2dω2

dω
∫

d2σ
dΩ2dω2

dω
, (7.18)

which obey
∑

γ ∆σγ (ω1) + ∆σinterf (ω1) = 1 for each excitation energy ω1.

7.5 Limitations of Transition-Space Representation

The core oscillator strength t
(1)
λc
, the excitation pathways t (2)λo ,λc

, and the RIXS oscillator

strength t (3)λo
(ω) can readily be calculated once the excitonic eigenstates of the valence exci-

tations Xcvk,λoand of the core excitations Xcµk,λc , and the corresponding excitation energies
Eλo and Eλc , are obtained from two BSE calculations. Yet, the combination of the valence-
and the core-level BSE calculations requires a transformation between matrix representa-
tions in different vector spaces. In Section 6.3, the transition space is introduced, such that
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a one-dimensional transition-space index α represents the combination of a valence-state
index v , a conduction-state c , and a k-point, i.e. α ↔

{
o,u, k

}
. With this transition-space

representation, the Bethe-Salpeter equation can be expressed as a two-dimensional matrix
equation. More explicitly, we define a bijective function fT that provides a transition index
α for each combination (c,v, k) of a conduction state (ck) and a valence state (vk), such
that

fT (c,v, k) = α f −1T (α ) = (c,v, k). (7.19)

For any three-dimensional arrayAwith entriesA[c,v, k], there is a corresponding column-
vector Â in transition space, such that Â[α , 1] = Â[fT (c,v, k), 1]. Equivalently, for any
four-dimensional array B with entries B[c,v, k, λ], there is a corresponding 2-dimensional
array B̂, such that B̂[α , λ] = B[fT (c,v, k), λ]. Using this notation, the column vector of core
excitation oscillator strength t̂ (1) of Eq. 7.4 is obtained as

t̂ (1) = X̂ c ×
[
e1 · P

]
, (7.20)

where X̂ c is the eigenvector matrix X̂ c
α ,α ′ = Xcµk,λc of the core excitations. As such, the

oscillator strength t (1) is calculated as a vector in the transition space of the core-conduction
BSE Hamiltonian. For the excitation pathway t (2) , a calculation within the transition space
of the core-conduction or the valence-conduction BSE Hamiltonian is not possible, as these
pathways connect the transition spaces. We therefore define an intermediate matrix I as

I =
[
X c
]∗ ×

[
e∗2 · P

]
. (7.21)

The matrix multiplication in Eq. 7.21 is performed for each k-point and core excitation
index λc , such that matrix elements are given in single-particle space as

Ic,v,k,λc =
∑

µ

[

e∗2 · Pµ,v,k
] [

X c
c,µ,k,λc

]∗
. (7.22)

The 4-dimensional matrix I is subsequently transformed to a two-dimensional matrix Î

in the transition space of the valence-conduction BSE Hamiltonian, with matrix elements
Î fT (c,v,k),λc . The matrix t̂ (2) is then obtained as Î

t̂ (2) =
[

X̂o
]T

× Î . (7.23)

Finally, the RIXS oscillator strength is obtained as

t̂ (3) (ω) = t̂ (2) ×
[

∆E−1(ω)
]

× t (1), (7.24)
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where we have defined the matrix ∆E−1 as

∆E−1(ω)λλ′ =
δλλ′

(ω − Eλ + iη) . (7.25)

The RIXS cross section is finally obtained from t̂ (3) through a Lorentzian convolution as
seen in Eq. 7.7.

7.6 Block Matrix Formulation

Generally, the matrix sizes of both the oscillator strength and the excitation pathway are
considerable. The size of the transition space for the core calculation is given by Ncore =

nc × nµ × nk, where nc is the number of conduction bands, nµ the number of core states,
and nk the number of k-points in the calculation. The corresponding size of the valence
transition space is given by Noptics = nc ×nv ×nk, where nv is the number of valence bands.
Considering the example of the C K edge RIXS of diamond in Section 8.2, the matrix sizes
are Ncore ≈ 176, 000 and Noptics ≈ 88, 000. Therefore, the memory-intensive matrix-matrix
multiplications become the bottleneck of the calculations. As such, explicit matrix-matrix
multiplication is avoided in the implementation. Rather, we separate every matrix in tran-
sition space intoNblocks smaller rectangle block matrices. Anymatrix-matrix multiplication
Ĉ = Â× B̂ is then replaced by the expression for a block Ĉij , as Ĉij =

∑Nblocks

k Âik × B̂kj . Thus,
each multiplication is replaced by Nblocks multiplications of matrices with smaller size. This

way, a block t̂ (1)i of the core oscillator strength is given as

t̂
(1)
i =

Nblocks∑

k

[

X̂ki

]T

×
[
e1 · P

]

k
. (7.26)

The pathway t (2) cannot be obtained by algebraic operations in the transition space of the
optical or the core transitions, since the pathway connects the excitations by the transitions
v → µ that are not included in either transition space. For each excitation λc and k-point,
the block matrix Ĩ:,:,k,i is obtained by matrix multiplication as

Ĩ:,:,k,λc =
[

X̃ :,:,k,λc

]∗
×
[

e∗2 · P̃
]T

:,:,k
, (7.27)

where (:, :) indicates that Ĩ ,
[

e∗2 · P̃
]

, and X̃ are matrices with the dimensionality of (nc ,nv ),

and (nc ,nµ ), respectively, for each k-point and excitation λc . Typically, the number of tran-
sitions at each k-point is small enough both for the core and optical transitions, such that
the matrix multiplication in Eq. 7.27 can be performed directly. Each entry of Ĩc,v,k,λc can be
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mapped to an entry I (cvk),λc in the optical transition space. Then, blocks of the excitation

pathway t (2)ij are obtained as

t
(2)
ij =

Nblocks∑

k,l

[
Xki

]T × Ikj . (7.28)

Finally, blocks t (3)ij (ω1) of the RIXS oscillator strength are obtained as

t
(3)
ij (ω) =

Nblocks∑

kl

t
(2)
ik ×

[

∆E−1(ω1)
]

kl
× t (1)l . (7.29)

Note that only the oscillator strength in Eq. 7.29 depends on the excitation energy ω1

through the matrix elements of ∆E−1 defined in Eq. 7.25, such that t (1) and t (2) can be
calculated only once and then written to file.

7.7 The BRIXS and pyBRIXS Codes

bse_output.h5

eigvec-singlet-TDA-BAR-full

0001

parameters

koulims(4,Nk)

smap(3,N total
λ )

ensortidx(N total
λ )

evals(Nλ)

evalsIP(N total
λ )

indexλ(2,N
total
λ )

Figure 7.3: Expected structure of the HDF5 output file
bse_output.h5 of a BSE calculation.

The block-matrix formalism de-
scribed in the previous section is
implemented in the FORTRAN90
code BRIXS (BSE Calculations for
RIXS). The code takes the output
of two BSE calculations, where
one determines the eigenstates
Xcvk,λo and energies E

λo of the op-
tical excitations, the other the cor-
responding eigenstatesXcµk,λc and
energies Eλc for the core excita-
tions at a specific absorption edge
for a given atom in the unit cell,
and calculates the core excitation
oscillator strength t (1) , the excita-
tion pathway matrix t (2) , and fi-
nally the RIXS oscillator strength
t (3) (ω). A calculation with BRIXS

requires the execution of two in-
dependent programs: The first
one, named BRIXS-pathway deter-
mines thematrices t (1) and t (2) and
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writes them to file. The second one, BRIXS-oscstr takes the output of the previous pro-
gram and generates the matrix t (3) (ω) and writes it to file. The separation is beneficial since
BRIXS-pathway does not require the excitation frequency ω as the input. As such, it can
be executed once and the output can be employed to calculate t (3) (ω) for any set of exci-
tation energies, without performing redundant calculations. As the determination of the

double-differential cross section d2σ
dΩ2dω2

from the RIXS oscillator strength following Eq. 7.7
is trivial, the BRIXS code does not generate the final RIXS spectrum. The RIXS spectra can
then be generated for arbitrary values of the energy loss ω1 −ω2 and with arbitrary values
for the lifetime broadening η from the output of the BRIXS code. A convenient way to gen-
erate RIXS spectra is provided by the pyBIRXS module, which contains objects that store
the results of the BRIXS calculations, generate RIXS spectra, and provide several ways to vi-
sualize results. In this section, we will describe the structure of the BRIXS code and discuss
the structure of the input and output files. Additionally, we present the objects contained
in the pyBRIXS module.

7.7.1 Structure of Input and Output Files

BRIXS requires the output of two BSE calculations performed with the exciting code [359,
254]. The code parses the output of the BSE calculations, one for the optical and one for the
core excitations, provided in the Hierarchical Data Format, version 5 (HDF5) [286], and the
output of BRIXS is generated in the same file format. The code requires four input files: files
named core_output.h5 and optical_output.h5 contain the output of the corresponding BSE
calculations, the momentum matrix elements are provided in the file pmat.h5. Finally, the
text-file input.cfg contains additional input parameters for the RIXS calculation, which are
described inmore detail in Section 7.7.2. The files optical_output.h5 and core_output.h5 have
the same structure shown in Fig. 7.3. Let us consider a BSE calculation on a grid of Nk k-
points, where the BSE Hamiltonian has a size of N total

λ .

pmat.h5

pmat

indexk(2,Nλo)

pmat(3,Ncore ,Nvalence + Nconduction)

Figure 7.4: Structure of the file pmat.h5 that contains
the momentum matrix elements.

A smaller number Nλ ≤ N total
λ

of BSE eigenvectors and eigenval-
ues are stored to files. The out-
put file bse_output.h5 is required
to contain a group named "pa-
rameters" containing the follow-
ing 3 arrays (compare Fig. 7.3):
"koulims" is an integer array of
shape (4,Nk), which, for each k-
point, contains the index of low-

est conduction state [koulims(1, k)], the highest conduction state [koulims(2, k)], the low-
est valence state [koulims(3, k)], and the highest valence state [koulims(4, k)] of the BSE
Hamiltonian. The array "smap" is an integer array containing the transition-space map
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defined in Eq. 7.19 between the transition space and the single-particle indices, such that
smap (:,α ) = f −1T (α ) = (c,v, k). Finally, the integer array "ensortidx" contains all transition
space indices α , sorted such that the energy-differences ∆ϵ (α ) = ϵck − ϵvk are increas-
ing. The latter is required to calculate the RIXS cross section in the IPA. The main data
are the BSE eigenvalues Eλ stored in the real-valued dataset "evals", the IPA eigenvalues
EαIP = ϵck − ϵvk in the real-valued dataset "evalsIP", and the BSE eigenstates, which each
have their own dataset.

data.h5

t(1)(2,Nλc)

t(2)(2,Nλo ,Nλc)

evals(Nλc)

Figure 7.5: Structure of the
HDF5 file data.h5 that con-
tains intermediate output
of a BRIXS calculation.

Each BSE eigenstate is stored in an individual dataset, the
name of which is generated as an 8-digit string with leading
zeros of the excitation index λ, i.e. the file contains datasets
00000001, 00000002, and so forth, each containing an excitonic
eigenstate. The names of the datasets are denoted as indexλ
in Fig. 7.3, as the names are generated from the λ-index. Due
to this naming convention, no more than 108 excitonic eigen-
states can be stored. Each of the datasets contains a vector that
has the length of the full transition-space size N total

λ . Since
the HDF5 format does not have datatype for complex num-
bers, the additional dimension of size 2 contains the real and
imaginary part for each entry. The file pmat.h5 contains both
the momentum matrix elements Pµvk between the core and
valence states, as well as the matrix elements Pµck between

core and conduction states,as defined in Eq. 6.64. The file contains a number of groups, the
name of which is a 8-digit string generated from the index of the k-points, i.e the groups are
named 00000001, 00000002, and so forth. We note that this naming convention limits the
k-grid to 108 k-points. Each of these groups contains a dataset named pmat of dimension
(3,Ncore ,Nvalenc +Nconduction ), where Ncore is the number of core states, Nvalence is the num-
ber of valence states, and Nconduction is the number of the conduction states. Note that these
numbers refer to the DFT calculations for the electronic structure underlying the BSE cal-
culations, and more states might be included than are contained in the BSE Hamiltonian.

rixs.h5

oscstr

indexω1
(2,Nλo)

evals(Nλo)

Figure 7.6: Structure of the
HDF5 file rixs.h5, which
contains themain output of
the BRIXS calculation.

The program BRIXS-pathway generates the HDF5 file data.h5,
the structure of which is shown in Fig. 7.5. The file contains
three datasets containing the arrays t (1) and t (2) , while the
third array stores the BSE eigenvalues Eλc of the core BSE cal-
culation. The size of the arrays depends on the number of
BSE eigenstates that are provided in the files core_output.h5
and optical_output.h5. Consider that Nλc core BSE eigenstates
and Nλo optical BSE eigenstates are provided. The array t (1)

in data.h5 then contains Nλc entries, the array t (2) Nλo × Nλc

entries. As both t (1) and t (2) are complex-valued, an additional
dimension describes the real and complex part. The output of
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the program BRIXS-oscstr is contained in the file "rixs.h5" shown in Fig. 7.6. It contains the
real-valued array "evals", which stores the BSE eigenvalues Eλo . A group "oscstr" contains
the RIXS oscillator strength t (3) (ω1). For a calculation with Nω values for the excitation
energy ω1 defined in the file "input.cfg", the group contains Nω datasets, where the name
of the dataset is generated from the index of the ω1 entry as a four-digit string, e.g. the
datasets are named 0001, 0002, and so forth. The naming convention limits the number of
excitation energies that can be computed in one calculation to 1000. Each of the dataset
has dimension 2 × Nλo , where the first dimension occurs since t (3) is complex-valued.

7.7.2 BRIXS Implementation

The BRIXS requires a number of parameters, which are provided to the program in a file
named input.cfg.

• omega: Comma-separated list of values for the excitation energies ω1 in eV.

• nstato: NumberNλo of core-conduction eigenstates included in the BRIXS calculation
counted from the BSE eigenstate with the lowest eigenvalue. The number must be
smaller or equal to the number of eigenstates contained in the file optical_output.h5.

• nstatc: Number Nλc of BSE valence-conduction eigenstates included in the BRIXS

calculation counted from the BSE eigenstate with the lowest eigenvalue. The number
must be smaller or equal to the number of eigenstates contained in the file core_output.h5.

• broad: Value of the lifetime broadening of the intermediate state in eV.

• pol: Polarization vector e1 of the initial photon, where currently, e1 = e2 is assumed,
i.e. the code does not allow one to calculate the effects of dichroism.

• nblocks: Number of blocks Nblocks .

The algorithm of BRIXS-pathway is shown in Algorithm 1. Due to block-wise formulation,
the calculation of the vector t (1) requires a two-fold nested summation over the Nblocks

blocks, while the calculation of t (2) requires a three-fold nested summation over the blocks.
As such, the runtime increases with increasing numbers of blocks. On the other hand,
the size of the t (1) blocks decreases with N −1blocks , that of the t

(2) with N −2blocks . Therefore, the
memory consumption decreases with increasing number of blocks, because the Algorithm 1
does not require any array of the size of the original BSE Hamiltonian. The same block-
wise formalism is employed in the Algorithm 2 for the program BRIXS-oscstr, and as
such a two-fold loop over Nblocks is required. Here, additionally a loop over the excitation
energies ω1 occurs.
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Algorithm 1 Algorithm for the block-wise calculation of the core excitation oscillator
strength and excitation pathways.

1: procedure BRIXS-pathway

2: for all Nblocks do

3: Read block of Eλc from file
4: Write block of Eλc to file
5: Initialize block of t (1)λc

= 0

6: for all Nblocks do

7: Read block of Xλc from file
8: Generate block of

[
e1 · P

]

9: Add to block of t (1) = t (1) +
[
X
]T ×

[
e1 · P

]
⊲ See Eq. 7.20

10: end for

11: Write block of t (1)λc
to file

12: end for

13: for all Nblocks do

14: for all Nblocks do

15: Initialize block of t (2)λo ,λc
= 0

16: for all Nblocks do

17: Read block of eigvecs Xλo from file
18: Read block of eigvecs Xλc from file

19: generate block
[

e∗2 · P̃
]T

⊲ See Eq. 7.21

20: generate block of Iλc ⊲ See Eq. 7.21

21: add to block of t (2) = t (2) +
[
X
]T × I ⊲ See Eq. 7.23

22: end for

23: Write block of t (2)λo ,λc
to file

24: end for

25: end for

26: end procedure
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Algorithm 2 Algorithm for the block-wise calculation of the RIXS oscillator strength.

procedure BRIXS-oscstr

2: for all Nblocks do

Read block of Eλo from file
4: Write block of Eλo to file

for all ω1 do

6: Initialize block of t (3)λo
(ω1) = 0

for all Nblocks do

8: Read block of Eλc from file
Read block of t (1)λc

from file

10: Read block of t (2)λo ,λc
from file

Generate block of
[

∆E−1(ω1)
]

λo
⊲ See Eq. 7.25

12: Add to block of t (3) (ω1) = t (3) (ω1) + t
(2) ·
[

∆E−1(ω1)
]

· t (1) ⊲ See Eq. 7.29
end for

14: Write block of t (3)λo
(ω1) to file

end for

16: end for

end procedure
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7.7.3 Post-processing with pyBRIXS

The RIXS double-differential cross section is constructed from the output of the BRIXS code
following Eq. 7.7. A robust and convenient way to generate spectra and visualize them
is provided by the pyBRIXS module, written in the programming language python. The
module offers objects that store the output of the BRIXS calculation, generates the RIXS
spectrum, and provides convenient ways to visualize the results. The object pyBRIXS.rixs
is generated with the output contained in the rixs.h5 file. Provided with an array of val-
ues for the energy loss ω = ω1 − ω2 and the value for the final-state lifetime broadening
η, the object calculates the RIXS spectrum. The object furthermore stores the emission
energies ω2 = ω1 − ω. It also stores the RIXS cross section t (3) (ω1) for more advanced
post-processing, such as the summation over atomic contributions. More advanced visual-
ization are accessible through the object pyBRIXS.analysis, which is generated from the
pyBRIXS.rixs object. The pyBRIXS.analysis object interpolates the RIXS spectrum on the
excitation-loss grid (ω1 − ω) and on the excitation-emission grid (ω1 − ω2). The interpola-
tion is performed using established algorithms of the numpy and scipy packages [287–289].
The pyBRIXS.analysis object furthermore allows the user to store the interpolated RIXS
spectrum to file. The attributes of the object are structured such that they can readily be
visualized using the matplotlib package [290]. All visualization of RIXS spectra shown in
this thesis are generated using the pyBRIXS code.

7.7.4 Scaling Tests

Due to the large number of BSE eigenstates and the even larger size of the transition space in
the BSE calculations for the optical and core excitations, an efficient parallelized execution
of the BRIXS code is required. It therefore employs a combination of the shared-memory
Open Multi-Processing (OpenMP) [291] and Message-Passing Interface (MPI) [292] stan-
dard. In both BRIXS-pathway and BRIXS-oscstr, the outer summation over Nblocks is dis-
tributed overMPI ranks, while OMPparallelization is implicitly used for eachmatrix-matrix
multiplication, as they are performed by subroutines of the LAPACK library [293].

In the following, we determine the scaling of the BRIXS-pathway (compare Algorithm 1) and
BRIXS-oscstr (compare Algorithm 2) with respect to the number of threads in the OpenMP
and ranks in the MPI parallelization. To do so, we perform BRIXS calculations starting from
BSE calculations for the core and optical excitations, where the transition spaces of both
include 1280 transitions. For the BRIXS-pathway code, the runtime and speed-up are shown
in Fig. 7.7. We find that the MPI parallelization yields a strong speed-up for a wide range
of MPI ranks. For increasing number of MPI ranks, however, the speed-up deviates from
the ideal speed-up as the effort of distributing it over a large number of ranks outweighs
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Figure 7.7: Runtime (left) and speed-up (right) for BRIXS-pathway calculations with
increasing number ofMPI ranks (blue) with oneOpenMP thread and increasing number
of OpenMP threads with twoMPI ranks (orange). The ideal speed-up is shown as a gray
line.

0 2 4 6 8 10 12 14 16
Ranks/Threads

0

50

100

150

200

Ru
nt
im

e
[s
]

MPI ranks
OMP threads

0 2 4 6 8 10 12 14 16
Ranks/Threads

0
2
4
6
8

10
12
14
16

Sp
ee

d
up

Figure 7.8: Runtime (left) and speed-up (right) for BRIXS-oscstr calculations with
increasing number ofMPI ranks (blue) with oneOpenMP thread and increasing number
of OpenMP threads with one MPI rank (orange). The ideal speed-up is shown as a gray
line.

the benefit of performing the matrix operations in parallel. Considering the OpenMP par-
allelization in Fig. 7.7, a speed-up is only observed up to two OpenMP threads. This is due
to the small matrix sizes in these calculations, which limits the benefit of shared-memory
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parallelization. The scaling tests of the BRIXS-oscstr code, shown in Fig. 7.8, shows signif-
icant speed-up only up to 8MPI ranks, while the increase of OpenMP threads does not yield
any noticeable change in runtime. The bottleneck of the BRIXS-oscstr is the reading from
the HDF5 file data.h5 and writing to rixs.h5, especially for the small matrix sizes considered
in the scaling calculations. As these operations are not affected by OpenMP parallelization,
it does not reduce the runtime. As the data input and output is parallelized over MPI ranks,
however, an increased number of MPI ranks yields a speed-up of the calculations, which is
limited due to the small size of the matrices in the scaling tests, as in the case of the MPI
scaling of the BRIXS-pathway.
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CHAPTER 8

Examples

8.1 Ce N4,5 Edge NRIXS in CeO2

To demonstrate the capabilities of our many-body perturbation theory approach to NRIXS,
we consider the Ce N4,5 edge in CeO2. The electronic structure of this rare-earth oxide
CeO2 is characterized by the presence of highly localized Ce 4f states and the resulting
large overlap of the Ce 4d and Ce 4d states leads to a considerable 4d − 4f interaction.
Particularly the strong exchange interaction, introduces so called multiplet features in the
Ce 4d → 4f transitions, i.e. the CeN4,5 edge. These multiplet features are due excitations to
atomic-like final states from the Ce 4d94f ground state, which not be described in a single-
particle approach [294, 295]. The accurate calculation of such multiplet features remains
a challenge even within the many-body perturbation theory approach, as was previously
shown for the multiplets in Ti L2,3 [238, 268] and Ca L2,3 [239] edge XANES. Furthermore,
the multiplets only appear as weak pre-edge features in the Ce N4,5 XANES [295, 296],
as most of the transitions are dipole-forbidden. These features only become visible in the
NRIXS spectra at high momentum transfer q [297].

To obtain a good starting point for the calculation of the NRIXS spectra, Hubbard cor-
rections [299–301] are employed in the determination of the electronic structure of CeO2.
These corrections account parametrically for the self-interaction of the localized Ce 4f

states, which is underestimated in DFT calculations with semilocal functionals [302, 303].
The electronic structure of CeO2 is shown in Fig. 8.1: The top of the valence band is pre-
dominantly formed by oxygen p states, while the de-localized conduction bands are mostly
formed by Ce d states. The onset of the conduction region is dominated by a group of
weakly dispersing bands composed of the Ce 4f states, which introduce a strong peak in
the DOS. As the electrons at the cerium sites are in a Ce 4d104f 0 configuration [297, 304],
the Ce 4f peak is found above the band gap. The calculated electronic structure agrees
well with the experimental one [298], with the only exception being the underestimated
band gap due to the semilocal functional [304]. A more accurate band gap is obtained
fromG0W0 calculations [302, 303]. To obtain reliable transition energies for the cerium N4,5

edge, not only the band gap, but also the relative positions of the cerium 4d states have to
be known. While GW calculations of the valence electronic structure are nowadays rou-
tinely employed, few studies have presented corrections for states farther from the band
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Figure 8.1: Band structure (left) and density of states (right) of CeO2. The calculated
results are shown in red, the experimental x-ray photoemission spectra [298] in black.
The calculated electronic structure is aligned to the experimental one at the Ce 4f peak.

gap [305, 306]. As such, it is still common practice to apply scissors operators to align
calculated and experimental core excitation spectra [238, 239, 268]. Here, we shifted the
calculated NRIXS spectra by ∆ω = 4.25 eV, such that the main peak in the experimental
and calculated spectrum for the momentum transfer |q| = 8.6 Å, where the multiplets
are most pronounced, are aligned. We note that we use the same scissors operator for all
spectra at different momentum transfer.

The calculated CeN4,5 edge NRIXS spectrum at lowmomentum loss |q| = 1.6Å
−1

in Fig. 8.2
resembles the DOS shown in Fig. 8.1. It displays an intense peak at around 137 eV, while
the experimental spectrum shows a similar feature at 130 eV, although broader than the
calculated one. With increasing momentum transfer, two new peaks at 109 and 112 eV
emerge with increasing relative intensity. The main peak at 137 eV is nearly vanished for

a momentum transfer of |q| = 8.6Å
−1
. Our analysis of the BSE eigenvalues and eigenstates

reveals that the low energy peaks are due to bound excitons with binding energies up to
2.77 eV. These bound excitons can be interpreted as atomic-like Ce 4d94f 1 multiplets. As
the transitions from the Ce 4d104f 0 ground state to several of these multiplets are dipole
forbidden, they only become visible in the spectrum for significant momentum transfer.
Previous many-body atomic calculations [297] of Ce4+ support our analysis of the low-
energy excitations. However, in these calculations the nature of the high-energy peak at
137 eV could not be resolved. It was assumed that the peak is due to a multiplet excitation
that is shifted upwards in energy due to the repulsive exchange interaction. The large
broadening of the feature is assumed to originate from the hybridization of the multiplet
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Figure 8.2:CeN4,5 edge NRIXS spectra of CeO2 for increasing values of themomentum
transfer q. Calculated pectra withNu = 15 (yellow) andNu = 60 (red) conduction bands
are compared to experimental spectra from Ref. [297]. For each momentum transfer,
all spectra are normalized to the intensity of the maximum.

excitation with the transitions from the Ce 4d states to the continuum states. To analyze the
origin feature, we additionally show the result of a BSE calculation with a reduced number
of bands (orange lines) in Fig. 8.2. This calculation shows a similar spectrum, but the high-
energy peak at 137 eV is more pronounced, has approximately the same linewidth as the
low-energy peaks, and does not lose relative intensity with increasing momentum transfer.
This indicates that a dipole-allowed multiplet excitation, originating from transitions to the
Ce 4f states at the onset of the conduction bands, is shifted upwards in energy due to the
exchange interactions and forms the strong peak at 137 eV. The broadening of the peak
and the decrease of its relative intensity with increasing momentum transfer only occurs
in the calculation with a larger number of unoccupied bands. It is therefore due to the
hybridization of this atomic-like excitations with the high-energy excitations of the Ce 4d
states to the continuum. Our calculations present the first ab initio calculations to confirm
the hybridization of multiplet excitations with continuum ones for the Ce N4,5 edge and
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confirm earlier assumptions [297].
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Figure 8.3: Center: Normalized carbon K edge RIXS double-differential cross section
of diamond as a function of excitation energy and energy loss. Top: Optical absorption
spectrum obtained from BSE calculation (red) and independent-particle approximation
(gray) compared to the experimental spectrum (black) from Ref. [307]. Right: Carbon
K edge absorption spectrum in diamond. The experimental spectrum (black) is taken
from Ref. [308]

8.2 Carbon K Edge RIXS in Diamond

As a first demonstration of our RIXS implementation, we consider the RIXS spectra at the
carbon K edge in diamond. Both the optical [142, 307, 309–311] and the carbon K edge [204,
308, 312] absorption spectra have been investigated intensively before. Experimental [262,
308] and theoretical [206, 209] RIXS results for the carbon K edge RIXS are also available.
As such, this material acts as a good example to demonstrate our approach and benchmark
the resulting spectra.

In a first step, the optical and carbon K edge absorption spectra, shown in Fig. 8.3, are cal-
culated starting from a DFT calculation using a semilocal GGA functional [77]. Our calcu-
lations yield an indirect band gap of 4.04 eV and a direct band gap of 5.55 eV, well below the
corresponding experimental values of 5.48 eV [313] and 7.3 eV [314]. We employ a scissors
operator of ∆ω = 1.9 eV, to increase the optical band gap of 5.55 eV to the experimental one
of 7.3 eV [314].
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Figure 8.4: Calculated RIXS DDCS (red) for several
excitation energies. Spectra are shifted upwards for
clarity. Experimental spectra from Ref. [308] are
shown in black, the results obtained within the IPA
in gray.

This scissors operator yields an ab-
sorption spectrum in good agree-
ment with experiment, but overesti-
mates the indirect band gap, indicat-
ing thatGW corrections do not only
increase the band gap, but further-
more alter the band dispersion.

For the carbon K edge spectrum, not
only the band gap but also the posi-
tion of the carbon 1s level has to be
corrected. We choose a scissors op-
erator ∆ω1 = 22 eV, such that the
onset of the experimental and cal-
culated spectrum are aligned. Both
scissors operators together further-
more define the scissors operators
used for the RIXS spectra: The ex-
citation energies are shifted by ∆ω1,
the energy loss by ∆ω, and the emis-
sion energy by ∆ω2 = ∆ω1 − ∆ω.
As such, there are no free parameters
for the RIXS spectra once the optical
and core-edge absorption spectra are
aligned.

The calculated RIXS spectra are
shown in Fig. 8.3. Following Eqs. 7.7
and 7.8, it is obvious to display the
RIXS double-differential cross sec-
tion d2σ

dΩ2dω2
as a function of the exci-

tation energyω1 and energy lossω =
ω1 − ω2. Equivalently, the cross sec-
tion can be displayed as a function
of excitation energyω1 and emission
energyω2, which corresponds to the
way the RIXS spectra are experimen-
tally recorded. For excitation ener-

gies below the carbon K edge absorption edge at approximately 290 eV (see Fig. 8.3 right),
the RIXS cross section is negligible, since the excitation energy is not in resonance with
any carbon 1s excitation. Once the excitation energy reaches resonance with the absorp-
tion edge, the RIXS cross section increases considerably. The emission occurs over a wide
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Figure 8.5: RIXS double-differential cross section calculated within BSE (left) and IPA
(right). Both colormaps employ the same scale to allow for a direct comparison.

range of energy loss up to around 20 eV, but is strongest at low emission at the onset of
optical absorption (compare Fig. 8.3 top). With increasing excitation energy, the emission
reduces due to the reduced rate of absorption beyond the onset. Furthermore, the emission
at low energy loss vanishes as the excitation energy increases. At an excitation energy of
295 eV, no emission with an energy loss below approximately 12 eV is observed; at an exci-
tation energy of 300 eV, no emission with a loss below 20 eV. Due to this linear dispersion
of the energy loss with the excitation energy, the emission energies stay more or less con-
stant, as can be seen in Fig. 8.4, where the RIXS cross section is shown as a function of the
emission energy for selected excitation energies. Even though we have selected excitation
energies within a window of 12 eV in Fig. 8.4, the emission occurs consistently between
285 and 275 eV. We observe that our calculations agree well with experimental spectra, for
the emission spectrum at a given excitation energy as well as for the change in emission
due to different excitation energies.

In Fig. 8.3, we furthermore show the RIXS cross section within the IPA following Eq. 5.10.
The IPA results are overall blue shifted compared to the experimental spectra, i.e. the en-
ergy loss is overestimated. The blue shifts originates from the red shift of the IPA absorption
spectra, which can be seen in Fig. 8.4. Especially for lower excitation energies, the IPA emis-
sion spectra furthermore have a different spectral shape than the experimental ones. The
intensity at higher emission energies is underestimated, and spectra are too broad. Both the
shift and the different broadening are due to the neglect of electron-hole interaction: Both
in the optical and the carbon K edge absorption spectra, the electron-hole interaction leads
to an increase of intensity at low energies and a sharper onset. This effect is especially pro-
nounced for the core excitations (Fig. 8.4). For emission spectra at higher excitation energy,
the discrepancy between IPA and BSE results decreases and the spectral shape is correctly
reproduced within IPA, while spectra are still blue-shifted (Fig. 8.3). For excitations with
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higher energy, both in the intermediate and in the final state, the role of electron-hole in-
teraction decreases and thus the quality of IPA calculations increases. The underestimation
of the RIXS intensity at low energy loss in the IPA is clearly seen, when we compare the
calculated BSE and IPA spectra in Fig. 8.5 directly. While the IPA reproduces the general
dispersion of the RIXS spectrum, the intensity at the onset is completely underestimated,
and the main spectral features at the onset are missing. Our analysis shows that a careful
treatment of the electron-hole interaction is paramount for an accurate description of the
RIXS spectra.
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Figure 8.6: Lower left: Normalized F K edge RIXS of LiF as a function of the exci-
tation energy and energy loss Lower right: F K edge absorption spectrum obtained
from BSE calculations (red) and experiment (black) [315]. Upper left: Optical absorp-
tion spectrum of LiF from BSE calculations (red) and experiment (black). Upper right:
Normalized |t (2) |2 matrix elements between the first 500 core excitations and first 1000
optical excitations.

8.3 Flouride K Edge RIXS in LiF

As a second demonstration of our RIXS approach, we present in the following results for
the F K edge of LiF. This section closely follows our work in Ref. [361]. Due to its large band
gap, strong effects of electron-hole interaction occur in the electronic excitations of LiF, as
indicated by the presence of bound excitons in both the valence and the core regimes. Our
approach allows for a deeper analysis of the RIXS spectra, the results of which are shown
in Fig. 8.6. For excitation energies below the absorption onset of the core edge, i.e., at
approximately 691.8 eV, the cross section is small, since the F 1s states are not excited reso-
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nantly. Nevertheless, resonant scattering also occurs below the absorption onset, and this
case will be discussed later. When the excitation energy is in resonance with the absorp-
tion onset, the spectrum changes abruptly. The oscillator strength increases tremendously
and is focussed on a distinct loss peak at 14.6 eV. For higher absorption energies, this peak
shows a linear dispersion. The feature loses oscillator strength and widens with increasing
excitation energy.

As the shape of the RIXS spectrum is determined by the excitation pathways, we now have
a closer look at the t (2)-matrix. The top right of Fig. 8.6 shows this matrix for the first 500
core and 1000 optical excitations that determine the RIXS cross sections for excitation en-
ergies between 680.1 and 696.7 eV and energy losses between 12.8 and 18.3 eV. It shows
a pronounced band-matrix form, i.e. the largest contributions are observed along the di-
agonal. From Eq. 7.6, two contributions can be inferred that lead to considerable matrix
elements. First, transitions from the valence hole distribution of the final state to the core
hole have to be dipole-allowed, and second, the distributions of the excited electron of the
intermediate and final state have to be similar. For core excitations with increasing energy,
the excited electron is distributed farther from the band gap, and the same holds true for
optical excitations with increasing energy. This similarity leads to the band-matrix form of
t (2) . Moreover, we find that for core excitations at higher energies, pathways to more and
more valence excitations are possible, and therefore the shoulder at higher loss is getting
more pronounced.

Although the elements of t (2) yield insight into the origin of the features in the RIXS spec-
trum, they do not solely define it. While the pathway between the lowest excitations in the
optical and core spectrum is very strong, surprisingly, the excitonic peak that dominates the
optical absorption spectrum at 12.7 eV is not observed in the RIXS spectrum. This strongly
bound exciton is formed by a complicate interplay of transitions from the top of the valence
band, formed by the F p states, to the bottom of the conduction band, dominated by the Li s
states.[220] In the corresponding RIXS spectrum, the initial excitations from the F 1s states
to the Li s states at the bottom of the conduction band is not possible, as s → s transitions
are dipole-forbidden. As such, the bound exciton in the F K edge spectrum is dark. While
the t (2) matrix elements between the dark exciton in the F K edge and the bound exciton
in the optical spectrum are considerable, the t (1) entries vanish, as the initial excitation of
the dark exciton is prohibited. We note that in the literature, this peak has been ascribed to
transitions from the exciton in the F K edge spectrum to that in the optical spectrum [315].
Our first-principles approach shows that RIXS spectrum at the core onset is more complex
and requires in-depth analysis to be unraveled.

Plotting in Fig. 8.7 the calculated RIXS spectra as a function of the emission energies for
selected excitation energies allows for a comparison with the experimental spectra [315].
We first consider the spectra beyond 689.9 eV, where the RIXS signal is considerable: For
an excitation energy of 690.8 eV, below the absorption onset of approximately 691.8 eV, the

106



Flouride K Edge RIXS in LiF 8.3

672 674 676 678 680
Emission energy [eV]

d
/(d

d
′ )
[a
rb
.u

ni
ts
]

688.0 eV
688.8 eV
689.3 eV

689.8 eV

690.8 eV

691.8 eV

692.9 eV

701.0 eV

672 674 676 678 680
Emission energy [eV]

688.0 eV

688.8 eV

689.3 eV

689.8 eV

BSE
Exp.
corr. BSE

Figure 8.7: Left: F K edge RIXS spectra for selected excitation energies computed from
our BSE approach (red), corrected BSE spectra including stray-light correction (orange)
and experimental spectra from Ref. [315]. Right: Zoom of the RIXS spectra for excita-
tion energies below the F K absorption onset.

calculated spectrum has a peak at 676.8 eV, which slowly decays at lower emission energies,
i.e. the maximum of the scattering occurs at a loss of 14 eV, with considerable contributions
at higher energy loss. With increasing excitation energy, the peak becomes narrower and
moves to slightly higher emission energy. The broad feature at lower emission energy
is strongly suppressed for excitations of approximately 691.8 eV, while a shoulder in the
emission appears for even higher excitation energies. The calculated spectra at a given
excitation energy, as well as the change as a function of the excitation energy are in good
agreement with their experimental counterparts [315].

Experimental spectra have also reported for excitations energies below the absorption on-
set, and we display the calculated spectra on the right side of Fig. 8.7. In this excitation
region, the calculated BSE spectra disagree qualitatively from the experimental ones: A
strong, non-dispersive peak at emission energies of approximately 677.3 eV is completely
missing in our calculations, which predict that emission only occurs at considerably higher
energy loss, i.e. lower emission energies. For excitations in this energy region, none of the
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core excitation is excited resonantly, and the spectrum is formed by the life-time tails of
many excitations over a wide energy range. In the calculated spectra, the loss occurs pre-
dominantly at 14 eV, independently of the excitation energy yielding the broad emission
feature in Fig. 8.7. The presence of linearly dispersive broad absorption features at constant
energy loss in the sub-threshold RIXS spectrum have been observed for LiF [315], Cu, and
Ni [316] before. They occur, since no core excitation is in resonance with the incoming x-
ray energy, and as such no core excitation is strongly favored over the others. As a result,
the emission spectrum does not strongly depend on the absorption energy and thus reflects
the shape of the optical absorption spectrum. The experimental spectra, on the other hand,
show an additional peak at approximately 677.4 eV for all excitation energies below the
onset. With increasing excitation energy, the peak becomes more dominant until, at 689.8
eV, it completely dominates the experimental spectrum.

If we consider the excitation at 688 eV, the initial peak at 677.4 eV corresponds to an energy
loss of around 10.6 eV, well below the optical absorption onset (see lower panel in Fig. 8.6).
This indicates that the emission does not originate from the absorption of an x-ray pho-
ton with an energy of 688.0 eV, but rather of a photon with higher energy, such that the
energy loss is actually higher. This can occur if the incoming x-ray beam is not perfectly
monochromatic, but rather has a finite linewidth [315, 317]. For a given excitation energy,
we then have to consider the scattering of x-ray photons within a range of energies around
the given excitation energy. Following Ref. [315], we express the double-differential cross
section as a function of the excitation energy ω1 and emission energy ω2 and obtain

d2σ (ω1,ω2)

dΩ2dω2
=

∫

dω3
d2σBSE(ω3,ω2)

dΩ3dω3
· η(ω3 − ω1), (8.1)

where d2σBSE(ω3,ω2)/dΩ3dω3 is the DDCS calculated from BSE for an excitation energyω3

and emission energy ω2, while η(ω3 −ω1) describes the linewidth of the excitation energy.
In the derivation of the DDCS, we assume η(ω3 − ω1) → δ (ω3 − ω1). Now, we extend the
assumption by an additional Lorentzian background with a width ∆ and a relative intensity
ξ , such that

η(ω3 − ω1) = δ (ω3 − ω1) + ξ
∆
2

∆2
+ (ω3 − ω1)2

. (8.2)

The second term is called the stray-light contribution. In Fig. 8.7, we show the stray-light
corrected BSE spectra, using a distribution of ∆= 20 eV and ξ = 0.001, corresponding to
the parameters of Ref. [315]. The stray-light contribution correctly introduces the peak at
high emission energies, but our calculations yield a peak at slightly overestimated emission
energies. Our analysis shows that the peak originates from the strong RIXS signal that
occurs at an excitation energy of 692 eV and an energy loss of 14 eV. Due to the linewidth of
the excitation energy, even at considerably lower excitation energies below the absorption
onset, some initial x-ray photons have an energy of 692 eV and are scattered such that the
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Figure 8.8: F K edge RIXS of LiF spectra obtained from BSE (left) and IPA (right) cal-
culations. The spectra are normalized to the intensity of the most intense peak.

emitted photon has an energy of 678 eV. Due to the low signal of the scattering rate for x-
ray photons with energies below the absorption onset, the peak at 678 eV is strong. We find
that the agreement is better at lower excitation energies than at 689.8 eV. The frequency-
dependency of η(ω′′ − ω′) depends on the set-up of the measurement, and it appears that
at higher excitation energies it does not have a Lorentzian shape.

Finally, we demonstrate the importance of electron-hole interaction by comparing in Fig. 8.8
the RIXS spectra obtained by the BSE with those from the independent-particle approxi-
mation (IPA). For low excitation energies, a broad emission spectrum is predicted in the
IPA, missing the pronounced peak found in both the experimental spectra and our BSE
calculations. At an excitation energy of 701 eV, the agreement between the IPA and BSE
spectra improves, because the effect of electron-hole interaction decreases with increasing
excitation energy. Comparing in Fig. 8.7 the RIXS cross sections obtained from the two
calculations, one notices that the strong peak at the excitation energy of 691.8 eV and the
loss of 14.8 eV is completely missing within the IPA. This comparison demonstrates that
the renormalization of the RIXS spectra due to electron-hole interaction is crucial at low
excitation energies and low energy loss.
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Excitations in Ga2O3
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CHAPTER 9

Geometry and Electronic Structure

9.1 Geometry of Ga2O3 Polymorphs

Several polymorphs of Ga2O3 have been identified, yet the symmetry and structure of some
of these phases is still debated. Even the number of polymorphs is unclear to date. Com-
monly, six of them, named α−, β−, γ−, δ−, ϵ−, and κ−Ga2O3, have been determined in
experimental [7, 318–321] and theoretical [41]studies. All of these polymorphs consist of
networks of gallium atoms at the center of either distorted tetrahedra or octahedra, the
corners of which are formed by the nearest oxygen atoms [322, 323]. All studies confirm
that the β-phase is the thermodynamically stable phase, but samples of the other poly-
morphs have been produced with suitable substrates and growth techniques [7]. Recently,
the δ−phase has been identified as a mixture of β− and ϵ−Ga2O3 [321], and it has been
argued that the κ- and ϵ−phases might be identical [324]. In this work, we focus on the
thermodynamically stable β-phase, which we compare to the metastable α-phase. For se-
lected properties, where experimental results are available, we also include the ϵ-phase
in our comparison. The γ -polymorph is not considered here, due to its defective spinel
structure that requires one to consider different atomic configurations in computationally
expensive super-cell calculations. As an example, 14 configurations of unit cells with 40
atoms each were considered in Ref. [41] in order to determine the geometry of γ -Ga2O3.

The primitive unit cell of rhombohedral α-Ga2O3 (space group R3̄c) is defined by the lattice
vectors

a1 =

(

a · cos
(
α

2

)

,−a · sin
(
α

2

)

, 0

)

,
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(

a · cos
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,a · sin
(
α

2

)

, 0
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) , 0,a ·
√
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2
)




 ,

(9.1)

with the experimental lattice parameters a = 5.321 Å and α = 55.795◦ [28, 325]. The unit
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Figure 9.1: Primitive unit cell of a) α- and b) β-Ga2O3. Dark green atoms indicate
octahedrally coordinated gallium atoms, light green atoms tetrahedrally coordinated
ones. Red, orange, and yellow atoms indicate the inequivalent oxygen atoms. The
dashed lines show the borders of the primitive unit cells.

cell shown in Fig. 9.1 contains 10 atoms, where the two gallium atoms (dark green) are
equivalent and all three oxygen atoms in the unit cell (red) are equivalent to each other. All
gallium atoms are octahedrally coordinated. Commonly, a non-primitive hexagonal unit
cell is reported [28], with the hexagonal axis c = a1 + a2 + a3.

The primitive unit cell of monoclinic β-Ga2O3 (space group C2/m) is given by the lattice
vectors

a1 = (a/2,b/2, 0),

a2 = (−a/2,b/2, 0),
a3 = (c · cos β , 0, c · sin β ),

(9.2)

with lattice parameters of a = 12.233 Å, b = 3.038 Å, c = 5.807 Å, and β = 103.82◦ [325].
With this choice of primitive unit cell, the crystal axis a is positioned along the x-axis,
the axis b along the y-axis, and the c-axis lies in the xz-plane. The primitive unit cell
shown in Fig. 9.1 contains 10 atoms, with two inequivalent gallium sites and 3 inequivalent
oxygen ones. We label the octahedrally and tetrahedrally coordinated gallium atoms as
Ga1 (dark green) and Ga2 (light green), respectively. In the β−phase, the ratio between
octahedrally and tetrahedrally coordinated gallium atoms is 1 : 1 (compare Fig. 9.1). The
three inequivalent oxygen atoms differ in their bonding to the inequivalent gallium atoms:
the atoms O1 (orange) share two bonds with Ga1, one bond with Ga2. The atoms O2 (dark
red) share three bonds with Ga1 and one with Ga2. The atoms O3 (yellow) share one bond
with Ga1 and three bonds with Ga2. Our color scheme is consistent with the one suggested
in Ref. [34]. The low crystallographic symmetry of the monoclinic phase results in a strong
anisotropy of the electronic and optical properties [21], which will be a focus of the present
and following chapters.

The orthorhombic ϵ−phase (space group Pna21), shown in Fig. 9.2, is defined by the lattice
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vectors
a1 = (a, 0, 0),

a2 = (0,b, 0),

a3 = (0, 0, c ),

(9.3)

Figure 9.2: Crystal structure
of ϵ-Ga2O3. Gallium atoms
are shown in green, oxygen
atoms in red. The dashed line
indicates the boundary of the
primitive unit cell.

with the lattice parameters a = 5.0566 Å, b = 8.6867 Å,
and c = 9.3035 Å [28]. The primitive unit cell contains
40 atoms. There 16 gallium atoms are distributed over four
inequivalent sites in the unit cell, each four-fold degener-
ate. One of these sites is tetrahedrally coordinated, three
are octahedrally coordinated. As such, the ratio between
octahedrally and tetrahedrally coordinated gallium atoms
is 4 : 1. The 24 oxygen atoms are distributed over 6 in-
equivalent oxygen sites, each four-fold degenerate. As in
the case of the β-phase, the inequivalent oxygen sites differ
in the number of bonds they share with either octahedrally
or tetrahedrally coordinated gallium atoms.

Geometry, composition and bonding environment in the
three polymorphs α-, β− and ϵ-Ga2O3 are similar, where
the main difference is the ratio between octahedrally and
tetrahedrally coordinated gallium atoms [322, 323]. The in-
fluence of these subtle difference in the geometry on the
electronic and optical properties will be the topic of the fol-

lowing chapters.

9.2 Electronic Structure

The similarities in the structure and bonding environment of the different polymorphs of
Ga2O3 leads to similar electronic structures. Generally, the valence-band maximum (VBM)
of all Ga2O3 polymorphs is formed predominantly by O p states, while the conduction
band minimum (CBm) is formed mostly by hybridized O s and Ga s states. Yet, differences
in the electronic structure arise due to the different symmetries and especially the varying
ratio of tetrahedrally and octahedrally coordinated gallium atoms. We therefore discuss
the electronic structure of the α- and β-polymorph in great detail. We complement the
discussion by comparing these phases to the ϵ-phase.

First, we consider the band structure and density of states (DOS) of the α-polymorph shown
in Fig. 9.3. The highest valence bands are predominantly formed by O p states, while the
lowest conduction bands are formed by hybridized Ga s and O s states.
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Figure 9.3: Electronic structure and DOS of α-Ga2O3. The high-symmetry path follows
the standard of Ref. [326]. The projection on Ga s states are displayed in green, the ones
of O p in red. The VBM is set to zero.

Figure 9.4: Band structure of α-Ga2O3 focus-
ing on sections of the high-symmetry path
around the optical band gap at Γ. The energy
of the VBM is set to zero.

Due to the delocalization of the low-
est conduction states, the correspond-
ing band is strongly dispersive with the
conduction-band minimum (CBm) at the
Γ point. Within the first 3 eV beyond
the CBm , the band structure is solely
formed by this band. In contrast, the top-
most valence bands display onlyweak dis-
persion (note the different energy scale),
leading to high effective hole masses. We
note that, due to the symmetry of the α-
phase, the highest occupied band is two-
fold degenerate at the Γ-point, while the
lowest conduction band is not degener-
ate. Our calculations yield an indirect
Kohn-Sham band gap of 2.89 eV, as the va-
lence band maximum (VBM) is displaced
slightly from the Γ-point. Due to the low
dispersion and the high density of valence

bands, the density of states at the VBM is sharp with an abrupt onset. The density of states
at the CBm shows the expected

√
ϵ behavior, as the band structure is formed by a single
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Figure 9.5: Electronic structure and DOS of β-Ga2O3. The projection on the Ga s are
displayed in green in both the band structure and the DOS, the ones of the O p in red.
The high-symmetry path follows the standard of Ref. [326].

parabolic band. For the optoelectronic properties, the electronic structure in the vicinity of
the direct band gap is of special importance. In the next sections, we will therefore employ
a reduced band-structure path focussing mainly on the vicinity of the Γ-point. The band
structure is shown in Fig. 9.4, where we also visualize the projection onto the Ga s and O s

states for the conduction bands, and the O p for the valence states. Figure 9.4 demonstrates
that the Ga s and O s state contribute to the CBm equally. While the contributions of the
Ga s are often discussed in the literature, it is equally important to consider those of the O
s states to understand the optoelectronic properties of Ga2O3.

The band structure of the β-phase, shown in Fig. 9.5 closely resembles that of the α-phase.
As in the latter, the valence bands have predominantly O p character and are only weakly
dispersing, while the lowest conduction band is formed by hybridized Ga and O s states and
displays a parabolic dispersion around the Γ-point. We obtain an indirect band gap of 2.39
eV, although the difference of the direct and indirect band gap is very small, since the highest
valence bands are nearly flat. Focusing on the electronic structure in the vicinity of the band
gap, as shown in Fig. 9.6, we observe that the topmost valence bands are predominantly
formed byOp states, yet the inequivalent oxygen sites contribute differently to these bands.
The highest valence band is formed mostly byO3 p states, except around the L-point where
O2 and O3 contribute nearly equivalently. We note that O3 shares the highest number of
bonds to the tetrahedral gallium site. The contributions of O1 to the top of the valence
band are negligible, and the first significant contributions occur about 0.7 eV below the
VBM. For the CBm, however, the s states of Ga1 and Ga2 contribute equivalently. The
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hybridization with O s is considerable, where the atomic contributions of the O1, O2, and
O3 are similar. Only at about 6 eV above the VBM, when the parabolic band is intersected by
the other conduction bands, the contributions of the inequivalent gallium sites differ. This is
especially pronounced for the second-lowest conduction band at Γ, which is solely formed
by Ga2 s states, while the lowest conduction band at the X point is formed predominantly
by Ga1 s states.

Figure 9.6: Band structure of β-Ga2O3 focus-
ing on sections of the high-symmetry path
around the optical band gap at Γ. The VBM is
set to zero.

We have seen so far that the electronic
structures of the α- and β-phase are sim-
ilar. Differences occur mainly due to the
reduced symmetry of the β-phase, which
leads to distinguishable contributions of
the inequivalent oxygen sites to different
valence bands. For a direct comparison,
Fig. 9.7 shows the DOS for the α-, β-, and
ϵ-polymorph, projected on the Ga s and
p, and O s and p states. The main differ-
ence between the three is the electronic
structure at the VBM: While the α-phase
shows a smooth onset, the β- and ϵ-phase
show a distinct peak, which is more pro-
nounced in the ϵ- than in the β-phase. The
feature originates from oxygen p states
of oxygen sites predominantly bonded to
tetrahedrally coordinated gallium atoms.
These sites do not occur in the α-phase,
such that there is no such peak here. For

the ϵ-phase, the ratio of tetrahedral to octahedral gallium atoms is higher, which explains
the stronger relative intensity of the peak.

Our results for the electronic structure are in good agreement with previous ab-initio cal-
culations with semilocal functionals, as shown in Table 9.1. As expected, the Kohn-Sham
band gaps are considerably smaller than the experimental ones. Better agreement is ob-
tained from calculations with hybrid functionals. The application of theG0W0 approach on
top of HSE calculations [28] gives an even larger band gap, beyond the experimental value.
ComparisonwithG0W0 calculations starting from LDA [327] and PBE [328] band structures,
which yield considerably smaller band gaps, indicate that there is a strong starting-point
dependence. Recent results of quasiparticle-selfconsistent GW calculations [329] indicate
that a high band gap of 5.3 eV, close to the one obtained fromG0W0@HSE calculations is rea-
sonable, since the lattice screening, which is ignored in all calculations shown in Table 9.1
reduces the band gap by up to 0.5 eV [329].

118



Electronic Structure 9.2

0.000
0.005
0.010
0.015
0.020

Ga2O3

0.000
0.005
0.010
0.015
0.020

DO
S
[e
V

1 a
3 0
]

Ga2O3

8 6 4 2 0
Energy [eV]

0.000
0.005
0.010
0.015
0.020

Ga2O3

0.000

0.001

0.002

0.003

0.000

0.001

0.002

0.003
Ga s
Ga p
O s
O p

4 6 8
Energy [eV]

0.000

0.001

0.002

0.003

Figure 9.7: Projected valence (left) and conduction DOS (left) of α- (top), β- (middle),
and ϵ-Ga2O3. The energy of the VBM is set to zero.

α-Ga2O3 β-Ga2O3

this work 2.89 eV 2.39 eV
PBE 2.83 eV [28] 2.36 eV [28]
HSE 5.26 eV [330] 4.69 eV [330], 4.87 eV [331], 5.01 eV [328]

GW@LDA 4.24 eV [327]
GW@PBE 4.49 eV [328]
GW@HSE 5.39 [28] 5.04 eV [28]
QSGW 5.33 [329]
Exp. 5.72 eV [332](o), 5.3 eV [333] 4.9 eV [334, 335]

Table 9.1: Summary of the theoretical and experimental band gaps for α- and β-Ga2O3.
All fundamental band gaps are indirect. For α-Ga2O3, only the experimental optical gap
is reported, the value is marked by (o).
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9 Geometry and Electronic Structure

While the computationally expensive methods yield good results for the band gaps, it has
been shown that their effect on the electronic structure is basically a rigid upward shift of
the conduction bands [35], affecting the effective masses and other properties derived from
the curvature of the band structure only little [28, 328]. Therefore, we employ DFT band
structures to calculate the excitations in the following chapters using the semilocal PBE
functional [76] and employ a scissors operator to match the experimental band gap.
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CHAPTER 10

Optical Spectroscopy

10.1 Absorption Spectroscopy

Generally, the dielectric function is not a scalar, but a tensor of rank two. However, the
number of unique components of the dielectric tensor depend on the crystal symmetries.
For the rhombohedral α-phase, the dielectric tensor can be reduced to a non-degenerate
parallel component ε ‖M along the hexagonal axis c = a1 + a2 + a3 and a two-fold degenerate
perpendicular component ε⊥M [28, 155], i.e.

εM (ω) =






ε⊥M (ω) 0 0

0 ε⊥M (ω) 0

0 0 ε
‖
M (ω)




 . (10.1)

The entries are shown in Fig. 10.1. The parallel and orthogonal components are similar,
both display a sharp peak at the onset of optical absorption. The main peak in both compo-
nents occurs at approximately 9 eV. A shoulder is observed in the perpendicular component
at 6.4 eV, which is not visible in the parallel one. In the latter, on the other hand, the low-
energy peak is more pronounced and slightly blue-shifted by about 0.8 eV. The low-energy
peak in both components lies below the onset of independent-particle transitions (compare
Fig. 10.1), which indicates that the features originate from bound valence excitons. Our cal-
culations yield a series of bound excitons with binding energies below 182 meV. In ε⊥M , the

excitons with the largest binding energy have the strongest oscillator strength. In ε ‖M , these
excitons have vanishing oscillator strength and the excitonic peak originates from bound
excitons with binding energies of around 100 meV, and the peak is therefore found around
80 meV higher in energy. Experimentally, only the perpendicular component of the dielec-
tric tensor has been determined [155]. We find that our calculations yield the position of
the low-energy peak and the shoulder in excellent agreement with the experimental spec-
trum, while the position of the calculated main peak is underestimated by approximately
0.7 eV. Our calculations also agree with previous ones on the same level of theory [28].

For the β-phase, the macroscopic dielectric tensor εM (ω) consists of four distinct entries
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Figure 10.1: Non-vanishing entries of the dielectric tensor of β- (left) and α-Ga2O3

(right). Calculated spectra (red) are compared to experimental ones obtained from
Ref. [43] (black) and Ref. [44] (gray) for the β- and Ref. [155] for the α-phase. The
optical band gap is marked by a gray vertical line, the position of the bound excitons
by vertical red lines.

due to the low degree of symmetry, i.e.

εM (ω) =






εxxM (ω) 0 εxzM (ω)

0 ε
yy
M (ω) 0

εxzM (ω) 0 εzzM (ω)




 . (10.2)

The non-vanishing entries are shown in Fig. 10.1. In the εzzM -component, the calculated
spectrum shows a strong peak at 4.76 eV below the direct band gap of 4.9 eV. This peak is
introduced by a bound exciton with a considerable binding energy of approximately 230
meV. The shoulder at 4.89 eV is a introduced by bound excitons with lower binding ener-
gies. In the εxxM -components, the excitonic peak is small, while the main peak appears at
5.03 eV, above the optical band gap. In the ε

yy
M -component, no significant absorption oc-

122



Absorption Spectroscopy 10.1

curs below the band gap, such that the first small feature is at 5.35 eV, 0.45 eV above the
band gap, and the main peak at 5.76 eV. The anisotropy of the dielectric tensor follows from
the anisotropy of the dipole matrix elements in Eq. 6.59. While the CBm has predominant
contributions from the largely anisotropic Ga and O s states, the VBM is formed by the
strongly anisotropic O p states, such that the matrix elements in the ε

yy
M -component van-

ish within 0.5 eV below the VBM [336]. As such, features originating from bound excitons
are only observed in the εxxM - and εzzM -component, but not in the ε

yy
M -component. While the

calculated absorption onsets in the different components agree with the experimental re-
sults [43, 44], our calculations yields a significantly more considerable absorption for lower
energies than observed in experiment. A similar overestimation of the oscillator strength
at low energies has been observed in previous calculations on the same level of theory [35],
likely due to the strong effect of electron-phonon interaction. For β-Ga2O3, the formation
of self-trapped excitons due to the strong interaction of the O 2p hole and lattice distortions
have been reported in both experimental [337–339] and theoretical studies [30]. The self-
trapping leads to a short lifetime of the excitations, which reduces the relative intensity of
the excitonic peaks. This finding is corroborated by a electroreflectance study [53], which
for β-Ga2O3 yields a lifetime broadening of bound excitons of up to 0.48 eV.
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This work Experiment
λ Eλ [eV] Ebind[meV] Eλ [eV] Ebind [meV]

α-Ga2O3

1 5.62 182 - 110 [332]
2 5.67 137 - -
3 5.71 89 - -

β-Ga2O3

1 4.81 170 4.73 [54], 4.57 [53] 250,410
2 4.86 49 4.81 [54], 4.71 [53] 170,280
3 4.88 30 4.88 [54], 4.96 [53] 92,20

Table 10.1: Transition energies Eλ and binding energies Ebind of bound excitons in α-
and β-Ga2O3. The experimental exciton binding energies for α- [332] and transition
energies for β-Ga2O3 [53, 54] are provided for comparison. The experimental binding
energies for β-Ga2O3 are determined from the experimental transition energies using
the experimental band gap of 4.88 eV.

10.2 Bound Excitons

As shown in Fig. 10.1, bound valence excitons dominate the low-energy absorption in α-
and β-Ga2O3. For a more comprehensive analysis of the absorption onset, we perform
BSE calculations with an increased k-sampling, while reducing the number of involved
bands to those that are relevant (compare Appendix C). These calculations yield 8 two-fold
degenerate bound excitons for α-Ga2O3 and 3 non-degenerate bound excitons for β-Ga2O3.
The transition energies and binding energies of the three most strongly bound excitons of
both polymorphs are shown in Table 10.1.

More details are inferred from the exciton weight (compare Eq. 6.53) that represent the
distribution of the excited electron and the valence hole for a given excitonic eigenstates
Xcvk,λ. As shown in Fig. 10.2, the valence hole and the excited electron are distributed
around the Γ-point for the first three bound excitons in the α- and β-phase. The excited
electron is distributed solely on the lowest conduction band in both phases, the hole mostly
on the highest valence band. Amajor difference between the polymorphs occurs in the hole
distribution: In the β-phase, the highest occupied band at Γ is separated from the second-
highest one by around 270 meV. The contributions of other valence bands to the bound
excitons are negligible. For the most strongly bound exciton, for example, the contributions
of the second-highest valence bands are only 0.02% compared to the contributions of the
highest valence band. In the α-phase, the highest valence band at the Γ point is two-fold
degenerate and separated by the second-highest valence band (also two-fold degenerate)
by only 54 meV. Therefore, contributions to the bound excitons arise from all four highest
valence bands in the vicinity of the Γ point. The hole is distributed much more widely over
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Bound Excitons 10.2

the valence band than in the β-phase. For the most strongly bound exciton, the second and
third band still yield a contribution that is around 2% of that of the highest valence band.
The contributions of lower valence bands increase with decreasing binding energy.
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Figure 10.3: Binding energies of the first
three excitons inα- (yellow symbols) and β-
Ga2O3(blue symbols). The Wannier-Mott fit is
shown for the β- (red line) and α-phase (blue
line).

Generally, two pictures have been de-
veloped to understand (bound) excitons
in condensed matter: For materials with
large static dielectric function εM ≈ 10,
the binding energies are typically only
few tens of meV [62, 340]. As such, the
electron-hole pair is highly delocalized,
i.e. their envelope function might extend
over tens of unit cells. These excitons are
commonly known as Wannier-Mott exci-

tons [341, 342]. The binding energies of
these excitons can be approximated by a
hydrogenic model, assuming that these
excitons are formed by transitions from
a single parabolic valence band to a sin-
gle parabolic conduction band. In this
model, the bare Coulomb interaction be-
tween electron and hole is empirically re-
duced by the static dielectric constant ε∞
to include the screening in the solid. In

the simplest approximation of the Wannier-Mott model, the exciton binding energy Ebind
is given by [62]

Ebind(λ) = R∞
µex

ε2∞

1

λ2
, (10.3)

where R∞ = 13.605 eV is the Rydberg energy, µex is the effective mass of the exciton.
In many semiconductors containing elements of the groups III – V, the exciton binding
energies are in the range of several meV [62, 340] and are well described by the Wannier-
Mott model.

For materials with narrow bands and low dielectric function, such as solid noble gases and
alkali halides, the exciton binding energies at the absorption onset can be considerable. In
solid Ne, for example, it is 4.2 eV [343], in LiF 0.8 eV [344]. In these cases, the electron-
hole pairs are highly localized within a single unit cell or at an atomic site. These so-called
Frenkel excitons are commonly described in terms of on-site excitations and hopping terms
between atomic sites [62].

Coming back to Ga2O3, the computed binding energies of 170 and 182 for the α- and β-
phase, respectively, lie between those of typical Frenkel and Wannier-Mott excitons. In
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10 Optical Spectroscopy

Figure 10.2: Exciton weight (compare Eq. 6.53) of the first three excitons (λ = 1, 2, and
3) in α- (top) and β-Ga2O3 (bottom). The size of the red markers indicate the contribu-
tion of the corresponding valence or conduction state to the excitonic wavefunction.

order to determine whether the binding energies can still be described by the Wannier-
Mott model in Eq. 10.3, we fit the three exciton energies of the β-phase, and the first four
in the α-phase with the trial function Eλ = A · 1

λ2
+ B, where A and B are fit parameters.

For β-Ga2O3, this yields an excellent fit (R2
= 0.9994), while the agreement for α-Ga2O3

is significantly worse (R2
= 0.825). From the binding energies and the Wannier-Mott fits

shown in Fig. 10.3, it is obvious that the three bound excitons are well described as the
Rydberg series of a Wannier-Mott exciton, while the same does not hold for the α-phase.
One of the fundamental approximation of the Wannier-Mott approach is the so-called two-
band model, i.e. that the exciton is formed solely by transitions from the highest valence
band to the lowest conduction band [62, 345]. While this is a good approximation for the
excitons in the β-phase, themixing of transition from different valence bands in theα-phase
is considerable (compare Fig. 10.2). As transitions from several valence bands to the lowest
conduction band form the excitons in the α-phase, the binding energies of the excitons are
not described well by the Wannier-Mott model.

Excitons in Ga2O3, especially in the β-phase, have been investigated in several recent ex-
perimental and theoretical studies. For β-Ga2O3, a series of three bound excitons have been
obtained from polarized reflectance [54] and electroreflectance [53] studies. The transition
energies are reported in Table 10.1. Our ab initio results provide an intuitive interpretation
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of the three excitons consistently observed in β-Ga2O3, yet the binding energies appear un-
derestimated. The underestimation is most likely due to the overestimation of the screen-
ing. In our BSE calculations, the screening is determined within the RPA, and as a result the
static dielectric function is overestimated [52]. While RPA calculations [28] yield dielectric
constants of ε∞ = 4.38 for the α- and ε∞ = 4.12 for the β−phase, respectively, these values
are decreased to 3.8 for the α- and 3.56 for the β-phase, respectively, when quasiparticle
corrections and electron-hole interactions are taken into account [28]. Model calculations
with a static dielectric function that include the effects of electron-hole interaction yields
exciton binding energies in closer agreement with experimental values [52].
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CHAPTER 11

Oxygen K Edge Spectroscopy

11.1 Absorption Spectroscopy

The O K edge XANES is a widely used spectroscopic tool to investigate the unoccupied
electronic structure in oxides [45, 346, 347]. Through the excitations of the localizes oxy-
gen 1s electrons, the XANES spectra reveal the local unoccupied electronic structure and
bonding environment of the absorbing atom. The calculated O K edge XANES for α-, β-,
and ϵ-Ga2O3, displayed in Fig. 11.1, are dominated by two pronounced features: a sharp
peak at the absorption onset and a second, broader feature approximately 5.5 eV beyond
the onset. In the α-phase, between these two features a local minimum and a small peak
occurs, approximately 3 eV above the first peak, while no local minimum is found in the
spectra of the β- and ϵ-phases. For all three polymorphs, our calculations yield four dark
bound excitons below the absorption onset. They are formed by transition from the O 1s

states to the lowest conduction band, which are has predominantly by Ga s and O s charac-
ter. As s → s transitions are dipole-forbidden, the oscillator strength of the bound excitons
is weak, and they are barely visible in the absorption spectra. We obtain binding energies
of up to 285 meV in the α-, 345 meV in the β-, and 323 meV in the ϵ-phase. Comparing
the experimental [358] and calculated spectra in Fig. 11.1, we observe that the position of
the two peaks and the overall spectral shape are excellently reproduced for the β- and ϵ-
phase, but the energy distance between the two peaks is underestimated in the α-phase by
approximately 1.4 eV. For all three polymorphs, our calculations overestimate the relative
intensity of the initial peak. This overestimation is typically observed in BSE calculations
of core excitations [348, 349]. It stems from inelastic losses, i.e. the response of the many-
electron system to the sudden creation of the electron-core hole pair, which is described
in our calculations by a constant broadening parameter. An improved description is ob-
tained if the frequency-dependent broadening is determined from the imaginary part of
the quasiparticle self energy Σ [350] or by a cumulant approach to the two-particle Green’s
function [348]. In our calculations, however, the lifetime broadening is approximated by a
constant parameter.

As the orientation of the experimental samples is not known, the calculated spectra on the
left side of Fig. 11.1 are obtained by averaging over all diagonal entries of the dielectric
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Figure 11.1: Left: Normalized O K edge XANES for α-, β-, and ϵ-Ga2O3 (from bottom)
from BSE (red), IPA (gray), and experiment (black) [358]. We show Im εM averaged
over the diagonal components of the dielectric tensor. The absorption onset in the IPA
is marked by the dotted line, the IPA spectrum by the gray-shaded area. Right: Relative
intensity of the diagonal components for the corresponding phase.

tensor. The parallel and perpendicular component of the α-phase and the diagonal com-
ponents of the β- and ϵ-phase are shown on the right side of Fig. 11.1. They display only
weak anisotropy for all three polymorphs. The anisotropy is most pronounced for the β-
phase, where the low-energy peak is significantly stronger in the ε

yy
M -component than in

the εxxM - and εzzM -components. The high-energy peak, on the other hand, is found in the εxxM -
and εzzM -components, but not in the ε

yy
M -component. We note that this is different from the

optical absorption (Fig. 10.1), where the absorption onset is more pronounced in the εxxM -

and εzzM -component. In the α-phase, the pronounced peak at 538.8 eV is found in both ε ‖M
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and ε⊥M with identical intensity. The features at 540 eV has more pronounced intensity in

ε
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M than in ε⊥M .
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Figure 11.2: Contributions of the inequivalent oxy-
gen atoms O1 (orange), O2 (red), and O3 (yellow) to
εxxM , ε

yy
M , εzzM , and εxzM (from bottom to top) in β-Ga2O3.

To determine the influence of electron-
hole interaction on the O K edge
XANES spectra, we include the cal-
culations within the independent-
particle approximation (IPA) in Fig. 11.1.
We mark the onset of transitions
in the IPA with a vertical gray
line. The electron-core hole inter-
action has two effects: the spec-
trum is red-shifted, i.e. absorption
occurs at lower energies, and oscil-
lator strength is shifted to excita-
tions at lower energy. In all three
polymorphs, the electron-hole inter-
action significantly alters the spectral
shape. In the α- and ϵ-phase, the IPA
spectrum already displays the two-
peak structure, yet the initial peak
has lower intensity than the higher-
energy one. In the β-phase, no peak
is present at the onset of the absorp-
tion spectrum in the IPA. Only when
the electron-hole interaction is in-
cluded in the calculations, the correct
relative intensity of the peaks is ob-
tained.

While the unit cell of α-Ga2O3 con-
tains only one inequivalent oxygen
atom (compare Chapter 9), the β-
phase contains 3, the ϵ-phase 6 in-
equivalent oxygen atoms. Following

Section 6.10, the absorption spectrum is obtained as the sum of the spectra of all inequiva-
lent atoms. For the β-phase, we show the atomic contributions to the non-vanishing entries
of the dielectric tensor. The ones of the atom O1 and O2 are similar in all components, yet
there is a small shift between the spectra due to the shifts between O1 1s and O2 1s states.
The similarity arises as both atoms share more bonds with the octahedral Ga atoms than
with the tetrahedral ones. The atom O3, on the other hand, shares more bonds with the
tetrahedral Ga atom (compare Chapter 9). As such, the difference between the spectrum of
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Figure 11.3: Center: O K edge RIXS cross section of α-Ga2O3 as a function of the
excitation energy and the energy loss. The RIXS spectrum is normalized to the intensity
of the most intense peak. Top: Optical absorption spectrum of α-Ga2O3. Left: O K edge
absorption spectrum normalized to the most intense peak.

O3 differs more from those of O1 and O2 than the spectrum of O1 and O2 differ from each
other. We find that the initial peak at 532 eV occurs in the absorption spectrum of all three
oxygen sites, while the feature at around 538 eV is more pronounced in the spectra of O1

and O2. In the spectrum of O3, on the other hand, we find a peak at approximately 535 eV,
which is not present in the spectra of the other atoms. This explains the local minimum
observed in the spectrum of the α-phase, because all Ga atoms are octahedrally coordi-
nated and the spectrum resembles that of O3 in the β-phase. As such, the response at the
high-energy feature is more pronounced, while the absorption between the initial and the
high-energy peak is reduced. Our analysis of the atomic contributions corroborates pre-
vious calculations on the same level of theory [45]. However, the difference in the atomic
spectra are small compared to the lifetime broadening of the spectra and thus the spectral
differences of the three polymorphs are subtle.

11.2 Resonant Inelastic X-ray Scattering Spectroscopy
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Figure 11.4:OK edge RIXS inα-Ga2O3 as a function
of the emission energyω2 for selected excitation en-
ergies. The excitation energies are listed in the text.
The spectra are offset for clarity.

The O K edge RIXS spectra of α- and
β-Ga2O3 contain the information on
both the valence excitations, which
are also studied by optical absorp-
tion spectroscopy (compare Chap-
ter 10), and on the O 1s excita-
tions (compare Section 11.1). We
first consider the O K edge RIXS
for the α-phase, shown in Fig. 11.3.
The RIXS spectrum shows an intense
peak at an excitation energy of ap-
proximately 533.5 eV and an energy
loss of 8 eV, the latter being 3 eV
above the onset of optical absorp-
tion. For excitation energies above
534 eV and energy losses above 9
eV, the RIXS signal decreases sharply
as the O K edge absorption spec-
trum decreases. At excitation ener-
gies above 537 eV and higher energy
loss of around 11 eV, the RIXS signal
increases again.

Figure 11.3 shows that the RIXS
spectrum has a pronounced fluores-
cence form as a function of the ex-
citation energy ω1 and energy loss
ω, i.e. features occur at increasing
energy loss with increasing excita-
tion energy [176, 177]. In the ω −ω1

plane, strong features occur mainly
along the diagonal line. As a result, the peaks occur at constant emission energyω2 = ω1−ω.
This can be seen in Fig. 11.4, where the RIXS spectrum is shown as a function of the emis-
sion energy for selected excitation energies. The emission spectrum shows only a very
weak dispersion, such that the emission occurs between 523 eV and 526 eV independent
of the excitation energy. Nevertheless, the spectral shape changes considerably with the
excitation energy. For low excitation energies below 533.5 eV, the spectrum is broad, with
considerable contributions at higher loss, i.e. at lower emission energies. At an excitation
energy of 533.83 eV, the spectrum shows a strong peak at higher emission energies. Increas-
ing the excitation energy further, the overall RIXS signal decreases because the absorption
is reduced (compare Fig. 11.3) and the relative intensity of the main peak decreases. For
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Figure 11.5:Center: O K edge RIXS cross section of β-Ga2O3 as a function of the excita-
tion energy and the energy loss, normalized to the intensity of the most intense peak.
Top: Optical absorption spectrum of α-Ga2O3. Left: O K edge absorption spectrum
normalized to the most intense peak.

even higher excitation energies above 536.5 eV, the intensity increases again. While the
main peak occurs consistently at an emission energy of approximately 535.5 eV, the final
state of the scattering process depends on the excitation energy: For an excitation energy
of 533.83 eV, the main peak occurs at an emission energy of 525.38 eV, i.e. at an energy loss
of 8.45 eV. The peak in the RIXS spectrum thus corresponds to the peak B in the absorption
spectrum in Fig. 11.3. For the excitation energy of 536.83 eV, the peak occurs at an emission
energy of 525.63 eV, corresponding to an energy loss of 11.2 eV. Thus, the emission peak cor-
responds to the peak C in the optical absorption spectrum. In summary, the RIXS spectrum
for different excitation energies probes different features in the optical excitation spectrum.
Note that the excitonic peak A in the optical absorption spectrum can not be probed by O
K edge RIXS spectroscopy. This peak originates from bound valence excitons, which are
predominantly formed by O p → O s transitions (compare Chapter 10). These final states
are inaccessible in O K edge RIXS, as O 1s → O s transitions are dipole-forbidden.

For β-Ga2O3, the O K edge RIXS spectrum in Fig. 11.5 shows a similar fluorescence form.
The features occur along the diagonal line in the ω − ω1 plane, such that the main peak
appears at a constant emission energy independent of the excitation energy. In contrast to
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the α-phase, the change of the RIXS spectrum with excitation energy ω1 is smaller, since
features in the O K absorption spectrum are less pronounced.
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Figure 11.6: O K edge RIXS in β-Ga2O3 as a func-
tion of the emission energyω2 for selected excitation
energies listed in the text. The spectra are offset for
clarity.

The spectrum shows a main peak
at an excitation energy of 531.4 eV
and energy loss of 7.6 eV, while a
slightly less intense peak occurs at
a higher excitation energy of 532.3
eV and energy loss of 8.4 eV. Like in
the α-phase, only a weak RIXS sig-
nal is observed for smaller energy
loss at the optical absorption onset of
5 eV, as the RIXS transitions in this
energy region are dipole-forbidden.
Since there are three inequivalent
oxygen atoms in the unit cell, the
RIXS spectrum in Fig. 11.5 is the sum
of three atomic terms and an inter-
ference term (compare Section 7.4).
The atomic terms represent the RIXS
spectrum of each of the inequivalent
atoms, while the interference term
accounts for the coherence between
the atomic terms. In Fig. 11.6, the
total RIXS spectrum and the atomic
contributions are shown as a func-
tion of the emission energy for se-
lected excitation energies. As al-
ready apparent in Fig. 11.5, the RIXS
spectrum as a function of the emis-
sion energy does not show a strong
dependence on the excitation en-
ergy. The spectrum is broad, with a
peak at an emission energy of 524 eV.

The atomic contributions to the RIXS spectrum, on the other hand, depend on the excitation
energies: For excitation energies below 532 eV, the contributions of all three inequivalent
oxygen atom are of comparable size. For higher excitation energies, the strongest contri-
bution arises from O2. The contributions for a given excitation energy ω1 can be quan-
tified using Eq. 7.18. The relative atomic contributions and interference term are shown
in Fig. 11.7. At the onset of the O K edge, the contribution of O3 is the largest, providing
around 40% of the oscillator strength. With increasing excitation energy above 533.5 eV,
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Figure 11.7: Contribution of O1 (orange), O2 (red), and O3 (yellow) to the RIXS spec-
trum of β-Ga2O3 and the interference term (black). For comparison, the total O K edge
absorption spectrum of the β-polymorph is shown.

the contribution of atom O2 is largest. The difference in the atomic contributions is due to
the different cross sections of the initial x-ray absorption: Considering the atomic absorp-
tion spectra for the different atoms in Fig. 11.2, one notices that the order of the atomic
RIXS contributions resembles the difference in atomic absorption. Generally, the largest
contribution yields around 50% of the oscillator strength, indicating that even when the
response of one oxygen atom is the largest, the response of the other atoms cannot be ne-
glected. The interference term, which originates from the coherent nature of the resonant
scattering, contributes up to 15% of the total spectrum at the absorption onset of around
529 eV. With increasing excitation energy, it decreases quickly and, above 532 eV, it con-
tributes only around 5-7%. Thus, the coherence between the atomic contributions is small
for these excitation energies, and the RIXS spectrum is well described as a sum of atomic
contributions.
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CHAPTER 12

Gallium L2 Edge Spectroscopy

12.1 Absorption Spectroscopy

The excitations of the Ga 2p states, i.e. the Ga L2,3 edge, yield important insight into the
unoccupied electronic structure. Because the bottom of the conduction band is formed by
Ga s states and p → s transitions are dipole-allowed, we expect strong signatures of these
transitions in the spectrum. Before discussing the absorption spectrum, it is instructive
to consider the Ga 2p states in this material: Our calculations yield a splitting of 27.66 eV
between the Ga 2p1/2 and 2p3/2 states in both the α- and β-phase similar to that determined
in previous calculations for the free Ga atom [351]. Due to the large splitting, the excitations
from the Ga 2p1/2 (the Ga L2 edge) and the Ga 2p3/2 (the Ga L3 edge) decouple and can be
calculated separately. Since the 2p1/2 states are fourfold degenerate, while the 2p3/2 states
are eightfold degenerate, the number of transition at the L2 edge is half of those at the L3
edge. The spectral shape of the two sub-edges is identical, yet the L3 edge spectrum is 50%
more intense according to the ratio of initial states.

The Ga L2 edge spectra for α- and β-Ga2O3, shown in Fig. 12.1, show a series of four distinct
features, denoted as D, E, F, and G. At the onset at 1146.7 eV (1146.9 eV) in the α- (β-
)phase, we find the distinct peak D. The feature E appears as a shoulder at 1150 eV in the
α-polymorph, while it is a pronounced peak at 1149.3 eV in the β-phase. The sharp feature
C, occurring at 1152 eV and 1151.3 eV in the α- and β-polymorphs, respectively, is more
pronounced in the latter than in the former. At higher energies, the broad feature D appears
at around 1158 eV (1156.7 eV) in the α (β)-polymorph. A visible difference in the spectra of
the two polymorphs is the relative intensity of peak E: While it is weak in the α-phase, it
is more pronounced in the β-phase. To determine the origin of the peaks, the absorption
spectra of the octahedrally coordinated atom Ga1 and the tetrahedrally coordinated Ga2 in
the β-phase are calculated individually, and the total spectrum is obtained as the sum of the
two. While peak D occurs in the spectrum of both atoms, the other peaks can be assigned
to one of the gallium sites: E and C occur only in the spectrum of Ga1, D only in that of
Ga2. The spectrum ofGa2 shares more resemblance with the spectrum of the α-polymorph,
since in the latter all gallium atoms are tetrahedrally coordinated.
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Figure 12.1: Ga L2 edge spectra for α- (top) and β-Ga2O3 (bottom). The spectra are
obtained as averages over the diagonal components of the dielectric tensor. For β-
Ga2O3, the spectra of the octahedral atom Ga1 (dark green) and the tetrahedral atom
Ga2 (light green), and the total spectrum (teal area) are displayed. The experimental
spectra are extracted from Refs. [50] (black) and [51] (gray).

For both α- and β-Ga2O3, the peak D occurs below the onset of independent-particle tran-
sitions, i.e. it originates from bound excitons. We find two bound excitons in the α-phase
with a maximum binding energy of 390 meV, four in the β-phase with a maximum bind-
ing energy of 460 meV for Ga1, and 527 meV for Ga2. Because of the two-fold degeneracy
of the gallium 2p1/2 states, each exciton is two-fold degenerate. The distributions of the
excited electron in the bound electrons in Fig. 12.2 show that the excited electron is com-
pletely contained in the lowest conduction band in the vicinity of the Γ-point. As for the
optical spectrum (Fig. 10.2), the excited electron in the bound excitons with the highest
binding energies (λ = 1 and λ = 2) are distributed at the Γ-point, while for those with
smaller binding energies (λ = 3 and λ = 4), it is distributed predominately at slightly
higher energies, along the Γ − X path. For both the α- and β-phase, the bound excitons
have considerable oscillator strength, since the lowest conduction band is predominantly
formed by Ga s states, and Ga 2p1/2 → Ga s transitions are dipole-allowed. As for the
case of the optical spectrum (compare Chapter 10), we fit the series of bound excitons
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Figure 12.2: Distribution of the excited electron for the four bound excitons (λ =
1, 2, 3, 4) below the transition onset in theGa1 L2 edge spectrum in β-Ga2O3. The size of
the red circles denotes the relative contribution of the corresponding conduction state.

with a Wannier-Mott model following Eq. 10.3. The results for the β-phase are shown
in Fig. 12.3. In the α-polymorph, no fitting can be performed, as a model with two pa-
rameters cannot be applied to only two bound excitons. The binding energies of the first
exciton of the two inequivalent gallium atoms differ by approximately 70 meV, and this
difference decreases to 12, 5 and 0.2 meV for the excitons with lower binding energies.
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Figure 12.3: Binding energies of the
bound excitons in the Ga L2 edge spec-
trum of α- and β-Ga2O3. Additionally, the
Wannier-Mott fit for the β-phase is shown.

We find that for the excitations of both atoms,
the Wannier-Mott model yields an excellent
fit (R2

= 0.996 for Ga1 and R2
= 0.998 for

Ga2). This indicates that these bound excitons
arewell described by theWannier-Mott model.
Remember that for the bound excitons in the
optical spectra of α- and β-Ga2O3, we dis-
cussed that the Wannier-Mott model assumes
that the bound excitons are formed by tran-
sition from a non-degenerate occupied band
to a non-degenerate conduction band. Since
the excitons are formed by transition from the
Ga 2p1/2 states to the non-degenerate lowest
conduction band, the Wannier-Mott model ex-
plains the binding energies well.

Measurements of the Ga L3 XANES of Ga2O3-
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Figure 12.4: Ga L2 spectrum of the Ga1 (left) and Ga2 (right) atomic site in β-Ga2O3.

polymorphs have, to the best of our knowledge, not been reported so far. However, ex-
perimental Ga L2 edge XANES for both α- [51] and β-Ga2O3 [50, 51] have been published.
As the Ga L2 and L3 edge XANES are identical, up to a constant prefactor, we construct
the former from the latter. To align the calculated and experimental spectra, we first shift
the experimental XANES by the spin-orbit splitting of 27.66 eV, to obtain the Ga L3 edge
counterpart. Due to the finite precision in the energy calibration of the measurements, the
experimental spectra of Refs. [51] and [50] are rigidly shifted with respect to each other. We
have aligned the experimental spectra to the calculated one at the peak G. Generally, we
find good agreement between the calculated and experimental results. In the α-phase, the
pronounced peak G and the shoulder E are observed in both experimental and calculated
spectra at identical positions. The peak F is hidden in the experimental spectrum due to
the larger broadening. In the β-phase, the peaks D and G can clearly be observed in the
experimental spectrum from Ref. [51], while the peaks E and F are barely visible due to the
large broadening. The peaks E and F are much better visible in the experimental spectrum
from Ref. [51] than in the one from Ref. [50]. The relative intensity of the features in the
experimental spectra is well reproduced by our calculations.

Since in Fig. 12.1, the Ga L2 edge spectra are displayed as the average over all diagonal
entries of the dielectric tensor, the anisotropy of the spectra is hidden. In Fig. 12.4, we
show the imaginary part of the diagonal components for both absorbing sites. For Ga1, the
peak D is stronger in the εzzM component than in εxxM and ε

yy
M , while the broad peak G does

not display strong anisotropy. A small peak is visible in εzzM at the position of peak E, which
is not visible in the averaged spectrum in Fig. 12.1. For Ga2, the initial peak D is more
pronounced in the εxxM and ε

yy
M components, where it has approximately the same relative

intensities. In the εzzM component, it occurs only with greatly reduced intensity. The peak
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E and F occur all three components with comparable intensity.
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Figure 12.5: Center: Normalized Ga L2 edge RIXS cross section of α-Ga2O3 as a func-
tion of excitation energy and energy loss. Top: Optical absorption spectrum. Right:
Normalized Ga L2 edge absorption spectrum.

12.2 Resonant Inelastic X-ray Scattering Spectroscopy

In the previous section, we have shown that the Ga L2 edge XANES spectra of both the
α- and β-phase display a pronounced excitonic peak at the onset of the spectrum. The
contributions of the inequivalent Ga atoms can clearly be separated, to the extent that
several features originate solely in the response of a specific atom. We now turn to the
RIXS spectra to determine how the Ga L2 edge can provide insight into the nature of the
valence excitations, especially the bound excitons already discussed in Chapter 10.

The spectrum of α-Ga2O3 in Fig. 12.5 shows a strong peak at the Ga L2 absorption onset of
1146.75 eV and an energy loss of 5.8 eV, which is identical to that of peak A at the onset of
the absorption spectrum. In Chapter 10, we have identified peak A to originate from bound
excitons formed by transitions from the VBM to the CBm (compare Fig. 10.1). Equivalently,
bound excitons introduce the pronounced peak at the onset of the Ga L2 edge absorption
spectrum (compare Fig. 12.1).
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Figure 12.6:Ga L2 edge RIXS spectrum for α-Ga2O3

as a function of the emission energy for selected ex-
citation energies. The spectra are offset for clarity.

The intense peak in the RIXS spec-
trum therefore originates from the
absorption of the x-ray photon with
an energy of around 1146.75 eV,
which leads to an intermediate state
that contains a strongly bound core
exciton. Transitions of a valence
electron from the VBM fill the Ga
2p1/2 core hole and result in the for-
mation of the bound valence exci-
ton. The initial excitation is dipole-
allowed, since the CBm has a strong
Ga s contribution. The subsequent
de-excitation from the VBM is also
dipole-allowed, as it is formed by hy-
bridized O p and Ga s states. There-
fore, this scattering process leads to
an intense peak in the RIXS spec-
trum. For the same excitation en-
ergy, a second, broader feature oc-
curs at the energy loss of peak B
in the optical spectrum. With in-
creasing excitation energy, a linearly
dispersive fluorescence feature oc-
curs in the RIXS spectrum. Its inten-
sity is low for excitation energies be-
tween 1148 and 1150 eV due to the
low intensity of the initial absorp-
tion process. A second, broader fea-
ture is observed for excitation ener-
gies around 1151 eV and an energy
loss of approximately 9.7 eV, corre-

sponding to peak B. The presence of the feature indicates that the distribution of the ex-
cited electron for Ga 2p1/2 excitations around 1151 eV and for optical excitations around
9.7 eV is similar. The feature in the RIXS is broad compared to the peak at lower excitation
energy, as the scattering process involves broad band transitions both in the excitation and
emission process.

Due to its fluorescence shape, features of the RIXS spectrum occur at constant emission
energy, which is shown for selected excitation energies in Fig. 12.6. The spectral shape,
however, changes considerably with increasing excitation energy. At the absorption onset,

143



12 Gallium L2 Edge Spectroscopy

0

2
Im

M
BSE

1146

1148

1150

1152

1154
Ga1

1146

1148

1150

1152

1154

Ex
cit

at
io
n
en

er
gy

1
[e
V]

Ga2

D

Ga1

0.0 0.5 1.0
Im M [arb. units]

D

E

F
Ga2

4 6 8 10
Energy loss [eV]

1146

1148

1150

1152

1154
total

0.25
0.50
0.75
1.00

Figure 12.7: Ga L2 edge RIXS cross section of Ga1 (top) and Ga2 (center) in β-Ga2O3

and the total RIXS cross section (bottom) as a function of excitation energy and energy
loss. All RIXS spectra are normalized to the intensity of the maximum of the total Ga L2
edge RIXS. Top: Optical absorption spectrum. Right: Normalized Ga L2 edge absorption
spectrum of Ga1 and Ga2, respectively.

the sharp excitonic peak is found at an emission energy of 1140.95 eV. With increasing ex-
citation energy, the relative intensity of this peak decreases and the peak at around 1141
eV becomes broader. For intermediate excitation energies between 1147.8 and 1149.5 eV,
the overall RIXS signal is weak (compare Fig. 12.5). Above 1149.5 eV, the signal increases,
and the RIXS spectrum displays a broad peak at 1141 eV with a pronounced slope to lower
emission energies.
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Figure 12.8:Absolute-squared matrix elements |t (2) |2 of the excitation pathwaymatrix
for the α− (left) and β-phase (right). The elements between the first 60 core excitations
and 100 first valence excitations are shown, normalized to the maximum value in that
range.

We now turn to the RIXS spectra of the β-phase in Fig. 12.7. Since the core excitations
strongly depend on the absorbing atomic site in β-Ga2O3 (compare Fig. 12.1), we expect
that the resonant scattering will show a similar dependence. The total RIXS spectrum
shows three distinct features. Each of them occurs for a narrow range of excitation en-
ergies, but a wide range of energy loss values and, as such, appear as horizontal lines in the
ω−ω1 plane. The first feature occurs at the absorption edge at 1146.25 eV, and the strongest
oscillator strength is observed for an energy loss of about 6.3 eV. However, significant os-
cillator strength also occurs for energy losses of up to 8.8 eV. The excitation energy of this
feature corresponds to that of feature D in the Ga L2 absorption spectrum. For the second
feature, the excitation energy of 1148 eV corresponds to that of feature E in the absorption
spectrum, while the third feature appears at the excitation energy of peak F at 1150.9 eV
and a range of energy loss around 10.3 eV.

The two features at higher excitation energies can be assigned to Ga2, since peaks E and
F only occur in the absorption spectrum of this atom. Both features are very broad as
functions of the energy loss, such that an assignment of these features to peaks in the optical
spectrum is not possible. This is due to the fact that the optical absorption spectrum shows
only very weak spectral features at energy loss values above the absorption onset. Peak
D occurs in the absorption spectrum of both atomic sites, yet the corresponding feature in
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the RIXS spectrum occurs much more pronounced in the spectrum of Ga1 than in that of
Ga2. As the intensity of peak D in the absorption spectra of both atoms is comparable, the
difference in the RIXS spectrumhas to originate from the different oscillator strengths of the
de-excitation process. The energy loss of 6.4 eV is significantly higher than the absorption
onset of 4.91 eV, such that the final state of the scattering is not a bound valence exciton,
which occur in β-Ga2O3 at around 4.75 to 4.9 eV (compare Fig. 10.1). The energy loss is
furthermore higher than that of the pronounced peak in the optical absorption at 5 eV. This
indicates that the valence excitations at low energies, including the bound valence excitons,
cannot be excited by the resonant scattering process due to the dipole selection rules. This
is in contrast to the RIXS spectrum of the α-phase, where a strong signal for the scattering
into the bound valence excitons is observed (compare Fig. 12.5).
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Figure 12.9: Ga L2 edge non-resonant x-ray emis-
sion spectra (XES) forα-Ga2O3 (teal) and the atoms
Ga1 (dark green) and Ga2 (light green) in β-Ga2O3.
All spectra are aligned to the position of the va-
lence band maximum.

A more detailed analysis of the RIXS
onset, i.e. the scattering for low
excitation energies and low energy
loss, can be performed by consider-
ing the excitation pathways t (2) be-
tween the initial core and final va-
lence excitations. These pathways,
defined in Eq. 7.6, determine the rate
of de-excitation from a many-body
state with a core hole and an excited
electron to a state containing a va-
lence hole and an excited electron.
The pathways for the first 60 inter-
mediate states and 100 final states of
both phases are shown in Fig. 12.8.
The bound excitons corresponds to
the first few indices for both the core
and optical excitations, i.e. the lower-
left corner of the plots. For both
phases, the t (2) matrix shows a banded
form, where non-zero entries for in-

creasing core-excitation indices occur mostly for increasing optical-excitation indices. This
banded form yields the linearly dispersive features in Figs. 12.5 and 12.7.
Nevertheless, the t (2) matrix elements for low core and optical excitation indices are dis-
tinct between the two phases. In the α-phase, strong pathway elements occur in the lower
left corner of Fig. 12.8, i.e. for the low-energy core and optical excitations. In the β-phase,
however, significant non-zero pathways occur for higher optical excitation indices, indi-
cating that the pathways between low-energy core and optical excitations are negligible.
As such, the Ga L2 edge RIXS can access the bound valence excitons of the α-phase, but
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Figure 12.10:Normalized Ga L2 edge RIXS of β-Ga2O3 for light polarizations along the
x-axis (lower left) and along the z-axis (lower center). The corresponding components
of the dielectric tensor in the optical region are shown in the top panels. The Ga L2
edge XANES for both polarizations are shown on the left.

not those of β-Ga2O3. Fundamentally, this difference originates from the different degree
of hybridization: De-excitation from low-energy core excitations to low-energy valence
ones are due to the transition from the VBM to the Ga 2p1/2 core hole. Since the former
has mostly O p character (compare Chapter 9), the amount of hybridization with the Ga s
states determines whether the transitions are dipole-allowed. Since in both phases, the low-
energy excitations occur predominantly in a small region of the Brillouin zone around the
Γ-point (compare Fig. 10.2), the hybridization in that region specifically determines the rate
of the de-excitation. In the α-phase, the hybridization of O p with Ga s states at the VBM
is stronger than in the β-phase. This subtle difference in the hybridization can be further
demonstrated by considering the non-resonant x-ray emission spectroscopy (XES), which
yields information on the valence band structure through non-coherent de-excitations from
valence states to the Ga 2p1/2 core hole (compare Section 5.3). In the α-phase, the Ga L2
edge XES shows a pronounced peak around 0.4 eV below the onset of the valence band.
For the β-phase, the peak occurs at lower emission energies, about 0.9 eV below the VBM.
In the β-polymorph, the emission spectra of the two inequivalent gallium atoms differ sig-
nificantly: The Ga1 XES shows a distinct peak 0.9 eV below the VBM and a second, less

147



12 Gallium L2 Edge Spectroscopy

intense peak 2 eV below the VBM. For Ga2, the peak 0.9 eV below the VBM is less intense,
but a small shoulder at higher emission energy, 0.1 eV below the VBM, appears. These dif-
ferences occur since the hybridization of the O p states with Ga s states at the VBM is more
pronounced in the α- than in the β-phase. In the latter, the hybridization at the VBM is
more pronounced for Ga1 than for Ga2. These subtle differences in the electronic structure
lead to the significant difference in the Ga L2 edge RIXS spectrum.

The Ga L2 edge absorption spectrum displays a strong anisotropy, as shown in Fig. 12.4.
This leads to a corresponding anisotropy of theGa L2 edge RIXS,which is shown in Fig. 12.10,
where the spectra for β-Ga2O3 in x and z polarization are compared. Both spectra show
the three distinct features, discussed above. The first feature appears for both polarizations
at the absorption onset of 1146.3 eV. The energy loss of the first peak for z polarization is
around 5.5 eV and, as such, 0.8 eV lower than for the x polarization. The second feature
shifts slightly upward in excitation energy to 1149.2 eV in z polarization, as the second
peak in the component εzzM is around 0.5 eV higher than in εxxM . Even though the first peak
occurs at lower loss, it still occurs above the onset of the optical spectrum (at 4.75 eV for
z polarization). This demonstrates that the bound valence excitons of β-Ga2O3 cannot be
accessed by Ga L2 edge RIXS, irrespective of the polarization direction.
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CHAPTER 13

Gallium K Edge Spectroscopy

13.1 Absorption Spectroscopy

The excitations of the Ga 1s states, i.e. the Ga K edge, yield complementary information
to the Ga L2 edge described in Chapter 12, as both probe the local geometry and elec-
tronic structure of the absorbing gallium atom with a different cross section. As such, it
has been employed in experimental studies to determine the electronic structure of differ-
ent Ga2O3 polymorphs [47], the local structure of Ga2O3 nanostructures [46], the geometry
of indium-gallium-oxide [48], and that of amorphous Ga2O3 [49]. These studies have, for
instance, provided indications for distinctive contributions of inequivalent atoms in the
β-phase. While first ab initio core-hole calculations for the β-phase [49] have presented
promising results and provided a first analysis of the contributions of inequivalent atoms,
a detailed first-principles analysis of the Ga K edge spectra is lacking so far. In Fig. 13.1, we
display the Ga K edge spectra of α- and β-Ga2O3, averaged over all diagonal components
of the dielectric tensor. The spectra of the α-phase displays two peaks: a broad peak L
at 10375.5 eV and a less pronounced peak M at 10378 eV. The spectra of the β-phase, on
the other hand, shows a series of three peaks, denoted H, L, and M. Our analysis shows
that peak H at 10372.5 eV originates from transitions at Ga1, while peak L at 10374.3 eV
occurs in the spectra of both atomic sites. Peak M at 10376.7 eV occurs only in the spec-
trum of Ga2. Comparing the β-phase with the α-phase, it is apparent that the spectrum
of Ga1 resembles that of the α-phase, since all Ga atoms in the latter are octahedrally co-
ordinated. Figure 13.1 additionally shows experimental spectra extracted from Refs. [46]
and [48]. The finite precision of the experimental energy calibration induces a rigid shift
between the spectra from Refs. [46] and [48], and we align the experimental and calculated
spectra at the most intense feature M. We find that our results are in excellent agreement
with the experimental ones. From deconvolution analysis [47] and previous ab initio cal-
culations [49], it has been proposed that peak H originates from transitions at octahedrally
coordinated Ga atoms, while peak M originates from those at tetrahedrally coordinated Ga
atoms, which is confirmed by our calculations. The distance between the peaks H and M of
4.2 eV is also in good agreement with the experimental values of 3.9 eV [47] and 4 eV [48].

Due to the strong anisotropy of the Ga2O3 polymorphs, the different components of the
dielectric tensor have distinct spectral shapes. In Fig. 13.2, we compare the diagonal com-
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Figure 13.1: Calculated total Ga K edge XANES spectra (teal) of α- (top) and β-Ga2O3.
For the β-phase, the contributions of the inequivalent atom Ga1 (dark green) and Ga2
(light green) are displayed. The experimental spectra are obtained from Refs. [46]
(black) and [48].

ponents for Ga1 and Ga2. The figure demonstrates that the assignment of the peaks to the
inequivalent atoms (compare Fig. 13.1) becomes more complex: For the spectrum of Ga1,
peak K occurs solely in εzzM , which, in turn, does not display the dominant peak L of the
averaged spectrum. The components εxxM and ε

yy
M are similar, both showing the pronounced

peak L. ForGa2, peak H occurs strongly in εxxM , and less distinct in ε
yy
M . Neither of these com-

ponents displays peak K, and peak L is missing in εxxM as well. In εzzM , is less pronounced.
While the polarization-dependence of the Ga K edge is complex, the spectral features along
each of the components can be assigned to one of the inequivalent atoms. For the εxxM - and
ε
yy
M -components, the analysis we presented for the averaged spectra in Fig. 13.1 holds: The
spectrum of Ga1 is dominated by peak L, while that of Ga2 shows a more pronounced peak
H, where peak L is either weak or missing completely. For the component εzzM , the difference
between the atomic contribution is more subtle. For both atomic sites, K is the main peak.
However, the spectrum of Ga2 shows a much more pronounced peak L than the spectrum
of Ga1.
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Figure 13.2: Components of the dielectric tensor at the Ga K edge for the atomic site
Ga1 (top) andGa2 (bottom). The components εxxM (dark blue), ε
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and εxzM (blue) are compared to the averaged spectrum (shaded area).

13.2 Resonant Inelastic X-ray Scattering Spectroscopy

We now turn to the Ga K edge RIXS. The spectrum of α-Ga2O3, shown in Fig. 13.3, displays
a pronounced peak at the position of the Ga K edge absorption onset at 10376 eV. A less in-
tense feature occurs at slightly lower excitation energies of around 10374 eV. These features
occur at an energy loss of 10.0 and 12.1 eV, respectively, which is considerably above the
onset of optical absorption of 5.8 eV. This indicates that excited states with energies below
approximately 10.0 eV cannot be reached by the resonant x-ray scattering process at the Ga
1s states. This is due to the dipole-selection rules in this process: As discussed in Chapter 9,
the bottom of the conduction band is predominantly formed by Ga and O s states. There-
fore, transitions from the Ga 1s to the lowest conduction band are dipole-forbidden, and the
onset of the Ga 1s excitations is formed by transitions to conduction bands at considerably
higher energies, which exhibit increased Ga p character. Therefore, in the intermediate
state of the resonant scattering process with an excitation energy of around 10374 eV, the
excited electron is distributed in conduction bands considerably above the CBm. As the
low-energy optical excitations originate from transitions from the VBM, predominantly
formed by O p states, to the lowest conduction band, formed by Ga and O s states, they
can not be reached by the x-ray emission from the intermediate state. Thus, we can deduce
from the Ga K edge RIXS that the valence excitations between 5.8 and approximately 12.1
eV are formed by transitions to the conduction bands with predominant Ga s character.

Similarly, the onset of Ga K edge RIXS spectra of β-Ga2O3 in Fig. 13.4 occurs as excitation
energies of approximately 10372 eV and an energy loss of more than 9 eV.While this excita-
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Figure 13.3: Normalized RIXS (center) and XANES (right) at the Ga K edge ofα-Ga2O3.
Top: Optical absorption spectrum. The light is polarized along the x-axis for all spectra.

tion energy corresponds to the Ga K edge absorption onset, the energy loss lies considerably
above the optical absorption onset of around 5 eV. For the resonant scattering of the Ga1
1s states, the onset occurs at even higher the energy loss, as the Ga K edge absorption on-
set appears at higher excitation energies. The features in the RIXS spectra of both atomic
sites are broad, both as a function of the excitation energy and the energy loss, due to the
considerable lifetime broadening of the Ga 1s core hole of 1 eV. As for the α-polymorph,
the Ga K edge RIXS indicates that the optical excitations between 5 and 9 eV are due to
transitions to conduction bands with Ga s character. Above 9 eV, the hybridization with
Ga p states increases, and excitations in that energy region can be reached by the Ga 1s

resonant scattering process.
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APPENDIX A

Fourier Transforms

A.1 Fourier Transform in Time

A function f (t ) and its Fourier transform in frequency f (ω) are connected by

f (t ) =
1

2π

∫

dω f (ω)eiωt , (A.1)

and, inversely,

f (ω) =

∫

dt f (t )e−iωt . (A.2)

A.2 Fourier Transforms in Space

A.2.1 Local and Nonlocal Functions

The Fourier components fG(q) of a local function f (r) are given by

fG(q) =
1

V

∫

V

d3r f (r)e−i(G+q)r. (A.3)

The function f (r) can be recovered from the Fourier components as

f (r) =
∑

q,G

fG(q)e
i(G+q)r. (A.4)

For a non-local function f (r, r′), the Fourier components fGG′ (q, q′) are given by

fGG′ (q, q
′) =

1

V

∫

V

∫

V

d3rd3r ′e−i(G+q)r f (r, r′)ei(G
′
+q′)r′, (A.5)
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and the function can be constructed from the Fourier components as

f (r, r′) =
1

V

∑

q,G

∑

q′,G′
ei(G+q)r fGG′ (q, q

′)e−i(G
′
+q′)r′ . (A.6)

A.2.2 Periodic Functions

A local function that is periodic with respect to a lattice vector R, i.e. f (r + R) = f (r) has
only Fourier components with q = 0, and thus Eq. A.4 simplifies to

f (r) =
∑

G

fG(0)e
iGr. (A.7)

Analogously, for a periodic nonlocal function, which obeys f (r + R, r′ + R) = f (r, r′), only
Fourier components with q = q′ are non-vanishing, and Eq. A.6 reduces to

f (r, r′) =
1

V

∑

q

∑

G,G′
ei(G+q)r fGG′ (q)e

−i(G′+q)r′ . (A.8)

A.2.3 Useful Properties

In this section, we present some useful properties of the Fourier transforms of periodic
functions [280]. The integral of a complex exponential function over the total crystal vol-
ume V is given by ∫

V

d3reiqr = Vδq,0, (A.9)

where q is a vector from the first Brillouin zone. Analogously, the integral of a complex
exponential function over the unit cell volume V0 is given by

∫

V0

d3reiGr = V0δG,0, (A.10)

where G is a reciprocal lattice vector.

A.2.4 General Basis Representation

The representation of local and nonlocal functions in a Fourier transformation is not unique.
Generally, local functions can be expanded in any set of complete basis functions {ϒα (r)}.
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Equivalently to Eqs. A.3 and A.4, the functions are related to their matrix elements fα as

fα =
∫

V d
3r f (r)

[
ϒ
α (r)

]∗

f (r) =
∑

α fαϒα (r).
(A.11)

The matrix elements are related to the Fourier components fG(q) as

fG(q) =
1

V

∑

α

Mα (G + q) fα , (A.12)

where we define the plane-wave matrix elementsMα (G + q) as

Mα (G + q) =

∫

V

d3rϒα (r)e−i(G+q)r. (A.13)

Nonlocal functions are expanded in a set of complete nonlocal functions ϒ
α (r, r′) such

that

fαβ =
∫

V d
3r
[
ϒ
α (r, r)

]∗
f (r, r′)ϒβ (r′, r′) f (r, r′) =

∑

αβ ϒ
α (r, r) fαβ

[

ϒ
β (r′, r′)

]∗
.

(A.14)
The matrix elements fαβ are related to the Fourier components fGG′ (q, q′) by

fGG′ (q, q
′) =

1

V

∑

αβ

Mα (G + q) fαβM
∗
β (G

′
+ q′), (A.15)

where the plane-wave matrix elements for a non-local basis function are defined as

Mα (G + q) =

∫

d3rϒα (r, r)e−i(G+q)r. (A.16)
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APPENDIX B

Lehmann Representations

B.1 Lehmann Representation of L0

The Lehmann representation of the two-particle correlation function L0(1, 2; 1+, 2+) is of
special importance in this work. It is employed to motivate the basis representation of
the BSE for the polarizability and leads to the Lehmann representation for the polarizabil-
ity shown below. Starting from the definition of the correlation function in Eq. 1.34, one
obtains

L0(1, 2; 1+, 2+) = G (1, 2+)G (2, 1+)

= −〈0|T̂ [ψ̂ (1)ψ̂ †(2)]|0〉〈0|T̂ [ψ̂ (2)ψ̂ †(1)]|0〉
= 〈0|eiHt1ψ̂ (r1)e−iH (t1−t2)ψ̂ †(r2)e

−iHt2 |0〉×
× 〈0|eiHt1ψ̂ †(r1)e−iH (t1−t2)ψ̂ (r2)e

−iHt2 |0〉Θ(t1 − t2)
+ 〈0|eiHt2ψ̂ †(r2)e−iH (t2−t1)ψ̂ (r1)e

−iHt1 |0〉×
× 〈0|eiHt2ψ̂ (r2)e−iH (t2−t1)ψ̂ †(r1)e

−iHt1 |0〉Θ(t2 − t1),

(B.1)

where we have evaluated the time-ordering operator explicitly. The Fourier transform fol-
lowing Eq. A.1 along two different time directions, τ (1) = t1 − t2 and τ (2) = t2 − t1, are
possible, which lead to different Lehmann representations. For a Fourier transform along
τ (1) and inserting the unity operator 1 =

∑

N |N 〉〈N |, where the summation includes all
excited many-body states |N 〉 with total energy EN , we obtain 1

L0(r1, r2,τ
1) =

∑

N ,N ′

[

〈0|ψ̂ (r1) |N 〉〈N |ψ̂ †(r2) |0〉〈0|ψ̂ †(r1) |N ′〉〈N ′|ψ̂ (r2) |0〉×

× e−i(EN+EN ′ )τ (1)Θ(τ (1) )
+ 〈0|ψ̂ †(r2) |N 〉〈N |ψ̂ (r1) |0〉〈0|ψ̂ (r2) |N ′〉〈N ′|ψ̂ †(r1) |0〉×

×ei(EN+EN ′ )τ (1)Θ(−τ (1) )
]

(B.2)

1In the following, we will set E0 = 0 without loss of generality.
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The equation above holds for any time-independent Hamiltonian Ĥ , such as the Hamil-
tonian of a system of electrons in an external potential, shown in Eq. 1.2. The Fourier
transform L(r1, r2,ω) is obtained as

L0τ 1 (r1, r2,ω) = i
∑

N ,N ′

[

〈0|ψ̂ (r1) |N 〉〈N |ψ̂ †(r2) |0〉〈0|ψ̂ †(r1) |N ′〉〈N ′|ψ̂ (r2) |0〉
ω − (EN + EN ′ ) + iη

−〈0|ψ̂
†(r2) |N 〉〈N |ψ̂ (r1) |0〉〈0|ψ̂ (r2) |N ′〉〈N ′|ψ̂ †(r1) |0〉

ω + (EN + EN ′ ) − iη

]

.

(B.3)

Within the quasiparticle approximation, the expectation values 〈n |ψ (r) |0〉 and 〈n |ψ †(r) |0〉
can be evaluated explicitly as

〈N |ψ (r) |0〉 =
∑

vkψvk(r) 〈N |ψ †(r) |0〉 =
∑

ckψ
∗
ck(r) (B.4)

with corresponding total energies

EN = −ϵvk EN = ϵck . (B.5)

This yields the Lehmann representation of L0 as

L0
τ (1)

(r1, r2,ω) = i
∑

q

∑

cv

∑

k

[
ϕc (k+q) (r1)ϕ

∗
vk(r1)ϕ

∗
c (k+q) (r2)ϕvk(r2)

ω − (ϵc (k+q) − ϵvk) + iη

−
ϕ∗ck(r1)ϕv (k+q) (r1)ϕck(r2)ϕ

∗
v (k+q) (r2)

ω + (ϵck − ϵv (k+q) ) − iη

]

,

(B.6)

where we have employed the translational symmetry L0(r1 + R, r2 + R) = L0(r1, r2) for
each lattice vector R. Equation B.6 implies that L0

τ 1
can be expanded in a basis ϒα (r, r)

following Eqs. 6.19 and 6.20. The shape of L0
τ (1)

(ω) infers that distinct basis functions should
be employed for the first (resonant) and second (antiresonant) term. For a given q, the
resonant basis functions ϒr ,1α ,q(r, r; q) and antiresonant ones ϒ

a,1
α ,q(r, r; q) are then defined as

ϒ
r ,1
α ,q(r1, r2) = ϕ

∗
vk(r1)ϕc (k+q) (r2) ϒ

a,1
α ,q(r1, r2) = ϕvk(r1)ϕ

∗
c (k+q) (r2) (B.7)

The transition space index α = (c,vk) combines the quasiparticle indices. The resonant
matrix elements L0,R1αβ of the correlation function are then given as

L0,R1α ,α ′ (q,ω) =
δcc ′δvv ′δkk′

ω −
(

ϵc (k+q) − ϵvk
)

+ iη
, (B.8)
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and the anti-resonant matrix elements L0,A1αβ as

L0,A1α ,α ′ (q,ω) =
δcc ′δvv ′δkk′

ω +
(

ϵck − ϵv (k+q)
)

− iη
, (B.9)

respectively.

We now consider the Lehmann representation with respect to τ (2) . We obtain an equation
similar to Eq. B.2 as

L0(r1, r1,τ
(2) ) =

∑

N ,N ′

[

〈0|ψ̂ †(r2) |N 〉〈N |ψ̂ (r1) |0〉〈0|ψ̂ (r2) |N ′〉〈N ′|ψ̂ †(r1) |0〉×

× e−i(EN+EN ′ )τ (2)Θ(τ (2) )
+ 〈0|ψ̂ (r1) |N 〉〈N |ψ̂ †(r2) |0〉〈0|ψ̂ †(r1) |N ′〉〈N ′|ψ̂ (r2) |0〉×

×ei(EN+EN ′ )τ (2)Θ(−τ (2) )
]

.

(B.10)

Note that while the complex exponentials in Eq. B.10 are identical to the ones in Eq. B.2,
the order of the field operators is reversed due to the reversal in time-direction. We obtain
a second Lehmann representation L0

τ 2
as

L0
τ (2)

(r1, r2,ω) = i
∑

N ,N ′

[

〈0|ψ̂ †(r2) |N 〉〈N |ψ̂ (r1) |0〉〈0|ψ̂ (r2) |N ′〉〈N ′|ψ̂ †(r1) |0〉
ω − (EN + EN ′ ) + iη

+

〈0|ψ̂ (r1) |N 〉〈N |ψ̂ †(r2) |0〉〈0|ψ̂ †(r1) |N ′〉〈N ′|ψ̂ (r2) |0〉
ω + (EN + EN ′ ) − iη

]

.

(B.11)

Combining quasiparticle approximation in Eq. 1.58 and Tamm-Dancoff approximation in
Eq. 1.60, the correlation function L0

τ (2)
becomes

L0
τ (2)

(r1, r2,ω) = i
∑

q

∑

cv

∑

k

[
ϕ∗ck(r1)ϕv (k+q) (r1)ϕck(r2)ϕ

∗
v (k+q) (r2)

ω − (ϵck − ϵv (k+q) ) + iη

−
ϕc (k+q) (r1)ϕ

∗
vk(r1)ϕ

∗
c (k+q) (r2)ϕvk(r2)

ω + (ϵc (k+q) − ϵvk) − iη

]

.

(B.12)

This implies a different set of basis functions ϒr ,2α (r1, r2; q) and ϒ
a,2
α (r1, r2) defined as

ϒ
r ,2
α ,q(r1, r2) = ϕv (k+q) (r1)ϕ

∗
ck(r2) ϒ

a,2
α ,q(r1, r2) = ϕ

∗
vk(r1)ϕc (k+q) (r2). (B.13)

It is now obvious that the two different Fourier transforms yield to two different Lehmann
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representations in Eqs. B.3 and B.11, which in turn yield two different expressions for the
basis in transition space shown in Eqs. B.7 and B.13, respectively. Note that the correlation
function L0 is diagonal both in the basis in Eq. B.7 and in the basis in Eq. B.13, but the
matrix elements of the BSE that are derived from the Lehmann representation of L0 are
not identical. The ambiguity of the Lehmann representation and the resulting ambiguity
of the basis representation is not a unique property of L0, since it originates generally from
expectation values of the form 〈0|T̂ [ψ̂ †(1)ψ̂ (2)]|0〉, which occur in many observables in
spectroscopy.

B.2 Lehmann Representation of χ

The Lehmann representation of the time-ordered polarizability χ is of central importance in
this thesis, as it is employed to construct the macroscopic dielectric function, which in turn
yields the x-ray and optical absorption spectra as well as the inelastic x-ray scattering spec-
tra and electron energy loss spectra. We furthermore show that the resonant inelastic x-ray
spectra can be expressed in terms of the polarizability as well. As discussed in the previous
section for the correlation function L0, we will show that two different Lehmann repre-
sentations for χ can be obtained, and we will discuss how these Lehmann representations
are related to the Lehmann representation of the retarded polarizability. The time-ordered
polarizability is defined as

χ (1, 2) = iG2(1, 2; 1
+, 2+) − iG (1, 1+)G (2, 2+). (B.14)

For now, let us rewrite only the first term in Eq. B.14 as

iG2(1, 2; 1
+, 2+) = −i〈0|ψ̂ (1)ψ̂ (2)ψ̂ †(2)ψ̂ †(1) |0〉

= −i
∑

n

[

〈0|ψ̂ †(r1)ψ̂ (r1) |n〉〈n |ψ̂ †(r2)ψ̂ (r2) |0〉e−iEn (t1−t2)Θ(t1 − t2)

+〈0|ψ̂ †(r2)ψ̂ (r2) |n〉〈n |ψ̂ †(r1)ψ̂ (r1) |0〉eiEn (t1−t2)Θ(−(t1 − t2))
]

.

(B.15)

Recall that we set E0 = 0 without loss of generality. The term n = 0 in the summation in
Eq. B.15 cancels exactly with the term G (1, 1+)G (2, 2+) in Eq. B.14, such that we obtain

χ (1, 2) = −i
∑

n,0

[

〈0|ψ̂ †(r1)ψ̂ (r1) |n〉〈n |ψ̂ †(r2)ψ̂ (r2) |0〉e−iEn (t1−t2)Θ(t1 − t2)

+〈0|ψ̂ †(r2)ψ̂ (r2) |n〉〈n |ψ̂ †(r1)ψ̂ (r1) |0〉eiEn (t1−t2)Θ(−(t1 − t2))
]

.

(B.16)
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Lehmann Representation of χ B.2

The Fourier transform in τ (1) = t1 − t2 following Eqs. A.1 yields

χτ (1) (r1, r2,ω) =
∑

N,0

[

〈0|ψ̂ †(r1)ψ̂ (r1) |N 〉〈N |ψ̂ †(r2)ψ̂ (r2) |0〉
ω − EN + iη

− 〈0|ψ̂
†(r2)ψ̂ (r2) |N 〉〈N |ψ̂ †(r1)ψ̂ (r1) |0〉

ω + EN − iη

]

.

(B.17)

Combining the quasiparticle approximation in Eq. 1.58 and the Tamm-Dancoff approxima-
tion in Eq. 1.60, the Lehmann representation of the polarizability is obtained as

χτ (1) (r1, r2,ω) =
∑

N,0

∑

q

∑

cvk

∑

c ′v ′k′


ϕ∗vk(r1)ϕc (k+q) (r1)ϕ
∗
c ′(k′+q) (r2)ϕvk′ (r2)

〈0|ĉ†vkĉc (k+q) |N 〉〈N |ĉ
†
c ′(k′+q)ĉv ′k′ |0〉

ω − EN + iη

+ϕv (k+q) (r1)ϕ
∗
ck(r1)ϕc ′k′ (r2)ϕ

∗
v ′(k′+q) (r2)

〈0|ĉ†v ′(k′+q)ĉc ′k′ |N 〉〈N |ĉ
†
ckĉv (k+q) |0〉

ω + EN − iη



 .

(B.18)

As for the correlation function L0 in the previous section, the polarizability can be expressed
in the transition space of Eq. B.7 and the resulting matrix elements χR1αβ and χ

A1
αβ are shown

in Eqs. 2.28 and 2.29, respectively. For clarity, let us recall the matrix elements here:

χR1cvk,c ′v ′k′ (q,ω) =
∑

N,0

〈0|ĉ†vkĉc (k+q) |N 〉〈N |ĉ
†
c ′(k′+q)ĉv ′k′ |0〉

ω − EN + iη
, (B.19)

and

χA1vck,v ′c ′k′ (q,ω) =
∑

N,0

〈0|ĉ†v ′(k′+q)ĉc ′k′ |N 〉〈N |ĉ
†
ckĉv (k+q) ) |0〉

ω + EN − iη
. (B.20)

As for the correlation function L0, the Lehmann representation is not unique, and the
Fourier transform in τ (2) = t2 − t1 in quasiparticle approximation and Tamm-Dancoff ap-
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proximation is

χτ (2) (r1, r2,ω) =
∑

N,0

∑

q

∑

cvk

∑

c ′v ′k′


ϕ∗v (k+q) (r1)ϕ
∗
ck(r1)ϕc ′k′ (r2)ϕv (k′+q) (r2)

〈0|ĉ†v ′(k′+q)ĉc ′k′ |N 〉〈N |ĉ
†
ckĉv (k+q) |0〉

ω − EN + iη

+ϕvk(r1)ϕc (k+q) (r1)ϕc ′(k′+q) (r2)ϕ
∗
v ′k′ (r2)

〈0|ĉ†c (k+q)ĉvk |N 〉〈N |ĉ
†
v ′k′ĉc ′(k′+q) |0〉

ω + EN − iη



 .

(B.21)

The matrix elements χR2cvk,c ′v ′k′ and χ
A2
cvk,c ′v ′k′ in the basis of Eq. B.13 are now distinct from

those in Eqs. B.19 and B.20, as they are given by

χR2α ,α ′ (q,ω) =
∑

N,0

〈0|ĉ†v ′(k′+q)ĉc ′k′ |N 〉〈N |ĉ
†
ckĉv (k+q) |0〉

ω − EN + iη
, (B.22)

and

χA2α ,α ′ (q,ω) =
∑

N,0

〈0|ĉ†c (k+q)ĉvk |N 〉〈N |ĉ
†
v ′k′ĉc ′(k′+q) |0〉

ω + EN − iη
. (B.23)

Comparing the matrix elements in Eqs. B.19 and B.20 with those in Eqs. B.22 and B.23, we
note a common structure. The analytical dependence on the frequency ω can be used to
write the matrix elements χRiα ,α ′ (q,ω), where i = 1, 2 as

χRiα ,α ′ (q,ω) =
∑

N,0

χRiαα ′ (q;N )

ω − EN + iη
. (B.24)

The corresponding structure of the antiresonant matrix elements can be expressed as

χAiα ,α ′ (q,ω) =
∑

N,0

χAiαα ′ (q;N )

ω + EN − iη
. (B.25)

B.3 Lehmann Representation of χR

We have seen in the previous sections that the time-ordered quantities L0 and χ can be
expressed in two distinct Lehmann representations. These yield two distinct sets of basis
functions for the transition space. Both representations are correct, and we will show that
observables are unaffected by the choice of the basis representation (in systems with time-
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Lehmann Representation of χR B.3

reversal symmetry). Nevertheless, for many time-ordered quantities, specifically those that
are correlation functions, a corresponding retarded quantity exists, which relates directly
to experimentally measured observables [57, 63]. In the following, I will specifically focus
on the retarded polarizability. The definition for the time-ordered polarizability in Eq. B.14
can be rewritten as

χ (1, 2) = −i〈0
∣
∣
∣
∣
∣
T̂

[

∆

[

ψ̂ †(1)ψ̂ (1)
]

∆

[

ψ̂ †(2)ψ̂ (2)
]]
∣
∣
∣
∣
∣
0〉, (B.26)

where deviation operators ∆Â(1) = Â(1) − 〈0|Â(1) |0〉 are introduced. The corresponding
retarded polarizability χR is defined by replacing the time-ordering operator T̂ [...]with the
commutator [.., ..] and we obtain

χR (1, 2) = −i〈0
∣
∣
∣
∣
∣

[

∆

[

ψ̂ †(1)ψ̂ (1)
]

,∆

[

ψ̂ †(2)ψ̂ (2)
]]
∣
∣
∣
∣
∣
0〉Θ(t1 − t2). (B.27)

The Lehmann representation of χR is then given by

χR (r1, r2;ω) =
∑

N,0

[

〈0|ψ̂ †(r1)ψ̂ (r1) |N 〉〈N |ψ̂ †(r2)ψ̂ (r2)
ω − EN + iη

− 〈0|ψ̂
†(r2)ψ̂ (r2) |N 〉〈N |ψ̂ †(r1)ψ̂ (r1)

ω + EN + iη

]

.

(B.28)

For a more detailed analysis, let us consider the retarded polarizability in the quasiparticle
approximation, which takes the form

χR (r1, r2,ω) =
∑

q

∑

cvk

∑

c ′v ′k′

[

ϕ∗vk(r1)ϕc (k+q) (r1)χ
R,R
cvk,c ′v ′k′ (q,ω)ϕ

∗
c ′(k′+q) (r2)ϕvk′ (r2)

+ ϕv (k+q) (r1)ϕ
∗
ck(r1)χ

R,A
cvk,c ′v ′k′ (q,ω)ϕc ′k′ (r2)ϕ

∗
v ′(k′+q) (r2)

]

,

(B.29)
where the resonant and anti-resonant matrix elements, χR,R (q,ω) and χR,A(q,ω) are given
as

χR,Rcvk,c ′v ′k′ (q,ω) =
∑

n,0

〈0|ĉ†vkĉc (k+q) |n〉〈n |ĉ
†
c ′(k′+q)ĉv ′k′ |0〉

ω − En + iη
(q,ω) (B.30)

and

χR,Acvk,c ′v ′q = −
∑

n,0

〈0|ĉ†c ′k′ĉv ′(k′+q) |n〉〈n |ĉ
†
v (k+q)ĉck |0〉

ω + En + iη
. (B.31)

167



B Lehmann Representations

B.4 Time-reversal Optimized Basis Functions

In the previous sections, we derived two sets of basis functions to represent the correlation
function L0 and the polarizability χ , shown in Eqs. B.7 and B.13. We repeat them here for
clarity. The functions are given as

ϒ
r ,1
α ,q(r1, r2) = ϕ

∗
vk(r1)ϕc (k+q) (r2) ϒ

a,1
α ,q(r1, r2) = ϕv (k+q) (r1)ϕ

∗
ck(r2)

ϒ
r ,2
α ,q(r1, r2) = ϕv (k+q) (r1)ϕ

∗
ck(r2) ϒ

a,2
α ,q(r1, r2) = ϕ

∗
vk(r1)ϕc (k+q) (r12.

(B.32)

Employing the symmetry of Bloch functions under time reversal, allows us to define basis
sets that simplify the BSE problem significantly. The time-reversal symmetry implies that
for any given Bloch function ϕik:

ϕi (−k) (r) = ϕ
∗
ik(r) ϵi (−k) = −ϵik (B.33)

To utilize these symmetries, we define time-reversal optimized basis functions ϒ̄1,2 [140, 359,
261] as

ϒ̄
r ,1
α ,q(r1, r2) = ϕ

∗
v (k− q

2 )
(r1)ϕc (k+ q

2 )
(r2) ϒ̄

a,1
α ,q(r1, r2) = ϕv−(k+ q

2 )
(r1)ϕ

∗
c−(k− q

2 )
(r2)

ϒ̄
r ,2
α ,q(r1, r2) = ϕv (k+ q

2 )
(r1)ϕ

∗
c (k− q

2 )
(r2) ϒ̄

a,2
α ,q(r1, r2) = ϕ

∗
v−(k− q

2 )
(r1)ϕc−(k+ q

2 )
(r2).

(B.34)

Equation B.33 implies the following properties of the optimized basis functions:

ϒ̄
a,(1,2)
α ,q (r1, r2) = ϒ̄

r ,(1,2)
α ,q (r1, r2). (B.35)

In this optimized basis representation, the BSE Hamiltonian becomes hermitian [140, 359,
261], and only the matrix elementsV rr ,W rr , andW ra need to be computed. Another impor-
tant symmetry follows from Eq. B.35: The resonant and antiresonant plane-wave matrix
elements defined in Eq. A.16 are given by

Mr ,(1,2)
α (G, q)

∫

d3r ϒ̄r ,(1,2)α ,q (r, r)e−i(G+q)r =

∫

d3r ϒ̄дa,(1,2)α ,q (r, r)e−i(G+q)r = Ma,(1,2) (G, q).

(B.36)
Due to Eq. B.34, the resonant basis functions are related by

ϒ̄
r2
α ,q(r1, r2) =

[

ϕ∗
v (k+

q
2 )
(r1)ϕc (k− q

2 )
(r2)

]∗
=

[

ϒ̄
r1
α ,−q(r1, r2)

]∗
. (B.37)

Equivalently, for the antiresonant basis functions, we obtain

ϒ̄
a2
α ,q(r1, r2) =

[

ϒ̄
a1
α ,−q(r1, r2)

]∗
. (B.38)
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In the following, we will always employ the time-reversal optimized basis functions. To
simplify the notation, we write ϒ ≡ ϒ̄

B.5 Connection between Response Functions

The Lehmann representation of the retarded polarizability in Eq. B.29 closely resembles
those of the time-ordered polarizabilities in Eqs. B.18 and B.21. Following Eqs. B.24 and
B.25, we write the matrix elements of the retarded polarizability as

χR,Rαα ′ =
∑

N,0

χR,Rαα (q;N )

ω − EN + iη
(B.39)

and

χR,Aαα ′ =
∑

N,0

χR,Aαα (q;N )

ω + EN + iη
. (B.40)

We then find
χR,Rαα ′ (q;N ) = 〈0|ĉ†

v (k− q
2 )
ĉc (k+ q

2 )
|n〉〈n |ĉ†

c ′(k′+ q
2 )
ĉv ′(k′− q

2 )
|0〉

= χR1αα ′ (q;N ) =
[

χR2αα ′ (−q;N )
]∗ (B.41)

and
χR,Aαα ′ (q;N ) = 〈0|ĉ†

c ′(k− q
2 )
′ĉv ′(k′+ q

2 )
|n〉〈n |ĉ†

v (k+
q
2 )
ĉc (k− q

2 )
|0〉

= χA1αα ′ (q;N ) =
[

χA2αα ′ (−q;N )
]∗
.

(B.42)

We see that the matrix elements of the time-ordered polarizability using a Fourier trans-
form in τ (1) are identical to the ones of the retarded polarizability. Those matrix elements
obtained from the Fourier transform in τ (2) , on the other hand, are the complex-conjugate
of the corresponding matrix elements for the momentum transfer −q.

Let us formulate a physical interpretation of this behavior: Using τ (1) represents moving
forward in time, as can be seen in the definition of the retarded polarizability in Eq. 2.18.
We observe excitations and de-excitations in the time-ordered polarizability as we do in
the retarded one. These excitations occur with a momentum transfer q, i.e. transitions
occur from k − q

2
to k +

q
2
. Using τ (2) represents a time reversal, as increasing τ (2) means

moving backward in time. An excitation seen moving forward in time turns into a de-
excitation, whenmoving backward. Since themomentum changes sign under time reversal,
the Fourier components of the polarizability with respect to τ (2) contains the information
about excitations and de-excitations with momentum transfer −q.
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B.6 Consequences for BSE Implementations

In the following, we will show how the construction of the retarded polarizability differ
in BSE implementations depending on which of the basis set representations in Eq. B.34
are employed. Due to the relationship between the basis functions in Eq. B.37 and B.37,

the eigenstates X (1,2)
λ corresponding to an eigenvalue E (1,2)

λ in the two basis sets are related
by

X
(2)
λ (q) =

[

X
(1)
λ (−q)

]∗
Y
(2)
λ (q) =

[

Y
(1)
λ (−q)

]∗
(B.43)

and the eigenvalues by

E
(1)
λ (q) = E

(2)
λ (−q). (B.44)

B.6.1 Construction of the Polarizability

Once the BSE eigenvalues Eλ (q) and eigenstates X (1)
λ (q),Y

(1)
λ (q) are obtained from the BSE

Hamiltonian (Eq. 6.29) in the basis {ϒr1α , ϒa1α }, the retarded polarizability is calculated ac-
cording to Ref. [283] as

χ (q,ω) = −
[

HBSE(q) − ω∆
]−1
=

∑

λ

χR1(q, λ, 1)

ω − Eλ + iη −
χA1(q, λ, 1)

ω − Eλ − iη , (B.45)

with

χR1(q; λ) =







X
(1)
λ (q)

[

X
(1)
λ (q)

]†
X

(1)
λ (q)

[

Y
(1)
λ (q)

]†

Y
(1)
λ (q)

[

X
(1)
λ (q)

]†
Y
(1)
λ (q)

[

Y
(1)
λ (q)

]†







χA1(q; λ, 1) =







Y
(1)
λ (q)

[

Y
(1)
λ (q)

]†
Y
(1)
λ (q)

[

X
(1)
λ (q)

]†

X
(1)
λ (q)

[

Y
(1)
λ (q)

]†
X

(1)
λ (q)

[

X
(1)
λ (q)

]†






.

(B.46)

The Fourier components of the retarded polarizabiliy are given by as2

χRGG′ (q,ω) =
1

V

(

[M (1)]T (G, q) [M (1)]T (G, q)
)

χR (q,ω)






[

M (1)
]∗

(G, q)
[

M (1)
]∗

(G, q)




 , (B.47)

2Here, we use the fact that ϒ(1,2)r
α (r, r) = ϒ

(1,2)a
α (r, r) [261].
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where M (1) (G, q) are the plane-wave matrix elements defined in Eq. A.16 with respect to
the basis ϒ(1) . Finally, we obtain the compact expression

χRGG(q,ω) =
∑

λ

[

t
(1)
λ (q)

]∗
t
(1)
λ (q)

ω − Eλ (q) + iη −
t
(1)
λ (q)

[

t
(1)
λ (q)

]∗

ω + Eλ (q) + iη
, (B.48)

where we have defined the oscillator strength t
(1)
λ (q) as

t
(1)
λ (q) =

1√
V

(

X
(1)
λ (q) + Y

(1)
λ (q)

)† [
M (1) (G, q)

]∗
. (B.49)

Equations B.48 and B.49 show that the retarded polarizability can be obtained in a straight-
forward fashion from the eigenvalues and -states of the BSE in the basis set ϒ(1) . To obtain
an expression in terms of the eigenvalues and eigenstates obtained from a solution in the
basis set ϒ2, we use that the plane-wave matrix elementsM (1) andM (2) are related as

M (1)
α (G, q) =

∫

d3rϒ(1)
α ,q(r, r)e

−i(G+q)r
=

[∫

d3rϒ
(2)
α ,−q(r, r)e

i(G+q)r

]∗
=

[

M (2)
α (−G,−q)

]∗
,

(B.50)
where we have combined Eqs. B.37 and B.38. Using Eqs. B.43 and B.44, the retarded polar-
izability can be expressed in terms of solutions of the BSE in the basis ϒ(2) as

χRGG(q,ω) =
∑

λ

∣
∣
∣
∣
M (2) (−G,−q)†

(

X
(2)
λ (−q) + Y (2)

λ (−q)
)∗
∣
∣
∣
∣

2

ω − Eλ (−q) + iη

−

∣
∣
∣
∣
M (2) (−G,−q)†

(

X
(2)
λ (−q) + Y (2)

λ (−q)
)∗
∣
∣
∣
∣

2

ω + Eλ (−q) + iη .

(B.51)

Equivalently, the Fourier components χR(−G) (−G) (−q,ω) can be obtained as

χR(−G) (−G) (−q,ω) =
∑

λ

∣
∣
∣
∣
M (2) (G, q)†

(

X
(2)
λ (q) + Y

(2)
λ (q)

)∗
∣
∣
∣
∣

2

ω − Eλ (q) + iη

−

∣
∣
∣
∣
M (2) (G, q)†

(

X
(2)
λ (q) + Y

(2)
λ (q)

)∗
∣
∣
∣
∣

2

ω + Eλ (q) + iη
.

(B.52)
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where we have used Eλ (q) = Eλ (−q) and Xλ,2(q) + Yλ,2(q) = Xλ,2(−q) + Yλ,2(−q). We then

define the oscillator strength t
(2)
λ (q) as

t
(2)
λ (q) =

1√
V

(

X
(2)
λ (q) + Y

(2)
λ (q)

)T

M (2) (G, q) (B.53)

and obtain

χR(−G) (−G) (−q,ω) =
∑

λ

t
(2)
λ (q)

[

t
(2)
λ (q)

]∗

ω − Eλ (q) + iη −
t
(2)
λ (q)

[

t
(2)
λ (q)

]∗

ω + Eλ (q) + iη
. (B.54)

As such, we have shown in Eq. B.54 that the solutions of the BSE Hamiltonian in the basis
ϒ
(2) for a momentum transferQ = G+q yield the retarded polarizability for the momentum

transfer −Q = −G − q.

B.6.2 Optical Limit

To obtain the macroscopic dielectric tensor ϵijM (ω) in the optical limit, i.e. for q→ 0 directly,
an effective retarded polarizability χ̄RGG′ can be employed. With this, the dielectric tensor
becomes

εM(G + q,ω) = 1 − 4π

|G + q|2 χ̄
R
GG(q,ω). (B.55)

The effective polarizability χ̄R is connected to the retarded polarizability χR via χ̄R = χR +
χRv̄ χ̄R , where v̄ is given for a momentum transfer Q = G + q, as

v̄G′ (q
′) =







0 G′ = G q′ = q

vG′ (q
′) else

(B.56)

The effective polarizability is calculated by replacing the bare Coulomb potential in Eqs. 6.37
and 6.39 with v̄ . More details can be found in Refs. [103, 140, 261]. In the optical limit,
Eq. B.55 becomes

ϵM(ω) = 1 − lim
q→0

4π

q2
χ̄R0,0(q,ω). (B.57)

In order to evaluate the limit q → 0, we consider first the limit of the plane-wave matrix
elementsM (2) (0,−q):

lim
q→0

M (2)
α (0,−q) = lim

q→0

∫

d3rϒ(2) (r, r)eiqr ≈ iq

∫

d3rrϒ(2) (r, r) = q
P
(2)
α

∆ϵα
, (B.58)
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where we have used
[

Ĥ , r̂
]

= −ip̂ to express the plane-wave matrix element in terms of the

momentum matrix element Pα and the energy difference ∆ϵα = ϵck−ϵvk. By separating the
momentum vector q = |q|q̂, where q̂ is the unit vector in the direction of q, we can now
construct the macroscopic dielectric function as

εM (ω) = 1 − 4π
∑

i,j

q̂i
∑

λ






[

t
(2)
λ,i

]∗
tλ,j

ω − Eλ + iη
+

[

t
(2)
λ,i

]∗
tλ,j

−ω − Eλ − iη




 q̂j . (B.59)

In Eq. B.59, we have defined the oscillator strength at q = 0 as

t
(2)
λ,i =

1√
V

(

X
(2)
λ (q) + Y

(2)
λ (q)

)T Pi

∆ϵ
(B.60)

We can now rewrite Eq. B.59 in matrix form to obtain the 3× 3 dielectric tensor, the entries
of which are given by

ε
ij
M (ω) = δij − 4π

∑

λ






[

t
(2)
λ,i

]∗
t
(2)
λ,j

ω − Eλ + iη
+

[

t
(2)
λ,i

]∗
t
(2)
λ,j

−ω − Eλ − iη




 . (B.61)
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APPENDIX C

Numerical Convergence

The main parameters of BSE calculations in the exciting code are the k-grid, the Fourier
cut-off |G+q|max of matrix elements in Eqs. 6.39, 6.45, and 6.46, and the number of conduc-
tion and valence bands that are included in the construction of the BSE Hamiltonian. For all
absorption spectra presented in this thesis, we have performed convergence test, where we
have considered the full spectral shape as the convergence criterion. We have performed
additional tests to ensure the convergence of exciton binding energies. For all core exci-
tation spectra in Ga2O3 polymorphs, we consider only the convergence of the spectrum
of one of the inequivalent atoms. All spectra in this chapter represent raw computational

spectra, i.e. the spectra are not aligned to the experimental ones, and thus may differ from
those provided in Chapters 10,11,12,13.

C.1 Ga2O3 Optical Absorption Spectra

The convergence behavior of the optical absorption spectra of α- and β-Ga2O3 is displayed
in Fig. C.1. We find that the optical absorption of α-Ga2O3 changes little with increasing
k-grid, while the position and intensity of the peaks in the spectrum of the β-phase change
strongly. For both polymorphs, the spectra change little with increasing cut-off off |G +
q|max . The optical absorption spectrum is converged for a 11 × 11 × 11 k-grid. We chose
a cut-off |G + q|max = 2.0 a−10 and 1.1 a−10 for α- and β-Ga2O3, respectively. As we
analyze the bound excitons, we consider the convergence of the binding energy of the most
strongly bound exciton in Fig. C.2. For both polymorphs, the binding energies converge
slowly with respect to the size of the k-grids. As the numerical cost of the BSE calculations
increase tremendously with increasing numbers of k-points, these tests are performed with
a decreased number of conduction bands in the BSEHamiltonian. From the exciton weights
in Fig. 10.2 we anticipate that the excited electron is solely distributed over the lowest two
conduction bands, while the hole is distributed over several valence bands. Therefore, for
the convergence of the bound excitons, we consider transitions from the 9 and 10 highest
valence bands in α and β-Ga2O3, respectively, to the 2 lowest conduction bands. We find
that there is no significant change in the binding energy for β-Ga2O3. Generally, the binding
energies decrease with increasing number of k-points. The increase of |G + q|max does not
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Figure C.1: Convergence of εxxM of α- (top) and β-Ga2O3 (bottom) with respect to the
k-grid (left) and the cut-off |G + q|max .

change them significantly. Converged values are obtained with a 14 × 14 × 14 k-grid and
cut-off |G+ q|max = 2.0 a−10 for α-Ga2O3. For β-Ga2O3, the corresponding parameters are a
16 × 16 × 16 k-grid and |G + q|max = 0.8 a−10 .
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Figure C.2: Convergence of the exciton binding energy for the most strongly bound
exciton in α- and β-Ga2O3 with respect to the number of k-points (left) and cut off
|G+q|max (right). For the former, we show both the convergence of the full calculation
and the onset calculation.

C.2 Ga2O3 Oxygen K Edge Spectra

The O K edge spectra of α-, β-, and ϵ-Ga2O3 converge rapidly both with respect to the
number of k-points and the cut-off |G+q|max . While Fig. C.3 only shows the results for εxxM
of the oxygen atom O1 in each polymorph, we have verified that the other components and
the spectra of all inequivalent atoms converge for the same numerical parameters. From
the our convergence tests, we induce that converged spectra are obtained with a 9 × 9 × 9
k-grid and |G + q|max = 3.0 a−10 for α-Ga2O3, 10 × 10 × 10 grid and |G + q|max = 1.0 a−10 for
β-Ga2O3, and 8 × 8 × 8 grid and |G + q|max = 1.5 a−10 for ϵ-Ga2O3.
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Figure C.3: Convergence of the O K edge spectrum for α- (top), β- (center), and ϵ-
Ga2O3 (bottom) with respect to the k-grid (left) and the cut-off |G + q|max (right). The
component εxxM is shown for all polymorphs. All spectra are normalized to the most
intense peak.

C.3 Ga2O3 Gallium L2 Edge Spectra

The convergence behavior of the Ga L2 edge spectra of both α- and β-Ga2O3 differs signifi-
cantly from that of the optical and O K edge spectra. The spectra converge quickly with the
k-grid, but the convergence with respect to the Fourier cut-off |G+q|max is very slow. With
increasing cut-off, both the relative intensity and relative position of the low-energy exci-
tonic peak in the spectrum changes. While the convergence is slow, the spectral changes
are subtle and can not be deduced from Fig. C.4. We therefore introduce a measure for the
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convergence of spectra. Given a spectrum εa (ω) and a converged spectrum εb (ω), we define
the integrated difference ∆ε as

∆ε =

∫
dω
∣
∣
∣Im

[
εa (ω) − εb (ω)

]
∣
∣
∣

∫
dω
∣
∣Im εb (ω)

∣
∣

. (C.1)

The integrated difference for the α- and β-phase shown in Fig. C.5 demonstrate that the
spectra converge with increasing |G + q|max. For excitonic properties, the convergence
is seen more clearly when the exciton binding energies are considered in Fig. C.6. These
decreases slightly for calculations with increasing number of k-points and we find that
both the exciton binding energy and the absorption spectra are converged with k-grids of
11× 11× 11 and 10× 10× 10 for α- and β-Ga2O3, respectively. The change with increasing
|G + q|max is more significant. We find that the binding energy and absorption spectra are
only converged for |G+q|max = 4.5 a−10 for both polymorphs, a considerably higher cut-off
than required for the calculation of the optical and O K edge absorption spectra.
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Figure C.4: Convergence of Ga L2 edge absorption spectrum of α- (top) and β-Ga2O3

(bottom) with respect to the k-grid (left) and |G+ q|max (right). We display the compo-
nent εxxM . All spectra are normalized to the most intense peak.
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α- (blue) and β-Ga2O3 (orange) with respect to the number of k-points (left) and the
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C.4 Ga2O3 Gallium K Edge Spectra

The Ga K edge XANES of both α- and β-Ga2O3 converge rapidly with respect to both the k-
grid and the cut-off |G+ q|max for the screened and bare Coulomb potentials. For α-Ga2O3,
a 9 × 9 × 9 k-grid and a cut-off |G + q|max = 2.5 a−10 yields a correct spectral shape. For the
β-phase, a 10 × 10 × 10 k-grid and a cut-off |G + q|max = 3.0a−10 is found to be sufficient.
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Figure C.7: Convergence of εxxM at the Ga K edge of α- (top) and β-Ga2O3 (bottom)
with respect to the k-grid (left) and the cut-off |G+q|max . All spectra normalized to the
intensity of the maximum.

C.5 Converged Parameters

C.5.1 DFT Calculations

Here, we summarize the numerical parameters for the DFT calculations from which the
electronic-structure plots in this thesis are obtained, and which are the basis of the BSE
calculations. The parameters of the latter are presented in the next section. All DFT cal-
culations are performed with the all-electron full-potential exciting code [254]. Calcu-
lations with this code require the user to specify a number of numerical parameter, and
in the following we only report the three most important ones: the k-grid describe the
sampling of the first Brillouin zone, the product of the smallest muffin-tin radius RMT and
the plane-wave cutoff |G + k|max describes size of the (L)APW+lo basis, and we report the
exchange-correlation functional of the calculations. The remaining numerical parameters
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can be obtained from the input and output files of the calculations, which we provide in
Refs. [352–354] for diamond, LiF, and CeO2, respectively, and in Refs. [355–357] for α-, β-,
and ϵ-Ga2O3, respectively.

Material k-grid RMT |G + k|max Functional vxc[n]
Diamond 9 × 9 × 9 8.0 PBSEsol [77]

LiF 8 × 8 × 8 9.0 PBEsol
CeO2 8 × 8 × 8 9.0 PBE [76]

α-Ga2O3 8 × 8 × 8 8.0 PBE
β-Ga2O3 8 × 8 × 8 8.0 PBE
ϵ-Ga2O3 4 × 4 × 4 10.0 PBE

Table C.1: Converged numerical parameters for all DFT calculations.

C.5.2 BSE Calculations

In this section, we summarize the numerical parameters of all BSE calculations that are
included in this thesis. All calculations are performed using the exciting code [359, 254].
The relevant parameters are the k-grid, the number of conduction states Ncond(screen) in-
cluded in the calculations of the RPA dielectric function, and the numberNval of valence and
Ncond(bse) of the conduction states included in the construction of the BSE Hamiltonian.
Finally, the lifetime broadening η used for the construction of the dielectric function. The
input and output files of the BSE calculations can be found in Refs. [352–354] for diamond,
LiF, and CeO2, respectively, and in Refs. [355–357] for α-, β-, and ϵ-Ga2O3, respectively.
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Material Energy k-grid Ncond

(screen)

Nval Ncond

(bse)

|G + q|max

[a−10 ]

η

[eV]
diamond optics 13 × 13 × 13 100 4 10 3.5 0.15

C K edge 13 × 13 × 13 100 2 40 5.5 0.5
LiF optics 9 × 9 × 9 100 4 20 5.0 0.25

F K edge 9 × 9 × 9 100 2 20 7.0 0.75
CeO2 Ce N4,5 edge 5 × 5 × 5 100 14 60 6.0 0.5

α-Ga2O3 optics 11 × 11 × 11 100 9 15 2.0 0.1
O K edge 9 × 9 × 9 100 2 20 3.0 0.2
Ga K edge 9 × 9 × 9 100 2 30 2.5 1.0
Ga L2 11 × 11 × 11 100 2 20 4.5 0.15

β-Ga2O3 optics 11 × 11 × 11 30 10 10 1.1 0.1
O K edge 10 × 10 × 10 30 2 20 1.0 0.1

Ga K edge edge 10 × 10 × 10 75 2 30 3.0 1.0
Ga L2 edge 10 × 10 × 10 100 2 20 4.5 0.15

ϵ-Ga2O3 O K edge 8 × 8 × 8 100 2 60 1.5 0.15

Table C.2: Converged numerical parameters of all BSE calculations.
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